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Abstract

Despite large omics datasets, the prediction of eukaryotic genes is still challenging. We have developed 
a new method to improve the prediction of eukaryotic genes and demonstrate its utility using the 
genome of the fungal wheat pathogen Zymoseptoria tritici. From 10,933 to 13,260 genes were 
predicted by four previous annotations, but only one third were identical. A novel bioinformatics suite, 
InGenAnnot, was developed to improve Z. tritici gene annotation using Iso-Seq full-length transcript 
sequences. The best gene models were selected among different ab initio gene predictions, according 
to transcript and protein evidence. Overall, 13,414 re-annotated gene models (RGMs) were predicted, 
improving previous annotations. Iso-Seq transcripts outlined 5’ and 3’ UTRs for 73% of the RGMs, and 
alternative transcripts mainly due to intron retention. Our results showed that the combination of 
different ab initio gene predictions and evidence-driven curation improved gene annotation of a 
eukaryotic genome. It also provided new insights into the transcriptional landscape of this fungus. 

Keywords: Septoria tritici blotch, gene prediction, genome annotation, transcripts, isoforms
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Predicting genes in eukaryotic genomes is a challenging process (Salzberg 2019). The quality of a 
genome annotation depends on supporting evidence for coding regions, splice junctions and the 
algorithms used for predictions (Ejigu and Jung 2020). Known drawbacks for gene annotation are the 
complexity of eukaryotic gene structure, including difficulties in intron or start codon prediction and 
the quality of genome assembly. These drawbacks are particularly significant for fungal genomes. 
Indeed, the high gene density observed in fungal genomes leads to overlaps between adjacent 
transcripts (Donaldson et al. 2017; Hansen et al. 1998; Gerads and Ernst 1998) leading to wrong gene 
predictions such as gene fusions (Testa et al. 2015). In addition, fungi have short introns (70-100 bp, 
(Kupfer et al. 2004)), and frequently fragmented genome assemblies. These particularities have led to 
the development of fungal-specific annotation pipelines (Scalzitti et al. 2020; Birney et al. 2004; Brůna 
et al. 2021; Sallet et al. 2019; Holt and Yandell 2011; Stanke et al. 2006; Lukashin 1998; Min et al. 2017; 
Reid et al. 2014). Long-read sequencing is now providing fungal genome assemblies with almost no 
fragmentation. Experimental transcript evidence also has been improved by using large datasets of 
assembled Illumina single-stranded RNA-Seq short reads. Recently, Iso-Seq long-read sequencing is 
providing full-length transcript sequences (Raghavan et al. 2022). Iso-Seq can provide evidence for 
alternative intron splicing events and sometimes for alternative transcription start and termination 
sites. Still, RNA-Seq reads are required, since Iso-Seq is not quantitative (Beiki et al. 2019). Combining 
these two types of transcript sequencing improves the reliability of full-length transcript sequences 
(Amarasinghe et al. 2020). Other omics methods such as transcription start site sequencing (TSS-Seq) 
or cap-analysis gene expression sequencing (CAGE-Seq) are available to define transcript start sites 
(Casco et al. 2022; Chiba et al. 2022), but are still rarely used in fungi.

We have chosen the genome of the fungus Zymoseptoria tritici as a case study to develop novel 
methods for gene annotation of fungal genomes. Z. tritici is an ascomycete ((Quaedvlieg et al. 2011) 
causing a major foliar disease of bread and durum wheat (Petit-Houdenot et al. 2021). The Z. tritici 
genome was first sequenced in 2011 using the reference isolate IPO323 (Goodwin et al. 2011). This 
complete genome sequence from telomere to telomere has a size of 39.7 megabases (Mb) and is 
composed of 13 core chromosomes (CCs) and 8 accessory chromosomes (ACs). Twenty two additional 
fully assembled (long-reads) genome sequences of Z. tritici isolates are available (Badet et al. 2020; 
(Feurtey et al. 2020) (Moller et al. 2021), as well as genome sequences from four related Zymoseptoria 
species (Z. ardibilae, Z. brevis, Z. passerinii, Z. pseudotritici) (Feurtey et al. 2020). Around 14-22 % of Z. 
tritici genomes are composed of transposable elements (TEs) (Dhillon et al. 2014); (Grandaubert et al. 
2015); (Badet et al. 2020); (Lorrain et al. 2021); (Oggenfuss et al. 2021). The interest of Z. tritici for 
fungal gene annotation comes from the occurrence of four independent annotations of the IPO323 Z. 
tritici genome. Large discrepancies in gene numbers and structures were observed across these four 
independent annotations. In addition, genes that are thought to be important for plant infection were 
not predicted by any of these annotation pipelines. For example, the avirulence gene Avr-Stb6 was 
predicted using infection-related RNA-Seq data, but not by the existing annotations (Zhong et al. 2017). 
Clearly, the complete coding potential of this genome has not been identified despite four thorough 
annotations using different pipelines and large RNA-Seq datasets.

Using Z. tritici as a case study, we established a novel strategy to annotate genes in a compact 
eukaryotic genome using a large dataset of Iso-Seq full-length cDNA sequences (An et al. 2018; Zhang 
et al. 2019), and a novel bioinformatics suite, InGenAnnot, to select the best genes models among 
those predicted by different ab initio gene prediction software. This selection relies on a customized 
Annotation Edit Distance (AED) metric (Eilbeck et al. 2009). InGenAnnot computes an AED for each 
evidence with penalties for unsupported intron splicing sites (Figure S1). Using InGenAnnot, we 
identified 13,414 curated genes in the Z. tritici genome. Iso-Seq also identified alternative transcripts 
and long, non-coding RNA (lncRNA), improving our understanding of the Z. tritici transcriptional 
landscape.
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Materials and Methods

Available Z. tritici IPO323 gene annotations
Currently, four annotations of the Z. tritici IPO323 genome are available (Table S1). The first , with 

10,933 gene models, was developed in 2011 by the Joint Genome Institute (JGI) with ab initio gene 
prediction software FGENESH and Genewise (Birney et al. 2004) using EST (expressed sequence tag) 
and proteome evidence (Goodwin et al. 2011). The second annotation was performed in 2015 by the 
Max Planck Institute (MPI, Germany), resulting in 11,839 gene models (Grandaubert et al. 2015) 
identified with the Fungal Genome Annotation pipeline (Haas et al. 2011). This pipeline uses ab initio 
gene prediction software GeneMark-ES, GeneMark-HMM (Lukashin 1998) and Augustus (Stanke et al. 
2006) combined by EVidenceModeler (Haas et al. 2008) with RNA-Seq evidence and keeping as much 
as possible of the first annotation provided by JGI. The third annotation was generated in 2015 by the 
Rothamsted Research Experimental Station (Chen et al. 2023) with 13,862 gene models (RRES, UK) 
obtained with the ab initio gene prediction software MAKER-HMM (Holt and Yandell 2011) and RNA-
Seq evidence. The fourth annotation was performed in 2015 by the Centre for Crop & Disease 
Management, Curtin University (CURTIN, Australia) with 13,260 gene models obtained with ab initio 
gene prediction software CodingQuarry (Testa et al. 2015) and RNA-Seq evidence. All gene files 
corresponding to the annotations provided by JGI, MPI, RRES and CURTIN are accessible at 
(https://doi.org/10.57745/CVIRIB) and displayed at a dedicated INRAE genome browser 
(https://bioinfo.bioger.inrae.fr/portal/genome-portal/12) or at the Zymoseptoria tritici IPO323 JGI 
genome browser (https://mycocosm.jgi.doe.gov/Zymtr1/Zymtr1.home.html).

Fungal isolate, RNA extraction, PacBio Iso-Seq and Illumina RNA-Seq libraries
The reference isolate of Z. tritici IPO323 (Goodwin et al. 2011) was stored at -80°C as a yeast-like 

cell suspension (107 cells/mL in 30% glycerol), and grown at 18°C in the dark on solid (Yeast extract 
Peptone Dextrose (YPD) agar) or liquid (Potato Dextrose Broth (PDB)) media. For RNA production, 
different media were used (Table S3). Additional single-stranded RNA-Seq data were obtained from 
public databases (Table S3). Novel and public RNA-Seq data were cleaned and mapped to the Z.tritici 
IPO323 genome (see Table S3 for methods). Processed Iso-Seq data also were mapped to the Z. tritici 
IPO323 genome (see Table S3 for methods). 

Gene prediction and selection of the best gene models
The two ab initio gene prediction software Eugene v1.6.1 (Sallet et al. 2019) and LoReAn v2.0 (Cook 

et al. 2019), handling long-read transcript sequences as evidence, were used to annotate the Z. tritici 
IPO323 genome sequence. Eugene was trained with filtered Iso-Seq transcripts (Table S3) and a dataset 
of proteins from four genomes of species phylogenetically related to Z. tritici: Cercospora beticola 
(GCF_002742065.1_CB0940_V2); Ramularia collo-cygni (GCF_900074925.1_version_1); Zasmidium 
cellare (GCF_010093935.1_Zasce1); and Sphaerulina musiva 
(GCF_000320565.1_Septoria_musiva_SO2202_v1.0), using the fungal matrix (WAM fungi matrix). 
After the training step, gene structures were predicted with assembled transcripts from RNA-Seq and 
a dataset of Dothideomycetes proteins obtained from Uniprot without Zymoseptoria sequences to 
avoid inference with previous Z. tritici annotations. Filtered Iso-Seq transcripts were used as strongly 
weighted evidence in model prediction with the parameter “est_priority=2”. LoReAn was 
launched in the fungal mode with the Augustus retraining mode using the same Dothideomycetes 
Uniprot protein dataset and Iso-Seq transcript dataset as used for Eugene. RNA-Seq data were merged 
as a mapping file (BAM) obtained with the pipeline used to assemble transcripts and detect splicing 
sites (see Table S3 for methods). The new (Eugene, LoReAn) and previous (JGI, MPI, RRES, CURTIN) 
gene models were analyzed with ingenannot filter to filter out TE-encoding genes. 

Filtered gene models were analysed with ingenannot aed to provide Annotation Edit Distance 
(AED) (Eilbeck et al. 2009) scores for each gene model compared to either the Uniprot fungal protein 
dataset without Zymoseptoria species (AED protein) or the filtered Iso-Seq and RNA-Seq transcripts 
(AED transcript). The original AED score proposed by Maker (Eilbeck et al. 2009), is a combination of 
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Sensitivity and Specificity computing to compare two gene models using the number of bases 
overlapping both annotations or specific to each of them. InGenAnnot computes a customized AED for 
each source of evidence with several options such as restriction to coding sequence (CDS) or penalty 
on unsupported intron splicing sites (Figure S1). AED were calculated with “--aed_tr_cds_only” 
to avoid bias between datasets with or without UTR annotations and with “--penalty_overflow 
0.25” to penalize gene models with unsupported intron splicing sites. The best gene models were 
selected with InGenAnnot select based on an AED value below 0.3 for transcript evidence (AED 
transcript) or below 0.1 for protein evidence (AED protein). AED values of 0.5 or below are considered 
as indicative of good annotations, while values of 0.3 or below are classified as high-quality annotations 
(Hunt et al. 2020; Holt and Yandell 2011). As we benefit from extensive RNA-Seq and Iso-Seq datasets, 
we set a threshold of 0.3 for selecting the best gene models. The threshold for "AED protein" was set 
to 0.1, as it is challenging to evaluate accurately gene structure using only protein sequence 
alignments. In this context, the AED protein score was used as evidence for the presence—or 
absence—of a similar existing protein in other fungi, in particular for gene models without sufficient 
transcript support. Gene models with AED scores higher than the threshold values, but predicted by at 
least 4 independent ab initio gene prediction software, were also retained. Gene models with AED 
scores higher than the threshold values, but predicted by at least 4 independent ab initio gene 
prediction software, were retained. However, all the gene models without an ATG or stop codon were 
removed. The relatively high number of annotation sources (6) and the selection of loci detected by 4 
independent gene predictors, allow us to use stringent AED thresholds, leading to well supported gene 
structures (see Figure S2 for a full description the bioinformatics workflow). 

Potential new gene models encoding effectors were predicted with ingenannot rescue_effector, 
and added to the final dataset. Transcripts that did not co-localize with a gene model were tested in 3 
frames to analyse the predicted peptides with the same criteria as those used to detect small secreted 
proteins (SSP) as described below. The final set of gene models was identified as RGMXXXX for 
Reannotated Gene Models from RGM00001 to RGM13414.

UTRs were inferred in two passes with the ingenannot utr_refine. First, all previously annotated 
UTRs and inferred new coordinates from a filtered set of Iso-Seq transcripts were withdrawn. Second, 
UTRs were inferred using a filtered set of RNA-seq assembled transcripts, considering only transcripts 
with no UTRs from the first step. Both sets were established with the ingenannot isoform_ranking for 
filtering and ranking UTR isoforms based on RNA-Seq evidence.

Gene models from each annotation were compared according to their AED scores using 
ingenannot aed_compare. Specific/shared gene models were identified using ingenannot compare. 
BUSCO (Manni et al. 2021) analyses with ascomycota_odb10 were performed to evaluate the 
completeness of datasets (See Table S5 for details, and comments). 

Functional annotation of RGMs 
RGMs protein sequences were analysed with Interproscan 5.0 (Jones et al. 2014) and Blastp 

(Camacho et al. 2009) (e-value <1e-5 ) against the NCBI nr databank to perform a Gene Ontology 
annotation (Gene Ontology Consortium 2004) with Blast2GO (Götz et al. 2008). Secreted proteins and 
effectors were annotated as described in (Gay et al. 2021), using a combination of TMHMM (v.2.0) 
(Möller et al. 2001), SignalP (v4.1) (Nielsen 2017) and TargetP (v1.1b) (Armenteros et al. 2019) with 
the following criteria: no more than one transmembrane domain and either a signal peptide or an 
extracellular localization prediction. The SSP repertoire was predicted by applying a size cutoff of 300 
amino acids and keeping only proteins predicted as effectors by EffectorP (v2.0).

Analysis of Iso-Seq transcript isoforms, antisense and lncRNAs 
The annotation of transcript isoforms was performed with sqanti3 (Tardaguila et al. 2018) using 

Iso-Seq transcripts (see Table S8 for methods). Iso-Seq transcripts annotated as antisense and 
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intergenic with sqanti3 were selected as long, non-coding (lnc) RNAs and further filtered (see Table S9 
for Methods; File S1). 

Detection of polycistronic Iso-Seq transcripts
Read-through Iso-Seq transcripts that were previously filtered out were merged to obtain the 

global counts of co-transcribed genes. These read-through transcripts were filtered out using RGMs 
and their Iso-Seq transcripts as evidence. Only polycistronic mRNAs that were supported by 
independent long-read single transcripts for each gene were conserved and considered as reliable. 
Detection of overlaps between transcripts and annotations was performed with intersect from 
BEDTools (Quinlan and Hall 2010).

Annotation Edit Distance as a metric for comparing gene models predicted by different tools 
InGenAnnot RGMs were compared to gene models obtained with either funannotate (funannotate 

n.d.), Helixer (Stiehler et al. 2021) or BRAKER3 (Gabriel et al. 2024). Gene models obtained with these 
three tools were scored with AED using the same evidence as for RGM, and their AED scores were 
plotted for both transcript and protein evidence (Figures S11, S12 and S13). Gene models from each 
annotation were compared according to their AED scores using ingenannot aed_compare. 
Specific/shared gene models were identified using ingenannot compare (Figure S14).
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Results

Comparisons of existing Z. tritici IPO323 genome annotations
The gene models from the four previous annotations of the Z. tritici IP0323 genome (MPI, JGI, 

RRES, and CURTIN) were filtered out for TE-encoding genes. These gene models were clustered into 
13,225 metagenes, defined as the “gene locus” of ParsEval (Standage and Brendel 2012). These 
metagenes corresponded to 26,224 distinct CDS. The comparison of the different gene models 
occurring at each “locus” highlighted three categories of metagenes: a) identical gene models (same 
CDS); b) dissimilar gene models (same metagene, but different CDS); and c) specific gene models 
(predicted by a single gene predictor). Only 3,618 identical gene models were shared across the four 
annotations (27%, Figure 1). The MPI, RRES, and CURTIN annotations share more identical gene 
models, reaching the value of 6,816 (51%, Figure 1). The JGI and CURTIN annotations displayed the 
highest numbers of dissimilar gene models (4,752 and 3,844, respectively) compared to RRES and MPI 
(2,367 and 1,871, respectively; Figure 1). On the other side, the RRES, CURTIN and JGI annotations 
displayed higher numbers of specific gene models (593, 436, and 151, respectively; Figure 1), 
compared to the MPI annotation (12). Overall, this comparison showed that most metagenes displayed 
gene models predicted by at least two independent annotations (91%). Despite the low numbers of 
identical gene models across all four annotations, basic genomic statistics were similar (Table S1). 
Indeed, the JGI, MPI and CURTIN annotations displayed a similar distribution of gene models across 
chromosomes. However, the RRES annotation had more gene models on accessory chromosomes 
(Table S2). In addition, the average sizes of gene models differed between MPI (1465 bp) and the other 
annotations (~1300 bp). This difference could result from the occurrence of wrong gene models 
corresponding to the fusion of two or more adjacent gene models predicted as such by other 
annotations. Indeed, 533 and 801 gene fusions were detected in the MPI annotation compared to the 
RRES and CURTIN annotations, respectively. Overall, the low number of identical gene models among 
these four annotations (27%) likely resulted from drawbacks of each pipeline. To circumvent these 
problems, we generated a novel annotation of the IPO323 genome using a large set of transcript 
sequences, coming from either publicly available transcript sequences obtained by short-read, single-
stranded RNA-Seq sequencing, or new transcript sequences obtained from long-read PacBio 
sequencing (Iso-Seq) and short-read, single-stranded RNA-Seq sequencing (Table S3). 

