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Celebrated for boosting agricultural productivity and enhancing food security worldwide, the Green Rev-
olution comprised some of the most significant advances in crop production in the 20th century. How-
ever, many recent studies have reported crop yield stagnation in certain regions of the world, raising con-
cerns that yield gains are no longer sufficient to feed the exponentially growing global population. Here,
we review the current challenges facing global crop production and discuss the potential of genome ed-
iting technologies to overcome yield stagnation, along with current legislative barriers that limit their ap-
plication. We assess strategies for the integration of genome editing with omics, artificial intelligence,
robotics, and advanced farming technologies to improve crop performance. To achieve real-world yield
improvements, agricultural practices must also evolve. We discuss how precision farming approaches —
including satellite technology, Al-driven decision support, and real-time monitoring—can support
climate-resilient and sustainable agriculture. Going forward, it will be essential to address issues
throughout the agricultural pipeline to fully integrate rapidly developing genome editing methods with
other advanced technologies, enabling the industry to keep up with environmental changes and ensure
future food security.
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INTRODUCTION

From 1960 to 2000, agricultural productivity tripled due to the
development and adoption of improved germplasms, combined
with important advances in infrastructure and energy inputs
(Evenson and Gollin, 2003; Briggs, 2009; Pingali, 2012).
Although these techniques improved food security and
prevented projected food shortages in many regions, they did
not boost vyields uniformly across all countries and
crops (Figure 1) (Pimentel and Pimentel, 1990; Evenson and
Gollin, 2008; Pingali, 2012; Liu et al., 2020b). Conventional
breeding is slow, often requiring decades to generate new crop
varieties, which limits its effectiveness in addressing urgent
food security and environmental issues. Advanced techniques
such as targeting induced local lesions in genomes (TILLING)

and CRISPR-Cas-based mutagenesis enable precise genetic
modifications and significantly accelerate the development of
improved crop varieties. These innovations increase breeding
efficiency and offer solutions to create resilient, high-yield crops
more effectively than traditional methods. However, several bot-
tlenecks continue to limit the application of genome editing in
food production. This review gives an overview of the current
challenges in crop production, discusses the limitations and po-
tential of conventional crop breeding, and describes how genome
editing technologies could address yield stagnation. It also eval-
uates current regulatory frameworks for gene-edited crops and
proposes strategies for the integration of genome editing with
other advanced technologies to improve the entire crop produc-
tion pipeline and overcome yield stagnation.
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Figure 1. Yearly average yield (tonnes per hectare) by continent
for wheat, rice, maize, and soybeans (2000-2022).

(A-D) (A) maize yield, (B) rice yield, (C) soybean yield, (D) wheat yield.
Yield data are from Ritchie et al., 2022.

CURRENT CHALLENGES IN CROP
PRODUCTION

Crop genetic improvement and the use of pesticides, fertilizers,
and irrigation have contributed significantly to yield gains but
have also led to some unintended consequences for the envi-
ronment and for long-term food production systems. Global
pesticide production has increased by approximately 850%
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over the past 50 years (Pimentel and Pimentel, 1990; Grigg,
2001; Briggs, 2009; Pingali, 2012; McKenzie and Williams,
2015). However, pesticide use is remarkably inefficient: only
about 1% of applied pesticides effectively control their target
pests, and the rest enters the environment through leaching,
adsorption, spray drift, and runoff, causing environmental
damage (Figure 2) (Aktar et al., 2009; Tudi et al., 2021;
European Environment Agency, 2023). Climate change will
exacerbate the adverse effects of chemical pollution caused
by high pesticide and fertilizer use. Rising temperatures
increase soil erosion and cracking, which increase the
movement of water and chemicals through the soil, risking
surface and ground water contamination (Figure 2) (Tudi et al.,
2021). In addition, increased irrigation used to support high
yields has led to increased soil salinization in areas with poor
drainage, which can lead to salt accumulation in the root
zones of crops. This results in ion toxicity, nutrient
imbalances, and reduced seed germination (Figure 2) (Briggs,
2009; Khamidov et al, 2022). As climate change alters
temperature and precipitation patterns, soil salinization is
expected to worsen in some regions, further reducing yields
(Briggs, 2009; Jaggard et al., 2010; Tarmizi, 2019; Skendzi¢
et al., 2021; Turin et al., 2023).

The introduction of monocropping replaced traditional intercrop-
ping practices that helped maintain rural biodiversity and encour-
aged pest resistance (Briggs, 2009). The growth of high-density
monocultures enhances disease transmission among plants of
high genetic homogeneity (Figure 2). This is exemplified by the
breakdown of wheat resistance to stripe rust (Yr17) in England
and Denmark, where cultivars containing a single resistance
gene were grown over a wide area from 1994 to 1998, resulting
in 100% virulence (de Vallavieille-Pope, 2004). High fertilizer
use is also associated with increased levels of plant nutrients
and soil minerals, which can increase the risk of disease and
crop attractiveness to phytophagous pests (Pimentel and
Pimentel, 1990; Grigg, 2001). In addition, climate change
enables pest populations to expand into regions where they
were previously absent (Skendzic¢ et al., 2021). Crop pests and
diseases are estimated to cause global yield losses of 21.5%,
30.3%, and 22.6% in wheat, rice, and maize, respectively, with
plant pathogens costing the global economy an estimated $220
billion annually (He and Creasey Krainer, 2020; Ristaino
et al., 2021).

