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There is overwhelming evidence that forest trees are locally adapted to climate. Thus,
genecological models based on population phenotypes have been used to measure
local adaptation, infer genetic maladaptation to climate, and guide assisted migration.
However, instead of phenotypes, there is increasing interest in using genomic data for
gene resource management. We used whole-genome resequencing and common-garden
experiments to understand the genetic architecture of adaptive traits in black cotton-
wood. We studied the potential of using genome-wide association studies (GWAS)
and genomic prediction to detect causal loci, identify climate-adapted phenotypes, and
inform gene resource management. We analyzed population structure by partition-
ing phenotypic and genomic (single-nucleotide polymorphism) variation among 840
genotypes collected from 91 stands along 16 rivers. Most phenotypic variation (60 to
81%) occurred among populations and was strongly associated with climate. Population
phenotypes were predicted well using genomic data (e.g., predictive ability » > 0.9) but
almost as well using climate or geography (» > 0.8). In contrast, genomic prediction
within populations was poor (7 < 0.2). We identified many GWAS associations among
populations, but most appeared to be spurious based on pooled within-population
analyses. Hierarchical partitioning of linkage disequilibrium and haplotype sharing
suggested that within-population genomic prediction and GWAS were poor because
allele frequencies of causal loci and linked markers differed among populations. Given
the urgent need to conserve natural populations and ecosystems, our results suggest that
climate variables alone can be used to predict population phenotypes, delineate seed
zones and deployment zones, and guide assisted migration.

genomic prediction | GWAS | foresttrees | climate change | population genetic structure

Forests are key components of global biodiversity and other important ecosystem services,
including fuelwood and timber production, regulation of water and air quality, carbon
sequestration, climate regulation, and spiritual and recreational experiences (1). However,
forests are under pressure from human population growth, conversion of forests to agri-
cultural land, commodity production, wildfire, urbanization, and climate change (2, 3).
For example, forest inventories and species distribution models suggest there will be
profound shifts in habitats of tree species with climate change (4, 5), likely resulting in
maladaptation of locally adapted populations (6-9).

Population-level genetic variation has been studied by measuring phenotypes in com-
mon gardens (10-12). These studies established the prevalence of clinal genetic variation
along climatic gradients, local adaptation, and greater genetic differentiation for putatively
adaptive traits than for neutral genetic markers (i.e., Qs > Fgp) (13-17). Thus, although
gene flow is usually extensive in forest trees (18-20), its effects are often outweighed by
diversifying selection.

Because climate is a key driver of natural selection, genecological models have been
developed to understand the relationships between climate and population-level pheno-
types. Growth rate and vegetative bud phenology are typically used as phenotypes because
they are consistently associated with climate, genetically correlated with adaptation to cold
and drought, and considered surrogates for fitness (9, 14, 21-23). The resulting models
have been used to assess the risks of genetic maladaptation from climate change (7, 8) and
guide assisted migration (24-28). However, genecological models also have limitations.
First, multiple long-term field trials (e.g., >10; 21) are needed to predict field performance
accurately, and this is time-consuming and costly. Second, climate-based models do not
necessarily account for demographic factors. Third, within-population prediction is limited
by the resolution of climate models (29, 30). Overall, genecological models are valuable
for inferring deployment areas for breeding populations but contribute little to genetic
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improvement within populations. Ultimately, genomic information
may help overcome some of these limitations (31).

There has been a long-standing interest in using genetic markers
instead of phenotypes to manage forest genetic resources. Initially,
these studies focused on presumably neutral markers such as
allozymes (32, 33) but interest increased dramatically in using
genetic markers associated with adaptive traits. Over the past two
decades, candidate markers have been identified using association
analysis of functional candidate genes (i.e., potential causal loci;
34-306), patterns of gene expression (37, 38), positions relative to
mapped QTLin biparental families (16, 39), genotype-environment
associations (GEA; 40, 41), and associations with phenotypes via
genome-wide association studies (GWAS; 42-46). Despite exten-
sive research on candidate genes, these remain to be validated as
causal loci in natural or breeding populations.

GWAS and genomic prediction methods are widely used to
study the genetic architectures of complex quantitative traits,
meaning the number, locations, and allele frequencies of causal
loci plus their additive, dominance, epistatic, and pleiotropic
effects (47, 48). Because genetic architecture is often inferred from
linked markers, we use “genetic architecture” to refer to the genetic
characteristics of causal loci and loci in linkage disequilibrium
(LD) with causal loci. The ultimate goal of GWAS is to detect
causal loci, identify potential targets for genetic modification, and
help predict phenotypes. Although thousands of candidate loci
have been identified by GWAS in forest trees, reproducibility has
been low, and few have been directly validated (49, 50). Causal
loci are difficult to detect because locus effect sizes are small for
polygenic traits, GWAS is prone to statistical biases, population
structure is often confounded between quantitative traits and
neutral markers, and population sample sizes are typically low
(e.g., average N = 446; 51).

Finally, when GWAS is used among populations, such as in
range-wide studies, confounding between phenotypic variation and
neutral population structure can lead to many false positive associ-
ations (52). Methods exist to mitigate this problem (52) but they
are imperfect and may increase false negatives by overcorrecting for
population structure. Thus, as described for GEA (53),
among-population GWAS suffers from a “Catch-22"—without
correcting for population structure, results can be “riddled with false
positives,” but causal loci may be missed when corrections are used.
Despite the predominance of among-population GWAS in forest
trees (49), a substantial proportion of quantitative genetic variation
resides within populations (16, 54). This makes within-population
GWAS informative and tractable. In humans, for example, it is
common to aggregate results from within-population studies across
populations using meta-analysis, rather than relying on fundamen-
tally more challenging across-population analyses (55-57).

One way to predict phenotypes is to use many GWAS loci in
a single prediction equation (e.g., polygenic score; 57). This is
enticing, but the loci must account for a substantial proportion
of the phenotypic variation to be valuable, a tall order given that
few GWAS associations have been clearly validated in forest trees
(49, 50). Alternatively, phenotypes can be predicted using all avail-
able markers, assuming most causative loci will be assayed directly
or via LD with at least one marker, an approach called genomic
selection or genomic prediction (58). This approach, which
focuses on prediction rather than identifying causal loci, has been
widely used in animal and plant breeding populations (50, 59,
60), humans (61-63), and more rarely, natural populations of
forest trees and other plants (64, 65).

