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Agroecosystem models typically simulate average conditions in fields or over a gridded landscape. This approach
overlooks the spatial variation that shapes resilience at the farm scale. Yet, this variation can strongly influence
production and regulating services, and their robustness to stresses. We developed a model-independent five-step
framework for capturing farm-scale variation in process-based simulations for agroecosystem resilience. The
framework comprises: 1) data acquisition; 2) data processing; 3) simulation; 4) output sampling, and 5) analysis
and interpretation.

We applied the framework to two contrasting UK case exemplars, differing in climate, soils, and management.
We used the Rothamsted Landscape Model to simulate calorific productivity, nitrate runoff and N2O emissions.
Simulations captured realistic farm-scale variability, including rare outcomes, reflecting the emergent effects of
heterogeneous soils, weather, and farm management.

This flexible and transferable approach enables the simulation of agroecosystem performance and resilience
using process-based models. It can help to explore system dynamics and risks at the farm scale under plausible
spatial and temporal heterogeneity. By explicitly capturing these sources of heterogeneity at the scale most
relevant for decision making, i.e., the farm, it provides a robust basis for applied research, policy design, and

scenario exploration under current or future environmental change.

1. Introduction

Historically, agroecosystems research focused on developing strate-
gies to improve net primary productivity, driven by the needs of a
growing global population (Conway, 1987). Over time, the focus shifted
toward sustainability, balancing productivity with environmental
stewardship and resource conservation amid concerns over unintended
consequences (Kleinman et al., 2018). Today, agricultural research,
often takes a systems approach that integrates productivity with sus-
tainability outcomes (Rao et al., 2004; Zhang et al., 2024). This includes
frameworks that consider co-benefits and trade-offs between produc-
tion, natural resource quality, profitability, and environmental impacts
(Melchior and Newig, 2021).

Today, agriculture faces multifaceted challenges driven by socio-
economic and environmental pressures. Unpredictable climate change
and associated stresses, like pervasive soil degradation, threaten agro-
ecosystems (Lal, 2021). Extreme weather events, like droughts and

heavy rainfall, are becoming more frequent and intense, damaging crops
and the environment, and indirectly affecting food prices and avail-
ability (Calzadilla et al., 2013). Climate change is also shifting pest and
disease distributions, increasing infestations and crop losses (Yang et al.,
2024). Geopolitical tensions, including US-China trade disputes and the
recent war in Ukraine, have disrupted global supply chains, making
agricultural markets more vulnerable and prompting protective mea-
sures like grain export limits (Orehova and Ischuk, 2023).

Given this wide range of pressures on agroecosystems, it is increas-
ingly important to explore and quantify resilience. Originally applied to
ecological systems (Holling, 1973), the concept of resilience was later
extended to socio-ecological systems (Folke et al., 2010; Walker et al.,
2004) and agroecosystems (Darnhofer et al., 2010). Resilience is
commonly defined as the ability to return to a stable state after distur-
bance (Davoudi et al., 2012; Scott, 2013) or more generally, to sustain
(or improve) function over time (Pret et al., 2025). Variation within
systems and among inputs and outputs in response to abiotic and biotic
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stresses is critical to understanding agroecosystem resilience compre-
hensively. Despite this, 47 % of farm-scale resilience studies cited in a
2025 review used only average-value metrics to assess farm perfor-
mance (Pret et al., 2025). Critically, this can obscure variation such as
very below-average performance during specific years (e.g., dry years).

To design innovative farming systems that support sustainable
development and remain resilient to extant of predicted abiotic and
biotic stresses, it is imperative to understand resilience drivers at the
farm scale (Pret et al., 2025). This scale enables detailed insight into the
manifold interactions and system dynamics shaping agroecosystem
resilience, including how stresses, management, ecological functions,
and socio-economic factors interact. It is also the main financial ac-
counting and decision-making unit and is relevant to broader scale as-
sessments (Hoy, 2015).

Field scale studies typically focus on productivity alone, as infra-
structure for assessing other outcomes is often lacking, though excep-
tions do exist as exemplified by heavily instrumented strategic research
platforms (e.g., Orr et al., 2016). Conversely, landscape-scale studies
take a broader, often more environmental perspective given the routine
strategic monitoring of environmental outcomes at such scales. Here,
there can be a lack of attention to other farm performance metrics
relevant to farmers, landowners, and policymakers. Even explicitly
farm-scale studies often consider only one or two dimensions of farm
performance (agronomic, economic, social, environmental), with few
addressing three or all four (Pret et al., 2025).

Process-based models (PBM’s) are frequently used to assess agro-
ecosystem resilience. In a review of studies quantifying farm-based
resilience, most relied on mechanistic crop, livestock, or farm models
(55 %, n = 42; Pret et al., 2025). Models are valuable for simulating
complex interactions and predicting system responses to environmental
and management changes. They allow exploration of variation by
generating multiple scenarios, unlike on-farm experimental studies. A
wide range of PBMs now exist, ranging from process-specific models (e.
g., RothC, Coleman and Jenkinson, 2014; DNDC, Giltrap et al., 2010), to
systems-level models (e.g. APSIM, Holzworth et al., 2014; Daisy, Abra-
hamsen and Hansen, 2000),and fully integrated agroecosystem simula-
tors (e.g., CSAmodel, Ren, 2019; Taghikhah et al., 2022). These models
can each be used to explore different combinations of components of
agroecosystem functioning. However, robust exploration of farm-scale
resilience using any PBM(s), requires harmonized representation of
farm-scale variability in model inputs and robust analysis of outputs.
Recent discussions, across the wider modelling community, have high-
lighted persistent deficiencies in how modelling exercises are scoped
and structured, particularly in defining model purpose, system bound-
aries, and scales of analysis We therefore present a model-independent
framework for capturing and analysing farm-scale variation in
process-based agroecosystem simulations. (Jakeman et al., 2024). Our
framework explicitly Our framework addresses two key challenges in
modelling resilience: i) representing the diversity of real-world farm
systems at the decision-making scale, and ii) analysing variability in
outputs to assess resilience across multiple dimensions. This improves
model transparency, reproducibility, and interpretability across diverse
agricultural systems and model implementations. The framework is
structured as a generic five-step workflow that is applicable across
diverse agricultural systems, locations, and models. We demonstrate its
application at two UK case exemplar sites using a single PBM, but the
approach is designed for use with any compatible PBM or ensemble of
models.

This framework enables users to: i) integrate and harmonize varia-
tion in soils, weather, crop rotations, and management into model in-
puts; ii) construct plausible virtual farmed landscapes from model
outputs, and iii) assess full outcome distributions to identify both
average performance and extreme responses critical to understanding
and exploring agroecosystem resilience more comprehensively.
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2. Methods
2.1. Generic framework

We developed a model-independent five-step framework (Fig. 1) to
structure simulations of farm-scale variation using agroecosystem PBMs.
It can be applied to both real farms with known characteristics and
‘typical’ farms at a given location, even where detailed site information
is limited. We refer to the “site” as the location being simulated—either a
specific farm or a virtual representative of the local farmed landscape.
The framework captures variation often overlooked in traditional site-
based parameterisation.

This framework formalises both the problem scoping and concep-
tualization phases of the modelling process (Jakeman et al., 2024). In
line with good modelling practice, it integrates existing data, literature,
and expert knowledge to identify key drivers of variation and determine
appropriate system boundaries and scales of analysis. This ensures that
conceptual assumptions are explicit, traceable, and transferable across
different agroecosystem PBMs and study contexts.

These five steps operationalize best-practice good modelling princi-
ples across the modelling cycle: from explicit problem scoping and
conceptualization through to transparent simulation and reproducible
evaluation. Together, as a framework, they address several long-
recognised gaps in agroecosystem modelling workflows (Grimm et al.,
2014; Jakeman et al., 2006; Wang et al., 2023).

2.1.1. STEP 1: data acquisition

The data acquisition phase serves not only to gather inputs, but also
to formalize the conceptual model of the system by defining which
processes and drivers are most relevant to the problem being investi-
gated. This reflects the “problem conceptualization” stage of good
modelling practice (Jakeman et al., 2006), ensuring that choices about
system boundaries, inputs, and scales are grounded in both system un-
derstanding and data availability.

Agroecosystem processes are shaped by spatial and temporal varia-
tion in land structure, farming system, weather, soils, and management.
Input data to PBMs should reflect local heterogeneity in these factors,
while retaining site specificity. Achieving this balance often requires
collecting data from beyond the farm boundary. We recommend using
the surrounding hydrological catchment as a pragmatic data acquisition
zone as catchments provide a natural spatial unit that integrates both
environmental processes and agricultural decision-making contexts. For
many countries, the necessary datasets are available at catchment or
regional scale (Table 1).

Farm and field areas: Acquire data on typical farm and field size
distributions within the data acquisition zone . The size and structure of
farms influences variation in outputs: small farms with few fields are
more sensitive to outliers, whereas large farms tend to average out
variability across fields.

Farming system: Describe land use classes and dominant produc-
tion systems (e.g. livestock/arable). If unavailable at the site level, use
catchment-scale census or land use data to infer local configurations.

Weather: Obtain meteorological data from a nearby weather station
at the temporal resolution required by the PBMs, or at the highest
temporal resolution available. Long time series help capture interannual
variation.

Soil properties: Collect soil series data for the data acquisition zone
(spatially explicit soil mapping units defined in national or regional soil
surveys). Include all soil series that cumulate up to and including 65 % of
total data acquisition zone area to capture key variation while limiting
model complexity. For each soil series, extract required profile proper-
ties (e.g. texture, bulk density, organic matter content) for all soil
horizons.

Agricultural management: Assemble data on typical crop types,
livestock, and practices. If catchment-scale data are lacking, use national
datasets or best practice guidelines to infer typical local farm
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Fig. 1. A generic framework for capturing variation at the farm scale in process-based model simulations. The framework comprises 5 steps and utilises freely
available or licensed data to describe land areas, farming systems, weather, soil properties, and agricultural management.

management.

2.1.2. STEP 2: data processing

Acquired data often require processing before use in PBMs.

Farm and field areas: To simulate realistic variation, fit frequency
distributions to observed farm and field sizes. If data are limited, use
median or mean values, though this omits variability. For richer data-
sets, simulate farms at key quantiles, (e.g. minimum, median,
maximum). Field sizes can be categorised into nominal size classes (e.
g.1-2 ha, 2-3 ha, etc.) with mean or median values used to represent
each class.

Farming systems: Where multiple systems exist at a site, simulate
the dominant one or model each separately if resources allow. Partition
land use based on the farming system type: arable farming systems
typically allocate all land to cropping; upland grazing farms are mainly
permanent grassland, and mixed farms have both (see Table 2). Where
detailed information on farm composition is available, the framework
can represent mixed or complementary systems directly by allocating
land areas to both cropping and grazing enterprises. For undescribed or
‘typical’ farms where such data are unavailable, the dominant farming
system is simulated to maintain site representativeness while avoiding
unverified assumptions about enterprise complementarity. We
acknowledge that this may be a limitation in regions where mixed sys-
tems are prevalent and detailed farm data are lacking.