Currently, many areas in the world are experiencing stagnation
in yield growth, with many developing countries predicted
to fall short of projected food demand due to insufficient
yield increases (Figure 1) (Ray et al., 2013). Global average
yields of maize, rice, wheat, and soybeans are increasing at
annual rates of 1.6%, 1.0%, 0.9%, and 1.3%, respectively,
far below the 2.4% annual increase required to meet
projected demand (Ray et al., 2013). For example, in India,
yield growth has stalled in some key production areas, with
yield stagnation observed in 76% of wheat-, 47% of rice-,
and 18% of maize-producing regions (George, 2014;
Madhukar et al., 2020). This trend is particularly concerning
in light of rising global undernourishment. Reversal of
the decline in yield growth is vital to ensure sufficient
food production in the coming years (World Health
Organization, 2024).
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Figure 2. Effects of climate change on crops and the environment.

Increased temperatures and growth of high-density monocultures accelerate disease transmission (1), pest damage (2), and soil pathogen density (5).
The application of chemicals (purple circles) such as fertilizers and pesticides leads to their release into the environment (3). Global climate change causes
soil cracking and increases chemical movement through the soil (4). Hot and arid climates increase soil salinization (white crystals represent salt) (6).

Figure created with BioRender.

LIMITATIONS AND PROSPECTS OF
TRADITIONAL CROP BREEDING

Crop breeding has been used to enhance the productivity of
cultivated species through methods such as pure line selection, hy-
brid breeding, population breeding, pedigree breeding, and double
haploid breeding. Despite its utility, breeding is becoming increas-
ingly difficult due to dwindling genetic heterogeneity in cultivated
varieties, a phenomenon known as genetic erosion (Khoury et al.,
2022; Salgotra and Chauhan, 2023). An estimated 75% of plant
genetic diversity has been lost over the past century (FAO). This
loss is attributed to land use changes, climate change, and the
replacement of local landraces with high-yield varieties (Khoury
et al., 2022; Salgotra and Chauhan, 2023). Because plant genetic
resources serve as important reservoirs of disease resistance
and climate resilience genes, conservation of natural genetic
variation for use in breeding programs is essential (Tanksley and
McCouch, 1997; Bohra et al., 2022; Salgotra and Chauhan,
2023). Gene banks are the most widely used conservation
method, with around 1750 gene banks storing approximately 7
million samples worldwide (FAO, 2010). Crop wild relatives are of
particular conservation interest; they have not undergone the
intense genetic bottlenecks associated with domestication
and represent important sources of genetic diversity for
trait improvement. However, they account for only 16% of
gene bank holdings worldwide. Furthermore, although the

introgression of genes from crop wild relatives is estimated to
add $186 billion annually to the global economy, breeding efforts
are often focused on members of the primary gene pool (close
relatives) and overlook the greater benefits of crosses between
more distantly related species (Tanksley and McCouch, 1997;
Tyack et al., 2020; Bohra et al., 2022).

The introgression of improved traits into crop varieties is not always
possible. Reproductive barriers between domesticated strains and
their wild relatives can impede gene transfer between them and un-
desirable quality- and yield-related traits may also be introduced,
thereby limiting the potential for improvement (Bohra et al., 2022).
Desirable alleles can be transferred to progeny along with
deleterious ones due to linkage drag, a phenomenon whereby
two nearby loci remain genetically linked in the offspring
population. These linked alleles are inherited together across
generations, which presents an important challenge for
conventional breeding methods, as the deleterious alleles are
unlikely to be removed through crossing (Bohra et al., 2022). One
potential strategy to overcome linkage drag is to engineer meiotic
recombination by increasing the total number of recombination
events and altering their genomic locations in germ cells.
Recombination events occur during meiosis and can be modulated
by temperature, epigenetic factors, or the overexpression or
inactivation of genes that regulate meiotic recombination (Kuo
et al., 2021; Fayos et al., 2022). Given the current limitations of
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Figure 3. Timeline of milestones in crop ge-
netic improvement.
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conventional breeding and the average 7-12-year breeding
pipeline required to generate a new line, conventional methods,
although important, are unlikely to facilitate germplasm
improvement quickly enough to address the rapidly changing
climate and the exponentially growing global population.

DEVELOPMENT OF GENOME EDITING
TECHNIQUES

Since the first evidence of induced plant mutagenesis in 1928 us-
ing radiation in maize and barley (Stadler, 1928a, 1928b),
scientists have used various approaches to create novel
genetic variations and improve plant traits. The first mutant-
derived varieties emerged in the late 1950s and early 1960s,
including Golden Promise barley and canola varieties of oilseed
rape (Figure 3) (Shelake et al., 2019). In 2000, TILLING was intro-
duced as a technique that combines traditional crossbreeding,
chemical mutagenesis, and DNA analysis to induce desired mu-
tations and generate new lines (Figure 3) (McCallum et al., 2000).
The original TILLING protocol, a relatively short-lived method for
screening mutant populations, has since been largely
superseded by genomic methods with broader applicability
such as EcoTILLING (Comai et al., 2004), iTILLING (Bush and
Krysan, 2010), De-TILLING (Li et al., 2001), and PolyTILLING
(Wang et al., 2012). These methods facilitate the creation and
identification of new alleles in both coding and non-coding
regions and are applicable to large genomes, enabling the
creation of mutant populations suitable for direct use in
breeding programs (Singh et al., 2024). Successful applications
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need to be removed through multiple