Black cottonwood (Populus trichocarpa), a fast-growing, riparian
tree, is ideal for genomic studies of adaptive traits. It occurs from
Baja, California to Alaska (66), inhabits diverse environments, and
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has well-developed phenotypic and genomic resources (42, 43,
67-70). Because most of the adaptive genetic variation in black
cottonwood occurs at the river level (71), we sampled 1,101 clonal
genotypes from 23 rivers. Sampling focused on the core of the
species range in western Oregon, western Washington, and south-
western British Columbia to avoid the effects of interspecific
hybridization and minimize population structure (67) (S/ Appendix,
Materials and Methods). Additionally, to strengthen within-
population analyses, we sampled four of these rivers more inten-
sively. We used phenotypic measurements from three replicated
field trials and >20 M single-nucleotide polymorphisms (SNPs)
from whole-genome resequencing. Then, we used SNPs from a
subset of 840 clonal genotypes from 16 rivers to address four ques-
tions: 1) How does population genetic structure (i.e., the distribu-
tion of genetic variation within versus among populations) differ
between SNPs and adaptive trait phenotypes? 2) How do popula-
tion differences in genetic architecture influence the ability to
identify or tag causal loci using GWAS and predict phenotypes
within and among populations? 3) How well are phenotypes pre-
dicted from SNPs compared to climate and geographic variables?
4) What is the potential for using genomic information from nat-
ural populations for gene conservation, breeding, and assisted
migration? In contrast to other studies, we combined among-
population and within-population analyses to better understand
the genetic architecture of adaptive traits in forest trees.

Results

Phenotypic Variation in Adaptive Traits was Highly Structured
and Strongly Associated with Climate. Genetic variation for
adaptive traits was highly structured (Fig. 1B). For example, the
correlation between latitude and the first principal component for
quantitative traits (QPC1) was 0.75. Furthermore, differentiation
among stands was high (Qgr = 0.42 to 0.68, Fig. 2). When
genotypic variation for bud flush (BF), bud set (BS), and height
was partitioned hierarchically among river, stand-within-river, and
genotype-within-stand-and-river levels, more than 50% of the
variation occurred at the river level (Fig. 2, first three columns).
Finally, based on multivariate regression, phenotypic traits and
SNP principal component (SPC) scores were strongly associated
with climate (87 Appendix, Table S1). Analyses at the river level
resulted in similar patterns (S Appendix, Table S2).

SNP Variation was Moderately Structured and Strongly
Associated with Climate. Although SNP variation had a clear
spatial pattern (Fig. 1C), the first two principal components
explained only 1.9% of the total SNP variation among the 840
clonal genotypes, and the correlation between the first principal
component for SNPs (SPC1) and latitude was moderate (7= 0.55).
In contrast to Qsy, SNP differentiation was much lower (Fr =
0.04, Fig. 2), but varied substantially among SNPs. Based on a
sample of 1.1 M SNPs, Fg values were as high as 1.00 and the
99th percentile was 0.32. Thus, among all 20.8 M SNPs, there
were at least 200 K SNPs with very large Fp values. Overall,
variation among rivers accounted for 15% of the SNP variation
(Fig. 2, fourth blue bar). Finally, variation for the first five SNP
PC scores (SPC1-SPC5) was strongly associated with climate
(SI Appendix, Tables S1 and S2).

Adaptive Trait Phenotypes Were Predicted Using Geography,
Climate, or SNPs. We used phenotypic best linear unbiased predictors
(PBLUP) to predict adaptive traits from the measured trees and then
compared them to phenotypes predicted from geographic variables,
climate variables, or SNPs. These comparisons were evaluated using

pnas.org


http://www.pnas.org/lookup/doi/10.1073/pnas.2425691122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2425691122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2425691122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2425691122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2425691122#supplementary-materials

Downloaded from https://www.pnas.org by ROTHAMSTED RESEARCH on July 23, 2025 from | P address 149.155.29.207.

A Geographic distribution B Phenotypic structure

C SNP structure

n
o
1

Latitude (°N)
5
1

QPC1 (60.1%)

40

C %

River

0.02 H Dean
Klinaklini
Homathko
Salmon
Vancouver I.
Skwawka
Lillooet
Squamish
Fraser
Nooksack
Skagit
Skykomish
Snoqualmie
Puyallup
Columbia
Willamette

0.00 +

-0.02

-0.04

SPC1 (1.2%)

-0.06 o 2

-0.08

BEeoemoODP>PDJgOoOBDODP>PqgCOeE & DPJ

T T T
-130 -125  -120  -115 50 25 00
Longitude (°W)

T T T T

T
25 5.0 -0.4 -0.2 0.0 0.2
QPC2 (23.1%)

SPC2 (0.7%)

Fig. 1. Geographic distribution (A), phenotypic population structure (B), and SNP population structure (C) for 840 P. trichocarpa clonal genotypes. (A) Source
locations are color-coded by river with yellow stars indicating the locations of the three test plantations. (B) PC scores (QPC1 and QPC2) from the first two
eigenvectors from a principal component analysis (PCA) of BF, BS, and height phenotypes. (C) PC scores (SPC1 and SPC2) from the first two eigenvectors from
a PCA of SNP markers filtered using “liberal” criteria (S/ Appendix, Table S4). The values in parentheses are the proportions of total variation accounted for by
each PC score based on nine phenotypic variables (B) or SNP genotypes (C) from 840 clonal genotypes.

predictive ability (PA), which is the Pearson correlation between the
PBLUP phenotypes versus phenotypes predicted from geographic
variables, climate variables, or SNPs. The overall ability to predict
phenotypes across stands and rivers was moderate to high (PA > 0.5)
using ridge regression with geography, climate, or SNP variables as
predictors (Figs. 3 and 44 and ST Appendix, Table S3). Hereafter, we
refer to ridge regression using SNPs or simulated RAD-Seq markers
as genomic BLUP (GBLUP). Across traits, GBLUP PAs (0.702 to
0.735) were only modestly higher than PAs based on geography
(0.659) or climate (0.683) (SI Appendix, Table S3). The absolute
advantage of GBLUP was largest for BE For this trait, GBLUP had
a PA of 0.598 to 0.635. In contrast, the PAs were 0.531 based on
geography and 0.579 based on climate variables.