Weather: Weather is a critical source of variation and a constraint on
replication. Using weather data from additional locations or time pe-
riods can introduce bias. Tools like LARS-WG (Semenov and Barrow,
1997, 2002), CCWorldWeatherGen (Jentsch et al., 2013), and MarkSim
(Jones and Thornton, 2013) generate synthetic weather representative
of local conditions and can simulate future scenarios based on global
circulation models (e.g., Semenov et al., 2024).

Soil properties: Soil profile data should be converted to model-
ready inputs. Apply pedotransfer functions (e.g. Wosten et al. (1999))
to estimate unmeasured properties. Standardise varying layer depths to
match PBM requirements using a weighted matrix. Let the observed
profile have n layers with depth intervals defined by upper and lower
bounds [u;, L], where i =1,2,...,n and the model requires m layers
with depth intervals [Uj, L;], where j = 1,2, ...,m. Compute an m xn

matrix W such that each elementW;; € [0, 1] represents the proportion of
the j th model layer that is composed of the i th observed layer:
_ min(L;, ;) — max(Uju;)
Ly

if there is overlap, else Wj; =0, (€D)

Let p; be the value of a soil property in the ith observed layer.
Compute P; for the jth model layer as a weighted average:

P = Z; Wi pi, 2

Agricultural management: PBMs typically simulate pre-described
crop sequences. These can be defined using catchment data, but real
rotations are not typically static. Probabilistic crop sequence generators
(e.g. Sharp et al. (2021) use transition matrices and agronomic rules to
replicate typical cropping patterns. These probabilistic crop sequences
incorporate observed transition probabilities and agronomic rules (e.g.,
maximum number of consecutive same-crop sequences for disease
management), thereby reflecting common patterns of complementarity
among crops and pasture phases.

Additional agricultural management data (e.g. agrochemical inputs,
in-field operations, stocking densities) should be translated into best-
practice schedules aligned with PBM input requirements.

2.1.3. STEP 3: simulation

The simulation step operationalises the model formulation and
implementation phases of good modelling practice (Jakeman et al.,
2024). By defining simulations through transparent and modular input
sets (generated in steps 1 and 2), the framework allows the structure,
assumptions, and parameterisation of the modelling process to be fully
documented and reproducible. Replication and systematic input varia-
tion help to quantify process uncertainty and sensitivity, providing a
foundation for subsequent evaluation and comparison across PBMs or
sites.

Simulations should be run across a structured set of replicates to
capture variation in key uncertainties. We recommend at least 100
replicates per soil x weather x land use combination. In rotational
cropping simulations, each replicate should begin with a randomly
selected starting crop (based on data acquisition zone crop type
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Table 1

Example data sources for key input categories relevant to simulating agro-
ecosystem processes. Dataset, sources, and spatial coverage are provided for
each of the five input categories described in step one of our framework.

Input category Dataset Coverage

Farm and field area Land Cover + Crops (Land Cover plus: Great Britain

Crops, 2023)

Agricultural Census (Government of India

India, 2025)

USDA Census of Agriculture (USDA, USA

2022)

UK Agricultural Census (Defra, 2021b) England &
Wales

FAOSTAT structural farm data (FAO, Global

2020)
Brazil Agricultural Census (IBGE, 2017) Brazil

Farming system Defra Farm Business Survey (Defra, England
2025b)
FAOSTAT livestock statistics (FAO, 2020) Global
Livestock Census (Government of India, India
2025)

Weather Local meteorological stations (Met office, UK
2025)
Agri4Cast (European Commission, 2025) Europe

APHRODITE precipitation (Yatagai et al.,  Asia
2012)

Global Historical Climatology Network Global

daily (Menne et al., 2012)

Daymet (Thornton et al., 2022) North
America

Soil properties NATMAP Soil Series (LandIS, 2024) England &

Wales

SoilGrids (Hengl et al., 2017) Global

Soil Atlas of Africa (Thiombiano et al., Africa

2013)

SOTERCAF (Van Engelen et al., 2006) Central Africa

SSURGO (USDA, 2025) USA

ASRIS (CSIRO, 2024) Australia

Agricultural Land Cover + Crops (Land Cover plus: Great Britain
Management Crops, 2023)
Farm Practices Survey (Defra, 2025c) England
FAOSTAT crop production data (FAO, Global
2020)
GloRice (Xie et al., 2025) Global
British Survey of Fertiliser Practice ( Great Britain
Defra, 2023)
FAOSTAT fertiliser/pesticide statistics ( Global
FAO, 2020)
AfricaFertilizer Database ( Sub-Saharan
AfricaFertilizer, 2015) Africa
FAOSTAT livestock numbers (FAO, 2020) Global
Table 2

Typical proportion of land assigned to permanent grassland and rotational
cropping for selected farming systems found in the UK.

Robust Farm Type'  Proportion of land

assigned to permanent

Proportion of land assigned to
rotational cropping (including

grass grass leys)
Cereals 0 1
General Cropping 0 1
Lowland Grazing 0.75 0.25
Livestock
Less Favoured Area 1 0

Grazing Livestock

! Defra, 2010. Definitions of Terms Used in Farm Business Management, 3rd
ed. Defra, London, pp. 48.

frequencies), followed by a uniquely generated crop sequence. To cap-
ture interannual variability and estimate medium-term resilience, sim-
ulations should run for at least 20 years.

The framework is designed to accommodate different PBMs, which
inherently vary in structure and parameterisations. Even with identical
inputs, they may produce divergent outputs due to differences in process
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representations (e.g. crop growth, water balance, pest dynamics,
nutrient cycling and loss). If multiple PBMs are available, simulations
should be run in parallel using the same input datasets. While true
ensemble modelling (statistical combination of outputs) is ideal, it may
be unsuitable due to differing model structures and output formats.
Nonetheless, applying a consistent simulation protocol across models
enables comparison of model behaviours and output distributions. This
reveals how structural assumptions influence predictions under com-
mon inputs. Incorporating variation in weather, soils, and management
within and across models improves realism and supports more robust
interpretable results.

2.1.4. STEP 4: model output sampling

Using land area data from steps 1 and 2, construct multiple simulated
utilised areas (SUAs), each representing a virtual replicate farm, typical
of the landscape. Total farm area, field number, and field sizes should be
sampled from data acquisition zone distributions. If data are sparse,
mean or representative values may be used. Independently assign each
field within an SUA, a land-use type, soil series, and starting crop,
sampled from the respective catchment-scale marginal distributions to
reflect realistic heterogeneity (Fig. 2). Allocate pre-generated model
outputs (from Step 3) to each virtual field, based on soil type and initial
crop. Each replicate simulation should appear only once per SUA. Model
outputs (per unit area) should be weighted by field area and aggregated
to the farm scale for each SUA. We recommend creating a minimum of
10 SUAs per farm size class (e.g. small, medium, and large), depending
on the study objectives and available data. The total number of SUAs is
constrained by the number of unique simulations available per soil x
crop type combination.

Variation among replicate simulations differs by land-use type. For
cropped fields, each replicate includes a unique crop sequence. For
permanent grassland, simulations may be near identical unless the PBM
includes further stochastic elements. This should be considered when
interpreting variability at the farm scale.

Due to the stochastic construction of SUAs, some rare combinations
of soil, field size, and crop may not appear. This is intentional and
supports generation of realistic outcome distributions.

Soil types were sampled proportionally to their relative area in the
data acquisition zone rather than spatially interpolated and organised.
This approach captures the dominant compositional variability in soil
properties while avoiding assumptions about spatial connectivity, which
are not represented in most agroecosystem PBMs. Because SUAs are used
as aggregated, non-spatial farm units, proportional sampling provides a
realistic basis for estimating farm-scale variation without introducing
artefactual spatial structure.

We refer to these constructed entities as “simulated utilised areas”
because many agroecosystem PBMs focus on crop and field processes,
and do not simulate non-field infrastructure (e.g. farmyards, steadings,
stores, tracks), despite the potential environmental impacts associated
with the management of these elements of farm structure. The frame-
work presented here captures variability in the productive land area,
which typically accounts for most land use on farms and dominates
ecosystem service delivery. This step supports transparent evaluation of
model outputs by standardising their extraction and aggregation,
enabling reproducible comparison across models, scenarios, or sites. By
harmonising outputs within a consistent sampling framework, the
approach mitigates one of the major barriers to inter-model comparison
identified in previous studies (Jakeman et al., 2024).

2.1.5. STEP 5: analysis and interpretation

The analysis methods should match the study’s objectives. For
comparisons (e.g., between sites, years, or scenarios), ANOVA can test
differences in mean farm-scale responses. To ensure robust and repre-
sentative results, input variability (e.g., weather, soil, field size aggre-
gation) must be replicated. However, large simulation datasets can
produce high statistical power, increasing the likelihood of detecting
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Allocation of soil types to each “field”

Allocation of initial crop to each “field”

Fig. 2. Example composition of a “simulated utilised area”, representing a virtual medium-sized farm from the RR exemplar site. A) fields of varying sizes drawn
from a categorised field size distribution of catchment-scale data. Each field is independently assigned B) a soil series, and C) an initial crop, sampled from the
marginal distributions of soil series and crop types across the catchment. Not all combinations will be present in each replicate. For example, the grey soil in B does
not appear in this SUA. Soil types were sampled proportionally by area from the data acquisition zone rather than spatially interpolated, as most PBMs simulate local
processes independently of lateral field connectivity. This approach captures representative within-farm variation appropriate for aggregated SUA-level analyses. The
configuration of fields within the figure does not indicate any spatial associations between fields.

statistically significant but practically trivial effects. Therefore, both
statistical and practical significance should be considered.

For resilience assessments, variance and temporal dynamics are
important. Alongside mean comparisons across years, it is informative to
assess interannual variability using variances, standard deviations, or
coefficients of variation (CV). These should be calculated per realisation
(i.e. per SUA x weather set) and compared using ANOVA or other
appropriate tests, with the same caution about overpowered results. It is
important to note that resilience in this context reflects stability of
simulated outcomes, not persistence of higher yield and/or lower
environmental burden.

To address the issue of overpowered tests, alternative approaches
can explore the full distribution of outputs. One option is to fit para-
metric distributions to the generated data and analyse fitted parameters
via ANOVA, assuming data fit standard distributions. Alternatively, non-
parametric tests like the Kolmogorov-Smirnov test can compare pairs of
empirical distributions, but extensions to more complex sets of distri-
butions are not yet available. In such cases, graphical comparisons and

quantile summaries can aid interpretation, particularly when focusing
on extremes that might be masked by means.

2.2. Application of the framework to two exemplar sites

To evaluate the robustness and applicability of our simulation
framework, we applied it to two contrasting UK agroecosystems. These
sites were selected to test the capacity to capture diverse sources of
variation and to simulate plausible farm-scale outcomes under different
environmental and farming contexts.

