# Investigating whether aggregated predictions of cassava production better correlate # using buffer zones from Had library(ggplot2) library(sf) library("rnaturalearth") library("rnaturalearthdata") library(rgeos) library(ggpubr) library(lattice) library(gstat) library(sp) library(mgcv) panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...) { usr <- par("usr"); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r <- (cor(x, y, use="pairwise")) txt <- format(c(r, 0.123456789), digits = digits)[1] txt <- paste0(prefix, txt) if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt) text(0.5, 0.5, txt, cex = cex.cor) } civ <- ne_countries(scale = "medium", returnclass = "sf", country="Ivory Coast") uga <- ne_countries(scale = "medium", returnclass = "sf", country="Uganda") # input and merge all cassava sample data to define total cassava production rm(list=ls()[which(!(ls()%in%c("civ","uga","dat_civ","dat_uga","panel.cor")))]) # CIV { # area of individual plants in each study area indplants <- read.csv("KLH_Civ_individual_plants_poly.csv") head(indplants) table(indplants$field_id) # aggregate number of plants per field plants <- data.frame(aggregate(area_m2 ~ field_id, FUN=sum, data=indplants), table(indplants$field_id)) names(plants) <- c("field_id", "tot_area_ind_plants", "x", "tot_ind_plants") plants <- plants[, c("field_id", "tot_area_ind_plants", "tot_ind_plants")] # number of buildings / inhabitants in each study area inhabit <- read.csv("KLH_Civ_inhabited_pts.csv") head(inhabit) table(inhabit$Subcategor) table(inhabit$FloorNo) table(inhabit$field_id) # aggregate number of buildings per field temp <- data.frame(table(inhabit$field_id, inhabit$FloorNo)) names(temp) <- c("field_id", "FloorNo", "Freq") temp2 <- reshape(temp, direction="wide", v.names="Freq", timevar="FloorNo", idvar="field_id") temp2$tot <- temp2$Freq.1 + temp2$Freq.2 buildings <- temp2 names(buildings)<- c("field_id", "1story_buildings", "2story_buildings", "tot_buildings") buildings$field_id <- as.numeric(buildings$field_id) # cassava production models. also includes area of each study area models <- read.csv("Civ_study_area_centre_sample_aug20.csv") head(models) # cassava cultivation cassava <- read.csv("KLH_Civ_cassava_fields_poly.csv") head(cassava) table(cassava$Name) table(cassava$Name, cassava$Subcategor) table(cassava$Density) table(cassava$Density, cassava$field_id) table(cassava$Density, cassava$Subcategor) # aggregate to area in monoculture and area in intercropping per field, total cassava area, what is intercropped, number of fields - bit dodgy due to intersecting polygons... c1 <- aggregate(area_m2 ~ field_id, data=cassava, FUN=sum) names(c1) <- c("field_id", "tot_cassava_area") c2 <- aggregate(area_m2 ~ field_id, data=cassava[cassava$Name == "Cassava Monoculture", ], FUN=sum) names(c2) <- c("field_id", "tot_monoculture_area") c3 <- aggregate(area_m2 ~ field_id, data=cassava[cassava$Name == "Cassava", ], FUN=sum) names(c3) <- c("field_id", "tot_intercrop_area") c4 <- data.frame(table(cassava$field_id)) names(c4) <- c("field_id", "no_fields") c5 <- aggregate(cbind(Banana, Pineapple, Palm.oil, Maize, Papaya, Avocado, Sugar.cane, Cacao, Ivory.Palm, Guava, Eggplant, Cashew, Coffee, Peanut, Okra, Pepper, Mango, Coconut, Rubber, Taro, Lemon, Chilli, Palm.Tree, Soursop, Popo) ~ field_id, data=cassava, FUN=sum, na.rm=TRUE, na.action=na.pass) fields <- merge(c1, c2, by="field_id", all.x=TRUE, all.y=TRUE) fields <- merge(fields, c3, by="field_id", all.x=TRUE, all.y=TRUE) fields <- merge(fields, c4, by="field_id", all.x=TRUE, all.y=TRUE) fields <- merge(fields, c5, by="field_id", all.x=TRUE, all.y=TRUE) # so, can we refine the estimate of cassava production from the study sites... # issue 1. area sampled is different # scale area by size sampled areaSampled <- models$area_m2 cassava$weights <- 1 cassava$weights[cassava$Density == "dense"] <- 1.5 cassava$weights[cassava$Desnity == "dense..?"] <- 1.5 cassava$weights[cassava$Desnity == "densea"] <- 1.5 cassava$weights[cassava$Desnity == "regular/sparse"] <- 0.75 cassava$weights[cassava$Desnity == "sparce"] <- 0.5 cassava$weights[cassava$Desnity == "sparse"] <- 0.5 cassava$weights[cassava$Desnity == "sparse and uprooted"] <- 0.5 cassava$weights[cassava$Desnity == "sparse but"] <- 0.5 cassava$weights[cassava$Desnity == "sparse2aqqw1"] <- 0.5 cassava$weights[cassava$Desnity == "very dense"] <- 1.75 cassava$weights[cassava$Desnity == "very sparce"] <- 0.25 cassava$weights[cassava$Desnity == "very sparse"] <- 0.25 cassava$area_w <- cassava$area_m2 * cassava$weights c1 <- aggregate(area_w ~ field_id, data=cassava, FUN=sum) names(c1) <- c("field_id", "tot_cassava_area_w") c2 <- aggregate(area_w ~ field_id, data=cassava[cassava$Name == "Cassava Monoculture", ], FUN=sum) names(c2) <- c("field_id", "tot_monoculture_area_w") c3 <- aggregate(area_w ~ field_id, data=cassava[cassava$Name == "Cassava", ], FUN=sum) names(c3) <- c("field_id", "tot_intercrop_area_w") fields_w <- merge(c1, c2, by="field_id", all.x=TRUE, all.y=TRUE) fields_w <- merge(fields_w, c3, by="field_id", all.x=TRUE, all.y=TRUE) # check field ids plants$field_id[which(!plants$field_id %in% models$field_id)] buildings$field_id[which(!buildings$field_id %in% models$field_id )] fields$field_id[which(!fields$field_id %in% models$field_id )] fields_w$field_id[which(!fields_w$field_id %in% models$field_id )] dim(models) dim(plants) dat_civ <- merge(models, plants, by="field_id", all.x=TRUE, all.y=TRUE) dim(dat_civ) dim(buildings) dat_civ <- merge(dat_civ, buildings, by="field_id", all.x=TRUE, all.y=TRUE) dim(dat_civ) dat_civ <- merge(dat_civ, fields, by="field_id", all.x=TRUE, all.y=TRUE) dim(dat_civ) dat_civ <- merge(dat_civ, fields_w, by="field_id", all.x=TRUE, all.y=TRUE) dim(dat_civ) # where no Cassava production was recorded, replace NAs by 0 names(dat_civ) which(!models$field_id %in% plants$field_id) which(is.na(dat_civ$tot_area_ind_plants)) dat_civ[which(!models$field_id %in% plants$field_id), "tot_area_ind_plants"] <- 0 dat_civ[which(!models$field_id %in% plants$field_id), "tot_ind_plants"] <- 0 which(!models$field_id %in% buildings$field_id) which(is.na(dat_civ$`1story_buildings`)) which(is.na(dat_civ$`2story_buildings`)) which(is.na(dat_civ$tot_buildings)) dat_civ[which(!models$field_id %in% buildings$field_id), "1story_buildings"] <- 0 dat_civ[which(!models$field_id %in% buildings$field_id), "2story_buildings"] <- 0 dat_civ[which(!models$field_id %in% buildings$field_id), "tot_buildings"] <- 0 