rounds of backcrossing. Chemical and ra-

diation mutagenesis cannot be used for

rapid genome engineering, which led to
the development of targeted mutagenesis systems using endo-
nucleases that induce double-strand breaks (DSBs) at specific
genomic sites. These DSBs are repaired by endogenous mech-
anisms, typically by error-prone non-homologous end joining
(NHEJ), which introduces insertions or deletions at the
repair site (Figure 4). In some cases, homologous
recombination (HR) is used, which allows precise edits via
donor DNA templates with homology arms (Figure 4).
However, HR is used less frequently, as it is limited to
somatic S-phase and meiosis, whereas NHEJ is active through-
out most of the somatic cell cycle (Symington and Gautier,
2011). The first targeted mutagenesis system was based on
zinc finger nucleases (ZFNs), which consist of a DNA-binding
domain from a zinc finger transcription factor fused to the
non-specific DNA cleavage domain of the Type IIS restriction
enzyme Fokl (Figure 3). A major limitation of this system is the
difficulty of predicting the DNA-binding sites of the zinc
finger domains (Khalil, 2020), and it took 9 years from the
discovery of ZFNs to their first application in plant
genome editing (Townsend et al, 2009). In 2009, the
discovery of transcription activator-like effectors (TALEs) in the
phytopathogen Xanthomonas oryzae led to the development
of a new system based on TALE-nuclease fusions (TALENS)
that generate DSBs in a manner similar to ZFNs (Figures 3
and 4). TALEs are simpler to design, as each module recognizes
a single nucleotide, resulting in binding sites that are signifi-
cantly more predictable than those of ZFNs and therefore re-
duced off-target effects. However, the construction of TALEs
can be labor-intensive (Supplemental Table 1) (reviewed in
Khalil, 2020; Zhang et al., 2018).
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In 2012, the development of the clustered regularly interspaced
short palindromic repeats (CRISPR)-Cas system revolutionized
genetic engineering by enabling precise and efficient genome ed-
iting (Figure 3). Derived from a viral defense mechanism originally
discovered in bacteria, CRISPR-Cas9 technology uses a single
guide RNA (sgRNA), a fusion of a CRISPR RNA (crRNA) and a
trans-activating CRISPR RNA (tracrRNA), which directs the
Cas9 nuclease to a target DNA sequence. This enables efficient,
precise gene editing by matching the 5' crRNA base-pairing re-
gion with the complementary target sequence (Figure 4)
(reviewed in Gao, 2021). Over the past few years, CRISPR-
Cas9 has dominated the genome editing field, significantly
advancing plant research and offering great potential for crop
improvement (Li et al., 2021b). It is a versatile, simple, and
inexpensive tool for sequence-specific DNA modification, includ-
ing gene knockout, single-base substitution, gene or allele re-
placement, and multiplex genome engineering (Cong et al.,
2013; Mali et al., 2013; Li et al., 2021b) (Supplemental Table 1).

may be repaired by the NHEJ pathway, which can
introduce small insertions or deletions, or by the
HR pathway, which can introduce DNA insertions.
Figure created with BioRender.

When multiple sgRNAs are used to induce
multiple DSBs, the system can cause
chromosomal deletions, gene inversions,
and chromosomal translocations, and can
target multiple genes simultaneously
(Sedeek et al., 2019; Beying et al., 2020;
Lu et al.,, 2021; Ronspies et al., 2022).
Many novel Cas orthologs with additional
advantages have been identified; for example, Cas12j has a
shorter coding sequence that facilitates vector delivery (Sun
et al., 2024), Cas12a has a different PAM recognition sequence
(Zhang et al., 2023), and Cas13 targets RNA viruses (Hak et al.,
2024; Kavuri et al., 2022). The engineering of Cas proteins
represents a novel avenue for the expansion of the genome
editing toolbox. For example, Cas-SFO01 is an artificial intelligence
(Al)-guided, genetically engineered derivative of Cas12i3 with en-
hanced gene editing activity in both animals and plants (Duan
et al., 2024).

Screening

The applications of genome editing technologies in breeding are
rapidly expanding (Table 1) (reviewed in Zhu et al., 2020). Base
editing, developed in 2016, enables the direct conversion of one
target DNA base to another without requiring DSB formation or a
donor template (Gaudelli et al., 2017; Komor et al., 2016; Nishida
et al., 2016; reviewed in Li et al., 2021b; Molla et al., 2021). This
method involves the fusion of a cytidine deaminase enzyme with

Plant Communications 6, 101386, July 14 2025 5
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Crop Target gene Genome editing Trait improvement

Strawberry FaPG1 Mutagenesis (CRISPR-Cas9) Improved fruit firmness (Lopez-Casado
et al., 2023)

Soybean AlP2a, AIP2b Mutagenesis (CRISPR-Cas9) Increased protein content (Shen et al.,
2022)

Wheat TaGW2 Mutagenesis (CRISPR-Cas9) Increased yield (Wang et al., 2018)

Tomato SIWUS, SICLV3, SIWOX9, SITFL1 | Mutagenesis (CRISPR-Cas9) Variation in fruit size, inflorescence
branching, and plant architecture
(Rodriguez-Leal et al., 2017)

Maize ARGOS8 Mutagenesis (CRISPR-Cas9) Increased drought tolerance (Shi et al.,
2017)

Soybean FAD2-1A, FAD2-1B, FAD3A Mutagenesis (TALEN) High oleic acid content (Demorest
et al., 2016)

Rice Os11N3 Mutagenesis (TALEN) Increased bacterial blight resistance (Li
et al., 2012)

