

1 **North Atlantic Oscillation Modulates Long-Term ANPP Dynamics via Precipitation or**
2 **Temperature, Depending on Soil Nutrient Levels**

3 Irisarri, JGN^{1,3*}; Texeira, M², Harris, P¹, Gundel, PE⁴, Collins, AL¹

4 1: Net Zero & Resilient Farming directorate, Rothamsted Research, North Wyke, UK.

5 2: IFEVA, CONICET & Departamento de Métodos Cuantitativos y Sistemas de Información,

6 Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina;

7 3: Department of Ecosystem Science and Management, University of Wyoming, Laramie, USA;

8 4: Instituto de Biología Funcional y Biotecnología (BIOLAB)-INBIOTEC-CONICET-CICBA,

9 Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires

10 (UNICEN), Buenos Aires, Argentina

11

12 *: Corresponding Author

13 **Key words:** Structural equation modelling, Long-term experiment, Global warming, Grassland, NAO

14 **Abstract**

15 Precipitation and temperature are major controls of the inter-annual dynamics of Aboveground Net
16 Primary Production (ANPP). However, the effect of humans, through fertilization, acts on ANPP in
17 combination with environmental variations. This raises two questions that drive our research: (1)
18 How do seasonal variations of global atmospheric patterns, such as the North Atlantic Oscillation
19 (NAO), affect precipitation and temperature, and ultimately influence ANPP? (2) Does long-term
20 fertilization modify the potential pathway from the NAO, through precipitation and temperature, to
21 ANPP? We addressed these questions using data from plots with either 'high' or 'low' nutrient
22 addition from the world longest ecological experiment (period used for this analysis: 1950 to 2018),
23 'Park Grass', at Rothamsted Research, England, UK. We evaluated the relationships between ANPP
24 and interannual climate variations across both types of plots using a structural equation model, with
25 the aim to understand how monthly variations in the NAO affected precipitation and temperature, and
26 how these, in turn, affected ANPP. We observed a signal of NAO on ANPP. However, the signal
27 differed between 'low' and 'high' nutrient addition plots. Under the 'low' nutrient addition level, the
28 NAO signal from all months exerted some influence on ANPP (R^2 : 0.38, P-value: 0.001), and all
29 pathways were associated with precipitation. Under 'high' nutrients addition, the NAO signal exerted
30 a small influence on ANPP (R^2 : 0.17, P-value = 0.001) through April precipitation and May
31 temperatures. These results shed light on the link between global atmospheric patterns and local
32 ecosystem functioning. Our work also confirmed a shift from a precipitation-driven response to one
33 mediated by temperature when shifting from 'low' to 'high' nutrient conditions. These contrasting

34 patterns suggest there is no simple way to explain the mechanisms by which global atmospheric
35 patterns influence ecosystem functioning.

36 **Introduction**

37 Aboveground Net Primary Productivity (ANPP) is an integrative variable of ecosystem functioning
38 that, in turn, determines many ecosystem services (Costanza et al., 1997; McNaughton et al., 1989). In
39 temperate grasslands, both precipitation and temperature exert strong controls on ANPP (Epstein et
40 al., 1997; Sala et al., 2012); factors that are in sync with general atmospheric oscillations, such as the
41 North Atlantic Oscillation (NAO) (Chen et al., 2017; Hurrell and Van Loon, 1997; Trigo et al., 2002). In
42 addition to such environmental effects, human interventions may either increase or reduce
43 ecosystem ANPP (Burrell et al., 2020). For example, the addition of nutrients, “the eutrophication” of
44 a grassland community, can remove ANPP limitations across broad moisture gradients (Hautier et
45 al., 2020; LeBauer and Treseder, 2008; Yahdjian et al., 2011). However, “the eutrophication” can also
46 destabilize grassland productivity (Hautier et al., 2020) potentially shifting the community response
47 to be more strongly influenced by environmental factors. To this end, there is limited knowledge on
48 how the NAO might impact ANPP interannual variations, particularly in temperate grasslands of
49 northern Europe. Additionally, it is unknown if fertilization can blur or shift the effect of
50 biophysical constraints, and in doing so, affects ANPP’s stability, taken as the inverse of the
51 community’s interannual ANPP variability (ANPP stability = 1 / CV_{interannual}; Tilman, 1999). In this
52 study, we explored these interactions to shed light on these current unknowns.

53 Interannual variation in regional climate is linked to changes in the atmosphere-ocean
54 system at the global scale (Chapin et al., 2011). A well-known global pattern associated with such
55 changes is the North Atlantic Oscillation (NAO), which is related to changes in the sea level
56 pressure between the ‘Subtropical High’ (Azores) and the ‘Subpolar Low’ (Icelandic). Strong
57 positive phases of the NAO tend to be associated with above-average temperatures and precipitation
58 in northern Europe, while below-average temperatures occur Greenland (Hurrell, 1995; Scaife et al.,
59 2014). Conversely, strong negative phases of the NAO result in opposite temperature and
60 precipitation patterns for the said geographies. These phases are characterized through indices, one
61 of which is provided monthly by the National Oceanic Atmospheric Administration (NOAA) dating
62 back to 1950 (<https://www.ncei.noaa.gov/access/monitoring/nao/>). The NAO affects regional
63 environmental controls (e.g., temperature and precipitation) on ANPP. However, the relationship
64 between NAO and precipitation and temperature, and between those and ANPP has only been
65 partially explored across different terrestrial ecosystems in Europe (Olafsson and Rousta, 2021;
66 Pettorelli et al., 2005; Vicente-Serrano and Heredia-Laclaustra, 2010). In all cases, the remotely sensed
67 (RS) proxy of ANPP was used via a spectral index, the Normalised Difference Vegetation Index

68 (NDVI). However, regardless of satellite mission, the use of NDVI (or any RS index) is limited, as
69 its time series is much shorter than that of the 75-year NAO indices provided by NOAA (Olafsson
70 and Rousta, 2021; Pettorelli et al., 2005; Vicente-Serrano and Heredia-Lastra, 2010). Furthermore, for
71 grasslands in general, and particularly those located in northern Europe, a comprehensive
72 understanding of how seasonal variations in the NAO influence precipitation and temperature and,
73 ultimately, ecosystem ANPP, remains an important evidence gap.

74 Annual temporal associations between ANPP and precipitation and temperature have been
75 described across different grassland systems (Epstein et al., 1997; Lauenroth and Sala, 1992; Paruelo et
76 al., 1999; Silvertown et al., 1994). However, there is a need to understand how finer, seasonal
77 variations in precipitation or temperature affect total ANPP. This is evident in Mediterranean
78 systems, where precipitation seasonality is out of phase from temperature and seasonal productivity
79 dynamics (Bandieri et al., 2020; Fabricante et al., 2009). Moreover, in systems with stronger
80 synchronicity between ANPP and precipitation, spring precipitation typically accounts for a larger
81 proportion of annual ANPP than total annual precipitation (Lauenroth and Sala, 1992). However, in
82 grasslands where monthly precipitation is relatively uniform throughout the year, such as those
83 located in temperate regions of Europe, it remains unclear which months have the greatest influence
84 on annual ANPP. Concurrent with changes in precipitation, temperature is increasing, following a
85 clear global trend (Pfleiderer et al., 2019). Increases in temperature may extend the length of the
86 growing season or stimulate leaf area development, thereby enhancing ANPP (Chapin et al., 2011).
87 Contrary to this mechanism, higher temperatures may increase atmospheric water demand, leading
88 to reduced ANPP. Consequently, the dominant mechanisms controlling inter-annual ANPP
89 variations remain uncertain.

90 Soil nutrient status can affect biophysical constraints by reducing limitations associated with
91 nutrient cycling, which are strongly influenced by water availability and temperature. Organic
92 matter decomposition and nutrient mineralization are constrained by both water availability and low
93 temperatures (Schimel & Parton, 1986, Aerts, 1997). Furthermore, nitrogen limitation is widespread in
94 grasslands, and its significance increases with annual precipitation, from arid to sub-humid regions
95 (Yahdjian et al., 2011). This limitation is reflected in interannual variations in ANPP, where years
96 with low precipitation or low temperatures lead to reduced nutrient release into the soil solution,
97 whereas years with above-average precipitation show the opposite effect (Coleman et al., 2017; Parton
98 et al., 1994). Therefore, the long-term practice of adding nutrients annually should have two main
99 consequences. First, it should eliminate the precipitation-associated climatic signal in interannual
100 ANPP fluctuations. Second, its effect should be relatively greater in years with below-average
101 precipitation if water limitation is the main constraint on the nitrogen cycle. If this is the case,

102 stability should be higher under high nutrient additions compared to systems with low or no
103 additions. This pattern has been observed, for example, in primary production in eutrophic lakes
104 (Kröger et al., 2023).