which(is.na(dat_civ$tot_cassava_area)) which(is.na(dat_civ$tot_intercrop_area)) which(is.na(dat_civ$tot_monoculture_area)) which(!models$field_id %in% fields$field_id) dat_civ[which(!models$field_id %in% fields$field_id), c("tot_cassava_area", "tot_monoculture_area", "tot_intercrop_area", "no_fields")] <- 0 dat_civ[which(is.na(dat_civ$tot_intercrop_area)), "tot_intercrop_area"] <- 0 dat_civ[which(is.na(dat_civ$tot_monoculture_area)), "tot_monoculture_area"] <- 0 dat_civ[which(!models$field_id %in% fields$field_id), c("Banana", "Pineapple", "Palm.oil","Maize", "Papaya","Avocado", "Scivr.cane", "Cacao", "Ivory.Palm", "Guava","Eggplant","Cashew","Coffee", "Peanut","Okra","Pepper" ,"Mango", "Coconut", "Rubber","Taro","Lemon","Chilli","Palm.Tree","Soursop","Popo")] <- 0 dat_civ[which(!models$field_id %in% fields_w$field_id), c("tot_cassava_area_w", "tot_monoculture_area_w", "tot_intercrop_area_w")] <- 0 dat_civ[which(is.na(dat_civ$tot_intercrop_area_w)), "tot_intercrop_area_w"] <- 0 dat_civ[which(is.na(dat_civ$tot_monoculture_area_w)), "tot_monoculture_area_w"] <- 0 dat_civ$tot_cassava_area <- (dat_civ$tot_area_ind_plants + dat_civ$tot_intercrop_area + dat_civ$tot_monoculture_area) / dat_civ$area_m2 dat_civ$tot_cassava_area_w <- (dat_civ$tot_area_ind_plants + dat_civ$tot_intercrop_area_w*0.75 + dat_civ$tot_monoculture_area_w) / dat_civ$area_m2 # create a Cassava presence/absence category dat_civ$cass_area_presence <- factor(dat_civ$tot_cassava_area > 0) } rm(list=ls()[which(!(ls()%in%c("civ","uga","dat_civ","dat_uga","panel.cor")))]) # Uganda { # area of individual plants in each study area indplants <- read.csv("KLH_Uga_individual_plants_poly.csv") head(indplants) table(indplants$field_id) # aggregate number of plants per field plants <- data.frame(aggregate(area_m2 ~ field_id, FUN=sum, data=indplants), table(indplants$field_id)) names(plants) <- c("field_id", "tot_area_ind_plants", "x", "tot_ind_plants") plants <- plants[, c("field_id", "tot_area_ind_plants", "tot_ind_plants")] plants # number of buildings / inhabitants in each study area inhabit <- read.csv("KLH_Uga_inhabited_pts.csv") head(inhabit) table(inhabit$Subcategor) table(inhabit$FloorNo) table(inhabit$field_id) # aggregate number of buildings per field temp <- data.frame(table(inhabit$field_id, as.numeric(inhabit$Subcategor))) names(temp) <- c("field_id", "FloorNo", "Freq") temp2 <- reshape(temp, direction="wide", v.names="Freq", timevar="FloorNo", idvar="field_id") temp2$tot <- temp2$Freq.1 + temp2$Freq.2 buildings <- temp2 names(buildings)<- c("field_id", "1story_buildings", "2story_buildings", "3story_buildings","tot_buildings") buildings$field_id <- as.numeric(buildings$field_id) # cassava production models. also includes area of each study area models <- read.csv("Uga_study_area_centre_sample_aug20.csv") head(models) models$Cass_HA[models$Cass_HA == -9999] <- NA models$Cass_Prod[models$Cass_Prod == -9999] <- NA # cassava cultivation cassava <- read.csv("KLH_Uga_cassava_fields_poly.csv") head(cassava) table(cassava$Name) table(cassava$Name, cassava$Subcategor) table(cassava$Density) table(cassava$Density, cassava$field_id) table(cassava$Density, cassava$Subcategor) # aggregate to area in monoculture and area in intercropping per field, total cassava area, what is intercropped, number of fields - bit dodgy due