Maize IPK1 Mutagenesis (ZFNs) Herbicide tolerance and reduced
phytate levels (Shukla et al., 2009)

Wheat ALS Base editing (CRISPR-based) Herbicide resistance (Zhang et al.,
2019)

Strawberry FvebZIPs1.1 Base editing (CRISPR-based) Fine-tuned sugar content (Xing et al.,
2020)

Maize ZmALS1, ZmALS2 Base editing (CRISPR-based) Herbicide resistance (Li et al., 2020c)

Rice Xab, Xa23 Prime editing Increased bacterial blight resistance
(Gupta et al., 2023)

Rice, rapeseed | ORF79, ORF125 Mitochondrial gene mutagenesis Cytoplasmic male sterility (Kazama

(mitoTALENS) et al., 2019)

Lettuce psaA, psbA, 16 Base editing of the chloroplast genome | Herbicide resistance (Mok et al., 2022)

Cassava MeSWEET10a Epigenome editing Increased bacterial blight resistance
(Veley et al., 2023)

Table 1. Applications of genome editing toolkits for crop improvement.

an engineered CRISPR-Cas9 that lacks nuclease activity (CRISPR-
dCas9) but is still targeted to a specific DNA sequence by its guide
RNA (Figure 5A). The first successful applications of this method in
crops were demonstrated in wheat, rice, tomato, and maize (Lu and
Zhu, 2017; Li et al., 2017; Ren et al., 2017; Shimatani et al., 2017;
Zong et al., 2017). Because base editing is limited to specific
nucleotide substitutions, new methods with broader editing
capabilities have been developed. Prime editing, described in
2019, is a “search-and-replace” genome editing system capable
of targeted insertions, deletions, and all 12 types of base-to-base
substitutions (Anzalone et al., 2019; reviewed in Li et al., 2021b;
Molla et al., 2021). It consists of a reverse transcriptase fused to
an RNA-programmable nickase and a prime editing guide RNA
(pegRNA). The genetic information from the pegRNA is copied di-
rectly into the target locus, enabling greater versatility and precision
than base editing (Anzalone et al., 2019). Although prime editing
technology has low editing efficiency in plants, improved systems
have been developed to overcome this limitation (Li et al., 20223;
Jin et al.,, 2023; Ni et al.,, 2023). For example, prime editors
were used to insert a 30-base pair (bp) cis-regulatory element into
the promoter of the rice R gene Xa23 to confer resistance to bacte-
rial blight (Gupta et al., 2023). Although prime editing can achieve
targeted insertion of short cis-regulatory elements, the insertion
length is limited and multiplexing is difficult. Lu et al. (2020)
developed an efficient method for inserting both short and long

6 Plant Communications 6, 101386, July 14 2025

sequences at target sites in the plant genome. This method involves
particle bombardment of callus cells with CRISPR-Cas constructs
to generate DSBs at target sites and chemically modified double-
stranded donor DNA fragments that bear 5'-phosphorylation and
both 5' and 3' phosphorothioate linkages on each strand. The modi-
fied donor DNAis stable in cells and can be inserted efficiently at the
DSB sites. For example, the insertion of four TALE-binding ele-
ments into the promoters of the rice executor genes Xa70 and
Xa23 conferred resistance to all tested Xanthomonas oryzae pv. or-
yzae (Xoo) strains (Zhang et al., 2024b).

Mitochondrial and chloroplast genome editing have great
potential for improvement of the respiratory and photosynthetic
pathways through crop breeding; however, they require specific
modifications of technologies currently used for nuclear genome
editing (Dorogova and Sidorchuk, 2023). The primary challenge is
the apparent absence of the NHEJ repair pathway in these
organelles. Instead, the HR pathway is active, reflecting their
prokaryotic origin, which limits the introduction of mutations via
DSB induction and repair (Maliga, 2022). CRISPR-Cas9 also
faces challenges because sgRNA is difficult to transport across
the mitochondrial membrane, a limitation not seen with TAL
effectors (Supplemental Table 1). The first successful application
of this approach was the use of TALENSs fused to N-terminal mito-
chondrial localization signals (mitoTALENSs) to knock out genes
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(A) Schematic representation of a cytosine base editing system (CBE): nCas9 (cyan) is fused to a cytidine deaminase (purple), which catalyzes the
conversion of cytosine (red circle) to uridine. A uracil glycosylase inhibitor (UGI) prevents the U:G mismatch from reverting to C:G, resulting in a change to
T:A. The sgRNA, which is made up of a CRISPR RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA), guides nCas9 (cyan) to the target site. Upon
recognition of the PAM motif “NGG,” nCas9 introduces a single-strand break (SSB, red triangle), which is processed by the base editor.

(B) Schematic representation of an epigenome editing system: dCas9 (cyan) is fused to either the TET1 or MQ1 epieffector domain, which catalyzes DNA
demethylation and methylation, respectively. The sgRNA and PAM sequence direct dCas9 to the target site.

(C) Schematic representation of a CRISPR activation (CRISPRa) system: dCas9 is fused to the transcriptional activator VP64. “TSS” denotes the

transcription start site.