Qst Fst
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Fig. 2. Distributions of genetic variation among rivers [River], stands-within-
rivers [Stand (R)], and genotypes-within-stands-and-rivers [Genotype (SR)] for
840 P. trichocarpa clonal genotypes. The y-axis shows relative proportions of
variation based on mixed model analyses of quantitative traits and AMOVA for
SNPs. Among-stand Qs values are shown above the bars for three quantitative
traits (BF, BS, and height), and the among-stand Fs; value is shown above the
bar for SNPs.
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PA was Low after Accounting for Population Structure. Next, we
evaluated PA after rigorously accounting for population structure.
By partitioning the PAs into hierarchical levels (Fig. 4 B—D), three
important observations emerged. First, although PAs were moderate
to high across the entire population (Fig. 44), none of the models
performed well within stands (PA < 0.2, Fig. 4B), even though 19
t0 40% of the quantitative genetic variation occurred within stands
(Fig. 2). Second, GBLUP models based on SNPs were consistently
better at predicting stand-level phenotypes than were models based
on geography or climate (Fig. 4C). Finally, the predictive abilities
for river-level phenotypes were high for each model and trait (mean
PA = 0.924, range = 0.801 to 0.976; Fig. 4D). These results are
generally consistent with the hierarchical distribution of genetic
variation for phenotypic traits, although within-stand PAs were
disproportionately low (Fig. 4B) compared to the within-stand
genetic variances (Fig. 2, first three green bars).

The low within-stand PA suggested that genomic prediction
was affected by differences in genetic architecture among rivers.
To test this, we developed GBLUP models using a subset of data
from three well-sampled rivers. Specifically, we compared GBLUP
models developed using genotypes sampled within rivers versus
across rivers. The PAs of the within-river models (Skagit, Puyallup,
and Columbia) were mostly larger or much larger than the PAs
of the across-river models (Core and All), irrespective of training
population size (Fig. 5). For BE, the PAs for the within-river mod-
els were more than twice as large as the PAs across rivers or across
the entire study (Fig. 54). We saw similar trends for BS and height
growth, but with some anomalies (Fig. 5 Band C). Because train-
ing population size affects PA (Fig. 5 and SI Appendix, Fig. S1),
PAs may have been higher and more consistent if we had more
genotypes per river. For example, PAs increased with increasing
training population size in the analyses described above (Fig. 5).

Few SNP-Phenotype Associations Were Detected after
Accounting for Population Structure. To maximize the probability
of detecting SNP—phenotype associations, we conducted GWAS
using 20.8 M SNDs at two hierarchical levels; within-stands and

https://doi.org/10.1073/pnas.2425691122 3 of 12


http://www.pnas.org/lookup/doi/10.1073/pnas.2425691122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2425691122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2425691122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2425691122#supplementary-materials

Downloaded from https://www.pnas.org by ROTHAMSTED RESEARCH on July 23, 2025 from | P address 149.155.29.207.

4 0f 12

A Bud flush B

C Height growth

Observed bud flush (PBLUP)
Observed bud set (PBLUP)

-2 =

River

Dean
Klinaklini
Homathko
Salmon
Vancouver |.
Skwawka
Lillooet
Squamish
Fraser
Nooksack
Skagit
Skykomish
Snoqualmie
Puyallup
Columbia
Willamette

1.0 4

0.5

0.0

-0.5 4

-1.0 4

Observed height (PBLUP)

BeoenmoOPJgOoODBDODqgQOoRE O DI

-1.5 4

T T T T
-1.5 -0.5 0.5 1.5

Predicted bud flush (GBLUP)

T
0.5 0.0
Predicted bud set (GBLUP)

0.5

T T T T T T T
1.0 -0.75 -0.50 -0.25 0.00 0.25 0.50

Predicted height (GBLUP)

Fig. 3. Predicted phenotypic values across all hierarchical levels (genotypes, stands, and rivers) based on field measurements (PBLUP) versus SNPs (GBLUP).
Predicted values for BF (A), BS (B), and height growth (C) were based on field measurements of 840 P. trichocarpa clonal genotypes or SNP data. GBLUP values
are averages of 100 random, 10-fold cross-validations with training population sizes of 756, prediction population sizes of 84, and 20,770,783 SNPs filtered using
the liberal criteria (S/ Appendix, Table S4). The dashed line is the simple linear regression of PBLUP on GBLUP.

across-stands-and-rivers. These 20.8 M SNDPs were those remaining
after using the “liberal” filtering criteria (SI Appendix, Table S4).
Using analyses designed to account for SNP population structure
and cryptic relatedness (72), we detected many associations when
we used phenotypes that incorporated variation among genotypes,
stands, and rivers (Fig. 64 and SI Appendix, Fig. S2 A and B).
However, when we conducted the same analyses within stands

A Genotype (all hierarchical levels) B Genotype (SR)

(i.e., using the genotype-within-stand phenotypes), we detected
only one BF association (Fig. 6B and SI Appendix, Fig. S2 A and
B). Results were similar when we used the first five SNP PC scores
(SPC1-SPC5) to correct for population structure, and when
we excluded SNPs with minor allele frequency (MAF) < 0.01
(SI Appendix, Fig. S2 C—F). In contrast, there was little difference
between the two types of analyses (i.e., across all hierarchical
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(SR) broad-sense heritabilities (H?) are shown in parentheses.

levels versus among genotypes-within-stands-and-rivers) when we
analyzed a less structured subset of genotypes from the Skagit,
Puyallup, and Columbia Rivers (S Appendix, Fig. S2 G and H).

In both cases, only the single BF association was detected.

Within-Stand Genomic Prediction and GWAS Were Probably
Limited by Population Differences in Genetic Architecture. We
hypothesized that population differences in genetic architecture
were partly responsible for the low PAs and few SNP associations

A Genotype (all hierarchical levels)

within stands. To test this, we examined two important components
of genetic architecture—allele frequencies at causal loci and LD.
Population differences in other components of genetic architecture,
such as allele effect sizes and epistasis, may have also contributed (56)
but were not studied because much larger samples would be needed.

