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A B S T R A C T

Agroecosystem models typically simulate average conditions in fields or over a gridded landscape. This approach 
overlooks the spatial variation that shapes resilience at the farm scale. Yet, this variation can strongly influence 
production and regulating services, and their robustness to stresses. We developed a model-independent five-step 
framework for capturing farm-scale variation in process-based simulations for agroecosystem resilience. The 
framework comprises: 1) data acquisition; 2) data processing; 3) simulation; 4) output sampling, and 5) analysis 
and interpretation.

We applied the framework to two contrasting UK case exemplars, differing in climate, soils, and management. 
We used the Rothamsted Landscape Model to simulate calorific productivity, nitrate runoff and N2O emissions. 
Simulations captured realistic farm-scale variability, including rare outcomes, reflecting the emergent effects of 
heterogeneous soils, weather, and farm management.

This flexible and transferable approach enables the simulation of agroecosystem performance and resilience 
using process-based models. It can help to explore system dynamics and risks at the farm scale under plausible 
spatial and temporal heterogeneity. By explicitly capturing these sources of heterogeneity at the scale most 
relevant for decision making, i.e., the farm, it provides a robust basis for applied research, policy design, and 
scenario exploration under current or future environmental change.

1. Introduction

Historically, agroecosystems research focused on developing strate
gies to improve net primary productivity, driven by the needs of a 
growing global population (Conway, 1987). Over time, the focus shifted 
toward sustainability, balancing productivity with environmental 
stewardship and resource conservation amid concerns over unintended 
consequences (Kleinman et al., 2018). Today, agricultural research, 
often takes a systems approach that integrates productivity with sus
tainability outcomes (Rao et al., 2004; Zhang et al., 2024). This includes 
frameworks that consider co-benefits and trade-offs between produc
tion, natural resource quality, profitability, and environmental impacts 
(Melchior and Newig, 2021).

Today, agriculture faces multifaceted challenges driven by socio- 
economic and environmental pressures. Unpredictable climate change 
and associated stresses, like pervasive soil degradation, threaten agro
ecosystems (Lal, 2021). Extreme weather events, like droughts and 

heavy rainfall, are becoming more frequent and intense, damaging crops 
and the environment, and indirectly affecting food prices and avail
ability (Calzadilla et al., 2013). Climate change is also shifting pest and 
disease distributions, increasing infestations and crop losses (Yang et al., 
2024). Geopolitical tensions, including US–China trade disputes and the 
recent war in Ukraine, have disrupted global supply chains, making 
agricultural markets more vulnerable and prompting protective mea
sures like grain export limits (Orehova and Ischuk, 2023).

Given this wide range of pressures on agroecosystems, it is increas
ingly important to explore and quantify resilience. Originally applied to 
ecological systems (Holling, 1973), the concept of resilience was later 
extended to socio-ecological systems (Folke et al., 2010; Walker et al., 
2004) and agroecosystems (Darnhofer et al., 2010). Resilience is 
commonly defined as the ability to return to a stable state after distur
bance (Davoudi et al., 2012; Scott, 2013) or more generally, to sustain 
(or improve) function over time (Pret et al., 2025). Variation within 
systems and among inputs and outputs in response to abiotic and biotic 
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stresses is critical to understanding agroecosystem resilience compre
hensively. Despite this, 47 % of farm-scale resilience studies cited in a 
2025 review used only average-value metrics to assess farm perfor
mance (Pret et al., 2025). Critically, this can obscure variation such as 
very below-average performance during specific years (e.g., dry years).

To design innovative farming systems that support sustainable 
development and remain resilient to extant of predicted abiotic and 
biotic stresses, it is imperative to understand resilience drivers at the 
farm scale (Pret et al., 2025). This scale enables detailed insight into the 
manifold interactions and system dynamics shaping agroecosystem 
resilience, including how stresses, management, ecological functions, 
and socio-economic factors interact. It is also the main financial ac
counting and decision-making unit and is relevant to broader scale as
sessments (Hoy, 2015).

Field scale studies typically focus on productivity alone, as infra
structure for assessing other outcomes is often lacking, though excep
tions do exist as exemplified by heavily instrumented strategic research 
platforms (e.g., Orr et al., 2016). Conversely, landscape-scale studies 
take a broader, often more environmental perspective given the routine 
strategic monitoring of environmental outcomes at such scales. Here, 
there can be a lack of attention to other farm performance metrics 
relevant to farmers, landowners, and policymakers. Even explicitly 
farm-scale studies often consider only one or two dimensions of farm 
performance (agronomic, economic, social, environmental), with few 
addressing three or all four (Pret et al., 2025).