(D) Schematic representation of a CRISPR interference (CRISPRI) system: dCas9 is fused to the transcriptional repressor SRDX. Figure created with

BioRender.

associated with cytoplasmic male sterility (CMS) in rice and rape-
seed (Kazama et al., 2019). Base editing has also been applied
using TALEs fused to nucleotide deaminases (TALEDs), enabling
the introduction of point mutations in mitochondrial and chloroplast
genomes. DddAtox-derived cytosine base editors (DdCBEs) are
highly effective TALEDs constructed by the fusion of TALEs with
the DddAtox cytidine deaminase domain (Li et al., 2021a).
DdCBE-mediated editing was first implemented in mitochondria
and has recently been adapted for chloroplasts (Zhang et al.,
2024a; Kim and Chen, 2024). This approach has been effective in
engineering herbicide resistance in lettuce and creating a stop
codon in the rice chloroplast gene psaA (Li et al., 2021a; Mok
et al.,, 2022).

Epigenome editing represents another avenue for crop improve-
ment. CRISPR-dCas9 can methylate or demethylate cytosines at
a target site, thereby modulating gene expression levels (Qi et al.,
2023). In plants, CRISPR-dCas9-mediated DNA methylation
has recently been developed using a variant of the bacterial
CG-specific DNA methyltransferase MQ1 (Figure 5B). MQ1 has
reduced activity but high specificity, enabling accurately
targeted de novo DNA methylation in Arabidopsis (Ghoshal
et al., 2021). Targeted methylation in the CG context induces
phenotypic changes in plants that can be maintained through

mitosis and meiosis without introducing genetic mutations.
Similarly, CRISPR-dCas9 fused with the catalytic domain of the
human demethylase TEN-ELEVEN TRANSLOCATION1 (TET1cd)
has been used for targeted DNA demethylation in Arabidopsis (Li
et al., 2020b). The dCas9-SunTag transcriptional activator sys-
tem has also been adapted for site-specific DNA methylation ed-
iting in plants. Fusion of TET1cd with the dCas9-SunTag system
allowed targeted demethylation and activated gene expression of
the well-characterized FWA epiallele in Arabidopsis (Figure 5B)
(Gallego-Bartolomé et al., 2018). This system has also been
successfully used to change DNA methylation and gene
expression, and to create epialleles that are heritable to the
next generation in rice (Tang et al., 2022). In another study, the
tobacco methyltransferase catalytic domain NtDRMcd was
used with the SunTag system to methylate the FWA promoter
and induce early flowering (Papikian et al., 2019). Epigenome
editing has also been used to increase bacterial blight
resistance in cassava (Veley et al., 2023). Given its potential,
further exploration of epigenome editing for crop breeding is
warranted.

Overall, genome engineering techniques such as TILLING and
CRISPR-Cas-based systems enable precise genetic modifica-
tions and unlock valuable genetic traits that might otherwise
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remain inaccessible. These tools expand genetic diversity and
provide breeders with new opportunities to develop resilient,
high-yield crops.

BOTTLENECKS IN THE DELIVERY OF
GENOME EDITING COMPONENTS INTO
PLANTS

Since the advent of CRISPR-Cas9 genome editing, efforts to
refine and eliminate bottlenecks in the process have been
made to enable global implementation of the technology in
support of food systems. A major bottleneck that limits the full
potential of genome editing in crop breeding is the delivery of
genome editing reagents, as Cas proteins are large and delivery
mechanisms must be species-specific (Atia et al., 2024). In
vegetatively propagated crops such as potato, targeted gene
mutations have been achieved through transient expression of
CRISPR-Cas9 ribonucleoproteins in protoplasts (Andersson
et al., 2017; Tuncel et al.,, 2019). Similarly, delivery of
preassembled CRISPR-Cas9 ribonucleoproteins into lettuce
protoplasts has produced transgene-free mutant plants
(Woo et al, 2015). However, the regeneration of plants
from cultured protoplasts remains very challenging for most
monocotyledons, particularly major cereal crops. Tissue
culture-free strategies such as RNA virus-mediated transforma-
tion, nanoparticles, and polyethylene glycol (PEG)-mediated
delivery have also been used; however, these face their own
challenges, including cell damage, cargo size limitations, and
low efficiency in plant cells (Figure 4) (Wang et al., 2022b;
Cardi et al., 2023; Hwarari et al., 2024).

One of the most widely used methods to transfer genetic material
into plants is Agrobacterium-mediated transformation, which in-
volves infection of the plant with an engineered Agrobacterium
tumefaciens strain. sgRNA and Cas can be expressed either tran-
siently or from a transgene integrated into the plant genome as
part of a T-DNA construct (Zhang et al., 2016). This method has
some limitations, including low transformation efficiency and
a restriction to plant species susceptible to A. tumefaciens
infection. To improve this method, T-DNA vectors are increas-
ingly designed to include developmental regulator genes (DRs)
that induce embryogenesis or organogenesis from somatic
cells in tissue culture and promote the growth of transformed
plants (Nasti and Voytas, 2021). DR expression is particularly
advantageous in plant species that are recalcitrant to
regeneration or have long regeneration times (Laforest and
Nadakuduti, 2022). DRs such as PGA37/MYB118 (Wang et al.,
2009), WUS2, BBM (Lowe et al., 2016), STM (Maher et al.,
2020), and WOX5 (Wang et al., 2022a) have demonstrated
regeneration-promoting effects in plant transformation. However,
constitutive DR expression can cause negative pleiotropic
effects and infertility, necessitating their removal from transgenic
plants and limiting their practical utility. As an alternative, the ex-
pression of a growth-regulating factor (GRF) and GRF-interacting
factor (GIF) as a GRF4-GIF chimera has been shown to increase
the speed and efficiency of plant regeneration (Debernardi et al.,
2020). Co-delivery of the GRF4-GIF chimera with CRISPR-Cas9
on the same T-DNA vector enhances regeneration efficiency in
both monocotyledonous and dicotyledonous species, resulting
in fertile edited plants (Debernardi et al., 2020). An important
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approach to overcome the plant regeneration bottleneck is to
integrate rapid genome editing directly into speed breeding
systems that use optimized light intensity, temperature, and
photoperiod control, combined with an early seed harvest to
reduce generation times (Watson et al., 2018; Hussain et al.,
2023). In approaches such as ExpressEDIT, Cas9-sgRNA con-
structs are directly introduced into plants, and rapid trait
selection is used to identify plants that lack Cas9 but carry
the desired trait and segregate them from plants that
retain Cas9 and can undergo further editing cycles (Hickey
et al., 2019).