First, we considered population differences in allele frequencies
at causal loci (e.g., QTN or quantitative trait nucleotides). Allele
frequencies affect the percentage of variation explained by a locus
(PVE) and, thus, the ability to detect SNP—phenotypic associations
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Fig. 6. SNP-phenotype associations for BF, BS, and height growth. A GWAS was conducted across all hierarchical levels (A) and for genotypes-within-stands-
and-rivers (B). GWAS was conducted using 20,770,783 SNPs filtered using the liberal criteria (S/ Appendix, Table S4) and the identity-by-state (IBS) kinship matrix.
The blue line indicates a P-value of 107, and the red line indicates a Bonferroni-corrected P-value of 2.4 x 107 (a = 0.05).
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using GWAS or predict phenotypes using GBLUP. Because we
tested 20.8 M SNPs (one SNP every 20 bp, SI Appendix, Table S4),
our analyses likely included most of the common adaptive trait
QTN (i.e., excluding QTN with MAF < 0.003). As described
above, allele frequency differences among rivers were substantial.
Many pairwise Fg values among rivers were close to 0.10 or greater
(SI Appendix, Fig. S3A) and allele frequency differences among
rivers averaged 0.05 (SD = 0.06). Finally, differences in allele fre-
quencies were structured—17% of SNPs (i.e., >3 M SNPs) had
allele frequencies that were correlated with laticude at the river level
(i.e., P < 0.05). Thus, for the causative loci alone, among-river
differences in MAF and PVE are probably substantial—leading to
the poor success of GWAS and genomic prediction using pooled
within-population analyses.

Second, we studied population differences in LD, which may
result from differences in demographic history, allele frequencies, or
linkage phases between loci. The extent of LD (i.c., average 7 > 0.2)
varied roughly threefold among rivers (6 to 18 kb) and was on
average 29% higher within rivers than across rivers (S Appendix,
Fig. S4). The relationship between LD and physical distance varied
substantially by MAF (Fig. 74). Thus, we also quantified LD in
MAF bins chosen to ensure all pairs of loci in a bin could have an
7 of at least 0.5 (SI Appendix, Table S5). In these analyses, LD was
near zero for bins containing rare SNPs (MAF < 0.01). In contrast,
for common SNPs (MAF > 0.10), LD extended from 2 to 3 to over
10 kb (Fig. 7B). Because #* values were highly variable, even within

MAF bins (Fig. 7C), we estimated the probability that a causative
polymorphism (e.g., QTN) would be tagged (+* > 0.6) by at least
one SNP within 10 kb (Fig. 7D). This probability was sensitive to
MAF filtering and the number of SNPs used to tag the QTN.
Opverall, more than 1 M SNPs would be needed to taga QTN with
a probability of 0.5. Many more SNPs would be required to tag
QTN with even greater confidence, particularly if the QTN allele
is rare (Fig. 7D). Thus, allele frequency differences among stands
and rivers resulted in corresponding differences in LD, which likely
affected the within-stand GBLUP and GWAS analyses.

Differences in linkage phase between QTN and linked markers,
such as those resulting from different population histories, will
also contribute to population variation in LD. To evaluate this
contribution, we calculated haplotype sharing, a measure of link-
age phase and allele frequency consistency among individuals,
either within or among populations. Haplotype sharing was 17
to 21% lower for individuals from different rivers compared to
individuals from the same stand or from different stands within
rivers (Fig. 84). Patterns of haplotype sharing for pairs of rivers
strongly resembled those for allele frec&uency differentiation
(81 Appendix, Fig. S3, r = -0.87, P < 10™ from a Mantel test),
suggesting that allele frequency differences were largely responsible
for the reduced haplotype sharing among rivers. Indeed, haplotype
sharing was much higher when analyses were limited to SNPs that
had similar allele frequencies in each river, but the difference
among hierarchical levels was still detectable (Fig. 8B).
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Fig. 7. LD and probability of tagging causative loci using
different MAF thresholds. LD was calculated using different
MAF filtering criteria (A), by MAF bin (B), and for a bin with
MAF ranging between 0.071 and 0.132 (midpoint = 0.102)
(C). MAF bin ranges (S/ Appendix, Table S4) are represented
by their midpoints, and LD was calculated as the average r*
for pairs of SNPs in each 1-kb distance class. The probability
of tagging a hypothetical QTN was calculated using different
numbers of randomly selected SNPs (D). Tagging was defined
as the presence of at least one SNP in LD (? = 0.6) with the
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QTN within 10 kb. Averages and SE (error bars) were based
on 100 random samples. Numbers of SNPs are shown in
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A MAF > 0.01 across all rivers B 0.01 < MAF < 0.11 in each river

1.0 4 1.0 5

0.9 1 0.9 1
S S —
(o)) (o]
£ £
S 0.8 S 0.8
< <
] ]
(0] (]
o o
2 0.7 2 0.7
o Ke]
Q. Qo
© —— ©
I I

0.6 0.6

0.5 L 05

River Stand(R) Geno(SR) River Stand(R) Geno(SR)

Fig. 8. Linkage phase consistency (haplotype sharing) among genotypes-
within-stands-and-rivers [Geno (SR)], stands-within-rivers [Stand (R)], and
rivers (River). (A) Analyses were based on 1,082,633 SNPs with MAF > 0.01
separated by at least 300 bp and haplotype sharing was calculated for all pairs
of SNPs located within 10 kb of each other. (B) Analyses were based on 1,002
SNPs with 0.01 < MAF < 0.11 in each of the 16 rivers and haplotype sharing
was calculated for all pairs of SNPs located within 1 Mb of each other. SE (error
bars) were calculated as described in the S/ Appendix, Materials and Methods.

Delineation of Seed Zones. To illustrate the practical implications
of our results, we compared the ability of different types of data
(i.e., phenotypic, geographic, climate, and SNPs) to reconstruct
seed deployment zones delineated using different criteria (Fig. 9).
Seed zones are geographic areas of genetic and environmental
homogeneity used to guide deployment (e.g., planting) of tree
genotypes (73). For natural populations, we assume that genotypes
collected within a seed zone can be deployed within the same zone
without risking maladaptation. When the “true” seed zones were
assumed to correspond to the 16 rivers (Fig. 94), phenotypic data
were best for reconstructing these zones, although SNPs were
only slightly less accurate (cluster purity of 0.782 versus 0.752).
Purity is a 0 to 1 measure of cluster quality, or the extent to
which a clustering method recovers known classes. The cluster
purities of geographic and climate data were substantially lower for
this scenario (0.643 and 0.573). However, when true seed zones
were delineated based on phenotypic data, reconstructions based
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on geographic, climate, and SNP data had more similar cluster

purities (Fig. 9 Band C).