Iso-Seq based annotation of the IPO323 genome and gene model selection 
mRNAs obtained from a large set of in vitro mycelial growth conditions (Table S3) were used for 

the construction of either single-stranded Iso-Seq cDNA libraries or single-stranded Illumina cDNA 
libraries. After mapping and filtering, 22,659 Iso-Seq transcripts were identified, including alternative 
transcripts differing in their intron splicing or TSS/TTS (TSS: transcriptional starting site, TTS: 
transcriptional termination site). Alternative Iso-Seq transcripts either unsupported by RNA-Seq or in 
low relative abundance according to RNA-Seq (10%<), were filtered out. This filtering provided 21,052 
transcripts corresponding to 8,927 loci. Most loci displayed only one isoform (50%), while other loci 
had either 2 to 5 isoforms (42%), or at least 6 isoforms (8%). Transcripts from each single-stranded 
RNA-Seq library were assembled separately and those with weak expression levels (TPM<1) were 
removed (Table S3). A total of 498,010 single-stranded RNA-Seq transcripts were obtained as evidence. 
Currently a few gene prediction tools such as Eugene (Sallet et al. 2019), and LoReAn (Cook et al. 2019) 
use Iso-Seq transcripts as evidence. Eugene identified 15,810 gene models in the Z. tritici genome in a 
two-pass mode and strand-specific prediction allowing overlapping gene models on opposite strands. 
This number was reduced to 15,245 gene models after filtering out genes corresponding to TEs. 
LoReAn predicted 11,537 gene models without overlapping predictions on the opposite strand, which 
were reduced to 11,497 after filtering out genes corresponding to TEs. Selection of the best gene 
model was performed with InGenAnnot using Eugene, LoReAn and previous annotations (JGI, MPI, 
RRES, CURTIN). All these gene models were clustered into 17,147 metagenes. 
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InGenAnnot computed an Annotation Edit Distance (AED) (Eilbeck et al. 2009) for each comparison 
(two gene models or one gene model and its evidence), taking into account the number of overlapping 
bases (Eilbeck et al. 2009). AED computation was limited to the CDS, and a penalty score of 0.25 was 
introduced if intron splicing sites differed between a transcript evidence and its gene model. In 
addition, different AED scores were computed for transcript and protein evidence. Gene models with 
AED values below 0.3 for transcript and/or 0.1 for protein evidence were selected (Figure 2). Gene 
models failing to pass the AED threshold, but predicted by at least four independent annotations, were 
retained to avoid the loss of gene models with low support from transcript or protein evidence (upper 
right square in Figure 2 corresponding to 1,846 gene models). These rescued genes models were 
mostly not conserved across fungi and had low transcriptional support (Figure 2). For CDS overlapping 
on opposite strands, only the gene model with the best AED score was selected. Finally, 97 additional 
effector-encoding genes were predicted with the rescue_effector tool of InGenAnnot. Overall, we 
predicted 13,414 re-annotated Gene Models (RGMs; File S1, Table S4). In addition, UTRs were inferred 
from Iso-Seq transcripts for 7,713 genes and for 9,856 genes when combined with filtered RNA-Seq 
assembled transcripts. The average lengths of 5’ UTRs were 315 bp, while they were 389 bp for 3’UTRs 
(Table S4), similar to what was reported for the fungus P. anserina (5’ UTR 275 bp, 3’ UTR 303 bp) 
(Lelandais et al. 2022). A small proportion of genes displayed long 5’ UTRs (1,000 to 7,000 bp, 6%), 
and/or long 3’ UTRs (1,000 to 8,600 bp, 8.6%).

Comparison of the reannotated IPO323 gene models with available genome annotations
The 13,414 IPO323 RGMs were compared to previous gene models (JGI, MPI, RRES, CURTIN), using 

BUSCO and the ascomycota_odb as reference. High BUSCO scores were obtained with the RGM, RRES, 
MPI and CURTIN annotations (98.4-99.4%; Table S5), while the score obtained with the JGI annotation 
was lower (95.7 %), likely due to a high number of fragmented and missing BUSCO genes (Table S5). 
The comparison between annotations was then performed using AED scores (Figure 2, S3 and S4). Of 
the 13,414 RGMs, 11,568 gene models (86%) displayed AED values below the thresholds of 0.3 for 
transcript and 0.1 for protein evidence (Figure 2). CURTIN had a high level of support (10,716 gene 
models, Figure S3), followed by RRES (9518 gene models) and MPI (8936 gene models), while JGI was 
the least supported (7,730 gene models). Among the 1,846 RGMs failing to pass the AED threshold, 
but rescued as predicted by at least four annotations, 574 have no AED score. This implied that they 
were only predicted by ab-initio software (no evidence in Table S6). Half of these fully ab-initio RGMs 
were located on the 3’ arm of chromosome 7 between positions 1,900,000 and 2,500,000 (Table S6). 
Almost none of these RGMs was expressed, including during infection. This region was described as 
enriched in repressive histone H3K27me3 and H3K9me3 marks as observed for accessory 
chromosomes (Schotanus et al. 2015). These genes were not expressed in the kmt1 and kmt6 mutant 
backgrounds that lacked these histone modifications. This observation suggested that they were either 
unexpressed pseudogenes, or that their expression was under a negative control independent of the 
H3K27me3 and H3K9me3 marks. In addition, none of these genes was conserved across fungi, 
suggesting either a recent origin or an artefact from annotation pipelines. The other fully ab-initio 
RGMs were enriched in genes localized on accessory chromosomes (Table S6). 

Among the 13,414 RGMs, 7,888 were identical to at least one gene model from another annotation 
(Figure 3), while 3,479 RGMs were identical to all the gene models from the four previous annotations 
(Figure 3). Since 3,618 gene models were identical among the four previous annotations (see above), 
139 of these genes were not identical to RGMs. Most of these 139 RGMs had a novel start codon that 
did not change the coding phase of the first open reading frame, but led to a shorter or longer version 
of the same protein. Ribosome profiling could solve this problem by identifying the real start codon 
(Ingolia 2014). 2,047 RGMs were either different from (1,376 modified RGMs, Table S6) or not 
predicted by previous annotations (671, specific RGMs, Table S6). Most of the 1,376 modified RGMs 
had either alternative ATGs or intron splicing sites supported by transcript evidence. The 671 specific 
RGMs were distributed evenly on all chromosomes (Table S6). 117 of these specific RGMs displayed 
more than 40% sequence identity to proteins from other fungi. Blastn and tblastn searches showed 
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that 654 (97%) of these specific RGMs were detected in the genome of other Z. tritici strains (File S1). 
This result showed that most of the specific RGMs are not IPO323 specific, but are shared across 
isolates.

One major improvement of this novel annotation was the identification of split RGMs 
corresponding to genes wrongly fused in previous annotations, by detecting overlaps between gene 
models. Fused genes were detected in high numbers in the MPI and JGI annotations (1,507 and 1,258, 
respectively, Table S7), and in a lower number in the RRES annotation (701), while they were almost 
absent from the CURTIN annotation (176). The average AED score of split RGMs was better (median 
AED score: 0.17) than that of fused genes (median AED score: 0.34). In addition, most MPI fused genes 
(87%) were not supported by transcript evidence, since their AED scores were higher than the cutoff 
value (>0.3, Figure S5). Even though most transcript AED scores of split RGMs (65 %) were lower than 
the cutoff value (0.3<, Figure S5), a significant number of split RGMs (494, 35%) had a low support from 
both transcript and protein evidence (Figure S5). These split RGMs were rescued since they were also 
identified in other annotations than MPI. The transcript evidence of two randomly chosen MPI fused 
genes and their corresponding split RGMs are shown in Figures S6 and S7. Both MPI fused genes had 
no Iso-Seq transcript support, while Iso-Seq transcripts supported the split RGMs. Assembled RNA-Seq 
transcripts supporting split RGMs were also observed for RGM-1 and RGM-2 from Figure S6. However, 
large, assembled RNA-Seq transcripts supporting fused MPI genes were observed (Figure 5). We 
hypothesised that these long transcripts were artefacts of the assembly of RNA-Seq reads from 
individual genes with overlapping transcripts. The final evidence supporting these split RGMs was 
obtained by identifying specific expression conditions (13 days post-inoculation, wheat infection, 
Figure S5) in which RGM-2 was strongly expressed, but not RGM-1. 

Functional annotation of reannotated IPO323 gene models 
Functional annotation of RGM proteins was performed using Blast2Go and InterProScan. 5,593 

RGMs exhibited a GO term or an IPR and 2,838 were annotated with at least one Enzyme Code (EC). 
Several tools (Morais do Amaral et al. 2012; Grandaubert et al. 2015) were used to identify 1,895 RGMs 
encoding putative secreted proteins, including effectors (File S1, Table). A previous analysis predicted 
970 secreted proteins using the JGI annotation [43] which were all identified as RGMs. However, they 
increased to 1,046, due to the split of fused genes from the JGI. The RGM secretome included 234 
small secreted proteins (SSP) according to our criteria (peptide signal, size < 300 aa, EffectorP 
detection). Among these SSPs, 54 were detected by the effector rescue software of InGenAnnot 
including 43 SSPs that were not identified by new ab initio gene prediction software we used, nor by 
previous annotation pipelines. The effector rescue software searched for genes encoding SSPs 
according to our criteria (see before) among CDS inferred from transcripts not associated with a gene 
model. This strategy allowed the rescue of genes encoding SSPs that were difficult to predict by ab 
initio gene prediction software. Four of these 43 novel SSPs displayed a significant upregulation during 
infection. Four of these 43 novel SSPs (ZtIPO323_001210, ZtIPO323_072700, ZtIPO323_105940 and 
ZtIPO323_123970) displayed a significant upregulation during infection compared to in vitro culture, 
suggesting a possible role in infection. In addition, genes encoding effectors that were missing in 
previous annotations, such as Avr-Stb6 located at the end of chromosome 5 (Zhong et al. 2017), were 
predicted as RGMs (Figure S8b). Two additional Avr-Stb6 paralogs located on chromosome 10 were 
also predicted as RGM specific SSPs (Figure S8a). 

Identification of alternative transcripts 
The initial set of 21,052 Iso-Seq transcripts was filtered to exclude UTR length isoforms, yielding 

11,690 Iso-Seq transcripts corresponding to coding and non-coding loci. Sqanti3 allocated 10,938 Iso-
Seq transcripts to 8,199 RGMs (Table 1). 7,872 of these RGMs had the same structure as their Iso-Seq 
transcripts (full_splice_match). The other 327 RGMs classified as “ISM” or “genic” by Sqanti3 displayed 
a structure differing from Iso-Seq transcripts. In most cases, these Iso-Seq transcripts were partially 
covering RGMs, suggesting truncated cDNAs. These RGMs were supported either by other evidence 
(RNA-Seq, protein) or were rescued (ab initio only). 2,716 Iso-Seq transcripts identified as alternative 
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splice variants (25% of coding transcripts) were classified by Squanti3 into: combination of known 
splicing sites (NIC); new splicing sites (NNC); intron retention (IR); and genic (Table 1). Most alternative 
transcripts corresponded to intron retention events (IR, 75%). Transcripts with a premature 
termination codon (PTC) recognized by the non-sense-mediated decay (NMD) pathway were filtered 
out (Zhang and Sachs 2015), leaving 2,372 alternative transcripts corresponding to 1,742 RGMs. The 
numbers of RGMs with 2, 3, 4 and at least 5 isoforms were 1,342, 274, 77 and 49, respectively (Table 
S8). A total of 337 alternative transcripts corresponded to a novel combination of coding exons, 271 
to a novel combination of UTR exons, and 16 to a novel combination of both (NIC, NNC and Genic 
events, Table 1). For example, RGM ZtIPO323_030030, encoding a putative SSP (SSP10) (Mirzadi Gohari 
et al. 2015), had an alternative splicing site generating a new exon that encoded a shorter SSP that was 
reduced by 34% at its C terminus (Figure 4a). The 1,753 remaining transcript isoforms with intron-
retention events were likely un-spliced transcripts that were not detected by our NMD screen. Some 
alternative transcripts such as RGM ZtIPO323_013330 were detected in high abundance using RNA-
Seq (Figure 4b). Its main transcript (Iso-Seq 2), corresponding to the selected RGM, had 4 splicing sites, 
one being in the 5’ UTR. Two alternative Iso-Seq transcripts (Iso-Seq 1 and 2) with one or two intron-
retention events were also supported by RNA-Seq. The last Iso-Seq transcript displayed an alternative 
splicing site for the fourth intron that was not supported by RNA-Seq. We identified a drawback of 
using Iso-Seq for annotation, as some alternative transcript isoforms were used as evidence for 
selecting the RGM as shown for ZtIPO323_030030 (Figure 4a) or ZtIPO323_013090 (Figure S9). These 
examples illustrated the difficulty in choosing between gene models with complex alternative splicing 
events leading to transcript isoforms with similar expression levels (Figure 4a). However, these events 
were not detected frequently. 

RNA-Seq data were used to compute differential isoform usage (DIU) for coding genes using 
tappAS [29]. Only 22 RGMs had a significant DIU (p-value < 0.01) between Galactose/Sucrose and 
Mannose/Xylose culture conditions (File S1). A total of 163 RGMs displayed a significant DIU between 
infection and culture conditions (File S1), including 23 secreted proteins. Some of these RGMs were 
highly up or down regulated during infection such as ZtIPO323_042160 (unknown), ZtIPO323_042360 
(unknown), ZtIPO323_043800 (PHD/RING finger protein), and two secreted proteins 
(ZtIPO323_016670, ZtIPO323_043500) that were significantly upregulated during late infection (13, 21 
dpi). ZtIPO323_016670 encoded a carbohydrate esterase from family 8 involved in cell wall 
modifications and ZtIPO323_043500 encoded a SSP. Manual inspection of the RNA-Seq data associated 
with these DIU RGMs confirmed their differential expression, but not a different usage of isoforms. 
Indeed, the isoforms detected during infection corresponded to a low number of reads compared to 
in vitro culture conditions, leading to a bias in DIU analyses.

Identification of long, non-coding RNAs 
Sqanti3 allocated 752 Iso-Seq transcripts to non-coding loci (Table 1, 395 antisense and 357 

intergenic). A single study of fungal lncRNAs was performed using Iso-Seq in F. graminearum (Lu et al. 
2021), identifying lncRNAs generally larger than 1 kb. Therefore, we excluded from our analysis Iso-
Seq transcripts overlapping with TEs and smaller than 1 kb in length. We also excluded Iso-Seq 
transcripts with an ORF longer than 300 bp (100 amino acids). We chose these stringent criteria to 
select reliable lncRNAs, and to avoid false lncRNAs encoding putative “coding genes” not retained by 
InGenAnnot. This process led to 55 lncRNAs, among which 3 were labelled as “coding” based on their 
coding potential and 1 contained an ORF with a pfam domain. Finally, 51 transcripts were classified as 
lncRNAs according to our criteria among which 35 (68%) were differentially expressed (p-value 0.05).

Half of these lncRNAs were differentially expressed between infection and in vitro culture, 
including 5 that were up-regulated and 12 that were down-regulated during infection (log2FC > 2). 
Most lncRNAs that were down-regulated during infection were antisense transcripts (83%). The 
lncRNA PB1188.1 that was down-regulated during infection compared to all culture conditions (Table 
S9), was an antisense transcript of ZtIPO323_016330, encoding a secreted Subtilisin-like protein. 
ZtIPO323_016330 was up regulated during infection and down regulated during in vitro culture. 
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Another RGM (ZtIPO323_037670) encoding a TTL protein (Tubulin tyrosine ligase involved in tubulin 
posttranslational modifications) and its antisense lncRNA PB.2709.1 displayed opposite expression 
patterns during infection (Table S9), as lncRNA PB.2709.1 was up regulated during infection, while 
ZtIPO323_037670 was down regulated. 