Process-based models (PBM’s) are frequently used to assess agro
ecosystem resilience. In a review of studies quantifying farm-based 
resilience, most relied on mechanistic crop, livestock, or farm models 
(55 %, n = 42; Pret et al., 2025). Models are valuable for simulating 
complex interactions and predicting system responses to environmental 
and management changes. They allow exploration of variation by 
generating multiple scenarios, unlike on-farm experimental studies. A 
wide range of PBMs now exist, ranging from process-specific models (e. 
g., RothC, Coleman and Jenkinson, 2014; DNDC, Giltrap et al., 2010), to 
systems-level models (e.g. APSIM, Holzworth et al., 2014; Daisy, Abra
hamsen and Hansen, 2000),and fully integrated agroecosystem simula
tors (e.g., CSAmodel, Ren, 2019; Taghikhah et al., 2022). These models 
can each be used to explore different combinations of components of 
agroecosystem functioning. However, robust exploration of farm-scale 
resilience using any PBM(s), requires harmonized representation of 
farm-scale variability in model inputs and robust analysis of outputs. 
Recent discussions, across the wider modelling community, have high
lighted persistent deficiencies in how modelling exercises are scoped 
and structured, particularly in defining model purpose, system bound
aries, and scales of analysis We therefore present a model-independent 
framework for capturing and analysing farm-scale variation in 
process-based agroecosystem simulations. (Jakeman et al., 2024). Our 
framework explicitly Our framework addresses two key challenges in 
modelling resilience: i) representing the diversity of real-world farm 
systems at the decision-making scale, and ii) analysing variability in 
outputs to assess resilience across multiple dimensions. This improves 
model transparency, reproducibility, and interpretability across diverse 
agricultural systems and model implementations. The framework is 
structured as a generic five-step workflow that is applicable across 
diverse agricultural systems, locations, and models. We demonstrate its 
application at two UK case exemplar sites using a single PBM, but the 
approach is designed for use with any compatible PBM or ensemble of 
models.

This framework enables users to: i) integrate and harmonize varia
tion in soils, weather, crop rotations, and management into model in
puts; ii) construct plausible virtual farmed landscapes from model 
outputs, and iii) assess full outcome distributions to identify both 
average performance and extreme responses critical to understanding 
and exploring agroecosystem resilience more comprehensively.

2. Methods

2.1. Generic framework

We developed a model-independent five-step framework (Fig. 1) to 
structure simulations of farm-scale variation using agroecosystem PBMs. 
It can be applied to both real farms with known characteristics and 
‘typical’ farms at a given location, even where detailed site information 
is limited. We refer to the “site” as the location being simulated—either a 
specific farm or a virtual representative of the local farmed landscape. 
The framework captures variation often overlooked in traditional site- 
based parameterisation.

This framework formalises both the problem scoping and concep
tualization phases of the modelling process (Jakeman et al., 2024). In 
line with good modelling practice, it integrates existing data, literature, 
and expert knowledge to identify key drivers of variation and determine 
appropriate system boundaries and scales of analysis. This ensures that 
conceptual assumptions are explicit, traceable, and transferable across 
different agroecosystem PBMs and study contexts.

These five steps operationalize best-practice good modelling princi
ples across the modelling cycle: from explicit problem scoping and 
conceptualization through to transparent simulation and reproducible 
evaluation. Together, as a framework, they address several long- 
recognised gaps in agroecosystem modelling workflows (Grimm et al., 
2014; Jakeman et al., 2006; Wang et al., 2023).

2.1.1. STEP 1: data acquisition
The data acquisition phase serves not only to gather inputs, but also 

to formalize the conceptual model of the system by defining which 
processes and drivers are most relevant to the problem being investi
gated. This reflects the “problem conceptualization” stage of good 
modelling practice (Jakeman et al., 2006), ensuring that choices about 
system boundaries, inputs, and scales are grounded in both system un
derstanding and data availability.