GLOBAL POLICIES ON GENOME-EDITED
CROPS

The emergence of new genome engineering technologies
presents opportunities to develop crops with improved agricul-
tural values. Given the potential of genome engineering tools,
it is surprising that 166 of 195 United Nations-recognized
countries prohibit genetically modified organisms (GMOs). It is
often observed that neighboring countries have similar stands
on the use of genome-edited crops and GMOs, with countries in
the Americas and Asia having less stringent regulations than
Africa and Europe. Given the potential of genome editing to in-
crease yield gains, and the fact that about 1 in 11 people globally
suffer from hunger, the prohibition of genome editing in plants
needs further examination. Africa’s population is projected to
reach 2.5 billion by 2050, and food production in the region will
need to increase to prevent the exacerbation of pre-existing
food insecurity (United Nations Department of Economic and
Social Affairs, 2017). For many major crops grown in Africa,
realized yields fall well below potential yields. For example,
maize is a staple crop in sub-Saharan Africa, but the average grain
yield in Africais 2.1 tons/ha/year, much lower than the global aver-
age of 5.8 tons/ha/year (Woomer et al., 2024). This yield gap is also
underpinned by abiotic and biotic stresses. Although genome
editing has the potential to reduce the yield gaps of several
staple African crops, only four African countries have regulatory
policies that permit genome-edited crops. This is despite the
African Union’s 2023 strategic framework stating in 2023 that
one of their aims was to improve productivity and crop disease
resistance through the use of genome editing (Buchholzer and
Frommer, 2023). In 2020, Nigeria became the first African
country to implement guidelines that permit genome-edited
crops (Report of the House Committee on Environment and
Habitat, 2020), followed by Kenya and Malawi in 2022, and
Ghana in 2023 (Ledford, 2024). Several other African countries
are currently considering regulatory policies for genome editing,
including Burkina Faso, South Africa, Ethiopia, Sudan, Eswatini,
and Zimbabwe (Tripathi et al., 2022).

The international regulatory environment for genetic technologies
is evolving rapidly, and an increasing number of countries are re-
vising their policies to exclude genome-edited crops from exist-
ing GMO regulations. Argentina became the first country to
make such a change in 2015, establishing what is now known
as the “Argentina model.” This model exempts genome-edited
plants that contain no permanent insertion of foreign DNA, with
regulatory decisions made on a case-by-case basis (Whelan
and Lema, 2015). Several other countries subsequently passed
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similar legislation, including Chile (2017), Brazil (2018), Colombia
(2018), and the United States (2018) (Buchholzer and Frommer,
2023; Zarate et al., 2023). The United States, like Argentina,
regulates GMOs based on the genetic composition of a plant
rather than the method used to engineer it, whereas the EU’s
Court of Justice ruled in 2018 that organisms developed using
new genomic techniques (NGTSs), including genome-edited
crops, remain subject to stringent GMO regulations. However,
the EU has since drafted new regulations to revise the risk
assessment process for NGT-derived plants (Watson and
Hayta, 2024). Countries such as Japan, Canada, the United
States, and Argentina have adopted proportionate regulatory
systems for precision breeding, in which targeted genetic
changes are approved if they could have arisen naturally or
through conventional breeding. In China, genome-edited crops
that do not contain foreign DNA still require risk assessment
before regulatory approval, although the process is less
stringent than that used for GMOs (Zhu, 2022). The UK, after it
left the EU in 2020, reconsidered its stance on genome-edited
crops; in 2022, the UK government introduced a statutory
instrument to amend the existing GMO regulations. In addition,
under the Genetic Technology (Precision Breeding) Act 2023,
plants and animals developed through precision breeding
technologies were excluded from GMO regulatory requirements
and became subject to more proportionate and less restrictive
regulations. However, this legislation only applies in England,
as the devolved governments of the UK have all rejected it to
date. In the near future, it is likely that more countries will re-
examine their regulatory systems for genome-edited crops as
public understanding of genome editing technologies improves
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Figure 6. Integration of genome editing and
advanced technologies to increase crop
productivity.

Overview of how advanced technologies can be
translated from research to real-world agricultural
application. Phenomics and genomics enable the
identification of target genes, informing genome
editing strategies that develop resilient, high-yield
crop varieties. In the field, precision farming ap-
proaches involving robotics, Al, loT networks,
and satellite imagery result in optimized resource
use, reduced yield gaps, and expanded pro-
ductivity in less arable regions. Figure created
with BioRender.
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and the effects of climate change on crop
yield become harder to mitigate.