Identification of polycistronic mRNAs 
Alignment of Iso-Seq transcripts with RGMs identified 2,625 putative polycistronic transcripts. 

Multiple stop codons were present in these polycistronic transcripts, excluding the possibility of errors 
in annotated genes for a larger single ORF, as observed for polycistronic transcripts described in 
Agaricomycetes (Gordon et al. 2015), and F. graminearum (Lu et al. 2021) or Cordyceps militaris (Chen 
et al. 2019). Overall, 224 putative polycistronic transcripts contained two-three RGMs on the same 
strand. For example, adjacent RGMs ZtIPO323_010430 and ZtIPO323_010440 were transcribed on the 
same strand with overlapping 3’ UTRs and 5’ UTRs (Figure 5). Iso-Seq polycistronic single-transcript 
molecules covering these two RGMs were detected, as well as single-RGM Iso-Seq transcripts (Figure 
5). Assembled RNA-Seq reads supported a transcript covering the two RGMs (Figure 5). However, RNA-
Seq coverage strongly decreased in the overlap between the two RGMs, suggesting two independent 
transcripts (Figure 5). RNA-Seq coverage showed that the abundance of the polycistronic transcript 
was low compared to single-gene transcripts. This analysis suggested that these polycistronic 
transcripts were likely rare read-through transcripts. 

Iso-Seq transcripts encoding fungal mycoviruses
A total of 2,203 Iso-Seq transcripts did not map to the Z. tritici genome. These transcripts were 

combined into two clusters of highly related sequences. The larger cluster (1919 sequences) was 
identical to Fusarivirus 1 (ZtFV1) (Gilbert et al. 2019). The second cluster gathered 17 independent Iso-
Seq transcripts closely related to narnavirus 4 of Sclerotinia sclerotiorum (SsNV4) (Jia et al. 2021), and 
named ZtNV1 (Zymoseptoria tritici NarnaVirus 1). As these viral Iso-Seq transcripts were probably 
obtained by internal polyA priming, they did not cover the full sequence of the viruses. RNA-Seq reads 
corresponding to these two fungal viruses were detected in all our cDNA libraries. ZtFV1 Iso-Seq 
transcript was confirmed to be a full-length viral sequence. Assembled ZtNV1 RNA-Seq reads led to the 
reconstruction of a full-length viral sequence of 3091 nucleotides encoding a protein of 986 amino 
acids corresponding to an RNA-dependent RNA polymerase. ZtNV1 was as long as SsNV4 (3105 bp), 
and its encoded protein displayed 71% identity at the nucleotide level and 67% identity (79% similarity) 
at the protein level with SsNV4. The phylogenetic tree of viral RNA-dependent RNA polymerases 
confirmed that ZtNV1 was highly related to narnaviruses identified in S. sclerotiorum, Plasmopara 
viticola, and Fusarium asiaticum (Figure S10). IPO323 ZtNV1 sequence was detected in many publicly 
available Z. tritici RNA-Seq data (few reads per library), validating the ubiquitous presence of this virus 
in Z. tritici. ZtFV1 was also detected in these RNA-Seq data in higher amounts compared to ZtNV1 
(70,000 fold). 

Comparison of InGenAnnot to other gene prediction tools (funannotate, BRAKER3 and Helixer) using 
Annotation Edit Distance

Two integrated gene prediction tools (funannotate, BRAKER3) and a deep-learning-based software 
(Helixer) were used to annotate the Z. tritici genome. Funannotate integrates four ab initio tools 
(Augustus, SNAP, GeneMark, CodingQuarry) and uses EvidenceModeler to select the best gene model 
(funannotate n.d.). BRAKER3 integrates two ab initio tools (Augustus, GeneMark) and utilizes TSEBRA 
to select the best gene model (Gabriel et al. 2024). Helixer is a deep-learning tool that was trained on 
fungal gene models (Stiehler et al. 2021). These tools were run with the same transcript and protein 
evidence as InGenAnnot. The novel gene models were scored with AED using the same transcript and 
protein evidence as InGenAnnot (Figure S11-S13). Comparison of these gene models to RGMs 
highlighted 6,389 identical CDS predicted by the four tools (47% of RGMs, Figure S14). The number of 
identical CDS predicted by funannotate, BRAKER3 and InGenAnnot (RGMs) was higher (8,220 CDS, 61% 
of RGMs, Figure S14). Individually, Helixer displayed the lowest number of gene models similar to 
RGMs (8,086, 60% of RGMs, Figure S14). A higher number of funannotate and BRAKER3 gene models 
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were similar to RGMs (67 and 73% of RGMs for funannotate and BRAKER3 respectively, Figure S14). 
Helixer was the only tool to predict a large number of unique CDS (6,190), including 4,103 CDS 
originating from shared loci. The other 2,087 gene models that were unique to Helixer originated from 
loci at which no gene model was predicted by other tools, among which 1,358 had no evidence. Overall, 
this comparison highlighted a high number of discrepancies in gene model prediction between 
different tools, as already observed during RGM selection (Table 2).

In terms of cumulative AED scores, InGenAnnot (RGMs) gave the best results, closely followed by 
BRAKER3 (Figure S15). This could be explained by the strong weight assigned to transcriptomic data to 
obtain the InGenAnnot and BRAKER3 gene models. Indeed, since BRAKER3 predicted isoforms at some 
loci (14,833 transcripts for 12,293 genes), it likely increased the number of gene models with transcript 
evidence. AED plots were used to compute metrics on the dispersion of annotations for the four gene 
sets (Table S10). InGenAnnot and BRAKER3 showed the best agreement with transcriptomic evidence 
(median transcript AED scores: 0.12 and 0.14, respectively, for InGenAnnot and BRAKER3, Table S10) 
compared to funannotate (median transcript AED score: 0.15) and Helixer (median transcript AED 
score: 0.26), but BRAKER3 surpassed all tools in protein evidence. Finally, BRAKER3 showed the best 
AED scores for its gene annotation set (best score relative to the ideal point, median: 0.338, Table S10), 
closely followed by InGenAnnot (median: 0.398), while funannotate and Helixer displayed higher 
values (median: 0.469 and 1.000 respectively), suggesting that their gene models were less fit to the 
evidence. BRAKER3 was more specific, since it predicted only 12,293 genes compared to InGenAnnot 
(13,414 genes) and funannotate (13,423 genes). This suggested that BRAKER3 selected mostly gene 
models with evidence, while funannotate and InGenAnnot allowed the selection of gene models with 
less or no transcript or protein evidence, but strong gene signals from ab initio prediction, thereby 
increasing their sensitivity.
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Discussion

Improvement of the Z. tritici IPO323 genome annotation
The production of an Iso-Seq library of full-length transcript sequences corresponding to a wide 

array of growth conditions was essential to improve Z. tritici IPO323 genome annotation. Indeed, the 
assembly of RNA-Seq short reads frequently leads to artefacts such as chimeras corresponding to 
adjacent genes with overlapping transcripts (Raghavan et al. 2022), which are frequent in compact 
genomes (Testa et al. 2015). Iso-Seq long-read data bypasses these artefacts, as it produces sequences 
from single cDNA molecules without assembly. Iso-Seq also provides transcript isoforms corresponding 
to alternative start, stop and intron splicing events. Still, Iso-Seq has pitfalls since it is not quantitative. 
Indeed, we identified rare, long Iso-Seq transcripts likely corresponding to intron retention events and 
polycistronic transcripts. Filtering out low-abundance Iso-Seq transcripts using short-read RNA-Seq 
quantification reduced such drawbacks. Overall, filtered Iso-Seq transcripts were highly reliable in 
selecting the best gene model among those predicted by different ab initio gene prediction software 
using AED transcript scores (transcript evidence). Protein evidence was also helpful for genes not 
expressed under the conditions used for producing mRNAs. We observed that the combination of six 
ab initio gene prediction software was needed to improve annotation. First, a diversity of software was 
needed to produce a sufficient number of gene models at each locus to be selected by InGenAnnot. 
Indeed, none of the ab initio gene prediction software was able to independently predict all the RGMs 
(Table 2). For example, Eugene, the most efficient ab initio software with our dataset, only predicted 
76% of the selected RGMs. Second, the use of different ab initio software allowed the rescue of gene 
models without evidence (1,846 rescued RGMs with AED scores over the thresholds). Most of these 
rescued RGMs were not conserved across fungi and were not expressed under the available conditions 
(Figure 2). They typically included candidate fungal effectors that could be important for plant-fungal 
interactions (File 1). Yet some rescued RGMs could be artefacts of ab initio prediction, and they should 
be validated manually. 

Overall, our strategy significantly improved the annotation of the Z. tritici IPO323 genome, and 
missing genes encoding effectors such as Avr-Stb6 were predicted correctly. In addition, it revealed 
different biases from previous annotations. Among the 13,414 RGMs, 2,047 were either different from 
all previous gene models (1,376 modified RGMs, Table S6) or not predicted in previous annotations 
(671 RGM-specific, Table S6). Transcripts and protein evidence supported these RGMs. The most 
frequent discrepancy was the occurrence of fused genes in previous annotations that were split into 
distinct RGMs. These fused genes corresponded to RGMs with overlapping transcripts (Figures S6, S7). 
Indeed, for such genes, RNA-Seq read assembly likely generated chimeric transcripts, providing 
erroneous evidence to the ab initio software. Changes in parameters used for RNA-Seq read assembly 
could reduce the number of chimeric transcripts. However, Iso-Seq long-read sequencing clearly 
avoided this artefact and its use as transcript evidence likely explains the improvement observed in 
RGMs. To our knowledge, only two previous studies demonstrated improved fungal gene prediction 
using Iso-Seq transcript long-read sequences: C. militaris (Chen et al. 2019); and F. graminearum (Lu et 
al. 2021). We further improved the method used in these papers by filtering Iso-Seq transcripts 
according to their abundance, and by creating a method to select the best gene model according to 
different ab initio annotations and evidence.

Iso-Seq long reads reveal the complexity of transcripts in Z. tritici 
Iso-Seq long-read sequencing allowed the identification of alternative transcripts in Z. tritici. 

However, Iso-Seq is not quantitative and minor transcripts with long UTRs or IR without strong support 
from RNA-Seq data were identified (Figure 4, Figure 5, Figure S7). These low-abundance transcript 
isoforms could be produced by the transcriptional machinery either as by-products, or to regulate gene 
expression. The best strategy to detect such transcripts was to quantify Iso-Seq transcript isoforms 
using RNA-Seq data. As observed in other fungal genomes (Lu et al. 2021); (Jeon et al. 2022), most 
alternative splicing events were intron retention (IR, Table 1). IR events could generate premature 
termination codons (PTCs) that were likely degraded by the NMD pathway. However, NMD signals are 
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difficult to predict with current bioinformatics tools in filamentous fungi. DIU analysis revealed a few 
RGMs with differentially expressed transcript isoforms during infection compared to in vitro culture 
conditions. As discussed before, the small amounts of RNA-Seq reads available for infection makes 
such statistical comparisons difficult. Manual inspection of several loci did not reveal clear patterns of 
DIU for alternative transcripts.

Compact genomes, such as that of Z. tritici, are suitable for polycistronic transcription. Iso-Seq was 
successful in identifying polycistronic mRNAs in Z. tritici as reported in Agaromycotina (Gordon et al. 
2015), F. graminearum (Lu et al. 2021) and C. militaris (Chen et al. 2019). However, polycistronic-
specific RNA-Seq reads were always detected in low abundance compared to single-gene transcripts. 
These RNA-Seq data also showed that polycistronic transcripts mostly corresponded to genes with 
transcripts overlapping those from adjacent genes. As Iso-Seq is sensitive enough to detect low-
abundance transcripts, it is possible that these polycistronic transcripts are rare read-through 
transcripts. This hypothesis is supported by the fact that in vitro culture conditions of yeast known to 
be associated with increased transcriptional read-through led to more polycistronic transcripts (Hadar 
et al. 2022). Alternatively, these polycistronic transcripts could be an additional level of transcriptional 
control. 

lncRNAs are differentially expressed during wheat infection
LncRNAs are important components of transcriptional and translational regulation (Till et al. 2018). 

They can act in cis or trans of target genes, and either up-regulate or down-regulate target gene 
expression (Till et al. 2018). Most studies on fungal lncRNAs have used assembled RNA-Seq reads (Liu 
et al. 2022), likely leading to artefacts from assembly. Iso-Seq bypassed this problem and facilitated 
the identification of full length, non-chimeric lncRNAs. Using stringent criteria (size > 1000 bp, no ORF 
> 100 aa, no overlap with TEs), we identified 51 lncRNAs in Z. tritici. This number is far lower than those 
identified in other fungi (939 in N. crassa (Arthanari et al. 2014), 352 in Verticillium dahliae (Li et al. 
2022), and 427-819 in F. graminearum (Lu et al. 2021)). This difference could be due to the stringent 
criteria used for this study. In fact, when using similar criteria to previous studies, such as keeping all 
ORFs with no coding potential independently of their size, we identified 398 lncRNAs. In addition, many 
lncRNAs identified in these fungi were detected under specific conditions corresponding to stresses 
(Arthanari et al. 2014; Cemel et al. 2017) and sexual development (Lu et al. 2021) which we did not 
survey in our RNA samples. We identified 17 lncRNAs as differentially expressed during plant infection, 
mostly as antisense transcripts (Table S9). Two displayed expression patterns opposed to their coding 
genes. lncRNA PB1188.1 was down-regulated during infection compared to in vitro culture. This 
lncRNA is an antisense transcript of ZtIPO323_016330 encoding a secreted Subtilisin-like protein, that 
is up-regulated during infection. Subtilisin-like proteins are secreted proteases that play a role in plant 
infection (Li et al. 2010; Muszewska et al. 2011). This negative correlation suggested that the down 
regulation of lncRNA PB1188.1 during infection allowed the full expression of ZtIPO323_016330 in 
infected leaves. The second lncRNA (lncRNA PB.2709.1) was up-regulated during infection compared 
to in vitro culture (Table S8), while its corresponding transcript (ZtIPO323_037670) was down-
regulated during infection. This transcript encodes a tubulin tyrosine ligase (TTL), a protein involved in 
the post-translational modification of tubulin. Its reduced expression could alter tubulin turnover. 
These negative correlations suggested that antisense lncRNAs could control fungal gene expression 
during infection. Our observations hint at the existence of co-regulation networks between coding and 
non-coding transcripts in Z. tritici and suggest that they could be important for infection, as observed 
during the infection of rice leaves by M. oryzae (Li et al. 2021). These examples stress the importance 
of including lncRNAs in future studies to have a comprehensive picture of the expression regulation 
landscape of Z. tritici.

RNA mycoviruses are widespread in Z. tritici
We detected two RNA mycoviruses in Iso-seq transcripts unmapped to the Z. tritici genome. 

Fusarivirus 1 (Zt-FV1) was previously identified in Z. tritici by the systematic screening of unmapped 
fungal RNA-Seq reads (Gilbert et al. 2019). We also identified a novel mycovirus, Zt-NV1 (Figure S10), 

Page 14 of 66



15

related to the narnavirus 4 of Sclerotinia sclerotiorum (SsNV4) (Jia et al. 2021). RNA-Seq reads 
corresponding to these two mycoviruses were detected in all our IPO323 RNA-Seq libraries, as well as 
in all publicly available Z. tritici RNA-Seq data, showing that these mycoviruses are widespread in Z. 
tritici. Zt-FV1 was the most abundant mycovirus, while Zt-NV1 was only detected in low abundance 
compared to Zt-FV1 (1/70,000). As mycovirus are known to induce strong phenotypic defects in other 
fungi, additional studies are needed to evaluate the role of these mycoviruses in the life cycle of Z. 
tritici, in particular its growth, sporulation and pathogenicity (Myers and James 2022).

InGenAnnot is a novel tool for improving gene structure prediction
Many tools (Stanke et al. 2006; Dubarry et al. 2016; Testa et al. 2015; Holt and Yandell 2011; Min 

et al. 2017; Lukashin 1998; Reid et al. 2014; Sallet et al. 2019) and protocols (Campbell et al. 2014) 
were established to predict gene models in eukaryotic genomes. Some were dedicated to fungal 
genome annotation (Haas et al. 2011; Testa et al. 2015; Reid et al. 2014) and were incorporated in 
bioinformatics workflows (Min et al. 2017). Evaluation of the reliability of an annotation is not an easy 
task. One of the most frequently used tools is BUSCO, based on the detection of genes encoding 
conserved proteins to evaluate the completeness of the annotation (Manni et al. 2021). More recently, 
new datasets and methods were proposed to test the reliability of gene annotations, taking into 
account intron and exon structures (Scalzitti et al. 2020). However, this evaluation was still based on 
selected datasets, representing a conserved and partial view of gene content of a genome. 

