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Derivation of minimally structured (maximum entropy) stochastic models
Here I devise minimally structured (maximum entropy) stochastic models for the trajectories of insects in 2-dimensional circular swarms. Models for other cases can be derived in an exactly analogous way. 
It is assumed that the positions, x, and velocities, u, of individual insects can be described by the stochastic differential equations, 

							          (S1)



where the subscripts denote Cartesian components and where  is an incremental Wiener process with correlation property . I further assume that the magnitude of the driving noise,, is a constant. Equation (S1) is effectively a first-order autoregressive stochastic process in which position and velocity are modelled as a joint Markovian process.


The deterministic term, , is here determined by the requirement that the statistical properties of the simulated trajectories be consistent with the experimental form of the insect’s density profile and Eulerian velocity statistics that are used here as model inputs. Mathematically, these consistency conditions require that  be a solution of the Fokker-Planck equation,

							           (S2)


where is the joint distribution of velocity and position [Thomson 1987]. For statistically stationary swarms (with ),

									          (S3)
where

										          (S4)


The first term on the right-hand side of Eqn. S3 is a memory or relaxation term that drives velocities back towards their equilibrium values. The second term is effectively a conditional mean acceleration, . The noise term in Eqn. (S1), , models a stochastic component of the internal forces that arise because of chance encounters with other individuals, and perhaps because of the inherent uncertainties in the detection of the ‘swarm marker’ (a visually prominent feature over which swarms form and are localized).

For 2-dimensional circular swarms, Eqn. S4 is most naturally expressed in polar coordinates as

							           (S5)








[bookmark: _Hlk148078906]where , , , , , r is the radial distance from the swarm centre, s is the insect’s flight speed, ,   and  are angular coordinates specifying the orientations of the mosquito’s position and velocity vectors respectively and and are unit vectors. For swarms with Gaussian density profiles centred on the origin and having root-mean-square width, . A simple solution to Eqn. S5 and the one used in the Main Text, Eqn 2, is given by
							   	                    (S6)



In this model mean accelerations are analogous to centripetal accelerations  where is the angular velocity, i.e.,  simulated individuals tend to travel around the centre of the swarm. Such behaviour has been observed in laboratory swarms of Anopheles gambiae mosquitoes [Cavagna et al. 2023]. 
Another simple model is given by
							        (S7)
In this model individuals tend to travel back-and-forth through the swarm centre. 
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Stochastic trajectory model for swarms with n-fold rotational symmetry
It follows from the analysis of Reynolds et al. [2017] [see above Supplementary Data] that the simplest, minimally structured (maximum entropy) radially symmetric 2-dimensional stochastic model for the joint evolution of the position, x and y, and velocity, u and v, of an insect within a swarm with n-fold rotationally symmetric position statistics and homogeneous (spatially independent) Gaussian velocity statistics is given by

		                                                                                            (S8)

		
 										
 										
where , , , , r is the distance from the swarm centre, s is the individuals speed,   is an angular coordinate specifying the orientation of the insect velocity vector, T is a velocity correlation timescale,  is the velocity variance,  is an incremental Wiener process with correlation property .

The results of numerical simulations confirm that model predictions (model outputs) for the distributions of individual positions match the prescribed distributions (model inputs) (Fig. S1a).  The results of numerical simulations also reveal that the strength of the central attraction is independent of n (Fig S1b). That is, hypothetical swarms with n>2 fold rotational symmetry are predicted to be just as cohesive (resistant to environmental disturbances), as real swarms which have n=2 fold rotational symmetry. Nonetheless, in contrast with the predicted form of the central attraction in elliptical swarms with n=2 fold symmetry,  which depends simply on the orientations of the position and velocity vectors, θ and , the predicted form of the central attraction in swarms with n>2 fold symmetry has terms involving  and  that may be not realisable in practise. This may explain why insect swarms have 2-fold (elliptical) rotational symmetries rather than higher fold rotational symmetries. 
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[bookmark: _Hlk155883967]Figure S1. Simulations of swarms with n-fold rotational symmetry. a) Example of the predicted density profile for n=5. b) The strength of the central attraction is predicted to be independent of n.  Simulation data were produced by the stochastic model, Eqn. S8, with  and with the specified values of n. The contour plot is shown in a standard rainbow spectrum.