The exemplar sites (Fig. 3) are Harpenden (RR) in Hertfordshire (51°
48 N, 0° 21' W) and North Wyke (NW) near Okehampton in Devon
(50.77° N, 3.92° W). These locations span an East-West climatic gradient
and differ in rainfall, soil texture and farming systems. RR is an arable
production area, whereas NW is pasture-based with lowland grazing
livestock. Both sites are established experimental farms with compre-
hensive historical records, which we deliberately did not use in the
simulation setup to test how well our generic approach can recreate

or Met Station

Dunsta A B experimental Farm

A Waterbodies
a VO
/ i
?’ \\ 4l
\ L oo
o R S,
& P
P *= D
\ o _&
. — g
- i /‘
b & n St Albans //
. N —
} <\ < \ /’_/
L~
.

Fig. 3. The location of the waterbodies surrounding each of the two sites. B) Site RR shows an example of the Met station defining the site location within its
surrounding waterbodies. The experimental farm is one example of a typical farm at this site.
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local variation based solely on our data acquisition process.

2.2.1. STEP 1: data acquisition

We delineated the data collection zone at each site by identifying all
European Union Water Framework Directive (WFD) waterbody catch-
ments within a 5 km radius (Defra, 2025a); Fig. 3), excluding water-
bodies with <10 % overlap. Each data-collection zone may therefore
include multiple catchments. Finer hydrological units were not explic-
itly delineated because our framework is data-driven, and such data are
rarely available at national scale. However, the WFD waterbodies used
here integrate the effects of underlying micro-catchments, meaning that
local hydrological variation is implicitly represented within the aggre-
gated catchment-level inputs.

Typical farm size data were sourced from the UK agricultural census
(Defra, 2021b), where average values are reported at the WFD water-
body scale. Field size distributions were derived from spatial land cover
maps (Marston et al., 2022) by extracting all polygons designated as
agricultural land within each data-collection zone.

Farming system data were also sourced from the UK agricultural
census (Defra, 2021b), which reports the proportion of holdings asso-
ciated with each Robust Farm Type (RFT) at the WFD waterbody scale.
RFTs are defined based on dominant standard outputs, e.g., ‘cereals’ for
wheat and barley producers, or ‘mixed’ for farms combining arable and
livestock production.

Observed daily weather data were collected for 1985-2015 from site-
based meteorological stations (Semenov et al., 2024), including mini-
mum and maximum temperature ( °C), precipitation (mm) and solar
radiation (MJ m™). Vapour pressure and wind speed were estimated
using the methods of Allen et al. (1998).

Soil data were obtained from NATMAP 1000 (LandIS, 2024); a na-
tional 1 km resolution dataset of soil series across England and Wales.
For each catchment we extracted the dominant soil series and corre-
sponding soil properties relevant to either grassland (NW) or agricul-
tural land (RR).

Crop types were characterised using Landcover PLUS crops maps
(Land Cover plus: Crops, 2023) which provide estimates of annual crop
classifications over five years (2018-2022). Fields classified as grassland
across all five years were treated as permanent grassland and excluded.
Additional management assumptions like sowing dates, fertiliser appli-
cation rates, and other agronomic practices were derived from national
guidelines, including the British Survey of Fertiliser Practice (Defra,
2019, 2020, 2021a, 2022, 2023). For NW, livestock numbers were based
on the lowland grazing livestock RFT and included both temporary and
permanent pasture (Defra, 2021b).

2.2.2. STEP 2: data processing

Farm size data were limited (typically only 3-4 values per WFD
waterbody), so we used the mean, minimum and maximum values to
define three representative farm sizes at each site. We constructed
empirical field size frequency distributions by grouping fields into
nominal categories (e.g. 1-2 ha, 2-3 ha, etc.) and calculated the mean
field size within each. We used these to estimate the number of fields per
farm. We then allocated fields to size categories in proportions that
reproduced the empirical distribution as closely as possible.

At each site, the dominant RFT from the catchment was used to
assign a representative farming system. At RR, this was ‘cereals’, and we
assumed all land was under arable management. At NW, the dominant
RFT was ‘lowland grazing livestock’ for which we assumed 75 % of the
land was permanent grassland, and the remaining 25 % was cropped for
livestock feed (Table 2).

Observed daily weather data were used to generate synthetic
weather series using LARS-WG 8.07.0 (Semenov et al., 2024). For each
site, we generated 1000 realised years of synthetic daily weather, then
divided the output into 50 replicate sets of 20 years.

Soil series were selected to cumulatively represent at least >65 % of
the catchment area. Soil profile properties were standardised into three
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uniform depth layers (0-23 cm,23-46 cm, 46-100 cm) as required by
the PBM used in this study.

Crop sequences were generated using the generator developed by
Sharp et al. (2021).We rescaled their transition matrices to represent
only the crops observed in each catchment. This provided cropping se-
quences that reflect local agronomic conditions and practice more
closely than regionally averaged transition probabilities.

2.2.3. STEP 3: simulation

To demonstrate application of the framework, we used the Roth-
amsted Landscape Model (RLM) to generate field-scale outputs for both
exemplar sites. While these case studies employ a single PBM, for
illustration, the framework is fully compatible with ensemble modelling,
allowing multiple models with harmonised inputs to be run in parallel to
assess structural uncertainty and improve robustness. In this study, we
simulated a baseline “business-as-usual” (BAU) management scenario
representative of current local practices (based on national and
catchment-level datasets). The framework is, however, designed to
support scenario testing including comparison of alternative manage-
ment options (e.g., modified crop rotations, fertiliser strategies, tillage
intensity, or grazing regimes). Such scenarios can be implemented by
substituting or parameterising the relevant management input datasets.
While scenario testing is beyond the scope of the present study, this
capability will be applied in future work to evaluate the resilience im-
plications of agri-environmental interventions.

2.2.3.1. Demonstration model: Rothamsted landscape model (RLM). RLM
is a daily timestep PBM developed to simulate crop production and
environmental impacts across field and farm landscapes (Coleman et al.,
2017). It incorporates established modules including RothC (Coleman
and Jenkinson, 2014), LINTUL (Wolf, 2012), and Century (Parton et al.,
1994), supplemented by new routines, including an improved water
model (Coleman et al.,. 2017). RLM has been calibrated and validated
using long-term UK data.

RLM outputs a wide range of variables capturing both the produc-
tivity and environmental impact of the farmed landscape. For this study
we focus on three contrasting indicators: calorific production (from crop
and livestock outputs), nitrate losses via runoff, and N,O emissions.

Each input dataset from Step 2 (soils, crop rotations, field layout,
weather, and management) was formatted to meet RLM requirements.
For each selected soil series at each site, we generated 100 replicate
field-scale simulations. Each replicate combined a unique crop sequence
(for arable land) with a randomly assigned starting crop and ran using
one of 50 weather realisations (each spanning 20 years). Simulations
began on 1st September and ran for 19 full cropping seasons. This
created a structured simulation matrix capturing variation in soil, crop
sequence, and weather. This matrix underpins the later construction of
SUAs and supports analysis of both within- and between-site variation in
farm-scale outcomes.

2.2.4. STEP 4: model output sampling

To explore variation at the farm scale, we generated 30 SUAs per site:
10 replicates each for small, medium, and large farm sizes based on farm
size data from the data-collection zone.

For each farm size, we estimated the number of fields by dividing the
farm area by the site-specific mean field size. Fields were then allocated
to size categories to reflect the empirical distribution of field sizes at
each site. Soil types and initial crops were then independently sampled
for each field from the catchment-level discrete distributions (see Fig. 2,
for the characteristics of an example SUA for a medium-sized farm at
RR). This random allocation mirrors the heterogeneity in real farms and
enables sampling across plausible combinations of land use and soils.
Because field sizes, soil series, and initial crops are sampled indepen-
dently, some rare combinations may not appear in every SUA, especially
on smaller farms—this is intentional and reflects real-world variation.
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Each field was assigned a model simulation from the corresponding
pool of RLM outputs (Step 3), consistent with its soil type and initial
crop. Simulation replicates were randomly permuted to ensure that no
replicate was reused within a single SUA, though replicates could appear
across multiple SUAs.

2.2.5. STEP 5: analysis and interpretation

Here, we use our case study sites to illustrate how modelled in-
dicators can be aggregated and statistically compared using our frame-
work. The analyses serve as examples of the types of evaluation possible
and demonstrate how PBM outputs can be explored using a consistent,
statistically robust approach. They are not intended to represent all
relevant scientific questions

To compare productivity across crop sequences and between arable
and livestock systems, we converted crop yields and livestock outputs to
calorific equivalents, accounting for losses from harvest to consumption
(for methods see Sharp et al., 2024).

Nitrate runoff and N,O emissions are outputted from RLM on a daily
timestep. We calculated their sum over each cropping year. These were
then used as response variables. Farm-level weighted means were
calculated per SUA, and cropping year, using field area as the weights
(from Step 4).

2.2.5.1. Assessing system performance. Each site produced 28,500
weighted mean responses (10 SUAs x 3 farm sizes x 50 weather sets x
19 cropping years). We used ANOVA to assess variation in mean re-
sponses, testing null hypotheses that farm size, cropping year, and their
interaction had no effect on calorific production, nitrate runoff and N,O
emissions. A hierarchical blocking structure was assumed: cropping
years nested within weather sets, nested within SUAs. Farm size was
assessed relative to the between-SUA variation and cropping year and
the interaction were assessed relative to the between-cropping year
variation.

2.2.5.2. Assessing system resilience. We quantified resilience as the
temporal stability of SUA responses across years. For each SUA x
weather set x response variable, we calculated the standard deviation
(used in preference to variance to satisfy the ANOVA homogeneity of
variance assumption), and a scale-adjusted coefficient of variation (aCV)
following Doring and Reckling (2018). which removes dependence of
the standard CV from the mean.

We combined datasets across sites to compare resilience at NW and
RR. As farm size and weather sets were site-specific, a nested treatment
structure was appropriate: weather sets nested within each of the 60
SUAs. Site, and farm size (within site) effects, were estimated at the
between-SUA level; weather effects and their interaction with site at the
between-weather set level. This enabled identification of specific
weather realisations associated with poor resilience, potentially
reflecting extreme weather events.

2.2.5.3. Distributions of outputs. With 500 SUA replicates per farm size
per site, ANOVA was statistically overpowered. Nearly all effects
appeared significant, even where practical or biological differences were
negligible. To aid interpretation, we therefore used violin and box-and-
whisker plots to visualise response distributions across cropping years
and farm sizes.

2.2.5.4. Assessing sources of variation. In addition to the analysis rec-
ommended within step 5 of our framework, we additionally wanted to
demonstrate, using our case study sites, the degree to which the
collected input data represents both the absolute values and levels of
variation observed on farms. We assessed both the realism of generated
model inputs and the importance of different sources of variation.
Weather: We compared generated and observed weather data at
each site using t-tests to compare monthly means (temperature,
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radiation) and total (precipitation) values, and F-tests to compare
monthly variances. We applied Kolmogorov-Smirnov tests to compare
distributions.

Soils: Generated soil inputs were compared with published farm
surveys, assessing soil series and associated properties.

Crop sequences: Annual area-weighted crop proportions were
calculated for the experimental farm, the catchment, and SUAs. We
plotted these as stacked bar charts for visual comparison.