InGenAnnot used the AED metrics (Eilbeck et al. 2009) to select the best gene model with transcript 
or protein evidence. We improved AED metrics by computing scores for each evidence (transcript, 
protein) and used a distinct score for Iso-Seq transcripts when available. We also introduced penalty 
scores for specific discrepancies between the gene model and evidence, in particular for unsupported 
intron splicing sites. This annotation strategy required an in-depth analysis of data provided as 
evidence to eliminate artefacts such as wrongly assembled RNA-Seq transcripts or rare Iso-Seq 
transcripts (see before). As each ab initio gene prediction software implements specific ML models 
with different specificity/sensibility for each data source, their implementation and training 
parameters are more or less tolerant to particularities such as short CDS or non-canonical splicing sites. 
The combination of different ab initio gene prediction software with distinct intrinsic characteristics 
has proved essential to avoid drawbacks from each software. Indeed, none of the ab initio gene 
prediction software used individually was able to predict more than 70-76% of the final gene models 
(Table 2). 

Other tools than InGenAnnot have integrated the selection of the best gene models. 
EvidenceModeler (Haas et al. 2008) and TSEBRA (Gabriel et al. 2021) select the best gene models 
according to transcript evidence using other metrics than AED. EvidenceModeler is integrated in 
funannotate, which was already used to annotate the Z. tritici genome (MPI annotation). It did not 
perform better than the single ab initio gene prediction software used for InGenAnnot (Table 2), but it 
was not run with the same evidence as our study. BRAKER3 (Gabriel et al. 2024) was released after the 
completion of our work. Additionally, we used Helixer, a novel gene prediction software based on deep 
neural networks and hidden Markov models (Stiehler et al. 2021). Funannotate, BRAKER3 and Helixer 
were run to annotate of Z. tritici genome using the same transcript and protein evidence as 
InGenAnnot. We then compared the gene models predicted by each tool with RGMs using the AED 
metric. BRAKER3 predicted/selected gene models with the best overlap with RGMs (73%, Figure S14), 
followed by funannotate (67%) and Helixer (60%). Helixer appeared less specific and sensitive than the 
other tools, as it predicted a large number of unique genes (6,190 CDS, Figure S14) mostly without 
evidence. No single ab initio gene predictor (see Table 2, Helixer), nor pipelines selecting the best gene 
model predicted by two to four ab initio gene prediction software (funannotate, BRAKER3), were able 
to accurately predict all the gene models we selected (RGMs). Overall, this comparison showed that 
the combination of different ab initio gene prediction software is essential to generate a large diversity 
of gene models to select the best one according to evidence. The AED metric is efficient for this 
selection process, since it identified more gene models with evidence than funannotate or BRAKER3 
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(Figure S14). However, the accurate comparison of the InGenAnnot AED-based selection to Evidence 
modeler (funannotate) and TSEBRA (BRAKER3) requires the use of a fully curated annotated genome 
as a reference. 

Conclusion
In the era of massive sequencing of eukaryotic genomes, inferring gene models by transcript and 

protein evidence is essential. In this article, we used the Iso-Seq technology to obtain a large dataset 
of full-length transcripts of the fungal pathogen of wheat Z. tritici. We also developed a novel software, 
InGenAnnot, to improve drastically gene annotation by selecting the best gene model according to 
transcript and protein evidence across gene models predicted by different software. We expect that 
our strategy will be useful for improving eukaryotic gene prediction, particularly in fungi with compact 
genomes. For species with only few previous annotations, we suggest the use of at least three 
independent ab initio gene prediction software to provide a sufficient number of gene models at each 
locus obtained by different pipelines. Transcriptomic datasets are also important. Without Iso-Seq 
data, the assembly of RNA-seq reads into transcripts should be performed carefully to avoid fusing 
transcripts due to their frequent overlap.

Data and materials availability
All raw sequencing data generated in this study have been submitted to the NCBI Gene Expression 

Omnibus (GEO) under accession GSE218898 with data accessions: GSM6758342 to GSM6758379. 
Processed data files of assembled RNA-Seq transcripts and filtered Iso-Seq reads were associated to 
the submission. Sequence of the new mycovirus ZtNV1 was deposited to NCBI under accession 
OP903463. Previous Z. tritici IP0323 gene annotations, new annotations (RGMs, Isoforms, LncRNAs) 
and the annotation file, denoted file S1 (z.tritici.IP0323.annotations.txt), are available at: 
https://doi.org/10.57745/CVIRIB.

A genome browser with all annotations and evidence was set up at:  
https://bioinfo.bioger.inrae.fr/portal/genome-portal/12/.

A new IPO323 genome web site at (https://mycocosm.jgi.doe.gov/Zymtr1/Zymtr1.home.html) 
was released with new genome annotations.

The InGenAnnot code and project is available at: https://forgemia.inra.fr/bioger/ingenannot
Licensed under GNU GPL v3. InGenAnnot documentation is available at  

https://bioger.pages.mia.inra.fr/ingenannot 
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Figure captions

Figure 1. Comparison of Zymoseptoria tritici reference isolate IPO323 genome annotations. a) Upset 
plot of the gene models from the four annotations of IPO323 (JGI, MPI, RRES and CURTIN). Numbers 
of gene models with identical coding sequences (CDS). b) Comparison of IPO323 gene annotations. 
Number of CDS in each annotation. Identical CDS: identical CDS at a given locus. Unique Dissimilar CDS: 
at a given locus, a CDS is predicted by at least one other annotation, but they differ in their structure. 
Unique Specific CDS: at a given locus, a single CDS is predicted by a single annotation. The highest 
numbers of identical gene models between two annotations were observed for MPI-RRES (8,442), 
RRES-CURTIN (8,289), and MPI-Curtin (7,981), while the lowest numbers of identical gene models were 
observed between JGI and the three other annotations (4,495, 4,621 and 5,276 for JGI-Curtin, JGI-MPI 
and JGI-RRES respectively).

Figure 2. Selection of the best Re-annotated Gene Models (RGMs) according to their Annotation Edit 
Distance (AED) scores. 

Plot of RGM AED scores. AED scores (0-1) describe how a given gene model fits to transcript and protein 
evidence (best fit = 0). Transcript evidence was computed from RNA-Seq or Iso-Seq data (X axis). 
Protein evidence was computed from fungal protein sequences excluding Zymoseptoria species (Y 
axis). The red, dashed lines represent the AED thresholds to filter out genes (0.3 for transcripts, 0.1 for 
proteins), except if they are supported by at least four different annotations (1846 RGMs, upper right 
area of the graph). The numbers of genes in the four areas are displayed in white text boxes. Numbers 
of transcripts with transcript evidence were plotted on cumulative histograms above the scatter plot 
(green). Numbers of transcripts with protein evidence were plotted on cumulative histograms on the 
right of the scatter plot (red).

Figure 3. Comparison of the novel IPO323 genome annotation (Re-annotated Gene Models, RGM) with 
the four available annotations.

a) Upset plot of RGMs with gene models from the four available annotations (JGI, MPI, RRES and 
CURTIN). Numbers of shared (identical) gene models for coding sequences (CDS). 

b) Numbers of identical CDS between RGMs and each available annotation.

Figure 4. Transcript isoforms of Re-annotated Gene Models (RGMs) (a) ZtIPO323_030030 and (b) 
ZtIPO323_013330 supported by Iso-Seq and RNA-Seq evidence.

a) Gene ZtIPO323_030030 (chr2: 777930…1778675, 747 b). This RGM has two transcript isoforms 
(alternative 3’ acceptor site). Both encoded Small, Secreted Proteins (SSP 10, File S1). Previous 
annotations selected the second acceptor site leading to the longest CDS. A single Iso-Seq transcript 
corresponding to the longest CDS was detected (Iso-Seq track), while both isoforms were detected 
using RNA-Seq data (RNA-Seq assembled transcript). RNA-Seq coverage identified both isoforms in 
equal amounts (RNA-Seq coverage Xyl track). Based on read coverage from different RNA-Seq libraries, 
the isoform corresponding to the shortest CDS was the most frequent. This isoform was likely the 
canonical form and encoded a protein with a C-terminus that was reduced in length by 34% compared 
to the other isoform. RGMs with isoforms track: different isoforms. Iso-Seq track: filtered Iso-Seq 
transcripts. RNA-Seq coverage Xyl track: coverage of strand-specific RNA-Seq reads from the Xylose as 
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sole carbon source medium library. RNA-Seq assembled transcript track: assembly of strand-specific 
RNA-Seq reads.

b) ZtIPO323_013330 (chr_1:3420115..3424093, 3.98 Kb). This RGM had four transcript isoforms. The 
selected RGM had four splicing sites, one of which in the 5’ UTR was supported by Iso-Seq transcript 
(Iso-Seq n°2) and RNA-Seq (RNA-Seq coverage Xyl) data. Two Iso-Seq transcripts with one or two intron 
retention events were detected as Iso-Seq transcripts (Iso-Seq n°1 and 3) and confirmed by RNA-Seq 
(RNA-Seq coverage Xyl). One Iso-Seq transcript had an alternative 5’ donor splicing site in the 5’ UTR 
(Iso-Seq n°4). This isoform was likely weakly expressed, as it was not supported by RNA-Seq (RNA-Seq 
coverage Xyl). RGMs with isoforms track: different RGM isoforms. Iso-Seq track: filtered Iso-Seq 
transcripts. RNA-Seq coverage Xyl track: coverage of strand-specific RNA-Seq reads. RNA-Seq 
assembled transcript track: assembly of strand-specific RNA-Seq reads.

Figure 5. Examples of polycistronic transcripts shown for Re-annotated Gene Models (RGMs) 
ZtIPO323_010430 and ZtIPO323_010440.

RGMs ZtIPO323_010430 and ZtIPO323_010440, located at chr_1:2692858...2697168 and 
chr_1:2692858...2697168, respectively, were transcribed on the same strand with overlapping 3’ UTR 
and 5’ UTR (red rectangle). Iso-Seq polycistronic track: evidence of transcripts covering the two RGMs. 
A strong decrease in RNA-Seq coverage was observed in the region of the overlap (red, dashed 
rectangle), suggesting two singles, overlapping transcripts. The assembly of RNA-Seq reads led to a 
polycistronic transcript involving the two RGMs, likely resulting from the wrong assembly of reads from 
these overlapping transcripts. Iso-Seq track: filtered Iso-Seq transcripts mapping at this locus. Iso-Seq 
polycistronic track: polycistronic transcripts identified in the Iso-Seq database. RNA-Seq transcript 
track: assembly of strand-specific RNA-Seq reads mapping at this locus. RNA-Seq coverage Xyl track: 
coverage of strand-specific RNA-Seq reads from the Xylose as sole carbon source medium library.
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Tables

Categories Counts

Full-splice_match (FSM) 1 7872

Incomplete-splice_match (ISM)2 305

Fusion 45

Genic3 664

Intron retention (IR) 1571

novel_in_catalog (NIC)4 7

novel_not_in_catalog (NNC)5 474

Antisense 395

Intergenic 357

1 Whole transcripts with possible alternative 3’ and 5’ ends
2 Partial overlaps of transcripts fitting with intron coordinates
3 Partial overlaps of introns and exons not compliant with intron/exon coordinates
4 Use combination_of_known_splice sites
5 At_least_one_novel_splice site detected

Table 1. Classification of Iso-Seq transcript isoforms from Zymoseptoria tritici isolate IPO323 where 
filtered Iso-Seq transcripts from different growth conditions were analysed and classified with 
Sqanti3.
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Type Annotation Identical CDS1 Unique identical CDS2

JGI

(FGENESH/Genewise3)

4865 48 

%

157

MPI

(Evidence modeler3)

8431 62 

%

91

RRES

(MAKER-HMM3)

8317 62 

%

175

Available 

annotations

CURTIN

(CodingQuarry3)

9584 71 

%

11367

506

929

Eugene3 10224 76 

%

1603New 

annotations

LoReAn3 7769 58 

%

11677
199

1802

Table 2. Contribution of each annotation of the Zymoseptoria tritici IPO323 genome to Re-annotated 

Gene Models (RGMs).
1 Identical coding sequence (CDS): number of CDS identical to RGMs
2 Unique identical coding sequence (CDS): number of CDS predicted in a single annotation and retained 

as RGMs. 
3 ab initio gene prediction software used for the given annotation

The annotations that contributed the most to RGMs were respectively Eugene (76% Identical CDS*, 
1603 Unique identical CDS**) and Curtin (71% Identical CDS, 506 Unique identical CDS). Combining 
gene models from the four available annotations (JGI, MPI, RRES, CURTIN) showed that 11,367 of their 
CDS were identical to RGMs (contribution: 84.7%). Combining gene models from the two new 
annotations (Eugene, LoRean) showed that 11,677 of their CDS were identical to RGMs (contribution: 
87%). The combination of the six annotations was needed to predict all the 13,414 RGMs. 
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Supplementary figure captions

Figure S1. Annotation Edit Distance (AED) computation using InGenAnnot
Annotation Edit Distance (AED) is an annotation quality-control measure, proposed by Maker (Holt and 
Yandell 2011) to compare annotations based on their overlap. We have used AED scores to quantify 
the concordance between a gene model and its associated evidence (transcript, protein), as previously 
described (Eilbeck et al. 2009). Several options for computing this customized AED were implemented, 
such as restriction to coding sequence (CDS) or penalty on unsupported intron splicing sites. No intron 
splicing site penalty was applied for introns located in UTRs, nor for introns defined using protein 
alignments which could be biased by phylogenetically distant proteins. The table displays AED scores 
for two gene models (G1, G2) located at the same locus (metagene). The orange rectangle (L1) 
corresponds to a single Iso-Seq transcript detected at this locus. Blue rectangles (T1-T3,) correspond 
to the different assembled RNA-seq transcripts detected at this locus. Green rectangles (P1-P4) 
correspond to gene models deduced from protein alignments. As G2 had no UTRs, calculating AED on 
CDS only or on the complete gene has no impact on the score. However, since the Iso-Seq transcript 
has UTRs, G1 AED score was better (lower) when the complete gene was used instead of the CDS. G2 
contains an intron splicing site not supported by transcript evidence, resulting in a penalty (0.25) added 
to the raw AED score. In this case, G1 was selected as the best gene model. 

Figure S2. Bioinformatics workflow with the different steps of InGenAnnot tool suite
Sources of evidence (Proteins, Iso-Seq and RNA-Seq transcripts) were used to predict new gene models 
with Eugene and LoReAn. Gene models predicted by novel and previous ab initio gene prediction 
software were submitted to the following workflow. Coding Sequences (CDS) were filtered out if 
overlapping with known transposable elements (TE). Then, filtered gene models were used to compute 
AED scores for each source of evidence. The best gene model at a given locus (metagene) was selected 
based on its AED score (lower than 0.3 for transcripts, lower than 0.1 for proteins). Gene models failing 
the AED score threshold, but predicted by at least 4 independent gene predictors, were retained. All 
the gene models without ATG or stop codon were removed. Transcripts without gene models were 
analysed to infer potential missing effectors (small, secreted proteins). Finally, Iso-Seq transcripts were 
filtered according to their RNA-Seq support (low abundance Iso-Seq were removed) before being used 
to define UTRs. All of this workflow was described with associated command lines in the 
documentation of InGenAnnot 
(https://bioger.pages.mia.inra.fr/ingenannot/usecases/select_best_gene_models.html). The gene 
models selected by InGenAnnot (RGMs) were compared to all gene models to compute AED scores 
and quantify the contribution of each ab initio gene prediction software to the final RGM dataset 
(https://bioger.pages.mia.inra.fr/ingenannot/usecases/annotation_comparison.html).

Figure S3. Comparison of the Annotation Edit Distance (AED) scores of the JGI, MPI, RRES and CURTIN 
gene models.
AED scores (0-1) described how a given gene model fit the transcript and protein evidence (best fit = 
0). Transcript evidence was computed from RNA-Seq and Iso-Seq data (X axis). Protein evidence was 
computed from fungal protein sequences excluding Zymoseptoria species (Y axis). The red, dashed 
lines represent the AED thresholds to filter out genes (0.3 for transcripts, 0.1 for proteins), except if 
they are supported by at least 4 different annotations (upper right area of the graph). The numbers of 
genes from each area were displayed in white boxes.