Stochastic trajectory model for spiral swarms with 2-fold symmetry
It follows from the analysis of Reynolds et al. [2017] [see above Supplementary Data] that the simplest, minimally structured (maximum entropy) radially symmetric 2-dimensional stochastic model for the joint evolution of the position, x and y, and velocity, u and v, of an insect within spiral swarms having density profiles given by  where the phase angle  and having homogeneous (spatially independent) Gaussian velocity statistics is given by

                 (S9)                              


 										
 										
where , , , , r is the distance from the swarm centre, s is the individuals speed,   is an angular coordinate specifying the orientation of the insect velocity vector, T is a velocity correlation timescale,  is the velocity variance,  is an incremental Wiener process with correlation property .

The results of numerical simulations confirm that model predictions (model outputs) for the distributions of individual positions match the prescribed distributions (model inputs) (Fig. S2a).  The results of numerical simulations also reveal that the strength of the central attraction is strongest in spiral swarms (Fig S1b). Even though spiral swarms are predicted to be more stable than elliptical swarms but may not be realisable in practise because of the central attraction has an overly complicated dependency on θ and . If such swarms did occur, then they would be analogous to the most commonly occurring galaxies, namely spiral galaxies. Conversely, the complex central attractions could emerge from simple interactions that preserve the shape of the swarm [Reynolds 2019a]. But in this case, it is unclear how insects could initially aggregate into shapes with n-fold rotational symmetry or into spiral shapes. The formation of such shapes is not supported by observations of swarm formation or by current understanding of swarm formation [Patel and Ouellette 2022, Reynolds and Ouellette 2023]. Furthermore, the swarm formation process would need to be fine-tuned because only some spiral swarms are predicted to be more stable that elliptical swarms. Spiral swarms with density profiles given by  where the phase angle , are for example, predicted to just as cohesive as elliptical swarms (see below).
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Figure S2. Simulations of spiral swarms. a) Example of the predicted density profile for  =2. b) The strength of the central attraction is predicted to be stronger in spiral swarms.  Simulation data were produced by the stochastic model, Eqn. S9, with  and . The contour plot is shown in a standard rainbow spectrum.



Spiral swarms with n-fold rotational symmetry are predicted to be just as cohesive as elliptical swarms
Spiral swarms with n-fold rotationally symmetric position statistics  where the phase angle  and having homogeneous (spatially independent) Gaussian velocity statistics are predicted to be just as cohesive as elliptical swarms. The simplest, minimally structured (maximum entropy) radially symmetric 2-dimensional stochastic model for the joint evolution of the position, x and y, and velocity, u and v, of an insect within a swarm are given by a modified form of Eqn. S8, wherein the terms

are replaced by
     
         (S10)
The results of numerical simulations with such models reveal that the strength of the central attraction is predicted to be independent of the degree of spiralling, i.e., the size of phase angle (Fig. S3). Moreover, as reported above the strength of the central attraction is independent of n (Fig. S1). Consequently, spiral swarms with n-fold rotational are predicted to be just as cohesive as elliptical swarms.
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Figure S3. Simulations of spiral swarms with n-fold rotational symmetry. a) Example of the predicted density profile for n=5 and  b) The strength of the central attraction is predicted to be independent of n.  Simulation data were produced by the modified stochastic model, Eqns. S8 and S10, with  and with the specified values of n. The contour plot is shown in a standard rainbow spectrum.


Anisotropic velocity statistics can enhance cohesiveness
The effect of anisotropic velocity statistics is here examined using the 2-dimensional stochastic trajectory simulation model, 


[bookmark: _Hlk157701891]
		                                                                                      (S11a)

									    (S11b)
 										
 										
where ,   , , , r is the distance from the swarm centre, s is the individuals speed,   is an angular coordinate specifying the orientation of the insect velocity vector, T is a velocity correlation timescale,  is the velocity variance,  is an incremental Wiener process with correlation property . Here x are y are the vertical and horizontal components of an individual’s position, and u and v are the vertical and horizontal components are an individual’s velocity By construction position statistics are Gaussian distributed with variance  and velocities are distributed as  where to ensure constancy of individual kinetic energies across simulations with differing anisotropies,   This distribution was chosen for illustrative purposes because the stochastic trajectory model can be expressed in terms of standard mathematical functions. Details of the derivation of such models can be found in Reynolds [2017] and in Reynolds [2023a].