Sources of output variation: We used ANOVA on field-level outputs
(summarised annually, pre-SUA aggregation) to evaluate effects of soil
type, weather set, and cropping years, including interactions. A hierar-
chical blocking structure was assumed: cropping years nested within
weather sets, nested within soil types, nested within the 100 replicate
runs comprising different cropping sequences. As with other analyses, p-
values were interpreted cautiously due to high statistical power

While the present implementation focuses on RLM outputs, the
framework and analytical workflow are model-agnostic and can be
applied across other agroecosystem PBMs given equivalent input and
output structures.

2.2.5.5. Statistical packages. Daily RLM outputs were processed in R
(v4.4.1; (R Core Team, 2025) using the data.table (Barrett et al., 2025),
dplyr (Wickham et al., 2025) and future.apply (Bengtsson, 2021)
packages. SUA construction, resampling, and ANOVA were conducted
using Genstat (23rd Edition) (VSN International, 2023). Farm-level
output summaries were computed in R. Scale-adjusted CVs were
calculated using the metan R package (Olivoto and Licio, 2020).
Graphics were generated in Genstat, and in R using the ggplot2 package
(Wickham, 2016).

3. Results
3.1. Assessing system performance

Simulated calorific production varied widely between the two sites
(Fig. 4) with RR producing more food than NW. Farm-scale simulated
wheat yields at RR were comparable to farm measurements, whereas at
NW simulated yields were approximately 3 t/ha higher. At both sites,
simulated yields within SUAs were less variable than the observed data
(see supplementary figure S1). NW showed greater variability in calo-
rific production, with a few high-performing SUAs and many low per-
forming ones (Fig. 4B). ANOVA identified no significant differences in
calorific production across virtual farm sizes (RR: Fy 27=0.306, p =
0.739; NW: Fy 27=0.148, p = 0.864; supplementary figure S2). In
contrast, both the cropping year main effect and the interaction effect
between cropping year and farm size were significant (RR: cropping year
F1s, 26,046=218.042, p < 0.001; interaction F3 26 946=14.083, p < 0.001;
NW: cropping year Fig 26946=41.727, p < 0.001; interaction Fsg,
26,046=16.678, p < 0.001). These effects likely reflect differences in
generated cropping sequences and crop distributions across years (see
Fig. 9), rather than weather variation, as all 30 SUAs per site shared 50
common weather datasets. The significant interactions almost certainly
reflect the overpowered nature of the tests as the means across all three
farm sizes were similar and so changes in their relative order are of little
practical consequence (supplementary figure S2). Total simulated food
production varied by year, and within-year variation among SUAs was
also substantial (Fig. 4). At RR, distribution plots reveal distinct peaks,
indicating strong effects of SUA composition on calorific output
(Fig. 4B).

Simulated nitrate loss via runoff was typically lower at NW than RR
(Fig. 5), with clear temporal fluctuations and a significant effect of
cropping year (RR: Fig 26,946=208.329, p < 0.001; NW: Fig
26,946=1438.474, p < 0.001; supplementary figure S3). Variation among
SUAs within years was substantial (Fig. 5). There was no significant farm
size effect (RR: Fp, 27=2.584, p = 0.094; NW: Fy 27=0.023, p = 0.977),
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Fig. 4. Simulated calorific production across a sequence of 19 cropping years at A) NW and B) RR sites. Box and whisker plots show the median (black bar),
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but small statistically significant interaction effects between cropping
year and farm size (RR: F3p 26946=5.791, p < 0.001; NW: Fgq
25’946:29.576, p< 0.001).

N2O emissions simulated using the framework also varied signifi-
cantly by cropping year (RR: Fqg, 26,046=539.15, p < 0.001; NW: Fyg
26,046=522.557, p < 0.001; supplementary figure S4), with no signifi-
cant farm size effect (RR: Fp, 27=1.341, p = 0.279; NW: F5 57,=0.566, p =
0.575) and small, but significant, interaction effects between cropping
year and farm size (RR: Fsg 26946=18.878, p < 0.001; NW: Fgg
26,496=33.816, p < 0.001). Emissions were generally higher at RR, with
substantial within-year variation among SUAs, particularly at RR
(Fig. 6).

These results illustrate how the framework can capture and compare
farm-scale variability in modelled production and environmental out-
puts across contrasting sites, using harmonised inputs.

3.2. Assessing system resilience

Applying the frameworks resilience metrics to simulated calorific
outputs revealed significantly more resilience in calorific production at
RR than at NW, with lower SD and aCV values (SD: Fy, 54=16.673,p <
0.001; aCV: Fq, 54=139.616, p < 0.001; Fig. 7). No significant differences
in farm-scale calorific production resilience were observed across farm
sizes nested within site (SD: F4, 54=0.480, p = 0.750; aCV: F4, 54=0.154,
p = 0.960), though this may reflect large variation among SUAs within
each size category, especially at NW where the proportion of the total
field area allocated to arable crops varied substantially between SUAs.
Weather set (nested within site) had a significant, but modest, effect on
calorific production resilience (SD: Fog, 2646=3.042, p < 0.001; aCV: Fog,
2646=2.129, p < 0.001). There was a small, but significant, interaction
between farm size and weather sets for SD (Fi96, 2646=1.226, p = 0.021),
but no statistically significant interaction effect for aCV (Fos,
2646:1'085; p= 0.207).

These results suggest that calorific production resilience varies with
weather patterns and that farm size can mediate this effect. At RR, large
virtual farms were generally the most resilient, though under certain
weather sets (e.g. 23, 44, 50), medium farms were more resilient
(Fig. 7). At NW, where mixed systems were simulated, small virtual
farms were the least resilient indicating that farm composition may be
influential, with greater year-to-year variation in calorific production
due to crop composition.

For simulated farm-scale nitrate runoff resilience, site had no sig-
nificant effect on SD (Fy, 54=0.271, p = 0.605), but did affect aCV (F;,
54=31.692, p < 0.001), reflecting similar SD at both sites, but higher
mean nitrate runoff at RR than NW (Supplementary figure S5), reflecting
the different crop compositions. Farm size (nested within site) did not
have a significant effect for either metric (SD: F4, 54=1.078, p = 0.376;
aCV: F4 54=0.832, p = 0.511). Weather set (nested within site) signifi-
cantly affected both nitrate runoff SD and aCV (SD: Fog, 2646=94.259, p
< 0.001; aCV: Fog, 2646=97.864, p < 0.001), but there was no evidence of
a site x weather set interaction (SD: Fy9¢, 2646=1.072, p = 0.241; aCV:
F196, 2545:0.907, p= 0.812).

The framework simulated farm-scale stability of N3O emissions
differed significantly between sites for SD (Fy, 54=34.166, p < 0.001) but
not for aCV (Fy, 54=0.702, p = 0.406), with higher variability and
emissions at RR (Supplementary Figure S6). There was no evidence for a
farm size effect (SD: F4, 54=2.498, p = 0.053; aCV: F4 54=1.066, p =
0.383). Weather set significantly affected both metrics (SD: Fog,
2646=14.723, p < 0.001; aCV: Fog, 2646=96.391, p < 0.001), but inter-
action effects between weather set and farm size were not significant
(SDZ F196, 2646:1-124: p = 0.122;aCV: F196’ 2646:1-0857 p = 0.207),
indicating sensitivity to specific weather scenarios across farm sizes.

This demonstrates how the framework can be used to identify site-
and weather driven diffferences in system stability, independent of PBM
structure.
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3.3. Assessing sources of variation

The framework input harmonisation allows weather, soil, and
cropping variation to be explored systematically across sites.

3.3.1. Weather

Both sites followed typical UK seasonal temperature patterns. Daily
maximum temperatures peaked in July-August, with no significant
differences in monthly means between observed and framework-
generated data (via LARS-WG) at either site (Fig. 8A). Minimum tem-
peratures peaked in May-July (Fig. 8B), again with no significant dif-
ferences in means between framework-generated and observed data. RR
showed greater annual temperature variation, reflecting milder NW
winters. Solar radiation peaked in July, more sharply at RR (Fig. 8C).
January radiation was overestimated in the generated data (NW: p =
0.010; RR: p = 0.003). NW had higher, more winter-skewed rainfall,
while RR’s rainfall was more evenly spread (Fig. 8D). No significant
differences between observed and generated monthly precipitation were
detected, though variances were generally lower for generated data,
significantly so in 4 months at NW and 3 months at RR. Kolmogorov-
Smirnov tests suggested the monthly distributions of generated and
observed weather were statistically similar.

Analysis of pre-aggregation model outputs (summarised for cropping
years, but pre-SUA construction) confirmed that the framework suc-
cessfully captures the sensitivity of outputs to underlying input varia-
tion. Weather set significantly affected calorific production, nitrate loss
via runoff, and N20 emissions, supporting the use of multiple weather
realisations.

3.3.2. Soil characteristics

At NW, the experimental farm is dominated by Halstow series
(Pelostagnogley soils, Avery, 1980; classified as Stagni-vertic cambisol
under the FAO system and Typic haplaquept in US soil taxonomy). In
contrast, Hallsworth series dominated our framework-generated SUAs,
while Halstow covered only 8.9 % of simulated land (6.0 % of the
catchment, Table 3). The two series are similar in clay content (Halstow:
34.0 %, Hallsworth: 39.5 %) but differ in silt (36.0 % vs 43.6 %), acidity
(pH 5.8 vs. 6.8), and organic content (3.6 % vs. 3.2 %).

AtRR, soils range from clay loam to silty clay loam; mainly Batcombe
series (Avery and Catt, 1995; Avery et al., 2024; classified as Chromic
Luvisol (or Alisol) by the FAO and Aquic (or Typic) Paleudalf in US soil
taxonomy). Typical Batcombe covers 46.61 % of the RR farm, with
Heavy Batcombe adding 6.71 %. In our framework-generated SUAs,
Batcombe accounted for 40.1 % of land (26.2 % of the catchment,
Table 3).

ANOVAs on pre-SUA model outputs revealed significant effects of
soil series on all three modelled outputs, highlighting the importance of
simulating multiple soil types at farm scale, and therefore the value of
the framework in capturing the full potential variation in soils at the
farm scale.

3.3.3. Cropping patterns

At NW, our framework identified the most likely farming system to
be present as “lowland grazing livestock” and we therefore assumed 75
% of land was permanent pasture, with 25 % under arable rotation.
Since 2019, about one-third of the experimental farm has been arable,
growing winter wheat, winter barley, oats, and field beans (Fig. 9).
These, crops along with grass leys and other crops (Table 3), were
included in our simulations. The remaining land is used for pasture. The
partitioning of land use derived using our framework corresponds well
with the real land-use on the experimental farm at NW.

At RR, winter wheat dominates the catchment (33.5 %) and the
experimental farm, though 2021 featured more spring wheat. Spring
and winter barley are common in the catchment (12.4 % and 10.2 %),
while oats were prominent on the experimental farm (Fig. 9).

Fig. 9 shows that catchment-level cropping is stable over time due to
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this article.).

the larger spatial extent than the experimental farm. Our SUA approach
reintroduces variability, better capturing farm-level variation than
catchment data alone.

Across all analyses, the framework enabled consistent comparison of
outcomes across data sources, revealing how farm-scale heterogeneity
influences both mean performance and resilience metrics.