Figure S4. Cumulative distributions of the best Annotation Edit Distance (AED) scores for Re-
annotated Gene Models (RGMs) and those from previous annotations. 
AED scores (0-1) described how a given gene model fit the transcript and protein evidence (best fit = 
0). The best AED score (X axis) was computed from either transcript or protein evidence. a) cumulative 
plot of the number of transcripts; b) cumulative plot of the density of transcripts (normalized). The red 
line indicated the cutoff used to select the best gene model (0.3 for transcript evidence). 
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Figure S5. Comparison of the Annotation Edit Distance (AED) scores of split Re-annotated Gene 
Models (RGMs) and their corresponding fused gene models from the MPI annotation.
AED scores (0-1) described how a given gene model fit the transcript and protein evidence (best fit = 
0). Split RGMs were displayed in blue and the corresponding MPI fused genes were displayed in orange. 
Transcript evidence was computed from RNA-Seq or Iso-Seq data (X axis). Protein evidence was 
computed from fungal protein sequences excluding Zymoseptoria species (Y axis). The red, dashed 
lines corresponded to the AED thresholds used to filter out gene models (0.3 for transcripts, 0.1 for 
proteins). The number of transcripts for each value of AED score was plotted on cumulative histograms 
above the scatter plot (RGM in blue, MPI in orange). The number of transcripts with protein evidence 
were plotted on cumulative histograms on the right of the scatter plot (RGM in blue, MPI in orange).

Figure S6. Fused genes from the MPI annotation located at chr_8:940236...948036 split 
into two Re-annotated Gene Models (RGM-1 and RGM-2). 
In the region of chr_8:940236...948036 (7.8 Kb), three RGMs were predicted (red, dashed squares: 
RGM-1, RGM-2 and RGM-3). The MPI annotation predicted a gene model corresponding to the fusion 
of RGM-2 and RGM-3 (green rectangle). This fusion had no transcript evidence (Iso-seq, RNA-Seq). 
Specific transcripts of RGM-2 (Iso-Seq, RNAseq) and RGM-3 (RNAseq) were detected. On the other 
strand, RGM-1 had correctly predicted intron splicing sites, while the corresponding gene models from 
the MPI and JGI annotations had incorrect intron splicing sites. RGM-3 was not predicted by JGI, 
despite encoding a conserved Histone-3 variant protein. RGM track: RGM gene models. MPI track: MPI 
gene models. JGI track: JGI gene models. Iso-Seq track: filtered Iso-Seq transcripts. RNA-Seq forward 
track: coverage of forward-strand RNA-Seq reads. RNA-Seq reverse track: coverage of reverse-strand 
RNA-Seq reads mapping at this locus. RNA-Seq transcript track: assembled RNA-Seq transcripts.

Figure S7. Fused genes from the MPI annotation located at chr_2:2938368...2940768 split into two 
Re-annotated Gene Models (RGM-1 and RGM-2).
In the region of chr_2:2938368...2940768 (2.4 Kb), two RGMs were predicted (red, dashed squares). 
The MPI annotation predicted a gene model corresponding to the fusion of RGM-1 and RGM-2 (green 
rectangle) that was not supported by Iso-Seq. Iso-Seq transcripts supporting RGM-1 were detected. 
RGM-2 with no Iso-seq support was not predicted by JGI and RRES, while it was predicted as an 
independent gene in the Curtin annotation). RGM2 (ZtIPO323_034630) encoded a Small, Secreted 
Protein (SSP, see File S1). Assembled RNA-seq transcripts corresponding to the fused MPI gene model 
were detected. They were likely artefacts from assembly of overlapping RNA-Seq reads. Indeed, in a 
specific condition (infection at 13 days post inoculation), only RGM-2 transcript was detected (RNA-
seq coverage 13 dpi track), supporting the prediction of RGM-2. RGM track: RGM gene models. MPI 
track: MPI gene model. JGI track: JGI gene model. RRES track: RRES gene model. Curtin track: Curtin 
gene models. Iso-Seq track: filtered Iso-Seq transcripts. RNA-Seq transcript track: assembled RNA-Seq 
transcripts. RNA-seq coverage Xylose: coverage of strand-specific RNA-Seq reads from a Xylose 
medium library. RNA-seq coverage infection 13 dpi: coverage of strand-specific RNA-Seq reads from a 
13-dpi wheat infection library.

Figure S8a. Avr-Stb6 paralogs located on chromosome 10 predicted by the new 
annotation. 
The two new paralogs of Avr-Stb6 (ZtIPO323_106210, ZtIPO323_106220) are located head to tail on 
chromosome 10 between position 534287 and 536486. ZtIPO323_106210 was predicted in the JGI and 
MPI annotations, but the gene models did not match Iso-Seq and RNA-seq evidence. ZtIPO323_106220 
was not predicted by any previous annotations. RGM annotation was only supported by RNA-seq 
evidence. ZtIPO323_106210 is expressed during in vitro growth (RNA-Seq coverage glucose track), and 
infection stages (RNA-Seq coverage infection 11 dpi track). ZtIPO323_106220 was differentially 
upregulated during infection (RNA-Seq coverage infection 11 dpi track) to the same level as 
ZtIPO323_106210. RGM track: RGM gene models. JGI track: JGI gene model. MPI track: MPI gene 
model. Iso-Seq track: filtered Iso-Seq transcripts. RNA-seq coverage Glucose: coverage of strand-
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specific RNA-Seq reads from a Glucose medium library. RNA-seq coverage infection 11 dpi: coverage 
of strand-specific RNA-Seq reads from a 11-dpi wheat infection library.

Figure S8b. Original Avr-Stb6 located on chromosome 5.
The original Avr-Stb6 is located at the end of chromosome 5. It was not predicted by any previous 
annotations, while it was correctly predicted as RGM (see track RGM track reannotation). Iso-Seq 
transcripts were detected (see track Iso-Seq long reads), since this gene is highly expressed during in 
vitro growth of Zymoseptoria tritici, as well as during infection (see tracks RNA-seq short reads 
distribution). RGM track: RGM gene models. JGI track: JGI gene model. MPI track: MPI gene model. 
RRES track: RRES gene model. Curtin track: Curtin gene models. Iso-Seq track: filtered Iso-Seq 
transcripts. RNA-seq distribution Glucose: coverage of strand-specific RNA-Seq reads from a Glucose 
medium library. RNA-seq distribution infection 11 dpi: coverage of strand-specific RNA-Seq reads from 
a 11-dpi wheat infection library.

Figure S9. Isoforms of Re-annotated Gene Model (RGM) ZtIPO323_013090 supported by Iso-Seq.
RGM ZtIPO323_013090 located at chr_1:3358097...3361350 (3.25 Kb) has four different isoforms. One 
alternative splicing site (red, dashed rectangle) supported by RNA-Seq, was not supported by Iso-Seq. 
Another alternative splicing site detected both by RNA-Seq and Iso-Seq (black-dashed rectangle), was 
not used to predict an isoform by ab initio software due to a stop codon before the splicing site. Finally, 
the canonical form retained is the transcript without any introns. This selection could be an artefact of 
transcripts from AE medium inducing many intron retention events. The canonical isoform is likely the 
RGM corresponding to the Iso-Seq transcript PB.940.5 with two introns (isoform 3). RGM track: RGM 
gene model. Iso-Seq track: filtered Iso-Seq transcripts. RNA-Seq coverage Xyl track: coverage of strand-
specific RNA-Seq reads from the Xylose as sole carbon source medium library. RNA-Seq coverage AE 
track: coverage of strand-specific RNA-Seq reads from AE medium library. 

Figure S10. Phylogenetic tree of RNA-dependent RNA polymerases of fungal narnaviruses related Zt-
NV1 from Zymoseptoria tritici.
Iso-Seq transcripts not mapping to the Z. tritici IPO323 reference genome were clustered with 
blastclust. Similarities with known sequences were analysed by blastn search against the NCBI nr 
database. Reconstruction of the full-length sequences of viruses was performed by de-novo assembly 
with SPAdes (v3.15.4) (Bankevich et al. 2012). RNA-dependent RNA polymerase sequences from 
narnaviruses related to Zt-NV1 were retrieved from NCBI and analyzed using Phylogeny.fr (Dereeper 
et al. 2008). Alignment of protein sequences was performed with Muscle 3.8.31 and curated by G-
blocks. The phylogenetic analysis was performed using PhyML 3.1 and the phylogenetic tree was drawn 
with TreeDyn 198.3. Bootstrap values over 50% are indicated on supported branches (1000 replicates).

Figure S11. Plot of Annotation Edit Distance (AED) scores for BRAKER3 gene predictions. Plot of 
BRAKER v3.0.3 (Gabriel et al. 2024)AED scores. AED scores (0-1) describing how a given gene model 
fits to transcript and protein evidence (best fit = 0, no fit = 1). Transcript evidence was computed from 
RNA-Seq or Iso-Seq data (X axis). Protein evidence was computed from fungal protein sequences 
excluding Zymoseptoria species (Y axis). The red, dashed lines represent the AED thresholds used to 
filter out genes during RGM selection (0.3 for transcripts, 0.1 for proteins). The numbers of genes in 
the four areas are displayed in white text boxes, and in blue the number of genes if no AED score 
penalty on splicing junction is applied. Numbers of gene models with transcript evidence were plotted 
on cumulative histograms above the scatter plot (green). Numbers of gene models with protein 
evidence were plotted on cumulative histograms on the right of the scatter plot (red).

Figure S12. Plot of Annotation Edit Distance (AED) scores for funannotate gene predictions. Plot of 
funannotate (funannotate n.d.) v1.8.17 AED scores. AED scores (0-1) describing how a given gene 
model fits to transcript and protein evidence (best fit = 0, no fit = 1). Transcript evidence was computed 

Page 28 of 66



29

from RNA-Seq or Iso-Seq data (X axis). Protein evidence was computed from fungal protein sequences 
excluding Zymoseptoria species (Y axis). The red, dashed lines represent the AED thresholds previously 
used to filter out genes during RGM selection (0.3 for transcripts, 0.1 for proteins). The numbers of 
genes in the four areas are displayed in white text boxes, and in blue the number of genes if no AED 
score penalty on splicing junction is applied. Numbers of gene models with transcript evidence were 
plotted on cumulative histograms above the scatter plot (green). Numbers of gene models with protein 
evidence were plotted on cumulative histograms on the right of the scatter plot (red).

Figure S13. Plot of Annotation Edit Distance (AED) scores for Helixer gene predictions. Plot of Helixer 
v0.3.1 (Holst et al. 2023) AED scores. AED scores (0-1) describing how a given gene model fits to 
transcript and protein evidence (best fit = 0, no fit = 1). Transcript evidence was computed from RNA-
Seq or Iso-Seq data (X axis). Protein evidence was computed from fungal protein sequences excluding 
Zymoseptoria species (Y axis). The red, dashed lines represent the AED thresholds previously used to 
filter out genes during RGM selection (0.3 for transcripts, 0.1 for proteins). The numbers of genes in 
the four areas are displayed in white text boxes, and in blue the numer of genes if no AED score penalty 
on splicing junction is applied. Numbers of gene models with transcript evidence were plotted on 
cumulative histograms above the scatter plot (green). Numbers of gene models with protein evidence 
were plotted on cumulative histograms on the right of the scatter plot (red).

Figure S14. Comparison of Z. tritici genome annotations obtained with different tools 
(InGenAnnot/RGMs, BRAKER3, funannotate and Helixer). a) Upset plot of the gene models obtained 
with InGenAnnot (RGM), funannotate(funannotate n.d.), BRAKER3 (Gabriel et al. 2024) and Helixer 
(Stiehler et al. 2021). Intersecting sets of coding sequences (CDS) : number of shared gene models with 
identical CDS. Unique CDS: number of CDS predicted only by a single tool. b) Comparison of gene 
models. Number of CDS in each annotation. Identical CDS at a given locus. Unique Dissimilar CDS at a 
given locus: CDS differing in its structure from RGM. Unique Specific CDS at a given locus: CDS predicted 
only by InGenAnnot (RGM). The highest number of gene models identical to RGMs was observed for 
BRAKER3 (9,766, 72% of the RGMs). Among the 425 CDS identified by BRAKER3, funannotate and 
Helixer, but not InGenAnnot (RGM), 331 have either no evidence (AED = 1) or an AED value below the 
threshold (transcript =0.3 and protein =0.1). Among the 922 CDS identified by BRAKER3 and 
funannotate, but not InGenAnnot (RGM), 829 have either no evidence (AED = 1) or an AED value below 
the threshold (transcript =0.3 and protein =0.1).

Figure S15. Cumulative distributions of the best Annotation Edit Distance (AED) scores for RGM 
(InGenAnnot) and gene models obtained with three other tools (BRAKER3, funannotate and Helixer). 
AED scores (0-1) described how a given gene model fit to transcript or protein evidence (best fit = 0, 
no fit = 1). The best AED score (X axis) was computed from either transcript or protein evidence. a) 
cumulative plot of the number of transcripts; b) cumulative plot of the density of transcripts 
(normalized). The red line indicated the cutoff used to select the best gene model (0.3 for transcript 
evidence).
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Supplementary table titles

Table S1. CDS features of the four available gene annotations of the Z. tritici IPO323 genome (JGI, 
MPI, RRES and CURTIN). 

Table S2. Chromosome localization of gene models of the four available annotations of the Z. tritici 
IPO323 genome (JGI, MPI, RRES and CURTIN). 

Table S3 (A and B).  RNA-Seq and Iso-Seq cDNA libraries from Z. tritici IPO323.

Table S4. Features of Re-annotated Gene Models (RGMs) of the Z. tritici IPO323 genome.

Table S5. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis of Re-annotated Gene 
Models (RGM) and gene models from previous annotations of the Z. tritici IPO323 genome. 

Table S6. Distribution of Re-annotated Gene Models (RGMs) on Z. tritici IPO323 chromosomes

Table S7. Identification of fused/split genes in the Z. tritici IPO323 genome annotations.

Table S8. Numbers of transcript isoforms detected for Re-annotated Gene Models (RGMs) in Z. tritici 
IPO323.

Table S9. Long, non-coding RNAs (lncRNA) from Z. tritici IPO323 differentially expressed during 
infection.

Table S10. Metrics calculated from AED scores for the four gene annotations obtained with 
InGenAnnot (RGM), funannotate, Helixer and BRAKER3.
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Figure S1. Annotation Edit Distance (AED) computation using InGenAnnot
Annotation Edit Distance (AED) is an annotation quality-control measure, proposed by Maker (Holt and Yandell 2011) 
to compare annotations based on their overlap. We have used AED scores to quantify the concordance between a 
gene model and its associated evidence (transcript, protein), as previously described (Eilbeck et al. 2009). Several 
options for computing this customized AED were implemented, such as restriction to coding sequence (CDS) or penalty 
on unsupported intron splicing sites. No intron splicing site penalty was applied for introns located in UTRs, nor for 
introns defined using protein alignments which could be biased by phylogenetically distant proteins. The table displays 
AED scores for two gene models (G1, G2) located at the same locus (metagene). The orange rectangle (L1) corresponds 
to a single Iso-Seq transcript detected at this locus. Blue rectangles (T1-T3,) correspond to the different assembled 
RNA-seq transcripts detected at this locus. Green rectangles (P1-P4) correspond to gene models deduced from protein 
alignments. As G2 had no UTRs, calculating AED on CDS only or on the complete gene has no impact on the score. 
However, since the Iso-Seq transcript has UTRs, G1 AED score was better (lower) when the complete gene was used 
instead of the CDS. G2 contains an intron splicing site not supported by transcript evidence, resulting in a penalty 
(0.25) added to the raw AED score. In this case, G1 was selected as the best gene model. 