105 Given the long-term addition of nutrients across grasslands in northern Europe (Hejman et
106 al., 2013; Kidd et al., 2017), the relationship between NAO phases, local climate and ANPP requires
107 further investigation. Since both temperature and precipitation tend to be above average during
108 positive winter phases, a positive association with ANPP can be expected. However, which months
109 best capture ANPP variation remains unclear. Moreover, the extent to which long-term fertilization
110 blurs the climatic signal also warrants further investigation. Addressing the paucity of answers
111 partly depends on the availability of long-term ANPP data beyond what is possible through RS
112 indices. At ‘Park Grass’ in southeast England, the longest running fertilization experiment on the
113 planet, use of its data for a 90-year period (1900–1992), has previously indicated a positive
114 association between ANPP and total spring precipitation (Silvertown et al., 1994). However, it is
115 unknown whether specific months provide similar explanatory power as the sum of spring
116 precipitation. Additionally, given current and ongoing changes in climate variability (e.g., the
117 increase of extreme weather events), incorporating more recent years (up to 2018) to our study
118 dataset (i.e., 26 years beyond that used in Silvertown et al., 1994), could provide new insights into
119 these critical associations.

120 In summary, our aim was to statistically analyse this long-term dataset to describe the main
121 pathways through which climate variables influence ANPP and to assess how long-term fertilization
122 impacts these pathways. To achieve this, we set two specific objectives: (1) to describe how
123 hierarchically structured factors, such as global NAO and local precipitation and temperature,
124 influence the interannual variation in ANPP, and; (2) to investigate how fertilization affects the
125 biophysical signal in interannual ANPP variations.

126

127 **Methods**

128 ***Data collation***

129 Both meteorological and biomass harvest time series data was obtained through the
130 Rothamsted e-RA web portal (<http://www.era.rothamsted.ac.uk/index.php data>). All data were
131 collected at Rothamsted, Harpenden, in southeast England 51.82 N 0.37 W, 128 m asl (i.e.,
132 ‘Rothamsted Meteorological Station’ and the experimental site, respectively). The experimental site
133 was established in 1856, when John B. Lawes and Joseph H. Gilbert designed a 2.8 ha nutrient
134 addition experiment at Rothamsted known as ‘Park Grass’ (Lawes and Gilbert, 1859). It was
135 established to answer ways of improving hay yield via the application of inorganic fertilisers or

136 organic manures (Lawes and Gilbert, 1863), and is the longest running ecological experiment in
137 existence. It now provides a valuable resource to answer much broader questions than initially
138 envisaged (Silvertown et al., 2006).

139 Specifically, for this study, monthly precipitation data were collected for daily records from
140 March 1853 (prior to Park Grass's installation) to July 2018 (Perryman et al., 2018), coupled with
141 temperature and biomass data (1878 to 2018) downloaded from e-RA (accessed 24th November
142 2021). Daily minimum (min) and maximum (max) meteorological values were downloaded where
143 we found the average min and max monthly values. Monthly NOAA data from 1950 to 2018 was
144 downloaded from NOAA (<https://www.ncei.noaa.gov/access/monitoring/nao/>).

145 To calculate ANPP, we only included data from the first harvest which accounted, on average,
146 for 74% of the total produced biomass on an annual basis. The logic for this decision stems from the
147 fact that the first harvest always took place during the month of June. The second harvest was
148 disseminated across all the remaining months of the year without common criteria across plots or
149 years, making it impossible to develop a coherent linear mixed model (LLM) to account for the
150 different months (see Statistical Analysis section below).

151 The Park Grass experiment consists of several plots, where for this study, plots either under
152 "high" or "low" levels of nutrient addition were chosen. Plot selection demanded detailed knowledge
153 of the experimental setup and how it has changed over its lifetime. As an overview, seventeen plots
154 with different levels, types and sources of nutrients were established in 1858, three more plots were
155 added in 1865, and some plots changed their treatment configuration towards the end of the 19th
156 century or early in the 20th (Table 1). These plots were further subdivided over time to correct pH at
157 different levels where pH corrections had the objective of keeping it at different levels: plots 'a': pH
158 7, plots 'b': pH 6, plots 'c': pH 5, and plots 'd': no correction (e.g., see Table 1 for plots code names
159 '12b', '12c', and '12d'). These subdivisions created 101 subplots. To analyse the impact of the
160 biophysical factors on ANPP, considering contrasting nutrient addition levels, we selected sixteen
161 subplots, eight at the top and the remaining at the lowest mean ANPP levels (Table 1). This criterion
162 included plots under the highest or second highest level of N addition for the level 'high', and it also
163 included the addition of all other nutrients considered within the experiment (P, K, Na and Mg).
164 Conversely, it included control subplots, with no nutrient addition apart from background
165 atmospheric deposition (Blake and Goulding, 2002), and/or the addition of lime for pH corrections plus
166 a subplot under the first level of N addition (Table 1).

167

168

169

Level used for this analysis	Code name of the plot	Current treatment establishment	Treatment description	Mean ± (SDEV) ANPP (kg / ha/yr) Period: 1950-2018
High	14/2d	1858	Unlimed: N*2 P K Na Mg	5060±(801)
	14/2c	1858	Limed to pH 5 since 1965: N*2 P K Na Mg	5160±(824)
	14/2b	1858	Limed to pH 6 since 1965: N*2 P K Na Mg	5210±(794)
	11/2c	1882	Limed to pH 5 since 1965: N3 P K Na Mg	5370±(1520)
	11/1b	1882	Limed to pH 6 since 1965: N3 P K Na Mg	5720±(1040)
	11/1a	1882	Limed to pH 7 since 1965: N3 P K Na Mg	5930±(1070)
	11/2b	1882	Limed to pH 6 since 1965: N3 P K Na Mg	6020±(1210)
	11/2a	1882	Limed to pH 7 since 1965: N3 P K Na Mg	6090±(1000)
Low	1d	1903	Unlimed N1	854±(503)
	3c	1856	Unlimed: Nil	1280±(491)
	3d	1856	Unlimed: Nil	1410±(566)
	2/2d	1863	Unlimed: Nil	1490±(587)
	12d	1856	Unlimed: Nil	1560±(597)
	12c	1856	Limed to pH 5 since 1965: Nil	1570±(625)
	12b	1856	Limed to pH 6 since 1965: Nil	1880±(638)
	3a	1903	Limed to pH 7 since 1965: Nil	2010±(623)

170

171 Table 1: Nil: no fertilizer or manure. N1: 48 kg N as ammonium sulphate. N*2: 96 kg N as sodium
 172 nitrate and supplying 157 kg Na. N3: 144 kg N as ammonium sulphate. P: 35 kg P as triple
 173 superphosphate until 2015, when it changed to a rate of 17 kgP/ha.yr, K: 225 kg K as potassium
 174 sulphate, Na: 15 kg Na as sodium sulphates, and Mg: 10 kg Mg as magnesium sulphate. The pH level
 175 correction was carried out through different rates across the years.