4. Discussion

We developed and applied a model-independent framework to
simulate realistic within-farm variation in agroecosystem processes,
designed to complement existing PBMs. By systematically integrating
variation in soils, weather, crop sequences, and farm management into
model inputs, we constructed plausible virtual farms (SUAs) and
assessed full distributions of farm-scale outcomes, including extremes, to
support resilience assessments. Input variation, typically absent from
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modelling studies, strongly influenced model outcomes. Explicitly
modelling this variation revealed how within-farm heterogeneity sup-
ports performance and resilience, aligning with previous findings on
diversity and agricultural stability (Beillouin et al., 2019; Lin, 2011). In
doing so, the framework advances current modelling practice by
bridging existing PBMs and resilience assessment approaches, offering a
transparent, reproducible, and transferable structure for exploring sys-
tem behaviour under realistic variation.

The two exemplar sites (NW and RR) were selected to represent
contrasting ends of a dominant UK agroecosystem gradient: pasture-
based lowland grazing versus arable cereal production. This contrast
tests the framework’s capacity to capture and interpret diverse sources
of variation across systems that differ in soils, climate, and management
intensity. The shared set of resilience indicators provides a consistent
basis for cross-system comparison, enabling lessons on how input het-
erogeneity and farm structure influence performance to be generalised
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to other farms. Thus, while the absolute results are site-specific, the
methodological insights are transferable, illustrating how the frame-
work can be used to identify both common resilience mechanisms and
context-dependent vulnerabilities.

Our results support the idea that diversity in soils, crops, and man-
agement creates functional redundancy, where poor performance in one
component can be offset by others (Elmqvist et al., 2003). This hetero-
geneity enables persistence pathways that uniform systems lack, making
them more vulnerable to shocks or variable stresses. Although high
output variability may signal instability (Scheffer et al., 2009), input
heterogeneity can instead reflect adaptive capacity when it buffers risk
(Kotschy et al., 2015). Variation across SUAs buffered farm-level out-
comes despite local failures, aligning with resilience concepts that
emphasise both resistance and response capacity (Biggs et al., 2015).
Capturing this complexity is essential; simpler models risk under-
estimating both vulnerabilities and adaptive potential.

Assessing full output distributions enabled nuanced resilience eval-
uation beyond averages. While some local outcomes were extreme,
overall farm heterogeneity provided stability. Contrary to prior findings
(Nelson et al., 2022) larger farm sizes did not consistently buffer vari-
ability, highlighting the dominant influence of weather and soil
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variability and the more pervasive resilience challenge across farm sizes.

In this study, simulated yields showed lower interannual variability
than observed data, a common outcome when models are calibrated to
mean conditions rather than tuned for full variance representation. This
likely reflects both the smoothing effects of synthetic weather genera-
tion and the omission of unmodelled stochastic events such as pest
damage, machinery failure, or disease outbreaks, which contribute to
observed yield variability. While the RLM and other PBMs that can be
used within the framework have been previously calibrated and vali-
dated against long-term experimental data (e.g. Coleman et al., 2017),
future work could refine calibrations to explicitly include variability
metrics or benchmark results against multi-year field datasets for yield,
N:0 emissions, and nitrate runoff. Such validation would strengthen the
interpretation of modelled resilience indicators.

4.1. Methodological strengths and innovations

Our framework advances agroecosystem modelling by enabling
farm-scale spatial (between-field) variation to be represented using
simulated utilised areas (SUAs) as proxies for heterogeneous farm
landscape units. By integrating spatial and temporal heterogeneity
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Description of exemplar sites. Each site represents a farm-scale management unit located within a 5 km water catchment, defined as including all waterbodies with >10
% of their area inside the 5 km buffer. Dominant robust farm types are from the UK Agricultural Survey. Soils are from NATMAP 1000 (covering >65 % of the
catchment). Crops reflect dominant types (2018-2022) from the Land Cover+ Crops dataset.

Site Name County, Region of Elevation / Catchment Area / Robust Farm Type Dominant Soil Series ( % of Dominant Crops ( % arable
England m km2 area') land?)
North Wyke Devon, 177 211.6 Lowland Grazing Hallsworth (19.9 %), Grass Leys (29.7 %),
(NW) Southwest England (4 water bodies) Livestock Denbigh (8.5 %), Maize (13.2 %),
Neath (8.5 %), Spring Barley (6.7 %),
Nercwys (8.0 %), Winter Barley (11.9 %),
Tedburn (7.5 %), Winter Wheat (22.4 %)
Halstow (6.0 %),
Crediton (5.1 %),
Brickfield (3.7 %)
Rothamsted Hertfordshire, 128 340.5 Cereals Batcombe (26.2 %), Field Beans (6.7 %),
(RR) East of England (3 water bodies) Hornbeam (14.5 %), Grass leys (7.2 %),

Carstens (6.7 %),
Hamble (3.3 %),
Windsor (3.2 %),
Winchester (3.1 %),
Hook (2.9 %),

OSR (8.4 %),

Spring Barley (12.4 %),
Spring Wheat (5.3 %),
Winter Barley (10.2 %),
Winter Wheat (33.5 %)

Wickham (2.8 %),
Charity (2.7 %)

1 Percentages shown until the cumulative total reaches >65 %.
2 Only crops covering >5 % of arable land are listed.

through subsampling of soil types and crop sequences, we reintroduce
stochasticity and therefore generate full outcome distributions,
including emergent extremes. This supports more robust farm resilience
assessments and helps identify rare risks masked by simpler determin-
istic approaches.

While the current implementation uses SUAs constructed from
probabilistic combinations of field sizes, soils, and land uses, we
recognise that in reality, field boundaries and soil types are spatially
fixed, while management varies through time. Where detailed spatial
datasets are available, the framework can readily incorporate actual
field and soil boundaries, enabling management variation to be simu-
lated directly on mapped units. The present approach, however, is
motivated by the more common situation in which such detailed data
are unavailable or incomplete. In this case, SUAs provide a derived
analytical unit that allows consistent aggregation of field-scale model
outputs to the farm scale and enables cross-site comparison under a
unified structure.

The framework is flexible, modular, transparent, reproducible, and
model-independent, enabling diverse agroecological questions and sys-
tem comparisons. Whilst some advanced models such as DAESim
(Taghikhah et al., 2022) and the unified process model developed by
Sharma et al. (2025) integrate biophysical and data driven components,
our approach focusses instead on harmonising spatially and temporally
variable inputs and aggregating outputs to the decision-making scale.
Our framework complements such models by providing a transferable
cross-compatible structure for consistent comparison, model ensemble
application, and systematic resilience assessment for research, policy,
and practice.

Our approach lays a foundation for simulating multiple sources of
farm-scale variation and assessing resilience more robustly. It accom-
modates model ensembles for exploring temporal variability and tipping
points and for predicting a great range of outcomes (Hassall et al., 2022).
While Pret et al. (2025) noted most modelling studies assess few resil-
ience attributes, our framework can represent all five defined by Meu-
wissen et al. (2019): reserves (e.g. soil fertility, livestock), openness
(input/output breadth), modularity (land use allocation), feedback
tightness (mechanistically described in PBMs) and diversity (crop/live-
stock richness).

4.2. Limitations

Despite its strengths, several limitations remain. Process-based
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models require detailed parameterisation of biophysical processes, and
extensive data for calibration and evaluation. Our framework does not
remove these demands but provides a transparent structure for doc-
umenting assumptions, harmonising inputs, and consistently repre-
senting sources of uncertainty across simulations.

Synthetic weather generators, while effective for typical climatic
patterns, tend to underrepresent extremes (Semenov, 2008; Wilks and
Wilby, 1999). This was evident in the reduced variance of generated vs
observed weather at our exemplar sites, limiting assessments under
extreme events and future climate scenarios. Integrating downscaled
climate projections or hybrid weather generators could improve the
representation of both typical and extreme conditions (Bhuvandas et al.,
2014; Curceac et al., 2021).

The framework currently applies fixed crop sequences without dy-
namic or adaptive farmer decision-making. Real-world management
often responds to in-season constraints or opportunities, like switching
to spring wheat after failed autumn drilling—seen but not modelled at
RR in 2021 (Fig. 9). Capturing such adaptive behaviour would require
coupling the framework with rule- or agent-based decision models (El
Fartassi et al., 2025). Real-world decisions also reflect financial factors.
Incorporating economic models or multi-criteria optimisation would
enhance the utility of our framework for actual decision support as
opposed to more generic scenario exploration.

Our current implementation includes only field areas, omitting non-
field components like yards, housing, and storage facilities, which can
influence farm sustainability and resilience. While the framework cap-
tures spatial variation via field-level aggregation, it does not yet allow
for interactions between fields (e.g., water and associated pollutant
flow), nor post-harvest operations.

Finally, while management assumptions such as sowing dates, fer-
tiliser application rates, and in-field practices were standardised here to
reflect ‘typical’ conditions, these factors are often key determinants of
yield variability. Future applications of the framework could incorpo-
rate sensitivity analyses or targeted scenario testing to quantify the in-
fluence of such management decisions and identify leverage points for
improving best practices and resilience.

4.3. Future applications

The framework offers a robust foundation for capturing spatial and
temporal heterogeneity in agroecosystems at scales relevant to farm
management. Applying it to new regions, farming systems, and climate
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performance and resilience metrics.
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Fig. 9. Crop proportions for each site over time. Farm = records of cropped areas planted annually to each crop, which are harvested in the identified year.
Catchment = total cropped areas within the WFD waterbodies identified by satellite data (Land Cover plus: Crops, 2023), SUA = An example medium-sized SUA, the
total cropped area-time across all simulations (excluding fallow periods between crops).

scenarios could empower exploration of a wide range of resilience-
focused questions, including multi-metric trade-offs, resilience map-
ping, and comparisons of adaptive strategies under varying environ-
mental and policy contexts.

By explicitly representing multiple sources of input heterogeneity,
the framework provides a generic method for harmonising model inputs
and assimilating outputs at the farm scale. It can be integrated with
diverse PBMs to test how incentivization through agricultural policy
affects resilience or how farm structural and management diversity
buffers climate extremes. Its ability to simulate outcome distributions
under varied weather and management also supports applications in
farm advisory services and risk planning.

Beyond the case studies presented here, the framework provides a
transferable foundation for harmonised simulation and evaluation of
resilience across diverse agroecosystem contexts and beyond. Because it
is model-independent and based on structured, modular inputs, it can be
readily adapted to other disciplines where spatial and temporal het-
erogeneity shape system performance at the decision-making scale, such
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as forestry, aquaculture, or rangeland management. More broadly, it
contributes to resilience science by operationalising a tractable,
simulation-based approach to assess how input variability and system
structure influence stability. By formalising how farm-scale variability
can be represented, simulated, and analysed, it contributes to the
ongoing development of reproducible modelling frameworks that link
ecological, biophysical, and socio-environmental dimensions of resil-
ience. In this way, our framework helps bridge process-based environ-
mental models with resilience science, extending their combined value
for research, policy, and decision support. The framework establishes a
transferable, model-independent approach for exploring how within-
farm heterogeneity shapes resilience, providing an essential methodo-
logical bridge between process-based modelling and real-world deci-
sion-making.