Discussion

Our results highlight the challenges of using genomic information
to understand the genetics of complex quantitative traits in natural
populations. Because climate is a primary driver of local adapta-
tion (74), we focused on climate adaptation traits, or simply “adap-
tive traits.” These traits have been used for guiding tree gene
conservation, breeding, and assisted migration (73, 75-77). We
studied height growth and vegetative bud phenology using GWAS
and genomic prediction, two widely used approaches in forest
trees (49, 50, 78).

GWAS has been used in natural populations—with the goal of
identifying causal loci (42, 79, 80), enhancing tree breeding (81,
82) or informing assisted migration (83). Nonetheless, many stud-
ies are compromised by population structure, the inclusion of
closely related individuals, low marker coverage, or small popula-
tion sizes (i.e., low power) (49, 84). These limitations may lead to
misidentification of causal loci and other misinterpretations. In
contrast, genomic prediction works best in populations of closely
related trees and where identification of causal loci is not an
explicit goal. Thus, genomic prediction has been mostly used to
select desirable genotypes in breeding populations of forest trees
(reviewed in ref. 78).

We used GWAS and genomic prediction to understand climate
adaptation traits in natural populations of black cottonwood. In
particular, we partitioned genetic variation into hierarchical levels
to understand how population structure affects inferences about
complex quantitative traits. Our results highlight the challenges
of using GWAS and genomic prediction across populations with
different genetic architectures. Finally, compared to genomic
information, population-level phenotypes were predicted nearly
as well by climate alone.

Genomic Prediction and GWAS Were Highly Sensitive to Population
Genetic Structure. We showed that phenotypic variation in adaptive
traits was highly structured and strongly associated with climate,
which is consistent with other studies of black cottonwood and
other wide-ranging tree species (7, 8, 17, 42, 44, 69, 71, 85-89).
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Fig. 9. Delineation of stand-level seed zones using geographic (Geo), climate (Clim), SNP, or phenotypic data (Pheno) for 840 P. trichocarpa clonal genotypes
sampled from 91 stands in 16 rivers. Different numbers (K) of true seed zones were assumed to correspond to rivers (A), or seed zones were defined using
k-means clustering of phenotypes (B and (). The success of reconstructing true seed zones based on different types of data was evaluated using cluster purity,
which is the proportion of stands that were both in the same true seed zone and in the same reconstructed seed zone. Averages and SE (error bars) were based
on 100 replications of each analysis and calculated as described in the S/ Appendix, Materials and Methods.
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In contrast, SNP variation was moderately structured but clearly
associated with climate. Other population genomic studies found
similar evidence for SNP population structure, but patterns of
variation were typically much weaker than for adaptive traits, both
in Populus (42, 88-90) and other trees (16, 17). In our study, the
difference between phenotypes (average Qs = 0.55) and SNPs
(overall Fg- = 0.04) was pronounced but not surprising, given that
most SNPs are probably selectively neutral.

When we conducted analyses across all hierarchical levels (i.e.,
rivers, stands, and genotypes), we detected one association with
BE two associations with BS, and over a dozen associations with
height growth. However, when we accounted for population struc-
ture using SNP PCs (42, 52) and by conducting within-population
analyses, most associations disappeared. This suggests they were
false positives caused by population structure—but could indicate
the presence of causal loci strongly differentiated among popula-
tions. Thus, other lines of evidence (e.g., based on networks of
gene coexpression, comethylation, or association with metabolites)
would be needed to infer the biological functions of these loci (91,
92). Ultimately, gene editing provides a powerful tool for func-
tional validation of genes implicated by GWAS (49).

Although the number of GWAS hits declined after correcting
for population structure, a single BF association remained signif-
icant. This association was found even after excluding rare alleles
(i.e., MAF < 0.01) and analyzing a subset of genotypes from three
rivers in the core of the species range. This BF association involved
30 common SNPs (MAF ~ 0.10, P-value < 2.4 x 107) in strong
LD, spanning a region of nearly 60 kb. The same association was
reported by Evans et al. (42), but McKown et al. (44) found no
BF associations in this region in a study of black cottonwoods
sampled mostly from British Columbia. This difference highlights
the influence of genetic architecture on the ability to detect causal
loci using GWAS.

In GWAS, uncorrected population structure will likely lead to
misidentification of causal loci—and the numbers of false positives
can become very large as more SNPs are analyzed. For example,
among the 20.8 M SNPs we analyzed, ~3.5 M had allele frequen-
cies that were significantly correlated with laticude (uncorrected
P<0.05). In these cases, even rigorous accounting for population
structure may fail (52). Thus, because adaptive traits tend to cor-
relate with population structure, only associations that are also
detected within populations should be considered robust.

Likewise, our ability to predict phenotypes using SNP markers
mostly resulted from population structure—PAs were high at the
river level (0.950 to 0.976), moderate at the stand-within-river
level (0.451 t0 0.659), and low for genotypes within stands (0.067
t0 0.190). In contrast, to the other hierarchical levels, within-stand
prediction likely resulted from linkage between SNPs and causal
loci or the ability of SNPs to estimate relatedness among trees.

What are implications for gene resource management? First,
there is little to be gained by using SNPs to predict phenotypes
for rivers or stands. At the river level, prediction was almost as
good as using climate variables alone (Fig. 4D). At the stand level,
SNPs were better predictors than climate variables (Fig. 4C), but
only 2 to 8% of the genetic variation occurred at that level (Fig. 2).
If phenotypes are available from field tests, within-stand prediction
could be used to expand existing breeding populations—but PAs
are very low and wild genotypes are rarely infused after the first
generation of breeding. Also, genomic prediction would need to
be weighed against directly comparing new field selections with
advanced-generation genotypes in field tests where family or clonal
heritabilities can be very high.

Although we focused on height growth and phenology traits,

population structure will make it difficult to understand the

https://doi.org/10.1073/pnas.2425691122

genetic basis of other climate adaptation traits as well. For exam-
ple, drought tolerance is a complex quantitative trait with pro-
nounced population structure associated with climate (93, 94).
However, plant biochemical traits (95) or other traits with little
population structure should be more amenable to GWAS and
genomic prediction. Finally, GWAS should work well for traits
controlled by one or a few genes, such as major gene resistance to
white pine blister rust disease (96).