Agroecosystem processes are shaped by spatial and temporal varia
tion in land structure, farming system, weather, soils, and management. 
Input data to PBMs should reflect local heterogeneity in these factors, 
while retaining site specificity. Achieving this balance often requires 
collecting data from beyond the farm boundary. We recommend using 
the surrounding hydrological catchment as a pragmatic data acquisition 
zone as catchments provide a natural spatial unit that integrates both 
environmental processes and agricultural decision-making contexts. For 
many countries, the necessary datasets are available at catchment or 
regional scale (Table 1).

Farm and field areas: Acquire data on typical farm and field size 
distributions within the data acquisition zone . The size and structure of 
farms influences variation in outputs: small farms with few fields are 
more sensitive to outliers, whereas large farms tend to average out 
variability across fields.

Farming system: Describe land use classes and dominant produc
tion systems (e.g. livestock/arable). If unavailable at the site level, use 
catchment-scale census or land use data to infer local configurations.

Weather: Obtain meteorological data from a nearby weather station 
at the temporal resolution required by the PBMs, or at the highest 
temporal resolution available. Long time series help capture interannual 
variation.

Soil properties: Collect soil series data for the data acquisition zone 
(spatially explicit soil mapping units defined in national or regional soil 
surveys). Include all soil series that cumulate up to and including 65 % of 
total data acquisition zone area to capture key variation while limiting 
model complexity. For each soil series, extract required profile proper
ties (e.g. texture, bulk density, organic matter content) for all soil 
horizons.

Agricultural management: Assemble data on typical crop types, 
livestock, and practices. If catchment-scale data are lacking, use national 
datasets or best practice guidelines to infer typical local farm 
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management.

2.1.2. STEP 2: data processing
Acquired data often require processing before use in PBMs.
Farm and field areas: To simulate realistic variation, fit frequency 

distributions to observed farm and field sizes. If data are limited, use 
median or mean values, though this omits variability. For richer data
sets, simulate farms at key quantiles, (e.g. minimum, median, 
maximum). Field sizes can be categorised into nominal size classes (e. 
g.1–2 ha, 2–3 ha, etc.) with mean or median values used to represent 
each class.

Farming systems: Where multiple systems exist at a site, simulate 
the dominant one or model each separately if resources allow. Partition 
land use based on the farming system type: arable farming systems 
typically allocate all land to cropping; upland grazing farms are mainly 
permanent grassland, and mixed farms have both (see Table 2). Where 
detailed information on farm composition is available, the framework 
can represent mixed or complementary systems directly by allocating 
land areas to both cropping and grazing enterprises. For undescribed or 
‘typical’ farms where such data are unavailable, the dominant farming 
system is simulated to maintain site representativeness while avoiding 
unverified assumptions about enterprise complementarity. We 
acknowledge that this may be a limitation in regions where mixed sys
tems are prevalent and detailed farm data are lacking.

Weather: Weather is a critical source of variation and a constraint on 
replication. Using weather data from additional locations or time pe
riods can introduce bias. Tools like LARS-WG (Semenov and Barrow, 
1997, 2002), CCWorldWeatherGen (Jentsch et al., 2013), and MarkSim 
(Jones and Thornton, 2013) generate synthetic weather representative 
of local conditions and can simulate future scenarios based on global 
circulation models (e.g., Semenov et al., 2024).

Soil properties: Soil profile data should be converted to model- 
ready inputs. Apply pedotransfer functions (e.g. Wösten et al. (1999)) 
to estimate unmeasured properties. Standardise varying layer depths to 
match PBM requirements using a weighted matrix. Let the observed 
profile have n layers with depth intervals defined by upper and lower 
bounds [ui, li], where i = 1, 2,…, n and the model requires m layers 
with depth intervals 

[
Uj, Lj

]
, where j = 1, 2, …, m. Compute an m ×n 

matrix W such that each elementWj,i ∈ [0, 1] represents the proportion of 
the j th model layer that is composed of the i th observed layer: 

Wj,i =
min

(
Lj, li

)
− max

(
Uj,ui

)

Lj − Uj
if there is overlap, else Wj,i = 0, (1) 

Let pi be the value of a soil property in the ith observed layer. 
Compute Pj for the jth model layer as a weighted average: 

Pj =
∑n

i=1
Wj,i⋅pi, (2) 

Agricultural management: PBMs typically simulate pre-described 
crop sequences. These can be defined using catchment data, but real 
rotations are not typically static. Probabilistic crop sequence generators 
(e.g. Sharp et al. (2021) use transition matrices and agronomic rules to 
replicate typical cropping patterns. These probabilistic crop sequences 
incorporate observed transition probabilities and agronomic rules (e.g., 
maximum number of consecutive same-crop sequences for disease 
management), thereby reflecting common patterns of complementarity 
among crops and pasture phases.