Gene 
model Coverage Evidence Best 

evidence

AED 
score
(raw)

Penalty

Final 
AED 

score 
(penalty)

Transcript (short-reads) T2 0.06 no 0.06

CDS-only Transcripts (long-reads) L1 0.11 no 0.11

G1 Proteins P1 0.001 - 0.001

Transcript (short-reads) T1 0.001 no 0.001

Full gene Transcripts (long-reads) L1 0.0 no 0.0

Proteins P1 0.001 - 0.001

Transcript (short-reads) T2 0.15 yes 0.40
CDS-only Transcripts (long-reads) L1 0.19 yes 0.44

G2 Proteins P4 0.068 - 0.068

Transcript (short-reads) T2 0.15 yes 0.40
Full gene Transcripts (long-reads) L1 0.19 yes 0.44

Proteins P4 0.068 - 0.068

L1

T1
T2
T3

P1
P2
P3
P4

G1
G2
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Figure S2. Bioinformatics workflow with the different steps of InGenAnnot tool suite
Sources of evidence (Proteins, Iso-Seq and RNA-Seq transcripts) were used to predict new gene models with Eugene 
and LoReAn. Gene models predicted by novel and previous ab initio gene prediction software were submitted to the 
following workflow. Coding Sequence (CDS) were filtered out if overlapping with known transposable elements (TE). 
Then, filtered gene models were used to compute AED scores for each source of evidence. The best gene model at a 
given locus (metagene) was selected based on its AED score (lower than 0.3 for transcripts, lower than 0.1 for 
proteins). Gene models failing the AED score threshold, but predicted by at least 4 independent gene predictors, were 
retained. All the gene models without ATG or stop codon were removed. Transcripts without gene models were 
analysed to infer potential missing effectors (small secreted proteins). Finally, Iso-Seq transcripts were filtered 
according to their RNA-Seq support (low abundance Iso-Seq were removed) before being used to define UTRs. All of 
this workflow was described with associated command lines in the documentation of InGenAnnot 
(https://bioger.pages.mia.inra.fr/ingenannot/usecases/select_best_gene_models.html). The gene models selected 
by InGenAnnot (RGMs) were compared to all gene models to compute AED scores and quantify the contribution of 
each ab initio gene prediction software to the final RGM dataset 
(https://bioger.pages.mia.inra.fr/ingenannot/usecases/annotation_comparison.html).
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Figure S3. Comparison of the Annotation Edit Distance (AED) scores of the JGI, MPI, RRES and CURTIN gene models
AED scores (0-1) described how a given gene model fit the transcript and protein evidence (best fit = 0). Transcript 
evidence was computed from RNA-Seq and Iso-Seq data (X axis). Protein evidence was computed from fungal protein 
sequences excluding Zymoseptoria species (Y axis). The red, dashed lines represent the AED thresholds to filter out 
genes (0.3 for transcripts, 0.1 for proteins), except if they are supported by at least 4 different annotations (upper 
right area of the graph). The numbers of genes from each area were displayed in white boxes.

JGI MPI

RRES CURTIN
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Figure S4. Cumulative distributions of the best Annotation Edit Distance (AED) scores for Re-annotated Gene 
Models (RGMs) and those from previous annotations. 
AED scores (0-1) described how a given gene model fit the transcript and protein evidence (best fit = 0). The best 
AED score (X-axis) was computed from either transcript or protein evidence. a) cumulative plot of the number of 
transcripts, b) cumulative plot of the density of transcripts (normalized). The red line indicated the cutoff used 
to select the best gene model (0.3 for transcript evidence). 
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Figure S5. Comparison of the Annotation Edit Distance (AED) scores of split Re-annotated Gene Models (RGMs) 
and their corresponding fused gene models from the MPI annotation
AED scores (0-1) described how a given gene model fit the transcript and protein evidence (best fit = 0). Split 
RGMs were displayed in blue and the corresponding MPI fused genes were displayed in orange. Transcript 
evidence were computed from RNA-Seq or Iso-Seq data (X axis). Protein evidence were computed from fungal 
protein sequences excluding Zymoseptoria species (Y axis). The red, dashed lines corresponded to the AED 
thresholds used to filter out gene models (0.3 for transcripts, 0.1 for proteins). The number of transcripts for 
each value of AED score was plotted on cumulative histograms above the scatter plot (RGM in blue, MPI in 
orange). The number of transcripts with protein evidence were plotted on cumulative histograms on the right of 
the scatter plot (RGM in blue, MPI in orange).
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Figure S6. Fused genes from the MPI annotation located at chr_8:940236...948036 split in two Re-annotated Gene Models (RGM-1 and RGM-2). 
In the region of chr_8:940236...948036 (7.8 Kb), three RGMs were predicted (red-dashed squares: RGM-1, RGM-2 and RGM-3). The MPI annotation predicted a 
gene model corresponding to the fusion of RGM2 and RGM-3 (green rectangle). This fusion had no transcript evidence (Iso-seq, RNA-Seq). Specific transcripts 
of RGM-2 (Iso-Seq, RNAseq) and RGM-3 (RNAseq) were detected. On the other strand, RGM-1 had correctly predicted intron splicing sites, while the 
corresponding gene models from the MPI and JGI annotations had incorrect intron splicing sites. RGM-3 was not predicted by JGI, despite encoding a conserved 
Histone-3 variant protein. RGM track: RGM gene models. MPI track: MPI gene models. JGI track: JGI gene models. Iso-Seq track: filtered Iso-Seq transcripts. 
RNA-Seq forward track: coverage of forward-strand RNA-Seq reads. RNA-Seq reverse track: coverage of reverse-strand RNA-Seq reads mapping at this locus. 
RNA-Seq transcript track: assembled RNA-Seq transcripts. 
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Figure S7. Fused genes from the MPI annotation located at chr_2:2938368...2940768 split in two Re-annotated Gene Models (RGM-1 and RGM-2)
In the region of chr_2:2938368...2940768 (2.4 Kb), two RGMs were predicted (red-dashed squares). The MPI annotation predicted a gene model corresponding to the fusion 
of RGM-1 and RGM-2 (green rectangle) not supported by Iso-Seq. Iso-Seq transcripts supporting RGM-1 were detected. RGM-2 with no Iso-Seq support was not predicted 
by JGI and RRES, while it was predicted as an independent gene in Curtin annotation. ). RGM2 (ZtIPO323_034630) encoded a Small Secreted Protein (SSP, see File S1). 
Assembled RNA-seq transcripts corresponding to the fused MPI gene model were detected. They were likely artefacts from assembly of overlapping RNA-Seq reads. Indeed, 
in a specific condition (infection at 13 days post inoculation), only RGM-2 transcript was detected (RNA-seq coverage 13 dpi track), supporting the prediction of RGM-2. RGM 
track: RGM gene models. MPI track: MPI gene model. JGI track: JGI gene model. RRES track: RRES gene model. Curtin track: Curtin gene models. Iso-Seq track: filtered Iso-
Seq transcripts. RNA-Seq transcript track: assembled RNA-Seq transcripts. RNA-seq coverage Xylose: coverage of strand-specific RNA-Seq reads from a Xylose medium library. 
RNA-seq coverage infection 13 dpi: coverage of strand-specific RNA-Seq reads from a 13 dpi wheat infection library.
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Figure S8a. Avr-Stb6 paralogs located on chromosome 10 predicted by the new annotation. 
The two new paralogs of Avr-Stb6 (ZtIPO323_106210, ZtIPO323_106220) are located head to tail on chromosome 10 between position 534287 and 536486. 
ZtIPO323_106210 was predicted in JGI and MPI annotation, but the gene models did not match Iso-Seq and RNA-seq evidence. ZtIPO323_106220 was not 
predicted by any previous annotations. RGM annotation was only supported by RNA-seq evidence. ZtIPO323_106210 is expressed during in vitro growth ( 
RNA-Seq coverage glucose track), and infection stages (RNA-Seq coverage infection 11 dpi track). ZtIPO323_106220 was differentially upregulated during 
infection (RNA-Seq coverage infection 11 dpi track) to the same level as ZtIPO323_106210. RGM track: RGM gene models. JGI track: JGI gene model. MPI 
track: MPI gene model. Iso-Seq track: filtered Iso-Seq transcripts. RNA-seq coverage Glucose: coverage of strand-specific RNA-Seq reads from a Glucose 
medium library. RNA-seq coverage infection 11 dpi: coverage of strand-specific RNA-Seq reads from a 11 dpi wheat infection library.
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Figure S8b. Original Avr-Stb6 located on chromosome 5
The original Avr-Stb6 is located at the end of chromosome 5. It was not predicted by any previous annotations, while it was correctly predicted as RGM (see 
track RGM track reannotation). Iso-Seq transcripts were detected (see track Isoseq long reads), since this gene is highly expressed during in vitro growth of 
Zymoseptoria tritici, as well as during infection (see tracks RNA-seq short reads distribution). RGM track: RGM gene models. JGI track: JGI gene model. MPI track: 
MPI gene model. RRES track: RRES gene model. Curtin track: Curtin gene models. Iso-Seq track: filtered Iso-Seq transcripts. RNA-seq distribution Glucose: 
coverage of strand-specific RNA-Seq reads from a Glucose medium library. RNA-seq distribution infection 11 dpi: coverage of strand-specific RNA-Seq reads 
from a 11 dpi wheat infection library.
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Figure S9. Isoforms of Re-annotated Gene Model (RGM) ZtIPO323_013090 supported by Iso-Seq 
RGM ZtIPO323_013090 located at chr_1:3358097...3361350 (3.25 Kb) has four different isoforms. One alternative splicing site (red-dashed rectangle) supported by RNA-Seq, 
was not supported by Iso-Seq. Another alternative splicing site detected both by RNA-Seq and Iso-Seq (black-dashed rectangle), was not used to predict an isoform by ab 
initio software due to a stop codon before the splicing site. Finally, the canonical form retained is the transcript without any introns. This selection could be an artefact of 
transcripts from AE medium inducing many intron retention events. The canonical isoform is likely the RGM corresponding to the Iso-Seq transcript PB.940.5 with two introns 
(isoform 3). RGM track: RGM gene model. Iso-Seq track: filtered Iso-Seq transcripts. RNA-Seq coverage Xyl track: coverage of strand-specific RNA-Seq reads from the Xylose 
medium library. RNA-Seq coverage AE track: coverage of strand-specific RNA-Seq reads from AE medium library. 
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Figure S10. Phylogenetic tree of RNA-dependent RNA polymerases of fungal narnaviruses related Zt-NV1 from Zymoseptoria tritici
Iso-Seq transcripts not mapping to the Z. tritici IPO323 reference genome were clustered with blastclust. Similarities with known sequences were analysed by blastn search 
against the NCBI nr database. Reconstruction of the full-length sequences of viruses was performed by de-novo assembly with SPAdes (v3.15.4) (Bankevich et al. 2012). RNA-
dependent RNA polymerase sequences from narnaviruses related to Zt-NV1 were retrieved from NCBI and analyzed using Phylogeny.fr (Dereeper et al. 2008). Alignment of 
protein sequences was performed with Muscle 3.8.31 and curated by G-blocks. The phylogenetic analysis was performed using PhyML 3.1 and the phylogenetic tree was 
drawn with TreeDyn 198.3. Bootstrap values over 50% are indicated on supported branches (1000 replicates).
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Figure S11. Plot of Annotation Edit Distance (AED) scores for BRAKER3 gene predictions. Plot of BRAKER v3.0.3 
(Gabriel et al. 2024) AED scores. AED scores (0-1) describing how a given gene model fits to transcript and 
protein evidence (best fit = 0, no fit = 1). Transcript evidence was computed from RNA-Seq or Iso-Seq data 
(X axis). Protein evidence was computed from fungal protein sequences excluding Zymoseptoria species (Y 
axis). The red, dashed lines represent the AED thresholds used to filter out genes during RGM selection (0.3 
for transcripts, 0.1 for proteins). The numbers of genes in the four areas are displayed in white text boxes, 
and in blue the number of genes if no AED score penalty on splicing junction is applied. Numbers of gene 
models with transcript evidence were plotted on cumulative histograms above the scatter plot (green). 
Numbers of gene models with protein evidence were plotted on cumulative histograms on the right of the 
scatter plot (red).

Braker3 command launched to obtain annotations:

braker.pl --genome Mygr_323_reformat_with_mito.clean.fsa --prot_seq 
UNIPROTKB.Dothideomycetes.15072020.NoZymo.clean.fasta  --bam 
SCA3419A44.bam,SCA3419A47.bam,SCA3419A31.bam,SCA3419A40.bam,SCA3419A32.bam,SCA3419A48.bamSCA3419A3
3.bam,SCA3419A49.bam,SCA3419A34.bam,SCA3419A50.bam,SCA3419A35.bam,SCA3419A57.bam,SCA3419A36.bam,SC
A3419A89.bam,SCA3419A37.bam,SCA3419A58.bam,SCA3419A38.bam,SCA3419A81.bam,SCA3419A39.bam,SCA3419A82
.bam,SCA3419A41.bam,SCA3419A65.bam,SCA3419A42.bam,SCA3419A66.bam,SCA3419A43.bam,SCA3419A73.bam,SCA
3419A45.bam,SCA3419A74.bam,SCA3419A46.bam,SCA3419A90.bam --threads 16 --fungus

InGenAnnot command launched to add AED annotations:
ingenannot -v 2 -p 10 aed braker3.gff IPO323.braker3.aed.cdsonly.gff braker3 
all_transcripts_counts_filter.sort.gff.gz exonerate_no_zymo.sort.gff3.gz --longreads 
isoforms.top.sort.gff.gz --penalty_overflow 0.25 --evtrstranded --evprstranded --aed_tr_cds_only -
-aedtr 0.3 --aedpr 0.1
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Figure S12. Plot of Annotation Edit Distance (AED) scores for funannotate gene predictions. Plot of funannotate  
v1.8.17 (Palmer and Stajich 2020) AED scores. AED scores (0-1) describing how a given gene model fits to 
transcript and protein evidence (best fit = 0, no fit = 1). Transcript evidence was computed from RNA-Seq 
or Iso-Seq data (X axis). Protein evidence was computed from fungal protein sequences excluding 
Zymoseptoria species (Y axis). The red, dashed lines represent the AED thresholds previously used to filter 
out genes during RGM selection (0.3 for transcripts, 0.1 for proteins). The numbers of genes in the four 
areas are displayed in white text boxes, and in blue the number of genes if no AED score penalty on splicing 
junction is applied. Numbers of gene models with transcript evidence were plotted on cumulative 
histograms above the scatter plot (green). Numbers of gene models with protein evidence were plotted on 
cumulative histograms on the right of the scatter plot (red).

funannotate v1.8.17 command launched to obtain annotations:
funannotate predict -o results -i Mygr_323_reformat_with_mito.clean.fsa --species "Zymoseptoria 
tritici" --isolate IPO323 --transcript_evidence all_transcripts.fasta 
all_samples.chained.refine.reclusterize.fasta --rna_bam all.merge.bam  --protein_evidence 
UNIPROTKB.Dothideomycetes.15072020.NoZymo.clean.fasta --cpus 8

InGenAnnot command launched to add AED annotations:

ingenannot -v 2 -p 10 aed Zymoseptoria_tritici_IPO323.gff3 IPO323.funannotate.aed.cdsonly.gff 
funannotate all_transcripts_counts_filter.sort.gff.gz exonerate_no_zymo.sort.gff3.gz –longreads 
isoforms.top.sort.gff.gz --penalty_overflow 0.25 --evtrstranded --evprstranded --aed_tr_cds_only -
-aedtr 0.3 --aedpr 0.1
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Figure S13. Plot of Annotation Edit Distance (AED) scores for Helixer gene predictions. Plot of Helixer v0.3.1 (Holst 
et al. 2023) AED scores. AED scores (0-1) describing how a given gene model fits to transcript and protein 
evidence (best fit = 0, no fit = 1). Transcript evidence was computed from RNA-Seq or Iso-Seq data (X axis). 
Protein evidence was computed from fungal protein sequences excluding Zymoseptoria species (Y axis). 
The red, dashed lines represent the AED thresholds previously used to filter out genes during RGM selection 
(0.3 for transcripts, 0.1 for proteins). The numbers of genes in the four areas are displayed in white text 
boxes, and in blue the numer of genes if no AED score penalty on splicing junction is applied. Numbers of 
gene models with transcript evidence were plotted on cumulative histograms above the scatter plot 
(green). Numbers of gene models with protein evidence were plotted on cumulative histograms on the 
right of the scatter plot (red).