Population-Level Phenotypes Can Be Predicted Using SNPs or
Climate Variables. There has been much interest in using genomic
information to infer maladaptation to future climates and guide
assisted migration (83, 97, 98). Thus, a variety of statistical
approaches have been developed to predict maladaptation from
genomic data (e.g., genomic offsets, 83) that are analogous to
earlier approaches using phenotypes (7, 8, 99). Using phenotypes
measured in the field, we demonstrated that climate adaptation
traits can be predicted using SNPs but were predicted nearly as
well using climate variables alone. Furthermore, there were few
differences between seed zones delineated using phenotypes, SNDs,
or climate variables (Fig. 9). Genomic offset experiments suggest
that SNP-based genomic offsets can be used to predict population
phenotypes better than climate or geographic variables alone,
but not consistently (100, 101). These conclusions are generally
consistent with our results but the value of SNP versus climate
information seemed to be less pronounced in our study, at least
at the river level.

As we found using genomic prediction, the performance of
genomic offsets seems to rely on population structure—random
markers performed as well as known causal markers in simulations
(102) and as well as candidate loci in empirical studies (100, 101),
but see ref. 103. In addition to being surrogates for phenotypic
population structure, SNPs may enhance prediction by reducing
error in climate variables. Predictions from climate interpolation
models are not without error, particularly in remote and moun-
tainous regions and when low-resolution climate data are used
(e.g., 1 x 1 km, 100, 101)—and adding SNP data may counteract
these errors. If so, climate-only models might be improved by
increasing the accuracy of climate data; perhaps by establishing
networks of ‘micro’ weather stations (30). Because this would
improve assisted migration for all species, it might be a wiser use
of resources compared to developing new genomic resources for
many individual species.

SNPs might also improve predictions by accounting for phe-
notypic relationships among populations unrelated to cli-
mate—e.g., those resulting from demographic processes such as
colonization, migration, or secondary contact. In any case, based
on our results and genomic offset studies, it is unlikely that the
predictive power of genomic offsets comes from information
derived from causal loci. On the other hand, using SNPs to guide
assisted migration has two potential pitfalls. First, neutral popu-
lation structure may follow different spatial patterns compared to
phenotype-climate associations, leading to poor prediction of
maladaptation. Second, because the acquisition of SNP data will
probably delay assisted migration for most species, it might be
more pragmatic to use climate-only models instead. Simulations
suggest that a priori selection of climate variables improves
climate-only models (102). Thus, because phenotype-climate
associations are reasonably well understood across species (16, 28,
104), we argue that important climate variables can be reasonably
selected a priori and used to guide assisted migration in the
absence of SNP data.

When phenotypic and genomic data are unavailable, provi-
sional conservation and assisted migration decisions can be made
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using climate alone. Novel climates, which are good candidates
for gene conservation, can be identified by clustering stands using
multivariate climate distance functions (105) and an analogous
approach can be used to delineate seed zones. Likewise, climate
distances among locations can be used to practice assisted migra-
tion (106, 107). Source populations, which are assumed to be
well adapted to recent historical climates, may be deployed to
locations where the projected future climates are similar (i.e.,
match). A climate match is one with a climate distance less than
or equal to the “climate distance threshold” (CDT), which is the
climate distance beyond which tree performance is expected to
be unacceptable. Although it is best to use provenance tests to
infer CDTs, Shalev etal. (107) discuss alternative approaches.
Using a multivariate climate distance function, the most robust
matches are those that fall within the CDT using multiple climate
projections.

Why Were PAs So Low and Why Did We Find Few GWAS SNPs
within Populations? Given the large number of SNPs we used,
why was it difficult to detect associations and predict phenotypes
within populations (i.e., after rigorously accounting for population
structure)? Based on our results and interpretation of the relevant
literature, we offer four main explanations: 1) complex quantitative
traits are controlled by many genes with small effects, 2) frequencies
of causative polymorphisms differ among populations, 3) LD is
mostly low, particularly for rare alleles, and 4) frequencies of
marker alleles and LD differ among populations.

Evidence suggests most traits in forest trees are controlled by
many loci with small effects (50, 51), and studies of outcrossing
plants, livestock, and humans lead to similar conclusions (108—
110). These factors have three important effects for complex quan-
titative traits. First, very large sample sizes will be needed to detect
most small-effect loci, probably many more than have been used
or perhaps are even feasible (110). Second, low-powered experi-
ments are likely to report many spurious associations (49, 50).
Finaly, thousands of GWAS loci may be needed to explain most
of the genetic variation in quantitative traits. The challenges in
understanding the genetic basis of human height provide a cau-
tionary tale. Recent success at explaining most of the variation in
human height (e.g., > 50%) required millions of study participants
and more than 12 K independent GWAS loci (i.e., SNP associa-
tions) (111).

Causal loci are difficult to detect when allele frequencies differ
among populations (56). Because we used 20.8 M markers with an
average spacing of about 20 nt across the genome, we probably gen-
otyped most of the causal QTN, yet detected few GWAS loci. The
power to detect a causal locus (¢) depends on sample size (V) and the
proportion of phenotypic variance explained by the causal locus
(PVE)), where PVE _ is a function of allele effects (e.g., standardized
regression coefficient, f) and MAF:PVE, =2 - B> - MAF (1 — MAF)
(110). Thus, important contributors to GWAS power are MAF, num-
ber of contributing loci (reflected in the standardized regression coef-
ficients), and experimental N. When MAF varies across populations,
GWAS power also varies, which contributes to poor reproducibility.
Additionally, it is unlikely that all causal loci can be assayed using
SNPs alone because phenotypic variation also arises from other types
of genomic variation (112). Finally, population differences in LD
(i.e., ) reduce power even further when linked markers (22) are used
to detect causal loci. In this case, PVE,, = 72 - PVE, (110).