Additional agricultural management data (e.g. agrochemical inputs, 
in-field operations, stocking densities) should be translated into best- 
practice schedules aligned with PBM input requirements.

2.1.3. STEP 3: simulation
The simulation step operationalises the model formulation and 

implementation phases of good modelling practice (Jakeman et al., 
2024). By defining simulations through transparent and modular input 
sets (generated in steps 1 and 2), the framework allows the structure, 
assumptions, and parameterisation of the modelling process to be fully 
documented and reproducible. Replication and systematic input varia
tion help to quantify process uncertainty and sensitivity, providing a 
foundation for subsequent evaluation and comparison across PBMs or 
sites.

Simulations should be run across a structured set of replicates to 
capture variation in key uncertainties. We recommend at least 100 
replicates per soil × weather × land use combination. In rotational 
cropping simulations, each replicate should begin with a randomly 
selected starting crop (based on data acquisition zone crop type 

Fig. 1. A generic framework for capturing variation at the farm scale in process-based model simulations. The framework comprises 5 steps and utilises freely 
available or licensed data to describe land areas, farming systems, weather, soil properties, and agricultural management.
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frequencies), followed by a uniquely generated crop sequence. To cap
ture interannual variability and estimate medium-term resilience, sim
ulations should run for at least 20 years.

The framework is designed to accommodate different PBMs, which 
inherently vary in structure and parameterisations. Even with identical 
inputs, they may produce divergent outputs due to differences in process 

representations (e.g. crop growth, water balance, pest dynamics, 
nutrient cycling and loss). If multiple PBMs are available, simulations 
should be run in parallel using the same input datasets. While true 
ensemble modelling (statistical combination of outputs) is ideal, it may 
be unsuitable due to differing model structures and output formats. 
Nonetheless, applying a consistent simulation protocol across models 
enables comparison of model behaviours and output distributions. This 
reveals how structural assumptions influence predictions under com
mon inputs. Incorporating variation in weather, soils, and management 
within and across models improves realism and supports more robust 
interpretable results.

2.1.4. STEP 4: model output sampling
Using land area data from steps 1 and 2, construct multiple simulated 

utilised areas (SUAs), each representing a virtual replicate farm, typical 
of the landscape. Total farm area, field number, and field sizes should be 
sampled from data acquisition zone distributions. If data are sparse, 
mean or representative values may be used. Independently assign each 
field within an SUA, a land-use type, soil series, and starting crop, 
sampled from the respective catchment-scale marginal distributions to 
reflect realistic heterogeneity (Fig. 2). Allocate pre-generated model 
outputs (from Step 3) to each virtual field, based on soil type and initial 
crop. Each replicate simulation should appear only once per SUA. Model 
outputs (per unit area) should be weighted by field area and aggregated 
to the farm scale for each SUA. We recommend creating a minimum of 
10 SUAs per farm size class (e.g. small, medium, and large), depending 
on the study objectives and available data. The total number of SUAs is 
constrained by the number of unique simulations available per soil ×
crop type combination.

Variation among replicate simulations differs by land-use type. For 
cropped fields, each replicate includes a unique crop sequence. For 
permanent grassland, simulations may be near identical unless the PBM 
includes further stochastic elements. This should be considered when 
interpreting variability at the farm scale.

Due to the stochastic construction of SUAs, some rare combinations 
of soil, field size, and crop may not appear. This is intentional and 
supports generation of realistic outcome distributions.

Soil types were sampled proportionally to their relative area in the 
data acquisition zone rather than spatially interpolated and organised. 
This approach captures the dominant compositional variability in soil 
properties while avoiding assumptions about spatial connectivity, which 
are not represented in most agroecosystem PBMs. Because SUAs are used 
as aggregated, non-spatial farm units, proportional sampling provides a 
realistic basis for estimating farm-scale variation without introducing 
artefactual spatial structure.