The results of numerical simulations confirm that model predictions (model outputs) for the distributions of individual positions and velocities match the prescribed distributions (model inputs) (Fig. S4a, b). They also reveal that the strength of the central attraction is predicted to be independent of the degree of anisotropy (Fig. S4c). In other words, swarm cohesiveness is maximal when the eccentricity of the swarm’s shape and velocity distribution are comparable. Preliminary analysis (not shown) indicates that, as observed [Poda et al. 2024], this is also true of elliptical shaped swarm. Poda et al. [2024] reported that for laboratory-induced Anopheles coluzzii swarms,  . In the study of Poda et al. [2024] this fine tuning by swarming mosquitoes appears to be triggered by the simulated presence of a setting sun since velocity distributions of swarming mosquitos are circularly symmetric and bimodal in its absence [Cavagna et al. 2023]. 
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Figure S4. Simulation of swarms with anisotropic velocity distributions. a, b) Model trajectories have the prescribed statistics. The predicted positions and mean velocities of individual insects (•) match the prescribed distributions (solid lines). Predictions were obtained using the stochastic trajectory model, Eqn. S11, with  and  a.u. Note that the juxtaposition of a mono-modal and bi-modal distributions for the two horizontal components of velocity is a characteristic feature of laboratory-induced Anopheles coluzzii swarms [Poda et al. 2024].  c) The predicted strength of the effective force binding individuals to centres of elliptical swarms as a function of distance, r, from the swarm centre. Ax and Ay are given by the second terms on the right-hand sides of Eqns. S11a and S11b. n is a unit vector pointing towards the swarm centre. Predictions were obtained using the stochastic trajectory model, Eqn. S11, with  and  a.u. The values  and  correspond to  and 1.30 respectively. Individual kinetic energies are constant across the simulations. 



Mosquito swarms are predicted to be elliptical
Cavagna et al. [2023] reported that male Anopheles gambiae mosquitoes move with near constant speed. The least biased (maximum entropy) choice for the distribution of individual’s speed is
									         (S12)
[bookmark: _Hlk147835855]where  is a normalization constant,  is characteristic mean speed of an individual and  is a measure of the variability in an individual’s speed. The least biased choice for the distribution of individual positions given only that the swarm is localized (on the origin) and coherent is a Gaussian with mean zero and variance . It is assumed that all individuals are characterised by the same values of ,  and .

It follows from the analysis of Reynolds et al. [2017] [see above Supplementary Material] that the simplest radially symmetric 2-dimensional minimally structured (maximum entropy) stochastic model for the joint evolution of the position, x and y, and velocity, u and v, of a mosquito within a swarm with an elliptical density profile given by Eqn. 3 and homogeneous (spatially independent) Gaussian-like speed statistics (Eqn. 1) is given by
  (S13a)
  (S13b)	 		
 										
 										
[bookmark: _Hlk147838829]where , , , , r is the distance from the swarm centre, s is the individuals speed,   and  are angular coordinates specifying the orientations of the mosquito’s position and velocity vectors respectively, T is a velocity correlation timescale,  is the aspect ration of the density profile,  is an incremental Wiener process with correlation property  where the indices, i,j equal to 1 or 2, refer to Cartesian coordinates and where σ is of unit size and carries dimensions of speed.

When  the model, Eqn. (S13), reduces to the model of Reynolds (2023) which is close agreement with data from carefully controlled laboratory studies of swarms of Anopheles gambiae mosquitoes [Cavagna et al. 2023] and from natural swarms of Anopheles gambiae mosquitoes [Butail et al. 2013].

The results of numerical simulations confirm that model predictions (model outputs) for the distributions of individual positions and velocities match the prescribed distributions (model inputs) (Fig. S5a,b).  Compared with the case of circular and nearly circular swarms with , individuals within strongly elliptically shaped swarms with are predicted to be less tightly bound (on average) to the centre of swarm (Fig. S5c). The crossover is consistent with the observed aspect ratios, ~1.6, of laboratory-induced Anopheles coluzzii swarms [Poda et al. 2024]. 
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Figure S5. Simulation of mosquito swarms with elliptical density profiles. a, b) Model trajectories have the prescribed statistics. The predicted positions and mean velocities of individual insects (•) match the prescribed distributions (solid lines). Predictions were obtained using the stochastic trajectory model, Eqn. S13, with  and  a.u. c) The predicted strength of the effective force binding individuals to centres of elliptical swarms as a function of distance, r, from the swarm centre. Ax and Ay are given by the second terms on the right-hand sides of Eqns. S13a and S13b. n is a unit vector pointing towards the swarm centre. Predictions were obtained using the stochastic trajectory model, Eqn. S6, with  and  a.u.