Generally, low LD in forest trees has been attributed to an
outcrossing mating system, large effective population size, weak
selection, and little population structure for most loci (113, 114).
However, more recent studies revealed exceptions (115), and
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generally indicate that LD is higher and more variable across the
genome than previously thought (67, 116, 117). In our study, LD
for common SNDPs (i.e., MAF > 0.1) decayed below 0.2 within 1
to 3 kb on average, and extended well beyond 10 kb for more than
10% of SNP pairs (Fig. 7C). On the other hand, LD was near
zero for rare SNPs (MAF < 0.01, Fig. 7 A and B). Mostly low LD
and small locus effect sizes make it difficult to identify causal loci
using linked markers. Furthermore, GWAS power is particularly
low when allele frequencies differ between markers and causal loci
(118). That is, differences in allele frequencies can make causal
loci “invisible” to most nearby markers. In our study, an LD > 0.6
seemed necessary to detect the single BF locus. Using 0.6 as the
LD cut-off, more than 1 M SNPs with MAFs > 0.01 would be
needed to have a 50% chance of tagging a causal locus (Fig. 7D).
Overall, our ability to detect the BF locus seemed to rely on a high
MAF for the causal locus (i.e., > 0.05), high heritability for the
phenotypic trait (0.79), and large locus effect size (i.e., PVE ~ 5%).

Population differences in linkage phase may also obscure
species-wide associations using linked markers—SNPs associated
with positive phenotypes in one population may be associated
with negative phenotypes in another. This may have been a con-
tributing factor in our study because haplotype sharing was great-
est within stands and lowest among rivers (Fig. 84). However, we
showed that the reduced haplotype sharing among rivers was
mostly due to differences in allele frequencies (Fig. 8B8). Thus,
differences in linkage phase are probably not the main reason for
low GWAS power and PA.

Opverall, while other differences in genetic architecture (e.g.,
allele substitution effects or epistasis) may also be contributing,
we hypothesize that the main limiting factors for GWAS and
genomic prediction are allele frequency differences in causal and
marker loci among populations (56, 57). Across-population anal-
yses lead to incorrect inferences about the causal relationships
between SNPs and phenotypes, whereas pooled within-population
analyses have low power to detect GWAS loci or predict
phenotypes.

Implications. We show that across-population GWAS and genomic
prediction are strongly influenced by population structure, rather
than the causal relationships between SNP loci and adaptive traits.
Thus, across-population analyses promote incorrect inferences
about causal loci. Instead, analyses of single populations or the
use of pooled within-population analyses should lead to more
robust conclusions. The drawback of using a single population is
that causal loci may be missed because they are not segregating.
‘The drawback of using pooled within-population analyses is that
power is compromised by differences in genetic architecture among
populations. In any case, to detect most SNP—trait associations
and predict phenotypes accurately, population sample sizes
in the tens to hundreds of thousands will probably be needed.
Obviously, experiments of this size will be infeasible for most forest
tree species, even for a single population. Furthermore, based on
human studies, substantially larger experiments may be needed
(111). Thus, we conclude that GWAS analyses are unlikely to
detect most of the causal loci, explain a substantial proportion
of trait heritability, or contribute meaningfully to traditional tree
breeding, gene conservation, or assisted migration. GWAS can
almost certainly be used to detect some of the causal loci, but
perturbing expression in transgenic plants or gene editing may
ultimately be required to validate causal loci (49). Likewise, the
success of within-population genomic prediction will improve as
sample sizes become larger, but predictive abilities in most natural
populations will always be constrained by the low relatedness
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among trees. Compared to the predictive abilities of progeny tests
alone, it is questionable if genotyping and other costs needed to
use genomic prediction in natural populations will be justified for
adaptive trait breeding or assisted migration.

Despite the challenges, substantial research has been devoted
to identifying or tagging causal loci for practical applications such
as assisted migration. In contrast, our results demonstrate the
power of using neutral loci or climate variables to predict
population-level phenotypes, at least for species with local adap-
tation to climate. Black cottonwood differs from other tree species
in having a mostly riparian distribution, substantial amounts of
vegetative reproduction, and interspecific hybridization. None-
theless, our results are expected to be relevant to many temperate
zone tree species, including conifers. First, we designed our col-
lections to sample populations that had a common demographic
history unaffected by recent introgression from other Populus
species (i.e., figures 1-1 and 1-2 in ref. 119). Second, we focused
on the portion of the range where black cottonwood has optimal
growth, high levels of phenotypic variation, and weak interpopu-
lation differentiation for neutral markers (66, 67, 86, 120). This
resulted in levels of population differentiation similar to many
other tree species for quantitative traits (Qgy) and neutral genetic
markers (Fgp) (17). Our results are less relevant for tropical and
subtropical species that have little climate-based population struc-
ture, but may be relevant for species exposed to geographic pat-
terns in seasonal drought (121). Thus, our conclusions mostly
apply to locally adapted plant and animal species for which assisted
migration is considered (25).

We hypothesized that SNPs improve climate-based prediction
of population phenotypes by helping to characterize population
structure, particularly when inappropriate climate variables are
used or when the climate variables have error. Given the urgent
need to conserve natural populations and ecosystems, our results
suggest that climate variables alone can be used to predict popu-
lation phenotypes, delineate seed zones and deployment zones,
and guide assisted migration.

Materials and Methods

Plant Materials and Test Plantations. In the winter of 2008, we obtained
or collected stem cuttings from 1,101 P trichocarpa genotypes, representing a
large portion of the latitudinal range of the species (Fig. 14; 67). In April and
May of 2009, we established rooted cuttings in three test plantations spanning
the south-central portion of the black cottonwood range west of the Cascade
Mountains (Fig. 14 and S/ Appendix, Materials and Methods).