to intersecting polygons... c1 <- aggregate(area_m2 ~ field_id, data=cassava, FUN=sum) names(c1) <- c("field_id", "tot_cassava_area") c2 <- aggregate(area_m2 ~ field_id, data=cassava[cassava$Name == "Cassava Monoculture", ], FUN=sum) names(c2) <- c("field_id", "tot_monoculture_area") c3 <- aggregate(area_m2 ~ field_id, data=cassava[cassava$Name == "Cassava", ], FUN=sum) names(c3) <- c("field_id", "tot_intercrop_area") c4 <- data.frame(table(cassava$field_id)) names(c4) <- c("field_id", "no_fields") c5 <- aggregate(cbind(Banana,Coffee,Maize,Sugarcane,Sweet.Potato,Eucalyptus,Avocado,Taro.Cocoyam,Sorghum,Papaya,Pineapple,Tabacco, Orange,Jackfruit,Beans,Pumpkin,Pigeonpea,Sesame,Guava,Mango,Cacia,Sambia,Eggplant,Citrus,Fig,Elephant.grass,Hibiscus,Cotton,Millet,Pine.tree,Yam,Graville,Tiak.tree) ~ field_id, data=cassava, FUN=sum, na.rm=TRUE, na.action=na.pass) fields <- merge(c1, c2, by="field_id", all.x=TRUE, all.y=TRUE) fields <- merge(fields, c3, by="field_id", all.x=TRUE, all.y=TRUE) fields <- merge(fields, c4, by="field_id", all.x=TRUE, all.y=TRUE) fields <- merge(fields, c5, by="field_id", all.x=TRUE, all.y=TRUE) # so, can we refine the estimate of cassava production from the study sites... # issue 1. area sampled is different # scale area by size sampled areaSampled <- models$area_m2 cassava$weights <- 1 cassava$weights[cassava$Density == "dense"] <- 1.5 cassava$weights[cassava$Desnity == "dense at places"] <- 1.5 cassava$weights[cassava$Desnity == "high density"] <- 1.5 cassava$weights[cassava$Desnity == "low / medium density"] <- 0.75 cassava$weights[cassava$Desnity == "low density"] <- 0.5 cassava$weights[cassava$Desnity == "medium/low density"] <- 0.75 cassava$weights[cassava$Desnity == "regular at times sparse"] <- 0.75 cassava$weights[cassava$Desnity == "sparse"] <- 0.25 cassava$weights[cassava$Desnity == "sparse estimated"] <- 0.25 cassava$weights[cassava$Desnity == "very dense"] <- 1.75 cassava$weights[cassava$Desnity == "very low density"] <- 0.25 cassava$weights[cassava$Desnity == "very sparse"] <- 0.25 cassava$area_w <- cassava$area_m2 * cassava$weights c1 <- aggregate(area_w ~ field_id, data=cassava, FUN=sum) names(c1) <- c("field_id", "tot_cassava_area_w") c2 <- aggregate(area_w ~ field_id, data=cassava[cassava$Name == "Cassava Monoculture", ], FUN=sum) names(c2) <- c("field_id", "tot_monoculture_area_w") c3 <- aggregate(area_w ~ field_id, data=cassava[cassava$Name == "Cassava", ], FUN=sum) names(c3) <- c("field_id", "tot_intercrop_area_w") fields_w <- merge(c1, c2, by="field_id", all.x=TRUE, all.y=TRUE) fields_w <- merge(fields_w, c3, by="field_id", all.x=TRUE, all.y=TRUE) # check field ids plants$field_id[which(!plants$field_id %in% models$field_id)] buildings$field_id[which(!buildings$field_id %in% models$field_id )] fields$field_id[which(!fields$field_id %in% models$field_id )] fields_w$field_id[which(!fields_w$field_id %in% models$field_id )] dim(models) dim(plants) dat_uga <- merge(models, plants, by="field_id", all.x=TRUE, all.y=TRUE) dim(dat_uga) dim(buildings) dat_uga <- merge(dat_uga, buildings, by="field_id", all.x=TRUE, all.y=TRUE) dim(dat_uga) dat_uga <- merge(dat_uga, fields, by="field_id", all.x=TRUE, all.y=TRUE) dim(dat_uga) dat_uga <- merge(dat_uga, fields_w, by="field_id", all.x=TRUE, all.y=TRUE) dim(dat_uga) # where