Helixer v0.3.1 command launched to obtain annotations:
Helixer.py --lineage fungi --fasta-path Mygr_323_reformat_with_mito.clean.fsa --species 
Zymoseptoria_tritici --gff-output-path Zt_IPO323_helixer.gff3

InGenAnnot command launched to add AED annotations:

ingenannot -v 2 -p 10 aed Zt_IPO323_helixer.gff3 IPO323.helixer.aed.cdsonly.gff helixer 
all_transcripts_counts_filter.sort.gff.gz exonerate_no_zymo.sort.gff3.gz --longreads 
isoforms.top.sort.gff.gz --penalty_overflow 0.25 --evtrstranded --evprstranded --aed_tr_cds_only -
-aedtr 0.3 --aedpr 0.1
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RGM
RGM 13414

funannotate 9043
Braker3 9766

Identical 
CDS

Helixer 8086
Unique: 2316
      Dissimilar CDS 1797
      Specific CDS   519

Figure S14. Comparison of Z. tritici genome annotations obtained with different tools 
(InGenAnnot/RGMs, BRAKER3, funannotate and Helixer). a) Upset plot of the gene models 
obtained with InGenAnnot (RGM), funannotate (Palmer and Stajich 2020), BRAKER3 [Gabriel et al. 
2024] and Helixer (Holst et al. 2023]. Intersecting sets of coding sequences (CDS) : number of shared 
gene models with identical CDS. Unique CDS: number of CDS predicted only by a single tool. b) 
Comparison of gene models. Number of CDS in each annotation. Identical CDS at a given locus. 
Unique Dissimilar CDS at a given locus: CDS differing in its structure from RGM. Unique Specific CDS 
at a given locus: CDS predicted only by InGenAnnot (RGM). The highest number of gene models 
identical to RGMs was observed for BRAKER3 (9,766, 72% of the RGMs). Among the 425 CDS 
identified by BRAKER3, funannotate and Helixer, but not InGenAnnot (RGM), 331 have either no 
evidence (AED = 1) or an AED value below the threshold (transcript =0.3 and protein =0.1). Among 
the 922 CDS identified by BRAKER3 and funannotate, but not InGenAnnot (RGM), 829 have either 
no evidence (AED = 1) or an AED value below the threshold (transcript =0.3 and protein =0.1).

a Unique Identical

b
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Figure S15. Cumulative distributions of the best Annotation Edit Distance (AED) scores for RGM 
(InGenAnnot) and gene models obtained with three other tools (BRAKER3, funannotate and 
Helixer). Funannotate (Palmer and Stajich 2020), BRAKER3 (Gabriel et al. 2024) and Helixer (Stiehler 
et al. 2021). AED scores (0-1) described how a given gene model fit to transcript or protein evidence 
(best fit = 0, no fit = 1). The best AED score (X-axis) was computed from either transcript or protein 
evidence. a) cumulative plot of the number of transcripts, b) cumulative plot of the density of 
transcripts (normalized). The red line indicated the cutoff used to select the best gene model (0.3 
for transcript evidence).
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Category JGI MPI RRES CURTIN
nb_CDS 10849 11712 13583 13922
average_CDS_length, bp 1307 1465 1293 1287
median_CDS_length, bp 1071 1203 1044 1041
min_CDS_length, bp 150 150 96 93
max_CDS_length, bp 13842 18297 18423 14523
nb_exons 28313 29728 30772 30564
average_exons_per_CDS 2.6 2.5 2.2 2.2
average_exon_length, bp 531 577 570 586
min_exon_length 2 1 1 1
max_exon_length 12888 12975 18423 9987
nb_transcript_mono_exon 3153 3746 5233 5594
nb_introns 17464 18016 17189 16642
average_introns_per_transcript 1.6 1.5 1.2 1.2
average_intron_length 133 93 109 92
min_intron_length 11 23 4 10
max_intron_length 42135 7292 59574 5000

Table S1. CDS features of the four available gene annotations of the Z. tritici IPO323 genome (JGI, MPI, RRES 
and CURTIN). 

The first annotation of Z. tritici genome , with 10,933 gene models, was developed in 2011 by the Joint Genome 
Institute with ab initio tools FGENESH and Genewise (Birney et al. 2004) using EST (expressed sequence tag) and 
proteome evidence (JGI, (Goodwin et al. 2011)). The second annotation was performed in 2015 by the Max 
Planck Institute, resulting in 11,839 gene models (MPI, Germany, (Grandaubert et al. 2015)) identified with the 
Fungal Genome Annotation pipeline (Haas et al. 2011). This pipeline uses ab initio tools GeneMark-ES, 
GeneMark-HMM (Lukashin 1998) and Augustus (Stanke et al. 2006) combined by EVidenceModeler (Haas et al. 
2008) with RNA-Seq evidence and keeping as much as possible of the first annotation provided by JGI. The third 
annotation was generated in 2015 by the Rothamsted Research Experimental Station (UK) with 13,862 gene 
models (RRES, (Chen et al. 2023)) obtained with the ab initio tool MAKER-HMM (Holt and Yandell 2011) and RNA-
Seq evidence. The fourth annotation published in 2015 by the Centre for Crop & Disease Management, Curtin 
University. (CURTIN, Australia) with 13,260 gene models, was obtained with ab initio tool CodingQuarry (Testa 
et al. 2015) and RNA-Seq evidence. Gene models were filtered out for transposable elements. nb : number, min : 
minimum, max : maximum.
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JGI MPI RRES CURTIN
Chr #genes % #genes % #genes % #genes %
1 1975 18,2% 2107 18,0% 2321 17,1% 2326 17,8%
2 1127 10,4% 1236 10,6% 1377 10,1% 1380 10,5%
3 1067 9,8% 1138 9,7% 1297 9,5% 1261 9,6%
4 818 7,5% 889 7,6% 998 7,3% 993 7,6%
5 776 7,2% 848 7,2% 986 7,3% 971 7,4%
6 685 6,3% 716 6,1% 820 6,0% 810 6,2%
7 758 7,0% 842 7,2% 975 7,2% 957 7,3%
8 685 6,3% 749 6,4% 843 6,2% 817 6,2%
9 601 5,5% 620 5,3% 703 5,2% 689 5,3%

10 513 4,7% 551 4,7% 624 4,6% 616 4,7%
11 482 4,4% 523 4,5% 604 4,4% 607 4,6%
12 405 3,7% 446 3,8% 514 3,8% 523 4,0%
13 325 3,0% 362 3,1% 411 3,0% 401 3,1%
14 111 1,0% 108 0,9% 163 1,2% 115 0,9%
15 83 0,8% 84 0,7% 143 1,1% 99 0,8%
16 86 0,8% 102 0,9% 169 1,2% 98 0,7%
17 76 0,7% 84 0,7% 131 1,0% 74 0,6%
18 60 0,6% 75 0,6% 121 0,9% 91 0,7%
19 84 0,8% 78 0,7% 141 1,0% 90 0,7%
20 78 0,7% 89 0,8% 135 1,0% 92 0,7%
21 54 0,5% 65 0,6% 107 0,8% 84 0,6%

Total 10849 11712 13583 13094

Table S2. Chromosome localization of gene models of the four available annotations of the Z. tritici IPO323 
genome (JGI, MPI, RRES and CURTIN). 

Chr: Chromosome, of which the first 13 are the core and the remaining 8 accessories. 
#genes: ratio compared to the whole dataset. 
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Condition Replicate Type # transcripts -
post stringtie

# transcripts - 
post jaccardclip

# transcripts - 
post cov filter RUN accession Iso-Seq 

accession

# Iso-Seq 
transcripts 

post filtering

# Iso-Seq 
genes

AE (Yeast extract Glycerol) 1 PE-stranded 11686 12528 12369 GSM6758342
AE (Yeast extract Glycerol) 2 PE-stranded 10937 11803 11644 GSM6758343
AE (Yeast extract Glycerol) 3 PE-stranded 10967 11666 11544 GSM6758344

GSM6758369 6867 3896

MMZt NO3 + Glucose 1 PE-stranded 10780 11568 11406 GSM6758345
MMZt NO3 + Glucose 2 PE-stranded 9713 10432 10303 GSM6758346
MMZt NO3 + Glucose 3 PE-stranded 10807 11796 11595 GSM6758347

GSM6758370 10083 5669

MMZt NO3 + Sucrose 1 PE-stranded 10796 11683 11522 GSM6758348
MMZt NO3 + Sucrose 2 PE-stranded 10876 11648 11511 GSM6758349
MMZt NO3 + Sucrose 3 PE-stranded 10496 11428 11301 GSM6758350

NA

MMZt NO3 + Xylose 1 PE-stranded 10881 11913 11722 GSM6758351
MMZt NO3 + Xylose 2 PE-stranded 10575 11296 11135 GSM6758352
MMZt NO3 + Xylose 3 PE-stranded 10636 11310 11165 GSM6758353

GSM6758371 9888 5685

MMZt NO3 + Mannitol 1 PE-stranded 10534 11275 11142 GSM6758354
MMZt NO3 + Mannitol 2 PE-stranded 11008 12038 11832 GSM6758355
MMZt NO3 + Mannitol 3 PE-stranded 10848 11693 11539 GSM6758356

GSM6758372 9049 5502

MMZt NO3 + Galactose 1 PE-stranded 10831 12045 11831 GSM6758357
MMZt NO3 + Galactose 2 PE-stranded 10939 11950 11794 GSM6758358
MMZt NO3 + Galactose 3 PE-stranded 11000 12064 11853 GSM6758359

NA

Synthetic media
Complex media

18°C

25°C

YPD
PDB
AE

YPD
PDB

Nitrogen Carbon

Nitrate    Glucose
Nitrate Xylose
Nitrate Mannitol
Nitrate Galactose
Nitrate Sucrose 

Conditions used for preparing IsoSeq and RNA-seq libraries

A:

B:
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MMZt NO3_Glucose +SAHA 1 PE-stranded 11141 12344 12132 GSM6758360
MMZt NO3_Glucose +SAHA 2 PE-stranded 11199 12422 12226 GSM6758361
MMZt NO3_Glucose +SAHA 3 PE-stranded 11283 13039 12767 GSM6758362

GSM6758373 10922 6317

MMZt NO3_Glucose +TSA 1 PE-stranded 11473 13061 12785 GSM6758363
MMZt NO3_Glucose +TSA 2 PE-stranded 11762 13325 13048 GSM6758364
MMZt NO3_Glucose +TSA 3 PE-stranded 11566 13287 13021 GSM6758365

GSM6758374 10063 5828

YPD - 18 °C 1 PE-stranded 10964 12468 12240 GSM6758366
YPD - 18 °C 2 PE-stranded 11018 12442 12201 GSM6758367
YPD - 18 °C 3 PE-stranded 10923 12462 12228 GSM6758368

GSM6758378 2187 1699

Wheat infection - 4 dpi 1 SE-stranded 10349 10431 10395 SRR6215483
Wheat infection - 4 dpi 2 SE-stranded 8661 8671 8665 SRR6215484
Wheat infection - 11 dpi 1 SE-stranded 9135 9141 9133 SRR6215485
Wheat infection - 11 dpi 2 SE-stranded 9803 9816 9804 SRR6215486
Wheat infection - 13 dpi 1 SE-stranded 11675 11688 11672 SRR6215487
Wheat infection - 13 dpi 2 SE-stranded 11357 11362 11348 SRR6215488
Wheat infection - 20 dpi 1 SE-stranded 12215 12226 12205 SRR6215489
Wheat infection - 20 dpi 2 SE-stranded 12196 12202 12180 SRR6215490
YMS - 18 °C 1 SE-stranded 9183 11100 10952 SRR8788920
YMS - 18 °C 2 SE-stranded 8885 10930 10797 SRR8788921
YMS - 18 °C kmt1 mutant 1 SE-stranded 9696 12054 11875 SRR8788922
YMS - 18 °C kmt1 mutant 2 SE-stranded 9554 11725 11559 SRR8788923
YMS - 18°C kmt6 mutant 1 SE-stranded 8688 10876 10720 SRR8788924
YMS - 18°C kmt6 mutant 2 SE-stranded 9001 11152 11006 SRR8788925
YMS - 18 °C kmt1/6 mutant 1 SE-stranded 10408 13168 12929 SRR8788926
YMS - 18 °C kmt1/6 mutant 2 SE-stranded 10415 13127 12914 SRR8788927
YPD-25°C GSM6758379 5759 4158
PDB-18°C GSM6758375 1654 1392
PDB-25°C GSM6758376 3107 2490

Table S3.  RNA-Seq and Iso-Seq cDNA libraries from Z. tritici IPO323
A: Summary of the conditions used to produce RNAs
B: Ten growth conditions were used to produce RNAs for Iso-seq and RNA-seq libraries. The reference isolate of Z. tritici IPO323 (Goodwin et al. 2011) was stored at -80°C as 
a yeast-like cell suspension (107 cells/mL in 30% glycerol). Z. tritici was grown at 18°C in the dark on solid (Yeast extract Peptone Dextrose (YPD) agar) or liquid (Potato Dextrose 
Broth (PDB)) media. For RNA production, Z. tritici isolate IPO323 (4-day-old yeast-like cells diluted to 105 cells/mL final) was cultivated in 75-mL agitated liquid cultures (500 
mL Erlen flasks, 150 rpm) at 18°C in the dark for 4 days. Different media were used (Table S3) including Glucose-NO3 synthetic medium defined as MM-Zt (Marchegiani et al. 
2015). MM-Zt was modified by replacing glucose (10 g/L) by different carbon sources (Xylose, Mannitol, Galactose, Sucrose at 10 g/L)). Histone Deacetylase inhibitors such as 
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trichostatin ((TSA, Sigma T8552, 1 µM final) and SAHA (SAHA, Sigma SML0061, 1 mM final) were added to MM-Zt to express genes located in genomic regions with repressive 
chromatin marks (Meile et al. 2020). The composition of complex media (Yeast-Peptone-Dextrose: YPD, Potato-Dextrose-Both: PDB, Glycerol-Nitrate: AE) was already 
described (Scalliet et al. 2012). Cultures of IPO323 in YPD and PDB were performed at 18°C and 25°C, while AE cultures were performed only at 18°C. A total of 14 culture 
conditions was used for RNA production (Table S3). All cultures for RNA-Seq were performed in triplicate. Cultures were centrifuged at 3000 rpm for 10 minutes and mycelium 
pellets were washed with water and frozen with liquid nitrogen. Frozen mycelium was lyophilized and kept at -80°C until extraction. RNAs were extracted using the Qiagen 
Plant RNeasy Kit according to the manufacturer’s protocol (Ref. 74904, Qiagen France SAS, Courtaboeuf, France). Preparation and sequencing of PacBio Iso-Seq libraries were 
performed by the INRAE platform Gentyane (http://gentyane.clermont.inrae.fr). The SMARTer PCR cDNA Synthesis Kit (ref 634926, Clontech, Mountain View, CA, USA) was 
used for polyA-primed first-strand cDNA synthesis followed by optimized PCR amplification and library preparation using the SMRTbell Template Prep Kit (ref 101-357-000, 
Pacific Bioscience, Menlo Park, CA, USA) according to manufacturer protocols. The cDNA libraries were prepared without size selection and bar coded for multiplexing. 
Sequencing was performed on a PacBio SEQUEL (version 1). Illumina RNA-seq single-stranded libraries were prepared using the NEBNext Poly(A) mRNA Magnetic Isolation 
Module (NEB #E7490, New England BioLabs, Ipswich, Massachusetts, USA) and the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB #E7765, New England 
BioLabs, Ipswich, Massachusetts, USA). Custom 8-bp barcodes were added to each library during the preparation process. Pooled samples were cleaned with magnetic beads 
included in the library preparation kit. Each pool was run on a lane of Illumina HiSeqX (Illumina, San Diego, California, USA) using a 150-cycle paired-end run. Additional single-
stranded RNA-seq data were obtained from public databases (see below). RNA-Seq sequences were used for transcript assemblies and differential expression analyses. Iso-
Seq sequences were used for gene annotation and isoform analyses. Wheat infection data for SRR6215483- SRR6215490 and YMS mutants SRR8788920- SRR8788927 were 
downloaded from the Sequence Read Archive (SRA) repository. Other RNA-Seq data generated in this study were submitted to the SRA database (see columns accession).

RNA-Seq data were cleaned and trimmed with Trimmomatic (v 0.36) (Bolger et al. 2014). The cleaned sequences were then mapped to the Z.tritici IPO323 genome using 
STAR (v 2.5.1b, --alignIntronMin 4 --alignIntronMax 5000 -- alignMatesGapMax 5000) (Dobin et al. 2012). Wig files of uniquely mapped reads were converted to BigWig files 
with wigToBigWig (v4). StringTie (v2.1.1) (Pertea et al. 2015) was then used to assemble the mapped RNA-Seq reads into transcripts with different parameters depending 
on the depth of sequencing of libraries and their type (-m 150 --rf --g 0 -f 0.1 -a 10 -j 2 or -j 4). The Trinity script inchworm_transcript_splitter.pl (version 2.8.5) (Haas et al. 
2013) was used to split the transcripts with non-uniform coverage based on the Jaccard clip method. Clipped transcripts were extracted with home-made scripts and 
clustered with Stringtie and associated bam files to obtain transcripts per million (TPM) counts. All libraries were concatenated into one gff file without merge to avoid loss 
of information by fusion of small transcripts into larger ones due to the large number of genes in the Z. tritici genome with overlapping untranslated regions (UTRs).