CRediT authorship contribution statement

Helen Metcalfe: Writing — review & editing, Writing — original draft,



H. Metcalfe et al.

Visualization, Validation, Software, Methodology, Investigation, Fund-
ing acquisition, Formal analysis, Conceptualization. Kevin Coleman:
Writing - review & editing, Writing — original draft, Visualization,
Validation, Software, Methodology, Investigation, Formal analysis,
Conceptualization. Yusheng Zhang: Writing - review & editing,
Writing - original draft, Validation, Methodology, Investigation,
Conceptualization. Prakash N Dixit: Writing — review & editing,
Methodology, Investigation, Conceptualization. Sana Saeed: Writing —
review & editing, Visualization, Methodology, Formal analysis, Data
curation. Andrew Mead: Writing — review & editing, Writing — original
draft, Visualization, Validation, Supervision, Methodology, Formal
analysis, Data curation. Adrian L Collins: Writing — review & editing,
Supervision, Resources, Project administration, Methodology, Investi-
gation, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
Adrian L Collins reports financial support was provided by Biotech-
nology and Biological Sciences Research Council. If there are other au-
thors, they declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

The authors would like to thank Nimai Senapati and Mikhail Seme-
nov for their support with the analysis of LARS-WG generated weather
data. Rothamsted Research receives strategic funding from the UKRI
(UK Research and Innovation) Biotechnology and Biological Sciences
Research Council (UKRI-BBSRC). We gratefully acknowledge support
from the Resilient Farming Futures Institute Strategic Programme [BB/
X010961/1; BBS/E/RH/230004A].

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.ecolmodel.2025.111432.

Data availability
No data was used for the research described in the article.

References

Abrahamsen, P., Hansen, S., 2000. Daisy: an open soil-crop-atmosphere system model.
Environ. Modell. Softw. 15 (3), 313-330. https://doi.org/10.1016/s1364-8152(00)
00003-7.

AfricaFertilizer, 2015. AfricaFertilizer Database [Online] Retrieved 23/06/2025 from.
https://africafertilizer.org/#/en.

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration - Guidelines
for Computing Crop Water Requirements - FAO Irrigation and Drainage Paper 56.

Avery, B.W., 1980. Soil classification for England and Wales (Higher categories). Soil
Survey, Technical Monograph No. 14. Rothamsted Experimental Station,
Harpenden, England.

Avery, B.W., Catt, J.A., 1995. The Soil at Rothamsted. Lawes Agricultural Trust.

Avery, B.W., Catt, J.A., Coleman, K., Pino-Chandia, L., & Ostler, R. (2024). Soil Map of
Rothamsted Estate (https://doi.org/10.23637/rothamsted.98z89.

Barrett, T., Dowle, M., Srinivasan, A., Gorecki, J., Chirico, M., Hocking, T.,
Schwendinger, B., Krylov, 1., 2025. data.table: Extension of 'data.frame’. R Package
Version 1.17.99. https://r-datatable.com.

Beillouin, D., Ben-Ari, T., Makowski, D., 2019. Evidence map of crop diversification
strategies at the global scale. Environ. Res. Lett. 14 (12), 123001. https://doi.org/
10.1088/1748-9326/ab4449.

Bengtsson, H., 2021. A Unifying Framework for Parallel and Distributed Processing in R
using Futures. R. J. 13 (2), 208-227. https://doi.org/10.32614/RJ-2021-048.

Bhuvandas, N., Timbadiya, P.V., Patel, P.L., Porey, P.D., 2014. Review of downscaling
methods in climate change and their role in hydrological studies. Int. J. Environ.
Ecol. Geol. Mar. Eng 8, 713-718.

Biggs, R., Gordon, L., Raudsepp-Hearne, C., Schliiter, M., Walker, B., 2015. Principle 3
—manage slow variables and feedbacks. In: Biggs, R., Schliiter, M., Schoon, M.L.

16

Ecological Modelling 513 (2026) 111432

(Eds.), Principles For Building Resilience: Sustaining Ecosystem Services in Social-
Ecological Systems. Cambridge University Press, pp. 105-141. https://doi.org/
10.1017/CB0O9781316014240.006.

Calzadilla, A., Rehdanz, K., Betts, R., Falloon, P., Wiltshire, A., Tol, R.S.J., 2013. Climate
change impacts on global agriculture. Clim. Change 120 (1), 357-374. https://doi.
org/10.1007/5s10584-013-0822-4.

Coleman, K., Jenkinson, D.S., 2014. RothC - A Model For the Turnover of Carbon in Soil:
Model Description and Users Guide (updated June 2014). Lawes Agricultural Trust.

Coleman, K., Muhammed, S.E., Milne, A.E., Todman, L.C., Dailey, A.G., Glendining, M.J.,
Whitmore, A.P., 2017. The landscape model: a model for exploring trade-offs
between agricultural production and the environment. Sci. Total Environ. 609,
1483-1499. https://doi.org/10.1016/j.scitotenv.2017.07.193.

Conway, G.R., 1987. The properties of agroecosystems. Agric. Syst. 24 (2), 95-117.

CSIRO, 2024. Australian Soil Resource Information System Website. v1. CSIRO. Data
Collection. https://doi.org/10.25919/pdct-9a97. Retrieved 10 July 2025 from.

Curceac, S., Milne, A., Atkinson, P.M., Wu, L., Harris, P., 2021. Elucidating the
performance of hybrid models for predicting extreme water flow events through
variography and wavelet analyses. J. Hydrol. 598, 126442. https://doi.org/
10.1016/j.jhydrol.2021.126442.

Darnhofer, ., John, F., Moller, H., 2010. Assessing a farm’s sustainability: insights from
resilience thinking. Int. J. Agric. Sustain. 8 (3), 186-198. https://doi.org/10.3763/
ijas.2010.0480.

Davoudi, S., Keith, S., Jamila, H.L., E, Q.A., D, P.G., Cathy, W., Hartmut, F., Darryn, M.,
Libby, P., Davoudi, S., 2012. Resilience: a bridging concept or a dead end?
“Reframing” resilience: challenges for planning theory and practice interacting traps:
resilience assessment of a pasture management system in Northern Afghanistan
urban resilience: what does it mean in planning practice? Resilience as a useful
concept for climate change adaptation? The politics of resilience for planning: a
cautionary note. Plan. Theory. Pract. 13 (2), 299-333. https://doi.org/10.1080/
14649357.2012.677124.

Defra, 2019. British Survey of Fertiliser Practice2018 - Fertiliser use On Farm Crops For Crop
Year 2018.

Defra, 2020. British Survey of Fertiliser Practice 2019 - Fertiliser use On Farm Crops For Crop
Year 2019.

Defra, 2021a. British Survey of Fertiliser Practice2020 - Fertiliser use On Farm Crops For Crop
Year 2020.

Defra, 2021b. Structure of the Agricultural Industry in England and the UK At June.
Retrieved 25 June 2025 from. https://www.gov.uk/government/statistical-data-sets
/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june.

Defra, 2022. British Survey of Fertiliser Practice 2021 - Fertiliser use On Farm Crops For Crop
Year 2021.

Defra, 2023. British Survey of Fertiliser Practice 2022 - Fertiliser use On Farm Crops For Crop
Year 2022.

Defra, 2025a. Catchment Data Explorer. Retrieved 3 July 2025 from. https://env
ironment.data.gov.uk/catchment-planning.

Defra, 2025b. Farm Business Survey. Retrieved 3 July 2025 from. https://www.farmbu
sinesssurvey.co.uk/.

Defra, 2025c. Farm Practices Survey February 2025. Retrieved 10 July 2025 from. https
://www.gov.uk/government/statistics/farm-practices-survey-february-2025.

Doring, T.F., Reckling, M., 2018. Detecting global trends of cereal yield stability by
adjusting the coefficient of variation. Eur. J. Agron. 99, 30-36. https://doi.org/
10.1016/j.€ja.2018.06.007.

El Fartassi, 1., Milne, A.E., Metcalfe, H., El Alami, R., Diarra, A., Alonso-Chavez, V.,
Zawadzka, J., Waine, T.W., Corstanje, R., 2025. An agent-based model of farmer
decision making: application to shared water resources in Arid and semi-arid
regions. Agric. Water. Manage 310, 109357. https://doi.org/10.1016/j.
agwat.2025.109357.

Elmgvist, T., Folke, C., Nystrom, M., Peterson, G., Bengtsson, J., Walker, B., Norberg, J.,
2003. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1
(9), 488-494. https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.
CO;2.

European Commission, 2025. The JRC MARS Agro-Meteorological Database Provides
Gridded Daily Agro-Meteorological Data At 25 Km Grid Resolution from 1979 to the
Last Calendar Year completed, For the European Union and Neighbouring Countries.
Joint Research Centre European Commission. Retrieved 23/06/2025 from. https:
//agri4cast.jrc.ec.europa.eu/dataportal.

FAO, 2020. FAOSTAT [Online]. Retrieved 10 July 2025 from. https://www.fao.
org/faostat/en/#home.

Folke, C., Carpenter, S.R., Walker, B., Scheffer, M., Chapin, T., Rockstrom, J., 2010.
Resilience thinking: integrating resilience, adaptability and transformability. Ecol.
Soc. 15 (4), 20.

Giltrap, D., Li, C., Saggar, S., 2010. DNDC: a process-based model of greenhouse gas
fluxes from agricultural soils. Agric. Ecosyst. Environ. 136 (3-4), 292-300. https://
doi.org/10.1016/j.agee.2009.06.014.

Government of India, 2025. Agricultural Census. Retrieved 02 July 2025 from. htt
ps://www.data.gov.in/sector/Agriculture.

Grimm, V., Augusiak, J., Focks, A., Frank, B., Gabsi, F., Johnston, A., Liu, C., Martin, B.,
Meli, M., Radchuk, V., Thorbek, P., Railsback, S., 2014. Towards better modelling
and decision support: documenting model development, testing, and analysis using
TRACE. Ecol. Modell. 280, 129-139. https://doi.org/10.1016/j.
ecolmodel.2014.01.018.