176

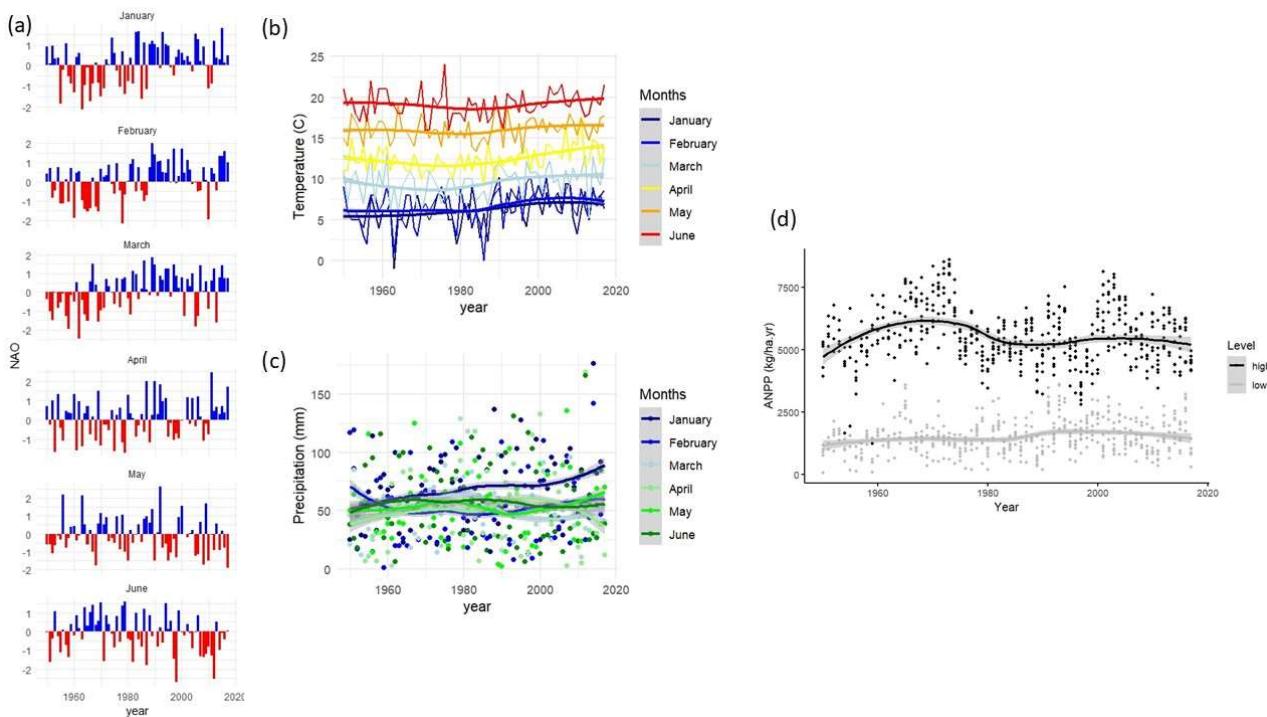
177 **Statistical analysis**

178 To achieve the first study objective, we explicitly considered the hierarchy among NAO,
 179 precipitation, temperature and annual ANPP, via piecewise structural equation modelling (pSEM)
 180 (Lefcheck, 2016). The estimated parameters from the proposed SEMs, (Fig. 1) allowed us to
 181 understand how monthly global climate oscillations, mediated by local precipitation, or temperature,
 182 could influence interannual variations of ANPP. The pSEM was fitted using functions of the
 183 “piecewiseSEM” R package (Lefcheck, 2016) using R version 3.4.4 (R Core Team, 2018). Within the
 184 pSEM, we considered both the hierarchical effect of NAO on both precipitation and temperature, and
 185 its seasonal component. Specifically, we addressed the potential effect of the NAO signal on
 186 precipitation and temperature from January to June, where the third and fourth week of June is the
 187 targeted moment of harvest (see Fig.1). Furthermore, we considered the different plots within each
 188 fertilization level. To do so, and within the pSEM we fitted a linear mixed model where the fixed
 189 factors were monthly precipitation and temperature, while the plots were treated as a random factor.

190 For each fertilization level (high or low), we used a stepwise approach to identify the most
 191 parsimonious model structure. First, we constructed an initial model that incorporated all
 192 hypothesized pathways linking the NAO to ANPP, mediated by precipitation and temperature (Figure
 193 1). Next, we applied a stepwise model selection procedure by systematically removing non-
 194 significant paths based on individual component model statistics and overall model fit, assessed using
 195 the Chi² statistic (Grace, 2006). We continued this iterative refinement until the Chi² test was non-
 196 significant, indicating an adequate model fit. Finally, we evaluated the fit of the selected model by
 197 comparing observed and predicted values from the fitted pSEM model.

Figure 1. Conceptual framework of the structural equation model (SEM) used to address the effect of climate, at the global scale, mediated through the North Atlantic Oscillation (NAO), and at the regional scale through precipitation (Ppt) and temperature (Tmp) on aboveground net primary production (ANPP) for plots under high or low nutrient additions from the long-term experiment Park Grass.

199
 200 To achieve the second study objective, for describing how fertilization affects the biophysical
 201 signal on interannual variations of ANPP, we took a four-step approach. First, we estimated the
 202 average ANPP value per level of fertilization for each year under study (1950-2018). Second, we
 203 estimated the association between ANPP and the accumulated precipitation, from January to June,
 204 for each treatment ('low' or 'high' nutrient addition). We tested this association through a linear
 205 regression (using the lm function in base R). Third, we quantified the fertilization relative effect
 206 (FRE) (defined as: $FRE = ANPP_{fertilized} - ANPP_{control} / ANPP_{control}$) and investigated the association
 207 between FRE and the accumulated precipitation. Here, a negative association between FRE and the


208 accumulated precipitation, would suggest that fertilization had a major effect under lower
209 precipitation. Fourth, we described the change in stability over time. We quantified stability as $1/CV$
210 where CV represented the inter-annual coefficient of variation of ANPP for each plot within a five-
211 year window. Furthermore, we evaluated the differences in stability between levels through a Mann-
212 Whitney non-parametric test.

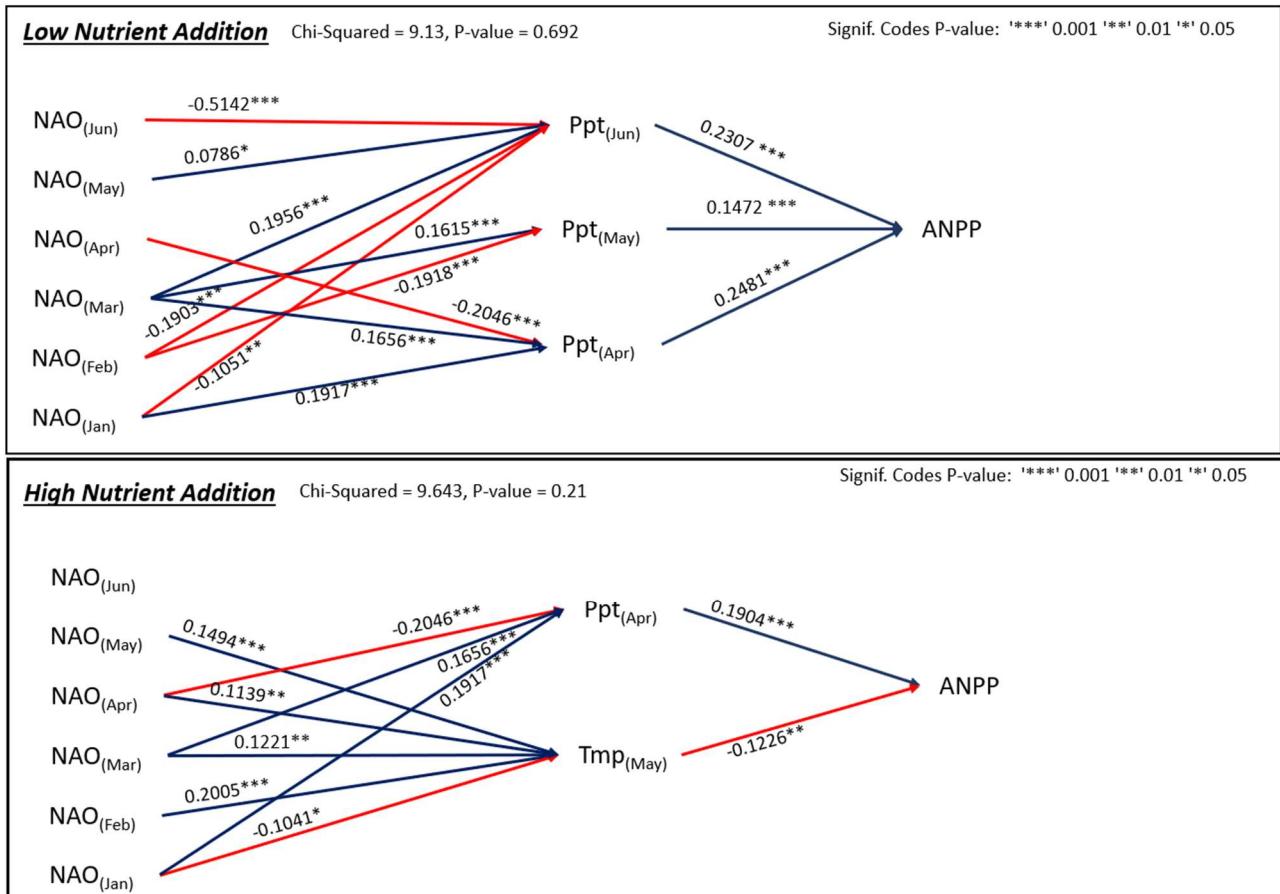
213 **Results**

214 ***Objective 1: Effect of climate on ANPP and the influence of long-term fertilization***