Phenotypic Measurements and Analysis. Between 2009 and 2013, we
measured height growth and two phenological traits, vegetative BF and BS, by
visually classifying the phenological state of each tree using six-stage scoring
scales (S/ Appendix, Fig. S6). For each plantation and year, we chose measure-
ment dates to maximize the phenotypic variation in BF and BS. In addition, we
measured the currentand previous year heights of the main stem as the distance
from the groundline to the apical bud or to the most recent bud scale scars (i.e.,
position of last year's apical bud). For data analyses of height growth (HT), we
averaged height growth for the 2010 to 2012 growing seasons. Similarly, when
multiple BF and BS measurements were available, we first identified the meas-
urement with the highest heritability for a given year (S/ Appendix, Materials
and Methods) and then averaged measurements across years. Finally, we used
mixed linear models to estimate variance components, heritabilities, genetic
correlations, and random effects (i.e., BLUPs) at the river (R), stand-within-river
[S(R)], and genotype-within-stand-and-river [G(SR)] levels (S Appendix, Materials
and Methods). Thus, this approach allowed us to partition genetic variance and
calculate “phenotypes” at three hierarchical levels (i.e., river, stand, and geno-
type), as well as across all levels (G).

https://doi.org/10.1073/pnas.2425691122

SNP Data. We obtained data for 28,342,758 biallelic SNPs (https://chi.ornl.gov/
gwas-dataset/) from 970 P, trichocarpa individuals (clonal genotypes) and then
removed 130 individuals from this dataset for the final analyses. We excluded
individuals with a mean sequencing depth <7, eliminated close relatives using
an approach similar to that of Evans et al. (42), and then excluded 42 other indi-
viduals for other reasons (S Appendix, Materials and Methods). The remaining
840 clonal genotypes represented 91 stands in 16 rivers (Fig. 1). For the final
analyses, we used VCFtools v. 0.1.14 (122) and PLINK v.1.90b4.4 (123) to filter
SNPs based on “strict” and "liberal” criteria, and then simulated a set of 51,820
"RAD-Seq" markers (S Appendix, Table S4 and Materials and Methods).

SNP Population Structure and Allele Frequency Differences. We calculated
individual-tree PC scores using the liberally filtered SNP set and the SMARTPCA
software package (v. 13050; 124). For this analysis, we selected a subset of nonsin-
gleton SNPs separated by at least 300 bp (vcftools --thin 300), and then removed
one SNP from each pair of loci linked at 7 > 0.8 to avoid artifacts caused by large
blocks of tightly linked markers (124, 125). Bivariate plots of PCs were used to
reveal population structure at the river level. We also used SMARTPCA to calculate
pairwise estimates of F¢; at the river level based on Hudson's estimator, which
is robust to the effects of rare-allele SNPs (126). Finally, we used the same SNPs
and the HIERFSTAT package in R (127) to estimate SNP variance components
and hierarchical F-statistics at the river, stand, and genotype levels. This analysis
was designed to match our analyses of phenotypic data (see above, S/ Appendix,
Materials and Methods).

To quantify allele frequency differences among rivers, we first calculated the
allele frequencies of all liberally filtered SNPs (plink --freq --family) in each river.
Then, we calculated pairwise allele frequency differences among rivers and cor-
relations between the river-level allele frequencies and latitude using R (128).

GBLUP and GWAS. We used the kin.blup function of the mBLUP R package
(129) to predict phenotypes based on SNP markers (i.e., GBLUP approach; 58,
130). Genomic relationship matrices (GRMs) were calculated using the kin.blup
function of rBLUP or the --make-grm-alg 7 option of GCTA(131). We also used
a subset of analyses to test various Bayesian approaches implemented in the
BGLR R package (132), and the results were essentially the same. The pheno-
types for BF, BS, and HT were the random effects for three hierarchical levels,
G(SR), S(R), and R, as well as the combined effects across all levels (G), using
random effects from Model 2 (S/ Appendix, Materials and Methods). We tested
the effect of training population size (N,) and numbers of SNP markers for some
analyses and evaluated the performance of GBLUP using PA, which is the Pearson
product-moment correlation coefficient between the input phenotypes and the
phenotypes predicted from the SNP data (S Appendix, Materials and Methods)
(59, 133). Finally, we compared the GBLUP approach described above (i.e., based
on the GRM alone) to models that also included the first five PC scores of the
genomic relationship matrix as fixed-effect covariates (63).

We performed GWAS analyses on the G(SR) and G phenotypes using the meth-
ods described in refs. 42 and 133. Briefly, we used the EMMAX software to imple-
ment the Efficient Mixed Model Association Expedited approach (72). Models forall
GWAS analyses included the identity-by-state kinship matrix to control for cryptic
relatedness and population structure. Asubset of analyses also included the first five
PCs from the SMARTPCA analyses described above as fixed-effect covariates (52).

LD and Haplotype Sharing. Across all hierarchical levels, we calculated 7 for
each pair of SNPs located within 10 kb of each other using different MAF cut-offs
or bins (S/ Appendix, Table S5 and Materials and Methods). We used these data
to estimate the probability of tagging a randomly assigned (hypothetical) QTN.
This probability was calculated as the proportion of times at least one SNP within
10 kb had # = 0.6 with the hypothetical QTN. For the within-river analyses, we
used the same approach but equalized sample sizes within rivers using random
subsampling (S/ Appendix, Materials and Methods).

To quantify linkage phase consistency among rivers, stands-within-rivers, and
genotypes-within-stands-and-rivers, we calculated haplotype sharing (134-136)
at each of these levels (S Appendix, Materials and Methods).

Geographic and Climatic Random Forest and Ridge Regression Analyses.
We used rrBLUP and random cross-validations to compare the predictive abili-
ties of SNPs versus those obtained using geographic and climatic variables. The
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geographicvariables consisted of latitude, longitude, and elevation, whereas the
climate variables consisted of 21 temperature and precipitation-related variables
from ClimateNA v5.21 (29).

We used rBLUP to be consistent with the GBLUP analyses described above. We
also used lasso regression to evaluate the relative importance of the geographic
and climatic variables. Because lasso regression involves variable selection, it is
useful for interpreting the relative importance of the regression predictors. The
details of these analyses are described in the S/ Appendix, Materials and Methods.

Delineation of Seed Zones. We evaluated the performance of phenotypes,
SNPs, climate variables, and geographic variables for delineating seed zones.
Although Populus species are typically propagated clonally, the term “seed zone”
is often used to denote native populations of forest trees with sufficient genetic
homogeneity to be treated as a single population for reforestation purposes.
We used three methods to delineate the true or target seed zones and then
compared these to "reconstructed” zones delineated using phenotypes or ridge
regression predictions (i.e., for SNPs, climate variables, and geographic variables).
We delineated true zones by 1) assuming they corresponded to the 16 rivers, 2)
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using K-means clustering to delineate 16 zones based on the phenotypes, and
3) using K-means clustering to delineate three zones based on the phenotypes.
To compare the true versus reconstructed zone allocations, we calculated cluster
purity (137), which is the proportion of stands in each reconstructed seed zone
that were also in the same true zone (S Appendix, Materials and Methods).
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