On the formation of transient, local order (synchronized subgroups) in mosquito swarms
[bookmark: _Hlk161663494][bookmark: _Hlk161663702]In wild swarms of the mosquito Anopheline gambiae and Anopheline coluzzii, individuals form synchronized subgroups whose size and membership change rapidly [Shishika et al. 2014]. Reynolds [2018] hypothesised that the presence of a fluctuating environment drives the formation of transient, local order (synchronized subgroups), and that this local order pushes the swarm into a new state that is robust to environmental perturbations. Reynolds [2023b] subsequently showed how the presence of synchronized subgroups can be attributed be mutual repulsion. Here a distinctly different pathway – intrinsic noise - for the formation of synchronized subgroups is identified. The presence of synchronized subgroups is thereby unified with the emergent mechanical- and thermodynamic-like properties of swarms, and with putative phase transitions which can each be attributed to the presence intrinsic noise [Reynolds 2019b, 2021a,b 2023b]. 

Individuals within swarms behave on the average as if they are trapped in potential wells that keeps them bound to the swarm [Okubo 1986, Kelley and Ouellette 2014]. Partly because of the limited number of individuals in the swarm, and partly because of the nonuniformity in their spatial distribution (which is expected in wild swarms that must contend with environmental disturbances), the effective resultant internal force on the individuals also has a fluctuating component. In the stochastic trajectory models this is represented by the stochastic noise term, a term that also accounts for chance encounters. If chance encounters are rare, as appears to be the case [Puckett et al. 2014], then the stochastic noise should be common to neighbouring individuals. If the stochastic noise is common to all individuals in the swarm, then their trajectories will converge onto a single common trajectory, contrary to observations [2023]. If, however, the stochastic noise is common to patches within the swarms then the swarm is predicted to be populated by synchronized subgroups (Fig. S6). Features of the subgroups resemble observations [Shishika et al. 2014]. As observed the probability that two individuals are interacting decreases as their neighbour number increases (Fig. S7a) and the probability that a subgroup of individuals is interacting decreases as the size of the subgroup increases (Fig. S7b). 

The foregoing analysis illustrates how parallel flights can arise accidentally in wild swarms. It thereby challenges the notion that parallel flights have important implications for the origin of swarming and for mating in An. gambiae and An. coluzzii midges. Pennetier et al. [2010] for example, suggested that males perform velocity-matching to any nearby flying insect in a swarm to allow for mate recognition via wingbeat frequency matching. The occurrence of parallel flights may also be attributed to ritualized aggregation, as males are competing space in the lek [Lorentz 1964]. The biological interpretations would prevail if parallel flights were found to occur in laboratory swarms. 
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Figure S6. Predicted average alignments of velocities of swarming mosquitoes sorted by relative proximity. The average alignment  of the velocities of ith and jth individuals who are nth nearest neighbours. For illustrative purposes the swarm was overlayed by a fictitious grid of square cells with side length  within which individuals experienced common stochastic noise. The velocities of neighbouring individuals are on the average aligned when  is comparable to the swarm size. Expectations for none aligned individuals are indicated (dashed line). Predictions were obtained using the stochastic trajectory model, Eqn. S13, with  and  a.u.  Simulated swarms contained 100 individuals. 
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Figure S7. Features of the predicted interactions. a) Probability that an individual is interacting with its nth nearest neighbour. b) Probability of the size of a subgroup of interacting individuals. The ith and jth individuals are taken to be interacting if the angle of alignment of their velocities is . When an individual is interacting with more than one individual at the same time then the one with highest rank is shown. Subgroups do not necessarily consist of consecutively ranked nearest neighbours. Predictions were obtained using the stochastic trajectory model, Eqn. S13, with ,  a.u. Simulated swarms contained 100 individuals. 


[bookmark: _Hlk166153165]Putative evidence for fine tuning in swarms of the mosquito Anopheles coluzziis
Here it is shown that swarming Anopheles coluzziis mosquitoes behave on the average as if they are trapped in an elastic potential well. It is also shown that the distinctive cone shape of the swarms maintains the overall strength of the spring constant whilst increasing the overall stability of the swarm and reducing the work individuals expend when climbing up through the potential.