215

216 For the study period (1950-2018), an analysis of January, February, and March interannual dynamics
217 revealed a shift in the NAO signal from an initial sequence characterized by negative values to a final
218 sequence dominated by positive ones (Fig. 2a). Conversely, in the spring-to-summer transition from
219 May to June, the observed pattern exhibited the opposite trend (that is, an initial sequence dominated
220 by positive values to a final sequence characterized by negative ones) (Fig. 2a). For the
221 meteorological data, monthly temperature showed similar values in January and February, increasing
222 to a highest value in June. A clear and strong rise occurred between April and May, followed by
223 another change between May and June. Across all years and consistently across all months,
224 temperature decreased from 1950 to 1980, then increased, stabilizing around 2010 (Fig. 2b).
225 Precipitation showed similar values across different months. Except for January, monthly
226 precipitation did not exhibit any clear trends across the study years. In January, however, a positive
227 trend in precipitation was observed, causing its monthly value to increase from 50 to nearly 80 mm,
228 setting it apart from the other months (Fig. 2c). Finally, ANPP was, on average, six times higher
229 under 'high' nutrient level compared to "low" nutrient level. Under the 'high' nutrient level, ANPP
230 increased from the 1950s to the 1970s, followed by a decrease with minimum values in the 1990s.
231 Subsequently, a second increase occurred, stabilizing by the 2010s. Conversely, under the
232 'low' nutrient level, ANPP gradually increased until the mid-1980s, remained stable, and then
233 increased again in the 1990s (Fig. 2d).

234


Figure 2. (a) North Atlantic Oscillation (NAO) values, (b) monthly mean temperature, (c) monthly precipitation, and (d) Aboveground Net Primary Production (ANPP) for plots with 'high' and 'low' nutrient additions in the 'Park Grass' long-term experiment over a 68-year period (1950-2018). Trend lines in b, c and d were fitted using local regressions (loess) and are shown with standard errors. In (d), each dot represents the annual value of the 16 selected plots.

235

236 The pSEM indicated that the NAO signal exhibited partially contrasting pathways of influence
 237 on ANPP depending on nutrient addition level (Fig. 3). Under the 'low' level, the NAO signal from
 238 all months exerted some influence on ANPP (predicted vs observed fitted parameters, R^2 : 0.38, P-
 239 value: 0.001). Here, all pathways were associated with precipitation (Fig. 3). Specifically, April, May
 240 and June precipitation had a positive effect on ANPP. However, the NAO signal on precipitation was
 241 not the same across months. For example, April precipitation was associated with the NAO signal of
 242 January, March and April. For, January and March, the association was positive, but negative with
 243 the April NAO signal. In other words, as the January and March NOA signals reach positive values,
 244 April precipitation increased. On the contrary, when the NAO signal of April reached negative values,
 245 April precipitation increased. May precipitation was associated with the February and March NAO
 246 signals. In this case the association was negative for February but positive for March. Finally, June
 247 precipitation was associated with the NAO signal of January, February, March, May and June. Here,
 248 all associations were negative except for March.

249 Under 'high' nutrients addition, the NAO signal exerted a small influence on ANPP (predicted
 250 vs observed fitted parameters, R^2 : 0.17, P-value = 0.001) through April precipitation and, different
 251 from the low nutrients' situation through May temperature (Figure 3). Here, ANPP increased as April

252 precipitation increased. ANPP decreased as May temperature increased. The association pathway
 253 between April precipitation and the NAO signal was the same as the one described for the low
 254 nutrients condition. May temperature was associated with the NAO signal of all months from January
 255 to May. Here, the association was negative between May temperature and the January NAO signal.
 256 But, for the rest of the months, the association was positive.

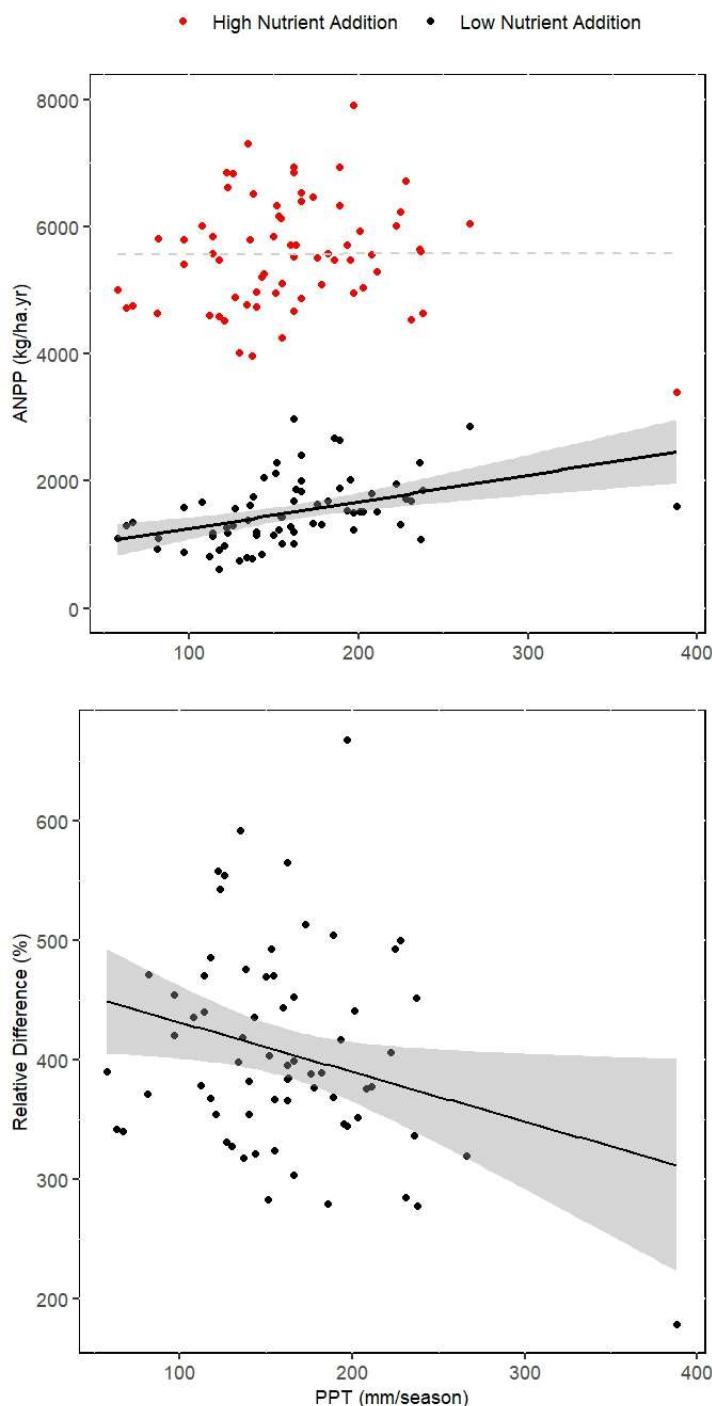

257

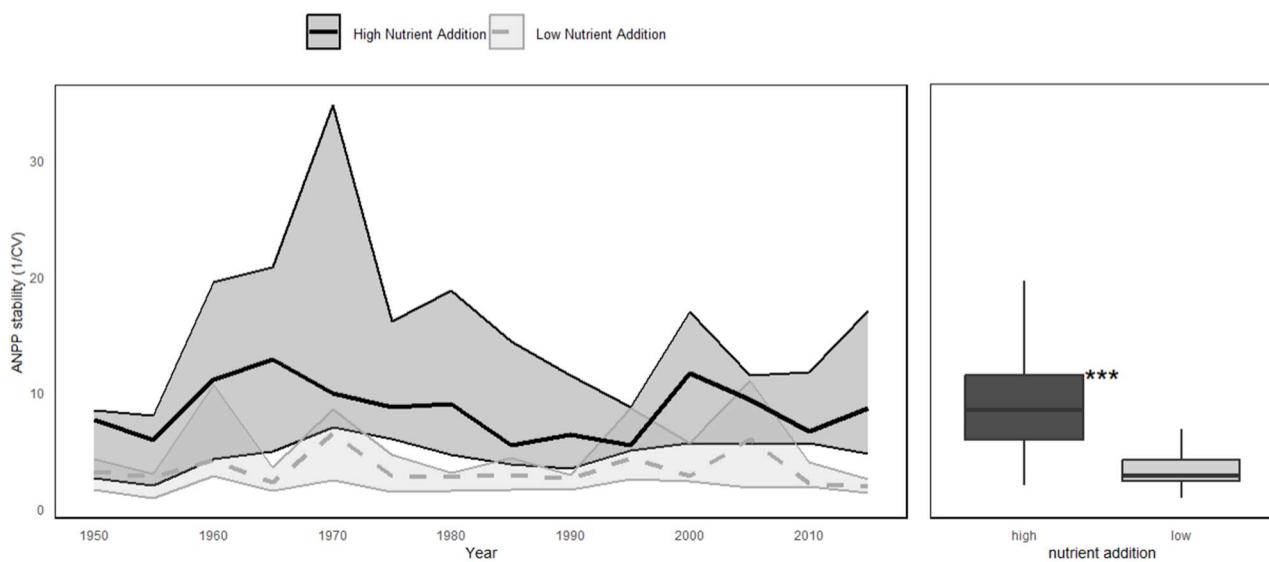
Figure 3. Results of the structural equation model (pSEM) associating North Atlantic Oscillation (NAO), precipitation (Ppt), temperature (Tmp), and Aboveground Net Primary Productivity (ANPP) under low (upper panel) and high (lower panel) nutrient additions. Values on the arrows show standardized path coefficients. Red and blue arrows indicate negative and positive associations, respectively. The analysis covers the period from 1950 to 2018. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