Hassall, K.L., Coleman, K., Dixit, P.N., Granger, S.J., Zhang, Y., Sharp, R.T., Wu, L.,
Whitmore, A.P., Richter, G.M., Collins, A.L., Milne, A.E., 2022. Exploring the effects
of land management change on productivity, carbon and nutrient balance:
application of an Ensemble Modelling Approach to the upper River Taw observatory,


https://doi.org/10.1016/j.ecolmodel.2025.111432
https://doi.org/10.1016/s1364-8152(00)00003-7
https://doi.org/10.1016/s1364-8152(00)00003-7
https://africafertilizer.org/#/en
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0003
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0003
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0004
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0004
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0004
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0005
https://doi.org/10.23637/rothamsted.98z89
https://r-datatable.com
https://doi.org/10.1088/1748-9326/ab4449
https://doi.org/10.1088/1748-9326/ab4449
https://doi.org/10.32614/RJ-2021-048
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0010
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0010
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0010
https://doi.org/10.1017/CBO9781316014240.006
https://doi.org/10.1017/CBO9781316014240.006
https://doi.org/10.1007/s10584-013-0822-4
https://doi.org/10.1007/s10584-013-0822-4
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0013
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0013
https://doi.org/10.1016/j.scitotenv.2017.07.193
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0015
https://doi.org/10.25919/pdct-9a97
https://doi.org/10.1016/j.jhydrol.2021.126442
https://doi.org/10.1016/j.jhydrol.2021.126442
https://doi.org/10.3763/ijas.2010.0480
https://doi.org/10.3763/ijas.2010.0480
https://doi.org/10.1080/14649357.2012.677124
https://doi.org/10.1080/14649357.2012.677124
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0020
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0020
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0021
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0021
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0022
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0022
https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0024
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0024
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0025
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0025
https://environment.data.gov.uk/catchment-planning
https://environment.data.gov.uk/catchment-planning
https://www.farmbusinesssurvey.co.uk/
https://www.farmbusinesssurvey.co.uk/
https://www.gov.uk/government/statistics/farm-practices-survey-february-2025
https://www.gov.uk/government/statistics/farm-practices-survey-february-2025
https://doi.org/10.1016/j.eja.2018.06.007
https://doi.org/10.1016/j.eja.2018.06.007
https://doi.org/10.1016/j.agwat.2025.109357
https://doi.org/10.1016/j.agwat.2025.109357
https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
https://agri4cast.jrc.ec.europa.eu/dataportal
https://agri4cast.jrc.ec.europa.eu/dataportal
https://www.fao.org/faostat/en/#home
https://www.fao.org/faostat/en/#home
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0034
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0034
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0034
https://doi.org/10.1016/j.agee.2009.06.014
https://doi.org/10.1016/j.agee.2009.06.014
https://www.data.gov.in/sector/Agriculture
https://www.data.gov.in/sector/Agriculture
https://doi.org/10.1016/j.ecolmodel.2014.01.018
https://doi.org/10.1016/j.ecolmodel.2014.01.018

H. Metcalfe et al.

UK. Sci. Total Environ. 824, 153824. https://doi.org/10.1016/j.
scitotenv.2022.153824.

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M.,
Blagoti¢, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B.,
Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, N.H., Leenaars, J.G.B.,

Ribeiro, E., Wheeler, 1., Mantel, S., Kempen, B., 2017. SoilGrids250m: global gridded
soil information based on machine learning. PLoS One 12 (2), e0169748. https://
doi.org/10.1371/journal.pone.0169748.

Holling, C.S., 1973. Resilience and Stability of Ecological Systems. Annu Rev. Ecol. Evol.
Syst. 4 (1973), 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245.
Holzworth, D., Huth, N., Devoil, P., Zurcher, E., Herrmann, N., McLean, G., Chenu, K.,

van Oosterom, E., Snow, V., Murphy, C., Moore, A., Brown, H., Whish, J., Verrall, S.,
Fainges, J., Bell, L., Peake, A., Poulton, P., Hochman, Z., Keating, B., 2014. APSIM -
Evolution towards a new generation of agricultural systems simulation. Environ.
Modell. Softw. 62, 327-350. https://doi.org/10.1016/j.envsoft.2014.07.009.

Hoy, C.W., 2015. Agroecosystem health, agroecosystem resilience, and food security.
J. Environ. Stud. Sci. 5 (4), 623-635. https://doi.org/10.1007/513412-015-0322-0.

IBGE, 2017. Censo Agropecuario. Instituto Brasileiro De Geografia e Estatistica.

Jakeman, A., Letcher, R., Norton, J., 2006. Ten iterative steps in development and
evaluation of environmental models. Environ. Modell. Softw. 21 (5), 602-614.
https://doi.org/10.1016/j.envsoft.2006.01.004.

Jakeman, A.J., Elsawah, S., Wang, H.-H., Hamilton, S.H., Melsen, L., Grimm, V., 2024.
Towards normalizing good practice across the whole modeling cycle: its
instrumentation and future research topics. Socio-Environ. Syst. Modell. 6, 18755.
https://doi.org/10.18174/sesmo.18755.

Jentsch, M.F., James, P.A.B., Bourikas, L., Bahaj, A.S., 2013. Transforming existing
weather data for worldwide locations to enable energy and building performance
simulation under future climates. Renew. Energy 55, 514-524. https://doi.org/
10.1016/j.renene.2012.12.049.

Jones, P.G., Thornton, P.K., 2013. Generating downscaled weather data from a suite of
climate models for agricultural modelling applications. Agric. Syst. 114, 1-5.
https://doi.org/10.1016/j.agsy.2012.08.002.

Kleinman, P.J.A., Spiegal, S., Rigby, J.R., Goslee, S.C., Baker, J.M., Bestelmeyer, B.T.,
Boughton, R.K., Bryant, R.B., Cavigelli, M.A., Derner, J.D., Duncan, EW.,
Goodrich, D.C., Huggins, D.R., King, K.W., Liebig, M.A., Locke, M.A., Mirsky, S.B.,
Moglen, G.E., Moorman, T.B., Walthall, C.L., 2018. Advancing the Sustainability of
US Agriculture through Long-Term Research. J. Environ. Qual. 47 (6), 1412-1425.
https://doi.org/10.2134/jeq2018.05.0171.

Kotschy, K., Biggs, R., Daw, T., Folke, C., West, P.C., 2015. Principle 1 -maintain
diversity and redundancy. In: Biggs, R., Schliiter, M., Schoon, M.L. (Eds.), Principles
For Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems.
Cambridge University Press, pp. 50-79. https://doi.org/10.1017/
CB09781316014240.004.

Lal, R., 2021. Chapter 31 - Climate change and agriculture. In: Letcher, T.M. (Ed.),
Climate Change, 3rd ed. Elsevier, pp. 661-686. https://doi.org/10.1016/B978-0-12-
821575-3.00031-1.

Land Cover plus: Crops, 2023. [FileGeoDatabase Geospatial data], Scale 1:2500, Tiles:
GB, Updated: 29 January 2024, CEH, Using: EDINA Environment Digimap Service.
<. https://digimap.edina.ac.uk. >Downloaded: 2024-05-20 12:43:54.166.

LandIS, 2024. National Soil Map of England and Wales — NATMAP. Retrieved 25 June
2025 from. https://www.landis.org.uk/data/nm1000.cfm.

Lin, B.B., 2011. Resilience in agriculture through crop diversification: adaptive
management for environmental change. Bioscience 61 (3), 183-193. https://doi.
org/10.1525/bi0.2011.61.3.4.

Marston, C., Rowland, C.S., Neil, A.W., Morton, R.D., 2022. Land Cover Map 2021 (Land
Parcels, GB). (NERC EDS Environmental Information Data Centre.

Melchior, I.C., Newig, J., 2021. Governing transitions towards sustainable
agriculture—taking stock of an emerging field of research. Sustainability 13 (2), 528.

Menne, M.J., Durre, L., Vose, R.S., Gleason, B.E., Houston, T.G., 2012. An overview of the
global historical climatology network-daily database. J. Atmos. Ocean. Technol. 29
(7), 897-910. https://doi.org/10.1175/JTECH-D-11-00103.1.

Met office, 2025. Historic Station Data. Met office. Retrieved 9 July 2025 from. https
://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data.

Meuwissen, M., Feindt, P., Spiegel, A., Termeer, C., Mathijs, E., de Mey, Y., Finger, R.,
Balmann, A., Wauters, E., Urquhart, J., Vigani, M., Zawalinska, K., Herrera, H.,
Nicholas-Davies, P., Hansson, H., Paas, W., Slijper, T., Coopmans, I., Vroege, W.,
Reidsma, P., 2019. A framework to assess the resilience of farming systems. Agric.
Syst. 176, 102656. https://doi.org/10.1016/j.agsy.2019.102656.

Nelson, K.S., Patalee, B., Yao, B., 2022. Higher landscape diversity associated with
improved crop production resilience in Kansas-USA. Environ. Res. Lett. 17 (8),
084011. https://doi.org/10.1088/1748-9326/ac7e5f.

Olivoto, T., Licio, A.D.C., 2020. metan: an R package for multi-environment trial
analysis. Methods Ecol. Evol. 11 (6), 783-789. https://doi.org/10.1111/2041-
210X.13384.

Orehova, T., Ischuk, Y., 2023. The risks and challenges of agricultural products global
market. Herald of Khmelnytskyi National University Econ. Sci. 320 (4), 119-124.
https://doi.org/10.31891/2307-5740-2023-320-4-17.

Orr, R.J., Murray, P.J., Eyles, C.J., Blackwell, M.S.A., Cardenas, L.M., Collins, A.L.,
Dungait, J.A.J., Goulding, K.W.T., Griffith, B.A., Gurr, S.J., Harris, P., Hawkins, J.M.
B., Misselbrook, T.H., Rawlings, C., Shepherd, A,, Sint, H., Takahashi, T., Tozer, K.N.,
Whitmore, A.P., Lee, M.R.F., 2016. The North Wyke Farm Platform: effect of
temperate grassland farming systems on soil moisture contents, runoff and
associated water quality dynamics. Eur. J. Soil. Sci. 67 (4), 374-385. https://doi.
org/10.1111/ejss.12350.

Parton, W.J., Schime, D.S., Ojima, D.S., Cole, C.V., 1994. A general model for soil organic
matter dynamics: sensitivity to litter chemistry, texture and management. In:

17

Ecological Modelling 513 (2026) 111432

Bryant, R.B., Arnold, R.W. (Eds.), Quantitative Modeling of Soil Forming Processes.
SSSA Special Publication 39, pp. 147-167.

Pret, V., Falconnier, G.N., Affholder, F., Corbeels, M., Chikowo, R., Descheemaeker, K.,
2025. Farm resilience to climatic risk. A review. Agron. Sustain. Dev. 45 (1), 10.
https://doi.org/10.1007/513593-024-00998-w.

R Core Team, 2025. R: A language and Environment For Statistical Computing (Version
4.4.1) [Computer Software]. https://www.R-project.org/.

Rao, N.H., Katyal, J.C., Reddy, M.N., 2004. Embedding the sustainability perspective into
agricultural research:implications for research management. Outlook Agric. 33 (3),
167-176. https://doi.org/10.5367,/0000000042530141.

Ren, W., 2019. Towards an integrated agroecosystem modeling approach for climate-
smart agriculture management. Bridging Among Disciplines By Synthesizing Soil and
Plant Processes, pp. 127-144. https://doi.org/10.2134/
advagricsystmodel8.2018.0004.

Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V.,

Held, H., van Nes, E.H., Rietkerk, M., Sugihara, G., 2009. Early-warning signals for
critical transitions. Nature 461 (7260), 53-59. https://doi.org/10.1038/
nature08227.

Scott, M., 2013. Resilience: a Conceptual Lens for Rural Studies? Geogr. Compass. 7 (9),
597-610. https://doi.org/10.1111/gec3.12066.

Semenov, M.A., 2008. Simulation of extreme weather events by a stochastic weather
generator. Clim. Res. 35, 203-212.

Semenov, M.A., Barrow, E.M., 1997. Use of a stochastic weather generator in the
development of climate change scenarios. Clim. Change 35 (4), 397-414.