COMBINING GENOMICS
AND PHENOMICS TO
INFORM GENOME
ENGINEERING
STRATEGIES

With the availability of affordable and effi-
cient genome editing tools and the imple-
mentation of less stringent regulations on
genome-edited crops, attention is shifting
toward the identification of target genes for
editing. For instance, yield is a highly complex polygenic trait
that is difficult to noticeably improve by targeting a single gene
(Cao et al., 2020). Moreover, plant breeders constantly aim to
improve both yield and stress resistance, traits that are often
antagonistic. A 20-year project by Corteva Agriscience assessed
the effects of 1671 genes on yield, nitrogen use efficiency, and
drought tolerance in maize and identified 22 genes with relevant
physiological functions (Simmons et al., 2021). Genetic
redundancy in polyploid species such as wheat poses another
challenge, as it can obscure novel alleles associated with
improved agronomic traits. In view of these challenges, a
holistic approach that combines genetics, metabolomics,
genomics, phenomics, and environmental data is required to
identify genes and regulatory pathways underlying complex
traits and to predict crop performance under variable climatic
conditions (Figure 6). This approach successfully provides
extensive knowledge to support the design of precise crop
improvement strategies. This is supported by a recent multi-
omics study that sequenced the genomes of 1035 wheat
varieties, including both Watkins landraces and modern cultivars,
and collected 717 000 phenotypic observations across 137 traits;
the study identified 8253 genetic effects, including 15 novel loci
conferring resistance to yellow rust (Cheng et al., 2024).

Collaborative
UGVs

loT sensors

High-quality reference genomes are essential resources for
omics approaches and studies of gene function (Adamski et al.,
2020; Yao et al., 2025). The genomes of rice, maize, soybeans,
and wheat have been sequenced, with their annotations
released in 2005, 2009, 2010, and 2018, respectively (Figure 3)
(International Rice Genome Sequencing Project and Sasaki,
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2005; Schmutz et al., 2010; Schnable et al., 2009; International
Wheat Genome Sequencing Consortium et al., 2018). Despite
their utility for scientists and breeders, these genomes contain
gaps composed of unknown sequences, along with sequences
that cannot be assigned to specific chromosomes because of
insufficient sequence continuity. Long-read DNA sequencing is
a powerful gap-filling technique for genome assemblies (Liu
et al.,, 2020a; Aury et al.,, 2022; Chen et al., 2023). As the
technology improves, it is being used to characterize natural
genetic and structural variation across large accession sets to
generate extensive genomic data that support the identification
of agriculturally relevant loci and guide future breeding
programs (Li et al., 2020a; Shang et al., 2022; Zhang et al., 2022).

Plant phenomics is not a new concept; Furbank (2009)
described plant phenomics approaches as a means to
provide the quantitative phenotyping required to determine the
genetic basis of agricultural traits and to screen germplasm for
genetic variation. Many countries have invested in plant
phenomics platforms for the analysis of canopy and root traits
under controlled and field conditions. Platforms may be
ground-based or aerial (using manned or unmanned aerial ve-
hicles) and can be manually operated, vehicle-mounted, or ro-
botic. Several institutes and universities have invested heavily in
the development of phenotyping platforms designed for either
controlled environments (Sadok et al., 2007) or field conditions
(Virlet et al., 2016). In field trials, phenotypic data are collected
by drones equipped with RGB cameras to measure crop
growth rates and/or thermal cameras to create field maps
and detect biotic and abiotic stresses such as pests, diseases,
and drought. Many institutions have also developed data
integration and storage systems for crop phenotypic data. Two
notable systems are: (1) the Internet of Things (loT)-based
CropSight platform, an open-source information management
system for automated data acquisition by sensors and phenotyp-
ing platforms; and (2) the Phenotyping Hybrid Information Sys-
tem, developed by the French National Institute of Agricultural
Sciences ( INRA), which integrates and manages phenotypic
data from multiple experiments and platforms using an
ontology-driven architecture. These platforms are an extensive
data resource that supports gene discovery based on traits.

A vast amount of data that needs to be processed has been gen-
erated. Robotics and autonomous systems have emerged as
next-generation technologies with considerable potential
to transform agricultural practices (Pearson et al., 2022). The
phenomics approach holds promise for translating gene
discovery to farmgate (Furbank, 2009), but the “big data”
challenge of how to process the massive datasets generated
by sensors on phenotyping platforms remains a major
bottleneck. Al has emerged as an essential tool to address this
problem, with the potential to sustain and boost agricultural
output. Al is being adopted across almost all spheres of life. It
can collect, manage, and process large numbers of datasets
from multiple omics experiments and climatic data to precisely
link complex phenotypes with genotypes and to predict gene
function and crop performance (Figure 6) (Khan et al., 2022).
Crop traits such as plant height and leaf area can be measured
with high accuracy using Al-driven sensors and imaging
systems, enabling rapid screening of breeding lines (Benos
et al.,, 2021). Machine learning and deep learning approaches
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have shown great potential in extracting image-based pheno-
typic data (Khan et al., 2022; Poorter et al., 2023). Other
promising Al models include DeepBind and DeepSEA, which
analyze genetic features; DeepBSA, which maps genetic regions
linked to phenotypic variation (i.e., quantitative trait loci); and Al-
phaFold, which uses deep learning to predict protein structures
(Alipanahi et al., 2015; Zhou and Troyanskaya, 2015; Jumper
et al.,, 2021; Li et al.,, 2022b). These tools enable myriad
possibilities that can advance omics research by accelerating
the identification of genes relevant to crop breeding.