We refer to these constructed entities as “simulated utilised areas” 
because many agroecosystem PBMs focus on crop and field processes, 
and do not simulate non-field infrastructure (e.g. farmyards, steadings, 
stores, tracks), despite the potential environmental impacts associated 
with the management of these elements of farm structure. The frame
work presented here captures variability in the productive land area, 
which typically accounts for most land use on farms and dominates 
ecosystem service delivery. This step supports transparent evaluation of 
model outputs by standardising their extraction and aggregation, 
enabling reproducible comparison across models, scenarios, or sites. By 
harmonising outputs within a consistent sampling framework, the 
approach mitigates one of the major barriers to inter-model comparison 
identified in previous studies (Jakeman et al., 2024).

2.1.5. STEP 5: analysis and interpretation
The analysis methods should match the study’s objectives. For 

comparisons (e.g., between sites, years, or scenarios), ANOVA can test 
differences in mean farm-scale responses. To ensure robust and repre
sentative results, input variability (e.g., weather, soil, field size aggre
gation) must be replicated. However, large simulation datasets can 
produce high statistical power, increasing the likelihood of detecting 

Table 1 
Example data sources for key input categories relevant to simulating agro
ecosystem processes. Dataset, sources, and spatial coverage are provided for 
each of the five input categories described in step one of our framework.

Input category Dataset Coverage

Farm and field area Land Cover + Crops (Land Cover plus: 
Crops, 2023)

Great Britain

​ Agricultural Census (Government of 
India, 2025)

India

​ USDA Census of Agriculture (USDA, 
2022)

USA

​ UK Agricultural Census (Defra, 2021b) England & 
Wales

​ FAOSTAT structural farm data (FAO, 
2020)

Global

​ Brazil Agricultural Census (IBGE, 2017) Brazil
Farming system Defra Farm Business Survey (Defra, 

2025b)
England

​ FAOSTAT livestock statistics (FAO, 2020) Global
​ Livestock Census (Government of India, 

2025)
India

Weather Local meteorological stations (Met office, 
2025)

UK

​ Agri4Cast (European Commission, 2025) Europe
​ APHRODITE precipitation (Yatagai et al., 

2012)
Asia

​ Global Historical Climatology Network 
daily (Menne et al., 2012)

Global

​ Daymet (Thornton et al., 2022) North 
America

Soil properties NATMAP Soil Series (LandIS, 2024) England & 
Wales

​ SoilGrids (Hengl et al., 2017) Global
​ Soil Atlas of Africa (Thiombiano et al., 

2013)
Africa

​ SOTERCAF (Van Engelen et al., 2006) Central Africa
​ SSURGO (USDA, 2025) USA
​ ASRIS (CSIRO, 2024) Australia
Agricultural 

Management
Land Cover + Crops (Land Cover plus: 
Crops, 2023)

Great Britain

​ Farm Practices Survey (Defra, 2025c) England
​ FAOSTAT crop production data (FAO, 

2020)
Global

​ GloRice (Xie et al., 2025) Global
​ British Survey of Fertiliser Practice (

Defra, 2023)
Great Britain

​ FAOSTAT fertiliser/pesticide statistics (
FAO, 2020)

Global

​ AfricaFertilizer Database (
AfricaFertilizer, 2015)

Sub-Saharan 
Africa

​ FAOSTAT livestock numbers (FAO, 2020) Global

Table 2 
Typical proportion of land assigned to permanent grassland and rotational 
cropping for selected farming systems found in the UK.

Robust Farm Type1 Proportion of land 
assigned to permanent 
grass

Proportion of land assigned to 
rotational cropping (including 
grass leys)

Cereals 0 1
General Cropping 0 1
Lowland Grazing 

Livestock
0.75 0.25

Less Favoured Area 
Grazing Livestock

1 0

1 Defra, 2010. Definitions of Terms Used in Farm Business Management, 3rd 
ed. Defra, London, pp. 48.
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statistically significant but practically trivial effects. Therefore, both 
statistical and practical significance should be considered.

For resilience assessments, variance and temporal dynamics are 
important. Alongside mean comparisons across years, it is informative to 
assess interannual variability using variances, standard deviations, or 
coefficients of variation (CV). These should be calculated per realisation 
(i.e. per SUA × weather set) and compared using ANOVA or other 
appropriate tests, with the same caution about overpowered results. It is 
important to note that resilience in this context reflects stability of 
simulated outcomes, not persistence of higher yield and/or lower 
environmental burden.