258

259 **Objective 2: Nutrient addition relative effect on interannual variations of ANPP**

260 A prominent outcome of the ‘high’ nutrient condition was the temporal decoupling of ANPP variation
 261 from precipitation variation (Fig. 4). In contrast, under the ‘low’ nutrient addition it maintained the
 262 expected positive association between these variables. Further, the relative impact of ‘high’ nutrient
 263 addition reduced with rising precipitation levels (Fig. 4). That is, as precipitation intensified, the
 264 influence of nutrient addition diminished. The relative effect of nutrient addition was highest at an
 265 estimated 400% when precipitation was around ≈ 100 mm and dropped to below 100% when
 266 precipitation reached ≈ 400 mm (Fig. 4).

267


268 **Figure 4.** (a) Association between Aboveground Net Primary Production (ANPP) and annual
 269 precipitation (Ppt, accumulated from January to a harvest in June) under high and low nutrient
 270 addition. Each point represents the average ANPP of all 8 plots for a specific fertilization level and
 271 year from 1950 to 2018. (b) The relative difference – which estimates the effect of nutrient addition
 272 on ANPP, calculated as $(ANPP \text{ in 'high'} - ANPP \text{ in 'low'}) / ANPP \text{ in low}$, in relation to annual
 273 precipitation. Black continuous and grey dotted lines indicate statistically significant ($p < 0.05$) and
 274 statistically non-significant relationships, respectively. Fitted models: High nutrients addition ($p =$
 275 0.9788) Low nutrients addition ($ANPP = 4.20PPT + 831.8$; $p < 0.001$; Adjusted $R^2:0.17$). Relative
 276 Difference (RD (%)) = $-0.41PPT + 472.85$; $p = 0.03$; Adjusted $R^2:0.05$).

277

278

279
280

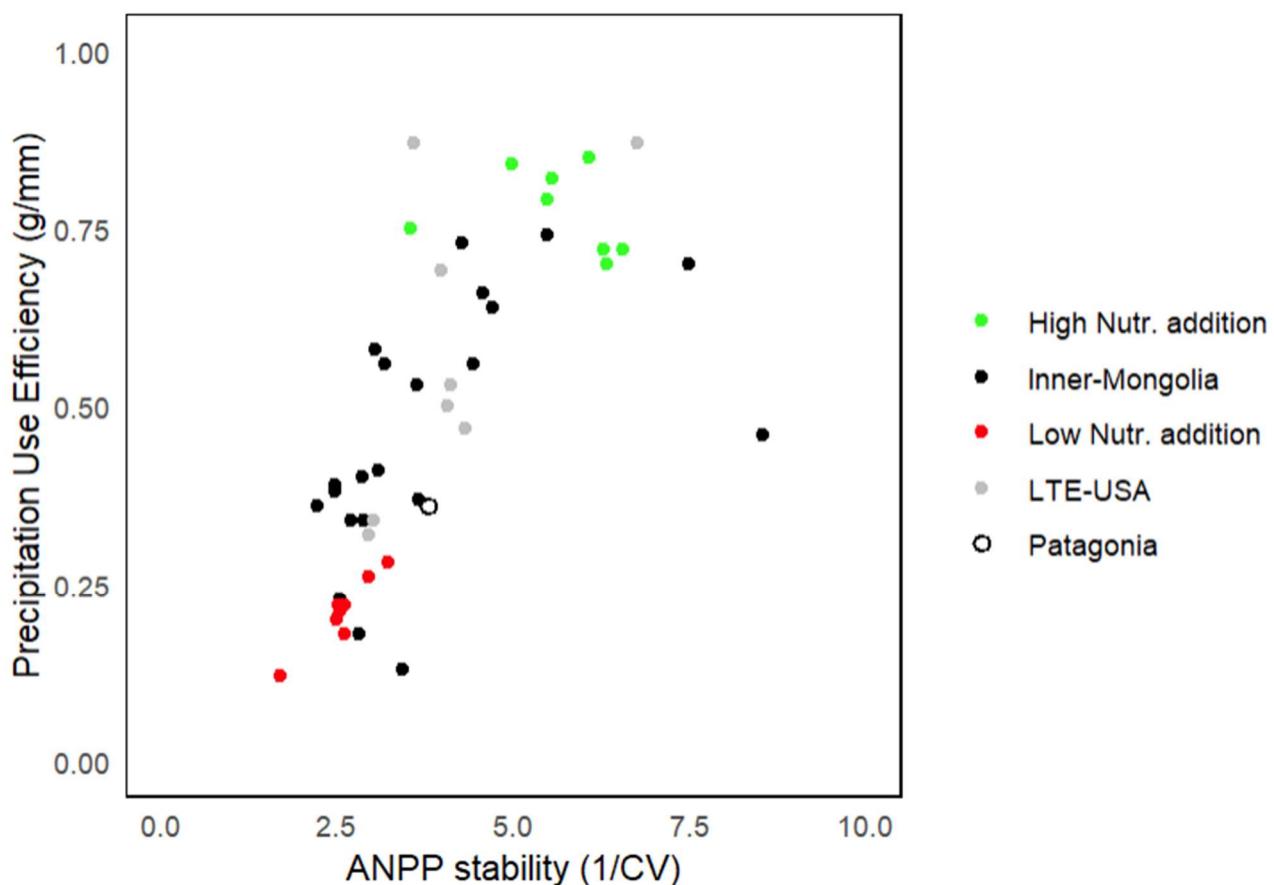
281 The stability of ANPP ($1 / CV$) varied over the study period, with consistently higher stability
 282 observed in 'high' nutrient addition plots compared to 'low' nutrient addition plots (Fig 5). The
 283 average (median) stability values were also higher for the 'high' nutrient addition plots, whereas the
 284 'low' nutrient addition plots exhibited lower average stability but with greater variability (Fig 6).

285

286 **Figure 5.** Temporal stability of aboveground net primary productivity (ANPP) estimated as $1 / CV$
 287 where $CV = \mu/\sigma$, over a five-year window across the study period (1950-2018). The lines within the
 288 shaded areas represent the median for all plots under either 'high' or 'low' nutrient addition. The
 289 shaded area represents the range of variation, defined by the maximum and minimum stability
 290 values within each nutrient addition group. *** indicates statistical significance ($p < 0.001$) for the
 291 difference between the 'low' and 'high' nutrient groups in terms of stability.

292 .
293

294 Discussion


295 Overall, we observed a direct connection between the NAO, an indicator of global climate variations,
 296 and local variations in precipitation and temperature. The NAO was positively associated with
 297 temperature, mainly in winter, and negatively associated with June precipitation. In turn, June
 298 precipitation was positively associated with ANPP. Continuous nutrient addition for over 160 years
 299 altered the association structure between climate and ANPP. On one hand, nutrient addition shifted
 300 the association between NAO and ANPP, from one totally mediated by precipitation, to one mediated
 301 by precipitation and temperature. On the other hand, via a relative effect analysis, the effect of nutrient
 302 addition on ANPP was greater under low precipitation. Furthermore, the reduced dependence on
 303 water availability appears to be the pathway leading to greater stability in ANPP under 'high' nutrient
 304 addition.