Semenov, M.A., Barrow, E.M., 2002. LARS-WG: A Stochastic Weather Generator For Use
in Climate Impact Studies (Version 3.0 User Manual).

Semenov, M.A,, Senapati, N., Coleman, K., Collins, A.L., 2024. A dataset of CMIP6-based
climate scenarios for climate change impact assessment in Great Britain. Data Br. 55,
110709. https://doi.org/10.1016/j.dib.2024.110709.

Sharma, P., Gyalog, G., Varga, M., 2025. Unified process model-based assessment of
environmental interactions and ecosystem services of a managed fishpond-reed
agroecosystem. Ecol. Modell. 506, 111151. https://doi.org/10.1016/j.
ecolmodel.2025.111151.

Sharp, R.T., Henrys, P.A., Jarvis, S.G., Whitmore, A.P., Milne, A.E., Coleman, K.,
Mohankumar, S.E.P., Metcalfe, H., 2021. Simulating cropping sequences using earth
observation data. Comput. Electron. Agric. 188, 106330. https://doi.org/10.1016/].
compag.2021.106330.

Sharp, R.T., Sanderson Bellamy, A., Clear, A., Mitchell Finnigan, S., Furness, E.,
Meador, E., Metcalfe, H., Mills, S., Coleman, K., Whitmore, A.P., Milne, A.E., 2024.
Implications and impacts of aligning regional agriculture with a healthy diet.

J. Clean. Prod. 449, 141375. https://doi.org/10.1016/j.jclepro.2024.141375.

Taghikhah, F., Borevitz, J., Costanza, R., Voinov, A., 2022. DAESim: a dynamic agro-
ecosystem simulation model for natural capital assessment. Ecol. Modell. 468,
109930. https://doi.org/10.1016/j.ecolmodel.2022.109930.

Thiombiano, L., Yemefack, M., Van Ranst, E., Spaargaren, O., Micheli, E., Kilasara, M.,
Montanarella, L., Jones, R., Hallett, S., Dampha, A., Gallali, T., Deckers, J., Breuning-
Madsen, H., Jones, A., Brossard, M., Jones, A., Le Roux, P., Dewitte, O., Jones, R.,
Zougmoré, R., 2013. Soil Atlas of Africa. Publications Office. https://doi.org/
10.2788/52319.

Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P.E., Kao, S.C., 2022. Daymet: Station-
Level Inputs and Cross-Validation for North America, Version 4 R1. ORNL
Distributed Active Archive Center.

USDA, 2022. Census of Agriculture. Retrieved 19 June 2025 from. https://www.nass.
usda.gov/Publications/AgCensus/2022/index.php#full_report.

USDA, 2025. Web Soil Survey. Retrieved 23/06/2025 from. https://websoilsurvey.sc.eg
ov.usda.gov/App/HomePage.htm.

Van Engelen, V., Verdoodt, A., Dijkshoorn, K., Van Ranst, E., 2006. Soil and Terrain
Database of Central Africa-DR of Congo, Burundi and Rwanda Report, 2006/07.
http://www.isric.org.

International, V.S.N., 2023. Genstat For Windows, 23rd Edition. (Version 23rd) Genstat.
co.uk.

Walker, B., Hollin, C.S., Carpenter, S.R., Kinzig, A., 2004. Resilience, adaptability and
transformability in social-ecological systems. Ecol. Soc. 9 (2), 5.

Wang, H.-H., van Voorn, G., Grant, W.E., Zare, F., Giupponi, C., Steinmann, P.,

Miiller, B., Elsawah, S., van Delden, H., Athanasiadis, I.N., Sun, Z., Jager, W.,
Little, J.C., Jakeman, A.J., 2023. Scale decisions and good practices in socio-
environmental systems modelling: guidance and documentation during problem
scoping and model formulation. Socio-Environ. Syst. Modell. 5, 18563. https://doi.
org/10.18174/sesmo.18563.

Wickham, H., 2016. Elegant Graphics For Data Analysis, 2nd ed.

Wickham, H., Francois, R., Henry, L., Miiller, K., Vaughan, D., 2025. dplyr: A Grammar of
Data Manipulation. R Package Version 1.1.4. https://dplyr.tidyverse.org.

Wilks, D.S., Wilby, R.L., 1999. The weather generation game: a review of stochastic
weather models. Progr. Phys. Geogr. 23 (3), 329-357. https://doi.org/10.1177/
030913339902300302.

Wolf, J., 2012. User Guide For LINTUL4 and LINTUL4V: Simple generic Model For
Simulation of Crop Growth Under potential, Water Limited and Nitrogen Limited
Conditions.

Wosten, J.H.M,, Lilly, A., Nemes, A., Le Bas, C., 1999. Development and use of a database
of hydraulic properties of European soils. Geoderma 90 (3-4), 169-185. https://doi.
0rg/10.1016/50016-7061(98)00132-3.

Xie, H., Li, J., Li, T., Lu, X., Hu, Q., Qin, Z., 2025. GloRice, a global rice database (v1.0): I.
Gridded paddy rice annual distribution from 1961 to 2021. Sci. Data 12 (1), 182.
https://doi.org/10.1038/541597-025-04483-1.

Yang, Y., Tilman, D., Jin, Z., Smith, P., Barrett, C.B., Zhu, Y.-G., Burney, J., D’Odorico, P.,
Fantke, P., Fargione, J., Finlay, J.C., Rulli, M.C,, Sloat, L., Jan van Groenigen, K.,


https://doi.org/10.1016/j.scitotenv.2022.153824
https://doi.org/10.1016/j.scitotenv.2022.153824
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1146/annurev.es.04.110173.000245
https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.1007/s13412-015-0322-0
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0043
https://doi.org/10.1016/j.envsoft.2006.01.004
https://doi.org/10.18174/sesmo.18755
https://doi.org/10.1016/j.renene.2012.12.049
https://doi.org/10.1016/j.renene.2012.12.049
https://doi.org/10.1016/j.agsy.2012.08.002
https://doi.org/10.2134/jeq2018.05.0171
https://doi.org/10.1017/CBO9781316014240.004
https://doi.org/10.1017/CBO9781316014240.004
https://doi.org/10.1016/B978-0-12-821575-3.00031-1
https://doi.org/10.1016/B978-0-12-821575-3.00031-1
https://digimap.edina.ac.uk
https://www.landis.org.uk/data/nm1000.cfm
https://doi.org/10.1525/bio.2011.61.3.4
https://doi.org/10.1525/bio.2011.61.3.4
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0054
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0054
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0055
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0055
https://doi.org/10.1175/JTECH-D-11-00103.1
https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data
https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data
https://doi.org/10.1016/j.agsy.2019.102656
https://doi.org/10.1088/1748-9326/ac7e5f
https://doi.org/10.1111/2041-210X.13384
https://doi.org/10.1111/2041-210X.13384
https://doi.org/10.31891/2307-5740-2023-320-4-17
https://doi.org/10.1111/ejss.12350
https://doi.org/10.1111/ejss.12350
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0063
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0063
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0063
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0063
https://doi.org/10.1007/s13593-024-00998-w
https://www.R-project.org/
https://doi.org/10.5367/0000000042530141
https://doi.org/10.2134/advagricsystmodel8.2018.0004
https://doi.org/10.2134/advagricsystmodel8.2018.0004
https://doi.org/10.1038/nature08227
https://doi.org/10.1038/nature08227
https://doi.org/10.1111/gec3.12066
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0070
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0070
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0071
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0071
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0072
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0072
https://doi.org/10.1016/j.dib.2024.110709
https://doi.org/10.1016/j.ecolmodel.2025.111151
https://doi.org/10.1016/j.ecolmodel.2025.111151
https://doi.org/10.1016/j.compag.2021.106330
https://doi.org/10.1016/j.compag.2021.106330
https://doi.org/10.1016/j.jclepro.2024.141375
https://doi.org/10.1016/j.ecolmodel.2022.109930
https://doi.org/10.2788/52319
https://doi.org/10.2788/52319
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0079
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0079
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0079
https://www.nass.usda.gov/Publications/AgCensus/2022/index.php#full_report
https://www.nass.usda.gov/Publications/AgCensus/2022/index.php#full_report
https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
http://www.isric.org
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0083
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0083
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0084
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0084
https://doi.org/10.18174/sesmo.18563
https://doi.org/10.18174/sesmo.18563
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0086
https://dplyr.tidyverse.org
https://doi.org/10.1177/030913339902300302
https://doi.org/10.1177/030913339902300302
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0089
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0089
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0089
https://doi.org/10.1016/s0016-7061(98)00132-3
https://doi.org/10.1016/s0016-7061(98)00132-3
https://doi.org/10.1038/s41597-025-04483-1

H. Metcalfe et al.

West, P.C., Ziska, L., Michalak, A.M., Team, t.C.-A., Lobell, D.B., Zhuang, M., 2024.
Climate change exacerbates the environmental impacts of agriculture. Science 385
(6713), eadn3747. https://doi.org/10.1126/science.adn3747.

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., Kitoh, A., 2012.
APHRODITE: constructing a Long-Term Daily Gridded Precipitation Dataset for Asia

18

Ecological Modelling 513 (2026) 111432

Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 93 (9),
1401-1415. https://doi.org/10.1175/BAMS-D-11-00122.1.

Zhang, Y., Wu, L., Jebari, A., Collins, A., 2024. Impacts of reduced synthetic fertiliser use
under current and future climates: exploration using integrated agroecosystem
modelling in the upper River Taw observatory, UK. J. Environ. Manage 351, 119732.
https://doi.org/10.1016/j.jenvman.2023.119732.


https://doi.org/10.1126/science.adn3747
https://doi.org/10.1175/BAMS-D-11-00122.1
https://doi.org/10.1016/j.jenvman.2023.119732

	A framework for capturing farm-scale variation in process-based simulations for agroecosystem resilience
	1 Introduction
	2 Methods
	2.1 Generic framework
	2.1.1 STEP 1: data acquisition
	2.1.2 STEP 2: data processing
	2.1.3 STEP 3: simulation
	2.1.4 STEP 4: model output sampling
	2.1.5 STEP 5: analysis and interpretation

	2.2 Application of the framework to two exemplar sites
	2.2.1 STEP 1: data acquisition
	2.2.2 STEP 2: data processing
	2.2.3 STEP 3: simulation
	2.2.3.1 Demonstration model: Rothamsted landscape model (RLM)

	2.2.4 STEP 4: model output sampling
	2.2.5 STEP 5: analysis and interpretation
	2.2.5.1 Assessing system performance
	2.2.5.2 Assessing system resilience
	2.2.5.3 Distributions of outputs
	2.2.5.4 Assessing sources of variation
	2.2.5.5 Statistical packages



	3 Results
	3.1 Assessing system performance
	3.2 Assessing system resilience
	3.3 Assessing sources of variation
	3.3.1 Weather
	3.3.2 Soil characteristics
	3.3.3 Cropping patterns


	4 Discussion
	4.1 Methodological strengths and innovations
	4.2 Limitations
	4.3 Future applications

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Supplementary materials
	Data availability
	References