It follows from the analysis of Reynolds et al. [2017] that the simplest radially symmetric minimally structured (maximum entropy) stochastic model for the joint evolution of the position, x,y and z, and velocity, u,v and w, of a mosquito within a swarm with Gaussian position statistics, and homogeneous (spatially independent) Gaussian-like speed statistics is given by
			      (S14a)
			      (S14b)
							      (S14c)
								      (S14d)
 										      (S14e)
 										      (S14f)
										      (S14g)
[bookmark: _Hlk147822308][bookmark: _Hlk147838759]where , , , , r is the radial distance from the swarm centre, s is the individuals speed,   and  are angular coordinates specifying the orientations of the horizontal components mosquito’s position and velocity vectors respectively, T is a velocity correlation timescale,  is the root-mean-square radius of the swarm at height z, is the root-mean-square size of the swarm in the vertical direction,  is an incremental Wiener process with correlation property  where the indices, i,j equal to 1, 2 or 3, refer to Cartesian coordinates and where σ is of unit size and carries dimensions of speed. The model comprises the model for Reynolds [2024] for horizontal motions and a model for vertical motions. The model of Reynolds [2024] is in close agreement with observations of the swarming behaviors of laboratory-based Anopheles gambiae mosquitoes [Cavagna et al. 2023].

The first terms on the right-hand side of Eqns. S14a-c are memory terms that causes velocity fluctuations to relax back to their mean value. The second terms on the right-hand sides of Eqns. S14a-c are an effective force that bind individuals to swarm center. The noise term models a stochastic component of the internal forces that arise because of chance encounters with other individuals, and perhaps because of the inherent uncertainties in the detection of the ‘swarm marker’ (a visually prominent feature over which swarms form and are localized). Interactions between individuals are not modelled explicitly.

The results of numerical simulations confirm that model predictions (model outputs) for the distributions of individual positions and speeds match the prescribed distributions (model inputs) (Fig. S8), i.e., they confirm that the model is working. 

According to this model and consistent with the observations of Poda et al. [2024], mosquitoes above the centre of the swarm accelerate downwards while mosquitoes below the centre accelerate upwards. Taking this conditional acceleration to be effective force, individuals in the swarms are predicted on the average as if they are trapped in an elastic potential well (since the effective force is linear in position) that keeps them bound to the swarm. 

On average the cone shape of the swarm does not impact on the overall strength of the restorative force, Eqn. S14d, because the radially average of Eqn. S14d is independent of  . Nonetheless, individuals that climb up through the swarm are predicted to so in the outskirts of the swarms (Fig. S9) where the downward restorative force is weakest. In other words, the cone shape of the swarms enables the mosquitoes to reduce the work done against the restorative force whilst ascending. The cone shape also increases the basin of attraction as determined by  , thereby enhancing the overall stability of the swarms. Both advantageous properties could be accidental by-products of the visual mechanism advocated by Poda et al. [2024] to account for the cone shape, or they could provide a competing explanation for the cone shape.

This fine tuning is accessible to mosquitoes because their horizontal movements are largely decoupled from the vertical movements. Such decoupling does not arise with swarming midges which form non-conical spherical or elliptical shaped swarms [Okubo 1986, Kelley and Ouellette 2013]. 

Poda et al. [2024] reported that the mean speed of the mosquitoes increases with height. Such an increase can be incorporated into the model by adding a term, , to the righthand side of Eqn. S14d. This term does not affect the overall strength of the restorative force and does not influence the work done by individuals when ascending the swarm. An open question is whether this variation in mean speed is advantageous or not. 
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Figure S8). Model trajectories have the prescribed statistics. The predicted positions and mean speeds of individual insects (•) match the prescribed distributions (solid lines). Predictions for a cone shape swarm were obtained using the stochastic trajectory model, Eqn. S14, with  , 

[image: A graph with lines and numbers

Description automatically generated]
Figure S9. Model predictions for the lengths of vertical displacements made inside and outside of the core of the swarm. Predictions were obtained using the stochastic trajectory model, Eqn. S14, with  ,  which parameterizes the cone shape swarm reported on by Poda et al. [2024], and  a.u.