305 Our analysis partially confirmed the expected association of the NAO signal on temperature
306 and precipitation. It supported the association between the NAO's positive phase and above-average
307 winter temperatures (Hurrell, 1995; Scaife et al., 2014), but it did not provide evidence for a similar
308 association with precipitation. Furthermore, our results are novel in that, until now, the NAO's
309 influence on vegetation has been reported mainly in relation to temperature (Gouveia et al., 2008).
310 Specifically, previous research has indicated that high winter NAO values were associated with
311 higher values of NDVI, a RS-based proxy of ANPP, in spring, but low NDVI values in summer
312 (Gouveia et al., 2008). Our study, however, highlights two novel aspects. First, as in previous studies
313 (Hurrell, 1995; Scaife et al., 2014), we observed a link between the NAO's winter signal and
314 temperature, and its association with ANPP under high nutrient addition. However, our results
315 emphasize the negative effect on summer ANPP rather than the positive effect in spring. Second,
316 under low nutrient addition, ANPP was more limited by water availability (Sala et al., 2012) than by
317 temperature (Epstein et al., 1997). This result reveals a previously undescribed pathway linking global
318 atmospheric patterns and ANPP in temperate regions of Europe.

319 Continuous nutrient addition for over 160 years has evidently altered the association between
320 climate and ANPP. Given the long-established use of synthetic fertilizer across Europe (Pellegrini and
321 Fernández, 2018; Rosa and Gabrielli, 2022), it is reasonable to speculate that the NAO signal may have
322 a similar effect on many other temperate grasslands across the continent. However, at least two factors
323 are currently affecting the use of synthetic fertilizers. First, the ongoing conflict between Ukraine and
324 Russia has disrupted supply chains, increasing the costs of nitrogen-based fertilizers (Pereira et al.,
325 2022). Second, the imperative to reduce greenhouse gas emissions has intensified efforts to limit
326 fertilizer use, including net-zero policies advocated by the European Union and the UK (Abdalla et al.,
327 2010; Anderson et al., 2020). These coupled factors suggest that, in the future, agricultural systems
328 containing temperate grasslands may experience a shift in the pathways linking them to global
329 atmospheric processes, unless alternative "green" sources of nitrogen are more widely implemented
330 to compensate for the desired and policy-driven reductions in the use of synthetic fertilizers.

331 Fertilizers have brought significant benefits to Europe's grasslands, and it is essential to
332 contextualize these effects. Data from long-term experiments (LTEs), together with LTE networks,
333 provide valuable opportunities to compare the impact of fertilization on water yield, estimated
334 through 'precipitation use efficiency' (PUE; ANPP/annual precipitation, Huxman et al., 2004; Verón et al.,
335 2005), and on the stability of ANPP, estimated through its inverse to relative interannual variation
336 (Bai et al., 2008; Jobbágy and Sala, 2000; Knapp and Smith, 2001). Within the unique LTE of this study
337 ('Park Grass' at Rothamsted, UK), fertilization was shown to increase water yield to its highest value
338 when contextualised across a network of LTEs spanning four continents (Europe, Asia, North and

339 South America Fig. 6). Additionally, the Park Grass treatments under 'high' levels of nutrient addition
 340 recorded an increase in ANPP stability, not only when compared to their local counterparts but also
 341 across different biomes, globally. This suggests that, in sites fertilized for over 160 years,
 342 eutrophication increased 'precipitation use efficiency' (PUE) and simultaneously stabilized the
 343 interannual dynamics of ANPP, effectively decoupling it from variation in precipitation. This pattern
 344 contrasts with the findings of 'NUTNET', where fertilization increased ANPP instability (Hautier et
 345 al., 2014), and suggests that eutrophication may involve an adjustment period, during which plant
 346 communities shift to the new abiotic environment.

347

348 **Figure 6.** Relationship between precipitation use efficiency (PUE; ANPP / mean annual
 349 precipitation) and ANPP stability (1 / inter-annual relative variation, CV) across different long-term
 350 experiments (LTEs) in different biomes and different continents. Green and red round symbols
 351 represent plots from the present study under 'high' or 'low' nutrient addition, respectively (UK/
 352 Europe LTE). The LTE-USA (North America) covers different biomes across the United States
 353 (Knapp and Smith 2001). The Inner-Mongolia (Asia) LTE covers several types of grassland and
 354 steppes (Bai et al. 2008). The single LTE in Patagonia (South America) represents a co-dominated
 355 shrub-grass steppe (Jobbágy and Sala, 2000). Only sites with a mean annual precipitation lower than
 356 1000 mm were considered in this figure. (Pearson correlation: 0.703, p-value < 0.0001).

357

358 Our study offers valuable insights into the relationship between global atmospheric patterns,
 359 local climatic variables, and the long-term effects of nutrient addition on ANPP interannual dynamics.
 360 However, two key limitations must be acknowledged. First, the use of observed results for long-term

361 predictions of ANPP in absolute terms is limited when compared to other studies. For example, our
362 findings suggest that high NAO values in June are likely correlated with below-average ANPP in
363 similar situations in Northern Europe; however, these findings should not be directly used to predict
364 future scenarios, such as those given by the Bayesian modelling framework used in Addy et al. (2022).
365 Second, the unexplained variability in ANPP by climatic factors (bottom-up factors) may also be
366 influenced by biological factors (top-down factors). Herbivory could differentially regulate
367 interannual variations in ANPP between the nutrient-poor and nutrient-rich LTE plots. The low
368 nutrient addition plots, which are nutrient-poor, are dominated by non-grass herbaceous plants, while
369 the fertilized plots are dominated by grasses (Baca Cabrera et al., 2021). Additionally, many grasses
370 form mutualistic relationships with endophytic fungi which are known to confer resistance to
371 herbivory (Dirihan et al., 2016; Gundel et al., 2011). The abundance of grasshoppers at the ‘Park
372 Grass’ site has been shown to negatively correlate with ANPP (Morris, 1992), suggesting that the
373 increased stability in ANPP under fertilization is, in part, due to reduced top-down controls, mediated
374 by changes in plant functional types associated with nutrient availability.

375 **Conclusions**

376 Our study has described, for the first time, the pathway through which the global atmospheric pattern,
377 the NAO, affects long-term ANPP interannual dynamics at the ‘Park Grass’ long-term experiment in
378 southeast UK. We identified a novel signal between spring’s precipitation and the NAO, and how this
379 signal influences ANPP. Specifically, the main path indicated that under its negative NAO phase in
380 June, above-average precipitation positively affected ANPP. This pattern was observed in LTE plots
381 with low or no direct nutrient addition. In contrast, for plots with long-term high nutrients addition,
382 the NAO signal was mediated by temperature, and precipitation. Our study provides two novel
383 insights. First, from an ecosystem perspective, the results suggest that, under “real world” conditions,
384 the NAO signal on ANPP in Europe’s temperate grasslands may be weak, given the historically high
385 levels of nutrient addition. Second, from a management perspective, the results indicate that the direct
386 addition of nutrients at high rates over multiple years may not be the most efficient approach. In other
387 words, nutrient additions to temperate grasslands in the temperate areas of Europe would be more
388 beneficial if applied during below-average precipitation conditions. Finally, our study provides
389 quantitative insights into how much precipitation can compensate ANPP during wetter years.

390

391 **Acknowledgements**

392 This research was supported by UKRI-BBSRC (UK Research and Innovation – Biotechnology and
393 Biological Sciences Research Council) grants: BBS/E/RH/230004B and BBS/E/RH/230004C for

394 the Resilient Farming Futures institute strategic programme and BBS/E/RH/23NB0008 for the North
 395 Wyke Farm Platform National Bioscience Research Infrastructure.

396

397 **References**

398 Abdalla, M., Jones, M., Yeluripati, J., Smith, P., Burke, J., Williams, M., 2010. Testing DayCent and DNDC
 399 model simulations of N₂O fluxes and assessing the impacts of climate change on the gas flux and biomass
 400 production from a humid pasture. *Atmos Environ* 44, 2961–2970.
 401 <https://doi.org/10.1016/J.ATMOSENV.2010.05.018>

402 Addy, J.W.G., Ellis, R.H., MacLaren, C., MacDonald, A.J., Semenov, M.A., Mead, A., 2022. A
 403 heteroskedastic model of Park Grass spring hay yields in response to weather suggests continuing yield
 404 decline with climate change in future decades. *J R Soc Interface* 19. <https://doi.org/10.1098/rsif.2022.0361>

405 Aerts, R., 1997. Climate , Leaf Litter Chemistry and Leaf Litter Decomposition in Terrestrial Ecosystems : A
 406 Triangular Relationship Author (s): Rien Aerts Published by : Wiley on behalf of Nordic Society Oikos
 407 Stable URL : <https://www.jstor.org/sta>. Nordic Society Oikos 79, 439–449.