USE OF ROBOTICS AND Al TO MAXIMIZE
THE AGRICULTURAL OUTPUT OF
GENOME-EDITED CROPS

Maximizing the agronomic benefits of genome-edited crops
requires precision farming (also referred to as smart farming)
approaches that leverage robotics, Al, and the IoT to improve sus-
tainability and maximize yields (Figure 6) (Sharma et al., 2023).
These systems provide farmers with real-time information on
crop health and soil conditions, supporting field-specific
evaluations and informed decision-making on irrigation, pesticide
use, and fertilization to maximize agricultural output (Figure 6).
Uncertain weather conditions make it very hard to predict crop
performance. loT networks connect sensors, drones, and data-
processing systems to monitor the climate, soil conditions, and
crop health. loT sensors placed in fields collect data on soil mois-
ture, acidity, and nutrient content; combined with aerial imagery
and environmental data, these inputs allow Al models to predict
stress factors and optimize irrigation, fertilization, and pesticide
use (Sharma et al., 2023). Al-driven thermal imaging analysis can
rapidly detect nutrient deficiencies, allowing timely corrective ac-
tion before yield loss occurs.

Al-powered decision support systems and mobile applications
are further transforming farm management (Figure 6). These
tools provide real-time updates on pest outbreaks, disease
progression, and weather patterns, allowing farmers to respond
proactively. Mobile phone based applications have proven espe-
cially useful in bridging knowledge gaps, particularly in regions
with limited access to other information and communication
technologies, such as computers (Ayim et al., 2022). Recent
advances include deep learning models for the early detection
of diseases, such as mango leaf disease, and integrated
platforms that combine real-time crop diagnostics with e-com-
merce services, weather information and government market
updates (Aslam et al., 2024; Puranik et al., 2024). These
technologies empower smallholder farmers and help reduce
global yield gaps by expanding access to important precision
farming insights.

A recent development in agricultural monitoring is the NASA-
ISRO Synthetic Aperture Radar (NISAR) satellite, scheduled for
launch in 2025. NISAR’s dual-frequency radar can penetrate
clouds and crop canopies, providing high-resolution, uninterrup-
ted global crop monitoring twice every 12 days (ICO SSR, 2025).
This capability will allow farmers and policymakers to monitor
crop growth, soil moisture, and biomass levels in real time; opti-
mize planting schedules, irrigation, and resource allocation; and
enhance global crop forecasting and food security planning.
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Public access to these data and integration with Al-driven deci-
sion support systems and mobile applications could further
transform farm management, particularly in regions with limited
access to monitoring technologies such as sensors and drones
(Jet Propulsion Laboratory, 2025).

Precision and smart farming also integrate Al with unmanned
ground vehicles (UGVs) and robotic systems for automated
planting, monitoring, and harvesting (Figure 6). As climate change
drives agriculture into new environments and genome-edited
crops resilient to more extreme conditions are developed,
robotics will be crucial in enabling the cultivation and
management of these crops in locations other than the traditional
flat fields (Botta et al., 2022). Platforms such as AgriQ address
the challenges posed by uneven terrain, confined areas, and poor
global positioning system (GPS) reception (Botta and Cavallone,
2021). Collaborative UGVs and drones equipped with
multispectral sensors can map fields, monitor crop growth, and
optimize resource allocation. Autonomous weeding robots from
companies such as ecoRobotix use Al to identify weeds and
selectively apply herbicides with 6 x 6 cm precision, reducing
herbicide usage (Bykov, 2023). Similarly, robotic harvesters
increase efficiency for labor-intensive crops like strawberries
(Chang and Huang, 2024) and tomatoes (Kim et al., 2022),
minimizing post-harvest losses. Using these robotic systems with
genome-edited crops can further enhance productivity, ensuring
that agricultural practices keep up with advances in plant science
and produce crops for a growing population in the context of
climate change. Adoption of precision and smart farming practices
along with genome editing technology could alleviate yield
stagnation, enhance product quality, and reduce environmental
footprint, delivering significant social, economic, and environmen-
tal benefits.

CONCLUDING REMARKS AND
PERSPECTIVES

Genome editing technologies are a powerful tool to introduce
new traits into crops and improve agricultural productivity. Their
applications are rapidly expanding, from editing of single-bases
edits to long nucleotide sequence insertions, and their scope
continues to grow as new Cas orthologs with distinct PAM specif-
icities are developed. Genome editing targets are no longer
limited to the nuclear genome; mitochondrial and chloroplast ge-
nome editing enable access to previously inaccessible photosyn-
thetic and respiratory genes. Emerging epigenomic editing
techniques allow trait improvements without altering the
genome and enable control of transcriptional regulation to induce
nuanced changes in gene expression levels. This less permanent
editing approach may face fewer regulatory constraints and
holds potential for broader implementation.

To maximize the impact on crop production, genome editing
should be integrated with complementary innovations such
as speed breeding, phenomics, Al, robotics, and satellite
technologies (Figure 6). Although regulatory restrictions on
the commercialization of genome-edited crops remain a
challenge, a growing number of countries are exempting such
crops from these regulations, facilitating broader agricultural
adoption. This relaxation of regulations, combined with new
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technological advances, could support the development of
crop varieties suited to address the challenges caused by
climate change. Meaningful progress will require not only
technological innovation but also a cohesive pipeline that
involves collaboration among biotechnologists, agronomists,
engineers, plant breeders, farmers, agribusinesses, and
policymakers. Increased communication across these sectors
will be essential to translating advances in genome editing and
Al-driven technologies into practical agricultural solutions that
address global yield stagnation, food security, and climate
resilience.
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