An illustrative comparison of minimally structured stochastic models and bottom-up models
[bookmark: _Hlk166670130]Here for illustrative purposes, I compare a minimally structured (maximum entropy) stochastic model for the trajectories of a male insect chasing a female insect within a swarm, with a counterpart bottom-up model. By construction the minimally structured stochastic model is consistent with prescribed putative statistics characterizing the relative positions and velocities of the male and female. The bottom-up model is seemingly more plausible because model terms are deduced from biological and physical considerations. I show that the despite the close similarity between the two models, the simpler bottom-up model makes highly implausible predictions. I thereby identify a potential pitfall with bottom-up models, a pitfall which cannot arise with minimally structured models.
 
It follows from the analysis of Reynolds et al [2017] [See also Supplementary Data for derivation] that the simplest minimally structured one-dimensional model for the joint evolution of the trajectories of two individuals within a swarm is given by
		 		         (S15)

where the subscripts equal to 1 and 2, refer to the male and female, respectively, x and u are the positions and velocities of the two insects, and  are the position and velocity covariance matrices, T is a velocity correlation timescale (here after set to unity),  is an incremental Wiener process with correlation property , and where σ is of unit size and carries dimensions of speed. The free parameters  are constrained but not uniquely determined by the requirement that  where  is the distribution of velocities. By construction positions and velocities are Gaussian distributed. Note that although  and  are necessarily symmetric, their product,  which appears in the model is not necessarily symmetric. This possibility allows for non-mutual interactions which are typical between living organisms.

Here to produce a model of chasing per se I take
 									       (S16)
and 

so that
									
where  is a free parameter and where  is of unit size and carries dimensions of length. The positive cross-correlation in positions indicates that the two insects tend to be co-located. The positive cross-correlation in velocities indicates that the two insects tend to be moving in the same direction. Taken together these conditions are indicative of chasing; a ‘chase’ does not describe a co-located pair when the male is not following the female, and a ‘chase’ does not describe a distant male following a female.  

Inserting Eqn. S16 into Eqn. S15 gives
		                   (S17a)
					                   (S17b)
where to ensure that the trajectory of a naive female (that is unaware of the chasing male) does not depend on that of the male I set .  This selection of a particular model, Eqn. S17, from a general model, Eqn. S15, shows how biological considerations about the plausible forms of interactions leads to statistical constraints, Eqn. S16.

All but one of the terms in this model can be understood intuitively. The first terms on the right-hand sides of Eqn. S17 are memory terms that causes velocity fluctuations to relax back to their mean zero values. The second terms on the right-hand sides of Eqn. S17 are effective forces that bind the male and female to the swarm center. As observed, the insects behave on average as if they are trapped within an elastic potential well [Okubo 1986, Kelley and Ouellette 2013]. The third term on the right-hand side of Eqn S17a describes the non-mutual attraction between the male and the female that breaks Newton’s third law. The noise term models a stochastic component of the internal forces that arise partly because of the limited number of individuals in the grouping and partly because of nonuniformity in their spatial distribution [Okubo 1986]. It also arises because of chance encounters with other individuals, and perhaps because of the inherent uncertainties in the detection of the ‘swarm marker’.

The terms described above could have been deduced from biological and physical considerations which by themselves would have resulted in a seemingly more plausible model in which the fourth term on the righthand of Eqn. S17a is absent. Nonetheless the results of numerical simulations which such a model show that the discarded, seemingly implausible term is crucial. Without it the model predicts, somewhat plausibly and counter to the minimally structured model, that
,
i.e., that the male tends to be moving to the right when the female is located right of the swarm centre and tends to be moving to the left when the female is located left of the swarm centre. And conversely, it predicts that the that the female tends to be moving to the right when the male is located left of the swarm centre and tends to be moving to the left when the male is located right of the swarm centre. However, the model also predicts, somewhat bizarrely, that the velocities of the male and female tend to become more correlated as the distance between the male and female increases, and that chasing behaviour becomes negligible when they are in close proximity (Fig. S10). In other words, somewhat counter-intuitively the discarded term tends to enforce velocity matching even when the male and female are close together. Only with judicious choices for  and , does this become self-evident because then the memory term and the fourth term in Eqn. S17a can be rewritten as a memory term, , and an interaction term, where  and are constants of proportionality. Velocity matching could facilitate mate recognition via wingbeat frequency matching [Pennetier et al. 2010] but otherwise does not appear natural in the context of chasing and so would be unlikely to feature in bottom-up models. Interestingly, interaction terms of the form,that require an assessment of relative rather than absolute velocities on the part of the males, arise when, as observed in the case of the mosquito Anopheles gambiae [Butail et al. 2012], females fly faster than males and have more expansive flight patterns.