408 Anderson, K., Broderick, J.F., Stoddard, I., 2020. A factor of two: how the mitigation plans of “climate
 409 progressive” nations fall far short of Paris-compliant pathways.
 410 <https://doi.org/10.1080/14693062.2020.1728209>

411 Baca Cabrera, J.C., Hirl, R.T., Schäufele, R., Macdonald, A., Schnyder, H., 2021. Stomatal conductance
 412 limited the CO₂ response of grassland in the last century. *BMC Biol* 19, 1–14.
 413 <https://doi.org/10.1186/s12915-021-00988-4>

414 Bai, Y., Wu, J., Xing, Q., Pan, Q., Huang, J., Yang, D., Han, X., 2008. Primary production and rain use
 415 efficiency across a precipitation gradient on the Mongolia Plateau. *Ecology* 89, 2140–2153.
 416 <https://doi.org/10.1890/07-0992.1>

417 Bandieri, L.M., Fernández, R.J., Bisigato, A.J., 2020. Risks of Neglecting Phenology When Assessing
 418 Climatic Controls of Primary Production. *Ecosystems* 23, 164–174. <https://doi.org/10.1007/s10021-019-00393-7>

420 Blake, L., Goulding, K.W.T., 2002. Effects of atmospheric deposition, soil pH and acidification on heavy
 421 metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK.
 422 *Plant Soil* 240, 235–251. <https://doi.org/10.1023/A:1015731530498>

423 Burrell, A.L., Evans, J.P., De Kauwe, M.G., 2020. Anthropogenic climate change has driven over 5 million
 424 km² of drylands towards desertification. *Nat Commun* 11, 3853. <https://doi.org/10.1038/s41467-020-17710-7>

426 Chapin, F.S.I., Matson, P.A., Vitousek, P.M., 2011. Principles of terrestrial ecosystem ecology, 2ND ed.
 427 Springer New York, Ney York. <https://doi.org/10.1007/978-1-4419-9504-9>

428 Chapin, S.F., Matson, P.A., Mooney, H.A., 2011. Principles of Terrestrial Ecosystem Ecology. Springer.

429 Chen, M. aosi C., Parton, W.I.J.P., Del Grosso, S.T.J.D.E.L.G., Hartman, M.D.H., Day, K.A., Tucker, C.J.,
 430 Derner, J.D., Knapp, A.K., Smith, W.K., Ojima, D.S., Gao, W., 2017. The signature of sea surface
 431 temperature anomalies on the dynamics of semiarid grassland productivity. *Ecosphere* 8, e02069.
 432 <https://doi.org/10.1002/ecs2.2069>

433 Clay, K., Brown, V.K., 1997. Infection of *Holcus lanatus* and *H . mollis* by *Epichloë* in Experimental
 434 Grasslands. *Oikos* 79, 363–370.

435 Coleman, K., Muhammed, S.E., Milne, A.E., Todman, L.C., Dailey, A.G., Glendining, M.J., Whitmore, A.P.,
 436 2017. The landscape model: A model for exploring trade-offs between agricultural production and the
 437 environment. *Science of the Total Environment* 609, 1483–1499.
 438 <https://doi.org/10.1016/j.scitotenv.2017.07.193>

439 Costanza, R., D'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naemem, S., O'Neill,
 440 R., Paruelo, J., Raskin, R., Sutton, P., Belt van del, M., 1997. The value of the world's ecosystem services
 441 and natural capital. *Nature* 387, 253–260.

442 Dirihan, S., Helander, M., Väre, H., Gundel, P.E.P.E., Garibaldi, L.A.L.A., Irisarri, J.G.N.G.N., Saloniemi, I.,
 443 Saikkonen, K., 2016. Geographic Variation in *Festuca rubra* L. Ploidy Levels and Systemic Fungal Endophyte
 444 Frequencies. *PLoS One* 11, e0166264. <https://doi.org/10.1371/journal.pone.0166264>

445 Epstein, H.E., Lauenroth, W.K., Burke, I.C., 1997. Effect of temperature and soil texture on ANPP in the U.S.
 446 great plains. *Ecology* 78, 2628–2631.

447 Fabricante, I., Oesterheld, M., Paruelo, J.M., 2009. Annual and seasonal variation of NDVI explained by
 448 current and previous precipitation across Northern Patagonia. *J Arid Environ* 73, 745–753.
 449 <https://doi.org/10.1016/j.jaridenv.2009.02.006>

450 Gouveia, C., Trigo, R.M., DaCamara, C.C., Libonati, R., Pereira, J.M.C., 2008. The North Atlantic Oscillation
 451 and European vegetation dynamics. *International Journal of Climatology* 28, 1835–1847.
 452 <https://doi.org/10.1002/joc.1682>

453 Gundel, P.E., Rudgers, J. a., Ghersa, C.M., 2011. Incorporating the process of vertical transmission into
 454 understanding of host-symbiont dynamics. *Oikos* 120, 1121–1128. <https://doi.org/10.1111/j.1600-0706.2011.19299.x>

455 Hautier, Y., Seabloom, E.W., Borer, E.T., Adler, P.B., Harpole, W.S., Hillebrand, H., Lind, E.M., MacDougall,
 456 A.S., Stevens, C.J., Bakker, J.D., Buckley, Y.M., Chu, C., Collins, S.L., Daleo, P., Damschen, E.I., Davies,
 457 K.F., Fay, P.A., Firn, J., Gruner, D.S., Jin, V.L., Klein, J.A., Knops, J.M.H., La Pierre, K.J., Li, W., McCulley,
 458 R.L., Melbourne, B.A., Moore, J.L., O'Halloran, L.R., Prober, S.M., Risch, A.C., Sankaran, M., Schuetz, M.,
 459 Hector, A., 2014. Eutrophication weakens stabilizing effects of diversity in natural grasslands. *Nature* 508,
 460 521–525. <https://doi.org/10.1038/nature13014>

461 Hautier, Y., Zhang, P., Loreau, M., Wilcox, K.R., Seabloom, E.W., Borer, E.T., Byrnes, J.E.K., Koerner, S.E.,
 462 Komatsu, K.J., Lefcheck, J.S., Hector, A., Adler, P.B., Alberti, J., Arnillas, C.A., Bakker, J.D., Brudvig, L.A.,
 463 Bugalho, M.N., Cadotte, M., Caldeira, M.C., Carroll, O., Crawley, M., Collins, S.L., Daleo, P., Dee, L.E.,
 464 Eisenhauer, N., Eskelinen, A., Fay, P.A., Gilbert, B., Hansar, A., Isbell, F., Knops, J.M.H., MacDougall, A.S.,
 465 McCulley, R.L., Moore, J.L., Morgan, J.W., Mori, A.S., Peri, P.L., Pos, E.T., Power, S.A., Price, J.N., Reich,
 466 P.B., Risch, A.C., Roscher, C., Sankaran, M., Schütz, M., Smith, M., Stevens, C., Tognetti, P.M., Virtanen,
 467 R., Wardle, G.M., Wilfahrt, P.A., Wang, S., 2020. General destabilizing effects of eutrophication on grassland
 468 productivity at multiple spatial scales. *Nat Commun* 11. <https://doi.org/10.1038/s41467-020-19252-4>

469 Hejcmán, M., Hejcmánová, P., Pavlů, V., Beneš, J., 2013. Origin and history of grasslands in central europe -
 470 A review. *Grass and Forage Science*. <https://doi.org/10.1111/gfs.12066>

471 Hurrell, J.W., 1995. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and
 472 Precipitation. *Science* (1979) 269, 676–679. <https://doi.org/10.1126/SCIENCE.269.5224.676>

473 Hurrell, J.W., Van Loon, H., 1997. Decadal variations in climate associated with the North Atlantic Oscillation.
 474 *Clim Change* 36, 301–326.

475 Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik, M.E., Smith, S.D., Tissue, D.T., Zak,
 476 J.C., Weltzin, J.F., Pockman, W.T., Sala, O.E., Haddad, B.M., Harte, J., Koch, G.W., Schwinnig, S., Small,
 477 E.E., Williams, D.G., Lolk, M.E., Smith, S.D., Tissue, D.T., Zak, J.C., Weltzin, J.F., Pockman, W.T., Sala,
 478 O.E., Haddad, B.M., Harte, J., Koch, G.W., Schwinnig, S., Small, E.E., Williams, D.G., 2004. Convergence
 479 across biomes to a common rain-use efficiency. *Nature* 429, 651–654. <https://doi.org/10.1038/nature02561>

480 Irisarri, J.G.N., Derner, J.D., Porensky, L.M., Augustine, D.J., Reeves, J.L., Mueller, K.E., 2016. Grazing
 481 intensity differentially regulates ANPP response to precipitation in North American semiarid grasslands.
 482 *Ecological Applications* 26.