no Cassava production was recorded, replace NAs by 0 names(dat_uga) which(!models$field_id %in% plants$field_id) which(is.na(dat_uga$tot_area_ind_plants)) dat_uga[which(!models$field_id %in% plants$field_id), "tot_area_ind_plants"] <- 0 dat_uga[which(!models$field_id %in% plants$field_id), "tot_ind_plants"] <- 0 which(!models$field_id %in% buildings$field_id) which(is.na(dat_uga$`1story_buildings`)) which(is.na(dat_uga$`2story_buildings`)) which(is.na(dat_uga$`3story_buildings`)) which(is.na(dat_uga$tot_buildings)) dat_uga[which(!models$field_id %in% buildings$field_id), "1story_buildings"] <- 0 dat_uga[which(!models$field_id %in% buildings$field_id), "2story_buildings"] <- 0 dat_uga[which(!models$field_id %in% buildings$field_id), "3story_buildings"] <- 0 dat_uga[which(!models$field_id %in% buildings$field_id), "tot_buildings"] <- 0 which(is.na(dat_uga$tot_cassava_area)) which(is.na(dat_uga$tot_intercrop_area)) which(is.na(dat_uga$tot_monoculture_area)) which(!models$field_id %in% fields$field_id) dat_uga[which(!models$field_id %in% fields$field_id), c("tot_cassava_area", "tot_monoculture_area", "tot_intercrop_area", "no_fields")] <- 0 dat_uga[which(is.na(dat_uga$tot_intercrop_area)), "tot_intercrop_area"] <- 0 dat_uga[which(is.na(dat_uga$tot_monoculture_area)), "tot_monoculture_area"] <- 0 dat_uga[which(!models$field_id %in% fields$field_id), c("Banana","Coffee","Maize","Sugarcane","Sweet.Potato","Eucalyptus","Avocado","Taro.Cocoyam","Sorghum","Papaya","Pineapple","Tabacco", "Orange","Jackfruit","Beans","Pumpkin","Pigeonpea","Sesame","Guava","Mango","Cacia","Sambia","Eggplant","Citrus","Fig","Elephant.grass","Hibiscus","Cotton","Millet","Pine.tree","Yam","Graville","Tiak.tree")] <- 0 dat_uga[which(!models$field_id %in% fields_w$field_id), c("tot_cassava_area_w", "tot_monoculture_area_w", "tot_intercrop_area_w")] <- 0 dat_uga[which(is.na(dat_uga$tot_intercrop_area_w)), "tot_intercrop_area_w"] <- 0 dat_uga[which(is.na(dat_uga$tot_monoculture_area_w)), "tot_monoculture_area_w"] <- 0 dat_uga$tot_cassava_area <- (dat_uga$tot_area_ind_plants + dat_uga$tot_intercrop_area + dat_uga$tot_monoculture_area) / dat_uga$area_m2 dat_uga$tot_cassava_area_w <- (dat_uga$tot_area_ind_plants + dat_uga$tot_intercrop_area_w*0.75 + dat_uga$tot_monoculture_area_w) / dat_uga$area_m2 # create a Cassava presence/absence category dat_uga$cass_area_presence <- factor(dat_uga$tot_cassava_area > 0) } rm(list=ls()[which(!(ls()%in%c("civ","uga","dat_civ","dat_uga","panel.cor")))]) # load in Had's buffer statistics uga_zonalstats_2km <- read.csv("ZonalSt_UGA_2km.csv") uga_zonalstats_5km <- read.csv("ZonalSt_UGA_5km.csv") uga_zonalstats_10km <- read.csv("ZonalSt_UGA_10km.csv") head(uga_zonalstats_10km) # merge in dat_uga2km <- merge(dat_uga, uga_zonalstats_2km, by.x="X", by.y="OBJECTID") # are survey points representative of model predictions ggplot(dat_uga2km, aes(x=X, y=tot_cassava_area_w*100)) + geom_point() + geom_point(aes(y=Cass_HA), colour="red") ggplot(dat_uga2km, aes(x=X, y=tot_cassava_area*100)) + geom_point() + geom_point(aes(y=Cass_HA), colour="red") ggplot(dat_uga2km, aes(x=X, y=tot_cassava_area*100)) + geom_point() + geom_point(aes(y=HarvV1_MIN), colour="red") + geom_point(aes(y=HarvV1_MAX), colour="red")