It has been shown that seemingly well-founded bottom-up models can yield peculiar statistics, whereas minimally structured models are necessarily consistent with the prescribed statistics but can yield seemingly peculiar predictions for effective forces. Nonetheless, it should be noted that the effective forces underlying collective animal behaviours can be counter intuitive. Speed-dependent effective forces, were for example, only found after they were first predicted to occur in swarms by minimally structured models [Reynolds et al. 2017]. 
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Figure S10. Predicted correlation between the velocities of the male and female as a function of the distance between them. Predictions were obtained using Eqn. S17 with the fourth, seemingly counter-intuitive, term on the righthand side of Eqn. S17a discarded. When this term is included in the modelling, the velocity correlation is predicted to be independent of the distance between the male and the female.


Polytropic distributions arise naturally in the formulation of stochastic models for the trajectories of swarming insects
It has long been recognized that insect swarms have similitude with self-gravitating systems [Okubo 1986, Gorbonos et al. 2017, 2020, Reynolds 2018, 2019a, 2020]. Here it shown that Polytropic distributions (q-Gaussians) which constitute the simplest, physically plausible models for self-gravitating stellar systems [Binney and Tremaine 1987], arise naturally in the formulation of stochastic models for the trajectories of swarming insects. The new insight is the recognition that insect velocities cannot exceed the escape velocity if insects are to remain bound the swarm.  Until now escape velocities have not featured in the literature on swarming. The analysis draws directly from Okubo [1986] stochastic model for the joint evolution of one-component of a swarming insect’s position, x, and velocity, u:
							       (S18)

where  is a frictional coefficient,  is the frequency of the harmonic attractive force that binds insects to the centre of the swarm, and  is an incremental Wiener process with correlation property . Positions and velocities are Gaussian distributed with variances  and . Interactions between individuals are not modelled explicitly, rather, their net effect is subsumed into the restoring force term because observations of laboratory swarms of the non-biting midge Chironomus riparius suggest that to leading order insects appear to be tightly bound to the swarm itself but weakly coupled to each other inside it [Okubo 1986, Kelley and Ouellette 2013]. The midges behave on the average as if they are trapped in potential well [Kelley and Ouellette 2013]. The emergence of the restorative force makes the swarms analogous to self-gravitating systems [Okubo 1986]. The noise term represents fluctuations in the resultant internal force that arise partly because of the limited number of individuals in the grouping and partly because of the nonuniformity in their spatial distribution [Okubo 1986]. It also arises because of chance encounters with other individuals, and perhaps because of the inherent uncertainties in the detection of the ‘swarm marker’.


In the absence of noise, individual insects would reside at the bottom of the potential well. In the presence of noise, individual insects traverse the well; but if they are to remain within a well of finite depth then the driving noise must cease when the escape velocity is reached. This can be achieved by modifying the amplitude of the noise term in the above model, so that the model becomes,
 				      (S19)

where the constant, and where for consistency  if  otherwise  It is readily shown that positions and velocities of the simulated insects have polytropic (i.e., q-Gaussian) distributions
 	when 
 		when 
where  is an individual’s observable energy. The parameter q is related to the polytropic index, n, by (Taruya and Sakagami 2004). 

The limit  (i.e., ) corresponds to the isothermal sphere case, that is an isothermal self-gravitating sphere of gas, whose structure is identical to that of a collision-less systems of stars like a globular cluster. This is encapsulated by Okubo’s model [1986] wherein the potential well has infinite support and hence escape velocities do not feature. More generally, the distributions are cut-off. The cut-off corresponds, for each value of the radial coordinate x, to the gravitational escape velocity [Plastino 2005]. Indeed, it is readily shown that under the action of the potential well, an individual flying at the escape velocity is predicted to come to a stop just as it reaches the top of the potential well (edge of the swarm), i.e., the individual is predicted to escape from the swarm.

Polytropic distributions with  provide models for brown dwarfs, large gaseous planets, main sequence stars and other kinds of astronomical bodies. Some of these states may be realized by wild swarms of Anopheles gambiae mosquitoes [Reynolds 2018].
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