483 Irisarri, J.G.N., Texeira, M., Oesterheld, M., Verón, S.R., Nave, F. Della, Paruelo, J.M., 2021. Discriminating
 484 the biophysical signal from human-induced effects on long-term primary production dynamics. The case of
 485 Patagonia. *Glob Chang Biol* 27, 4381–4391. <https://doi.org/10.1111/GCB.15733>

487 Jobbágy, E.G., Sala, O.E., 2000. Controls of grass and shrub aboveground production in the Patagonian steppe.
 488 Ecological Applications 10, 541–549. [https://doi.org/10.1890/1051-0761\(2000\)010\[0541:COGASA\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2000)010[0541:COGASA]2.0.CO;2)

490 Kidd, J., Manning, P., Simkin, J., Peacock, S., Stockdale, E., 2017. Impacts of 120 years of fertilizer addition
 491 on a temperate grassland ecosystem. PLoS One 12. <https://doi.org/10.1371/journal.pone.0174632>

492 Knapp, A.K., Smith, M.D., 2001. Variation among biomes in temporal dynamics of aboveground primary
 493 production. Science (1979) 291, 481–484. <https://doi.org/10.1126/science.291.5503.481>

494 Kröger, B., Selmeczy, G.B., Casper, P., Soininen, J., Padisák, J., 2023. Long-term phytoplankton community
 495 dynamics in Lake Stechlin (north-east Germany) under sudden and heavily accelerating eutrophication.
 496 Freshw Biol 68, 737–751. <https://doi.org/10.1111/fwb.14060>

497 Lauenroth, W.K., Sala, O.E., 1992. Long-term forage production of North American shortgrass steppe.
 498 Ecological Applications 2, 397–403.

499 Lawes, J.B., Gilbert, J.H., 1863. The effects of different manures on the mixed herbage of grassland. Journal
 500 of the Royal Agricultural Society of England 24, 131–164.

501 Lawes, J.B., Gilbert, J.H., 1859. Report of experiments with different manures on permanent meadow land:
 502 part II: produce of constituents per acre Journal of the Royal Agricultural Society of England 20 (1859): 228–
 503 246. Journal of the Royal Agricultural Society of England 19, 552–573.

504 LeBauer, D.S., Treseder, K.K., 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems
 505 is globally distributed. Ecology 89, 371–379. <https://doi.org/10.1890/06-2057.1>

506 Lefcheck, J.S., 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and
 507 systematics. Methods Ecol Evol 7, 573–579. <https://doi.org/10.1111/2041-210X.12512>

508 Mcnaughton, S.J., Oesterheld, M., Frank, D.A., Williams, K.J., 1989. Ecosystem.level patterns of primary
 509 productivity and herbivory in terrestrial habitats, Nature.

510 Morris, M.G., 1992. Responses of Auchenorrhyncha (homoptera) to fertiliser and liming treatments at Park
 511 Grass, Rothamsted. Agric Ecosyst Environ 41, 263–283. [https://doi.org/10.1016/0167-8809\(92\)90115-R](https://doi.org/10.1016/0167-8809(92)90115-R)

512 Olafsson, H., Rousta, I., 2021. Influence of atmospheric patterns and North Atlantic Oscillation (NAO) on
 513 vegetation dynamics in Iceland using Remote Sensing. <https://doi.org/10.1080/22797254.2021.1931462> 54,
 514 351–363. <https://doi.org/10.1080/22797254.2021.1931462>

515 Parton, W.J., Ojima, D.S., Cole, C. V., Schimel, D.S., 1994. A general model for soil organic matter dynamics:
 516 sensitivity to litter chemistry, texture and management. Quantitative modeling of soil forming processes. Proc.
 517 symposium, Minneapolis, 1992 147–167. <https://doi.org/10.2136/sssaspecpub39.c9>

518 Paruelo, J.M., Lauenroth, W.K., Burke, I.C., Sala, O.E., 1999. Grassland precipitation-use efficiency varies
 519 across a resource gradient. Ecosystems 2, 64–68. <https://doi.org/10.1007/s100219900058>

520 Pellegrini, P., Fernández, R.J., 2018. Crop intensification, land use, and on-farm energy-use efficiency during
 521 the worldwide spread of the green revolution. Proc Natl Acad Sci U S A 115, 2335–2340.
 522 <https://doi.org/10.1073/PNAS.1717072115/-/DCSUPPLEMENTAL>

523 Pereira, P., Bašić, F., Bogunovic, I., Barcelo, D., 2022. Russian-Ukrainian war impacts the total environment.
 524 Science of The Total Environment 837, 155865. <https://doi.org/10.1016/J.SCITOTENV.2022.155865>

525 Perryman, S., Scott, T., Hall, C., 2018. Dataset: Mean Monthly Rainfall at Rothamsted March 1853 - July
 526 2018. <https://doi.org/10.23637/RMMRAIN5318>

527 Pettorelli, N., Mysterud, A., Yoccoz, N.G., Langvatn, R., Stenseth, N.C., 2005. Importance of climatological
 528 downscaling and plant phenology for red deer in heterogeneous landscapes. Proceedings of the Royal Society
 529 B: Biological Sciences 272, 2357–2364. <https://doi.org/10.1098/rspb.2005.3218>

530 Pfeiderer, P., Schleussner, C.-F., Kornhuber, K., Coumou, D., 2019. Summer weather becomes more
 531 persistent in a 2 °C world. Nat Clim Chang 9, 666–671. <https://doi.org/10.1038/s41558-019-0555-0>

532 Rosa, L., Gabrielli, P., 2022. Energy and food security implications of transitioning synthetic nitrogen
 533 fertilizers to net- zero emissions. Environmental Research Letters 18, 014008. <https://doi.org/10.1088/1748-9326/aca815>

535 Sala, O.E., Gherardi, L. a, Reichmann, L., Jobbág, E., Peters, D., 2012. Legacies of precipitation fluctuations
536 on primary production: theory and data synthesis. *Philos Trans R Soc Lond B Biol Sci* 367, 3135–44.
537 <https://doi.org/10.1098/rstb.2011.0347>

538 Scaife, A.A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R.T., Dunstone, N., Eade, R., Fereday, D.,
539 Folland, C.K., Gordon, M., Hermanson, L., Knight, J.R., Lea, D.J., MacLachlan, C., Maidens, A., Martin, M.,
540 Peterson, A.K., Smith, D., Vellinga, M., Wallace, E., Waters, J., Williams, A., 2014. Skillful long-range
541 prediction of European and North American winters. *Geophysical research letters* 2514–2519.
542 <https://doi.org/10.1002/2014GL059637>

543 Silvertown, J., Dodd, M.E., Mcconway, K., Potts, J., Crawley, M., 1994. Rainfall, Biomass Variation, and
544 Community Composition in the Park Grass Experiment 75, 2430–2437.

545 Silvertown, J., Poulton, P., Johnston, E., Edwards, G., Heard, M., Biss, P.M., 2006. ESSAY REVIEW The
546 Park Grass Experiment 1856-2006: its contribution to ecology. *Journal of Ecology* 94, 801–814.
547 <https://doi.org/10.1111/j.1365-2745.2006.01145.x>

548 Tilman, D., 1999. The ecological consequences of changes in biodiversity: A search for general principles, in:
549 *Ecology*. Ecological Society of America, pp. 1455–1474. [https://doi.org/10.1890/0012-9658\(1999\)080\[1455:tecoci\]2.0.co;2](https://doi.org/10.1890/0012-9658(1999)080[1455:tecoci]2.0.co;2)

550 Trigo, R.M., Osborn, T.J., Corte-Real, J.M., 2002. The North Atlantic Oscillation influence on Europe: climate
551 impacts and associated physical mechanisms. *Clim Res* 20, 9–17. <https://doi.org/10.3354/CR020009>

553 Verón, S.R., Oesterheld, M., Paruelo, J.M., R, S., Verón, S.R., Oesterheld, M., Paruelo, J.M., 2005. Production
554 as a function of resource availability : Slopes and efficiencies are different. *Journal of Vegetation Science* 16,
555 351–354. <https://doi.org/10.1111/j.1654-1103.2005.tb02373.x>

556 Vicente-Serrano, S.M., Heredia-Lastra, A., 2010. NAO influence on NDVI trends in the Iberian peninsula
557 (1982–2000). <http://dx.doi.org/10.1080/01431160410001685009> 25, 2871–2879.
558 <https://doi.org/10.1080/01431160410001685009>

559 Yahdjian, L., Gherardi, L., Sala, O.E., 2011. Nitrogen limitation in arid-subhumid ecosystems: A meta-analysis
560 of fertilization studies. *J Arid Environ* 75, 675–680. <https://doi.org/10.1016/j.jaridenv.2011.03.003>

561