Iso-Seq raw data were processed with the Iso-Seq V3.2 pipeline from PacBio generating polished Circular Consensus Sequences (CCS). CCS were then mapped to the Z. tritici 
IPO323 genome with Gmap (2019-01-31) (Wu and Watanabe 2005) and unmapped, low-mapping-quality (≤0) or multi-mapped CCS were filtered out. The CupCake package 
(v10.0.0, https://github.com/Magdoll/cDNA_Cupcake) filtered the isoforms, removing the less-expressed and degraded transcripts using the following tools: 
collapse_isoforms_by_sam.py, get_abundance_post_collapse.py, filter_by_count.py, filter_away_subset.py. Readthrough transcripts were removed using the previous 
annotations (MPI, JGI, CURTIN, RRES) with BEDTools intersect (Quinlan and Hall 2010) with an an overlap of 100% for full coding sequences (CDS) (-F 1.0) and the same strand 
(-s)) of at least 2 CDS. Transcripts mapped on the mitochondrial genome were filtered out as well. Subsequently, all libraries were processed with chain_samples.py from 
CupCake and clustered for stringent selection. Splicing junctions obtained by STAR (SJ.out.tab files) from Illumina RNA-Seq libraries were used to filter out isoform transcripts 
with unsupported junctions. Finally, long-read transcripts fully spanning transposable elements were removed with BEDTools, giving the final set of transcript evidence.
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## statistics ##
nb_genes 13414
average_gene_length 1900
median_gene_length 1635
min_gene_length 102
max_gene_length 17065
nb_transcripts 13414
average_transcripts_per_gene 1
average_transcript_length 1900
median_transcript_length 1635
min_transcript_length 102
max_transcript_length 17065
nb_exons 30946
average_exons_per_transcript 2.3
average_exon_length 782
median_exon_length 431
min_exon_length 1
max_exon_length 16680
nb_transcript_mono_exon 4850
nb_introns 17532
average_introns_per_transcript 1.3
average_intron_length 73
median_intron_length 57
min_intron_length 5
max_intron_length 3166
nb_CDS 13414
average_CDS_length 1287
median_CDS_length 1041
min_CDS_length 102
max_CDS_length 16506
nb_transcripts_with_utr 9856
average_five_prime_utr_length 315
median_five_prime_utr_length 156
min_five_prime_utr_length 1
max_five_prime_utr_length 7053
average_three_prime_utr_length 389
median_three_prime_utr_length 220
min_three_prime_utr_length 1
max_three_prime_utr_length 8647

Table S4. Features of Re-annotated Gene Models (RGMs) of Z. tritici IPO323 genome

nb : number, min : minimum, max : maximum, utr : untranslated region from transcripts
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BUSCO category JGI MPI CURTIN RRES RGM
Complete BUSCOs (C) 1633 1679 1681 1693 1696
Complete BUSCOs (C) % 95.7% 98.4% 98.5% 99.2% 99.4%
Complete and single-copy BUSCOs (S) 1632 1678 1615 1692 1695
Complete and duplicated BUSCOs (D) 1 1 66 1 1
Fragmented BUSCOs (F) 25 3 8 5 2
Missing BUSCOs (M) 48 24 17 8 8
Total BUSCO groups 1706

Table S5. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis of Re-annotated Gene Models 
(RGM) and gene models from previous annotations of the Z. tritici IPO323 genome. 

This comparison was performed using BUSCO and the ascomycota_odb as reference genes. Higher BUSCO scores 
(99.4 % identical) were obtained with RGMs compared to the JGI, MPI and CURTIN annotations (95.7-98.5% 
identical), while scores obtained with RRES gene models were similar to RGMs (99.1 % identical). The JGI 
annotation had the highest number of missing BUSCO genes. The eight missing BUSCOs in RGMs were reduced 
to six after manual inspection. These six RGMs that were missing in BUSCO encoded a Leucyl-tRNA synthetase, a 
WD40-repeat-containing domain protein, a Zinc finger protein, a Heavy metal-associated domain protein, a 
protein with an HMA domain, a PHD-type protein and a GTP binding domain protein. Their conservation across 
fungi is questionable, since a blastp search showed that they are missing from numerous genomes. 
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Chromosome # RGMs # dissimilar 
RGMs

# specific RGMs # RGMs with no 
evidence

1 2365 184 100 47
2 1392 132 54 28
3 1291 130 61 32
4 1021 70 54 29
5 997 98 49 18
6 835 78 41 12
7 952 88 39 224
8 843 79 33 27
9 708 68 34 25

10 624 56 21 29
11 604 53 28 9
12 542 51 39 11
13 423 42 23 12
14 133 41 18 8
15 115 43 18 7
16 103 28 10 15
17 89 24 9 8
18 94 26 5 8
19 103 30 19 9
20 93 23 7 8
21 87 32 9 8

Total 13414 1376 671 574

Table S6. Distribution of Re-annotated Gene Models (RGMs) on Z. tritici IPO323 chromosomes

# RGMs: number of Re-annotated Gene Models (RGMs). 
# dissimilar RGMs: number of RGMs with the following properties, at a given locus, a RGM was predicted by at 
least one other annotation, but they differed in their structure, here RGMs differing from all previous 
annotations. 
# specific RGMs: number of RGMs with the following properties, at a given locus, a single RGM is predicted by a 
single annotation, here RGM specific. 
# RGMs with no evidence: number of RGMs with the following properties, RGMs without transcript or protein 
evidence, but rescued since they were predicted by at least four different annotations. 
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fusion / split JGI MPI CURTIN RRES RGM

JGI — 312/674 626/1385 425/946 558/1258

MPI 286/584 — 801/1702 533/1127 706/1507

CURTIN 113/230 31/63 — 133/278 83/176

RRES 102/206 51/103 445/929 — 333/701

RGM 92/186 19/38 177/363 98/200 —

Table S7. Identification of fused/split genes in the Z. tritici IPO323 genome annotations.

These comparisons were performed in a pairwise manner. The first value is the number of fused genes for the 
horizontal entry and the second is the number of split genes for the vertical entry.
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Table S8. Number of transcript isoforms detected for Re-annotated Gene Models (RGMs) in Z. tritici IPO323

The annotation of transcript isoforms was performed with sqanti3 (Tardaguila et al. 2018) using Iso-Seq 
transcripts, previously established to infer UTRs, filtered for UTR length isoforms and low expression levels (less 
than 10% of total RNA-Seq reads), using the ingenannot isoform_ranking tool. RNA-Seq reads were mapped to 
Iso-Seq transcripts with RSEM v1.3.3 (Li and Dewey 2011) and Differential Isoform Usage (DIU) performed with 
tappAS (De La Fuente et al. 2020) with annotations obtained from sqanti3. The gene with the highest number of 
isoforms detected by Iso-Seq is ZtIPO323_108820 (chr_10:1162483...1166667 - 4.19 Kb) with 15 isoforms, among 
which only a few were supported quantitatively by RNA-Seq.

Isoforms 
per RGM

1 2 3 4 5 6+

Number 
of RGMs

11672 1342 274 77 29 20
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LncRNA Type

Up in 
planta 
log2FC > 2

Down in 
planta 
log2FC < 2 Gene (antisense) Gene annotation

PB.854.1 intergenic Y
PB.927.1 intergenic Y
PB.1188.1 antisense Y ZtIPO323_016330 subtilisin-like protein
PB.1594.1 antisense Y ZtIPO323_022040 related to allantoase permease

PB.2214.1 antisense Y
ZtIPO323_030630/ 
ZtIPO323_030640 NA

PB.2569.1 antisense Y ZtIPO323_035460 alpha/beta like hydrolase
PB.2709.1 antisense Y ZtIPO323_037670 TTL-domain containing protein
PB.4776.1 antisense Y ZtIPO323_066740 NA
PB.5130.1 intergenic Y
PB.5328.2 antisense Y ZtIPO323_074720 NA
PB.5366.1 antisense Y ZtIPO323_075280 HSP20-like chaperone
PB.6002.1 antisense Y ZtIPO323_084180 P450 monooxygenbase
PB.6788.1 antisense Y UTR overlap
PB.7120.1 antisense Y ZtIPO323_102870 Phosphomevalonate kinase
PB.7618.1 antisense Y ZtIPO323_110030 glycoside hydrolase family 45 protein
PB.8769.1 intergenic Y
PB.8778.1 intergenic Y

Table S9. Long non-coding RNAs  (lncRNA) from Z. tritici IPO323 differentially expressed during infection
Iso-Seq transcripts annotated as antisense and intergenic with sqanti3 were selected as long non-coding (lnc) RNAs. Then transcripts shorter than 1 Kb in length (Novikova et 
al. 2012), overlapping with TEs and containing an open reading frame (ORF) longer than 100 amino acids predicted with getorf by EMBOSS (Rice et al. 2000) were discarded. 
The resulting “non-coding“ transcripts were annotated with CPC2 (Kang et al. 2017), and only transcripts without an ORF with a PFAM domain were kept as lncRNAs. 
featureCounts (v1.5.1) (Liao et al. 2014) was used to count reads per transcript, followed by differential expression analysis by edgeR (Robinson et al. 2010) with the SARTools 
package (v1.6) (Varet et al. 2016). List of lncRNAs annotated from Iso-Seq data differentially expressed during infection with a strong fold change (4X). Antisense lncRNAs are 
preferentially involved in cis regulation, whereas intergenic lncRNAs are preferentially involved in trans regulation
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Table S10. Metrics calculated from AED scores for the four gene annotations obtained with 
InGenAnnot (RGM), funannotate, Helixer and BRAKER3. The geometric median corresponds to the 
centroid of all points of each AED plot. The mean and median distances were computed for all AED 
values relative to the geometric median and are used as proxies for the dispersion of the AED scores of 
all annotations. The same values are computed relative to the "ideal" point at coordinates (x=0, y=0), 
where all annotations perfectly match transcript and protein evidence. BRAKER3 (Gabriel et al. 2024) 
proposes isoforms for well-annotated genes, which introduces a bias in terms of the number of genes 
considered compared to funannotate (Palmer and Stajich 2020), Helixer (Stiehler et al. 2021), and RGM, 
for which only one transcript per gene is considered.

transcripts proteins genometric median distance to (0,0)

mean median stdev mean median stdev x y mean 
distance

median 
distance mean median

funannotate 0.245 0.151 0.255 0.497 0.258 0.483 0.185 0.301 0.526 0.348 0.604 0.469
Helixer 0.316 0.261 0.288 0.557 1.0 0.481 0.309 0.657 0.546 0.59 0.69 1.0
RGM 0.2 0.125 0.226 0.488 0.176 0.486 0.144 0.249 0.514 0.301 0.578 0.398

BRAKER3 0.223 0.141 0.237 0.453 0.09 0.478 0.155 0.176 0.493 0.227 0.559 0.338
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JGI MPI RRES CURTIN
JGI 10849

MPI 4621 11712
RRES 5276 8442 13583

Identical 
CDS

CURTIN 4495 7981 8289 13922
Unique: 4903 1883 2960 4280
      Dissimilar CDS 4752 1871 2367 3844
      Specific CDS   151    12   593   436

Figure 1. Comparison of Zymoseptoria tritici reference isolate IPO323 genome annotations. a) Upset 
plot of the gene models from the four annotations of IPO323 (JGI, MPI, RRES and CURTIN). Number of 
gene models with identical coding sequences (CDS). b) Comparison of IPO323 gene annotations. 
Number of CDS in each annotation. Identical CDS: identical CDS at a given locus. Unique Dissimilar CDS: 
at a given locus, a CDS is predicted by at least one other annotation, but they differ in their structure. 
Unique Specific CDS: at a given locus, a single CDS is predicted by a single annotation. The highest 
numbers of identical gene models between two annotations were observed for MPI-RRES (8,442), 
RRES-CURTIN (8,289), and MPI-Curtin (7,981), while the lowest numbers of identical gene models were 
observed between JGI and the three other annotations (4,495, 4,621 and 5,276 for JGI-Curtin, JGI-MPI 
and JGI-RRES respectively).
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Figure 2. Selection of the best Re-annotated Gene Models (RGMs) according to their Annotation Edit 
Distance (AED) scores. 

Plot of RGM AED scores. AED scores (0-1) describe how a given gene model fits to transcript and protein 
evidence (best fit = 0). Transcript evidence was computed from RNA-Seq or Iso-Seq data (X axis). 
Protein evidence was computed from fungal protein sequences excluding Zymoseptoria species (Y 
axis). The red, dashed lines represent the AED thresholds to filter out genes (0.3 for transcripts, 0.1 for 
proteins), except if they are supported by at least four different annotations (1846 RGMs, upper right 
area of the graph). The numbers of genes in the four areas are displayed in white text boxes. Numbers 
of transcripts with transcript evidence were plotted on cumulative histograms above the scatter plot 
(green). Numbers of transcripts with protein evidence were plotted on cumulative histograms on the 
right of the scatter plot (red).
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JGI MPI RRES CURTIN Any
RGM 4865 8431 8317 9584 11367

Figure 3. Comparison of the novel IPO323 genome annotation (Re-annotated Gene Models, RGM) with 
the four available annotations

a) Upsetplot of RGMs with gene models from the four available annotations (JGI, MPI, RRES and 
CURTIN).  Number of shared (identical) gene models for coding sequences (CDS). 

b) Number of identical CDS between RGMs and each available annotation.
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Figure 4. Transcript isoforms of Re-annotated Gene Models (RGMs) ZtIPO323_030030 (a) and 
ZtIPO323_013330 (b) supported by Iso-Seq and RNA-Seq evidence.

a) Gene ZtIPO323_030030 (chr2: 777930…1778675, 747 b). This RGM has two transcript isoforms 
(alternative 3’ acceptor site). Both encoded Small Secreted Proteins (SSP 10, File S1). Previous 
annotations selected the second acceptor site leading to the longest CDS. A single Iso-Seq transcript 
corresponding to the longest CDS was detected (Iso-Seq track), while both isoforms were detected 
using RNA-Seq data (RNA-Seq assembled transcript). RNA-Seq coverage identified both isoforms in 
equal amounts (RNA-Seq coverage Xyl). Based on read coverage from different RNA-Seq libraries, the 
isoform corresponding to the shortest CDS was the most frequent. This isoform was likely the canonical 
form and encoded a protein with a C-terminus that was reduced in length by 34% compared to the 
other isoform. RGMs with isoforms track: different isoforms. Iso-Seq track: filtered Iso-Seq transcripts. 
RNA-Seq coverage Xyl track: coverage of strand-specific RNA-Seq reads. RNA-Seq assembled transcript 
track: assembly of strand-specific RNA-Seq reads.

b) ZtIPO323_013330 (chr_1:3420115..3424093, 3.98 Kb). This RGM had four transcript isoforms. The 
selected RGM had four splicing sites, one of which in the 5’ UTR was supported by Iso-Seq transcript 
(Iso-Seq n°2) and RNA-Seq (RNA-Seq coverage Xyl). Two Iso-Seq transcripts with one or two intron 
retention events were detected as Iso-Seq transcripts (Iso-Seq n°1 and 3) and confirmed by RNA-Seq 
(RNA-Seq coverage Xyl). One Iso-Seq transcript had an alternative 5’ donor splicing site in the 5’ UTR 
(Iso-Seq n°4). This isoform was likely weakly expressed, as it was not supported by RNA-Seq (RNA-Seq 
coverage Xyl). RGMs with isoforms track: different RGM isoforms. Iso-Seq track: filtered Iso-Seq 
transcripts. RNA-Seq coverage Xyl track: coverage of strand-specific RNA-Seq reads. RNA-Seq 
assembled transcript track: assembly of strand-specific RNA-Seq reads.
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Figure 5. Examples of polycistronic transcripts shown for Re-annotated Gene Models (RGMs) 
ZtIPO323_010430 and ZtIPO323_010440

RGMs ZtIPO323_010430 and ZtIPO323_010440, located at chr_1:2692858...2697168 and 
chr_1:2692858...2697168, respectively, were transcribed on the same strand with overlapping 3’UTR 
and 5’UTR (red rectangle). Iso-Seq polycistronic track: evidence of transcripts covering the two RGMs. 
A strong decrease in RNA-Seq coverage was observed in the region of the overlap (red dashed 
rectangle), suggesting two singles, overlapping transcripts. The assembly of RNA-Seq reads led to a 
polycistronic transcript involving the two RGMs, likely resulting from the wrong assembly of reads from 
these overlapping transcripts. Iso-Seq track: filtered Iso-Seq transcripts mapping at this locus. Iso-Seq 
polycistronic track: polycistronic transcripts identified in the Iso-Seq database. RNA-Seq transcript 
track: assembly of strand-specific RNA-Seq reads mapping at this locus. RNA-Seq coverage Xyl track: 
coverage of strand-specific RNA-Seq reads mapping at this locus.
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