To address the issue of overpowered tests, alternative approaches 
can explore the full distribution of outputs. One option is to fit para
metric distributions to the generated data and analyse fitted parameters 
via ANOVA, assuming data fit standard distributions. Alternatively, non- 
parametric tests like the Kolmogorov-Smirnov test can compare pairs of 
empirical distributions, but extensions to more complex sets of distri
butions are not yet available. In such cases, graphical comparisons and 

quantile summaries can aid interpretation, particularly when focusing 
on extremes that might be masked by means.

2.2. Application of the framework to two exemplar sites

To evaluate the robustness and applicability of our simulation 
framework, we applied it to two contrasting UK agroecosystems. These 
sites were selected to test the capacity to capture diverse sources of 
variation and to simulate plausible farm-scale outcomes under different 
environmental and farming contexts.

The exemplar sites (Fig. 3) are Harpenden (RR) in Hertfordshire (51◦

48′ N, 0◦ 21′ W) and North Wyke (NW) near Okehampton in Devon 
(50.77◦ N, 3.92◦ W). These locations span an East-West climatic gradient 
and differ in rainfall, soil texture and farming systems. RR is an arable 
production area, whereas NW is pasture-based with lowland grazing 
livestock. Both sites are established experimental farms with compre
hensive historical records, which we deliberately did not use in the 
simulation setup to test how well our generic approach can recreate 

Fig. 2. Example composition of a “simulated utilised area”, representing a virtual medium-sized farm from the RR exemplar site. A) fields of varying sizes drawn 
from a categorised field size distribution of catchment-scale data. Each field is independently assigned B) a soil series, and C) an initial crop, sampled from the 
marginal distributions of soil series and crop types across the catchment. Not all combinations will be present in each replicate. For example, the grey soil in B does 
not appear in this SUA. Soil types were sampled proportionally by area from the data acquisition zone rather than spatially interpolated, as most PBMs simulate local 
processes independently of lateral field connectivity. This approach captures representative within-farm variation appropriate for aggregated SUA-level analyses. The 
configuration of fields within the figure does not indicate any spatial associations between fields.

Fig. 3. The location of the waterbodies surrounding each of the two sites. B) Site RR shows an example of the Met station defining the site location within its 
surrounding waterbodies. The experimental farm is one example of a typical farm at this site.
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local variation based solely on our data acquisition process.

2.2.1. STEP 1: data acquisition
We delineated the data collection zone at each site by identifying all 

European Union Water Framework Directive (WFD) waterbody catch
ments within a 5 km radius (Defra, 2025a); Fig. 3), excluding water
bodies with <10 % overlap. Each data-collection zone may therefore 
include multiple catchments. Finer hydrological units were not explic
itly delineated because our framework is data-driven, and such data are 
rarely available at national scale. However, the WFD waterbodies used 
here integrate the effects of underlying micro-catchments, meaning that 
local hydrological variation is implicitly represented within the aggre
gated catchment-level inputs.

Typical farm size data were sourced from the UK agricultural census 
(Defra, 2021b), where average values are reported at the WFD water
body scale. Field size distributions were derived from spatial land cover 
maps (Marston et al., 2022) by extracting all polygons designated as 
agricultural land within each data-collection zone.

Farming system data were also sourced from the UK agricultural 
census (Defra, 2021b), which reports the proportion of holdings asso
ciated with each Robust Farm Type (RFT) at the WFD waterbody scale. 
RFTs are defined based on dominant standard outputs, e.g., ‘cereals’ for 
wheat and barley producers, or ‘mixed’ for farms combining arable and 
livestock production.

Observed daily weather data were collected for 1985–2015 from site- 
based meteorological stations (Semenov et al., 2024), including mini
mum and maximum temperature ( ◦C), precipitation (mm) and solar 
radiation (MJ m-2). Vapour pressure and wind speed were estimated 
using the methods of Allen et al. (1998).

Soil data were obtained from NATMAP 1000 (LandIS, 2024); a na
tional 1 km resolution dataset of soil series across England and Wales. 
For each catchment we extracted the dominant soil series and corre
sponding soil properties relevant to either grassland (NW) or agricul
tural land (RR).

Crop types were characterised using Landcover PLUS crops maps 
(Land Cover plus: Crops, 2023) which provide estimates of annual crop 
classifications over five years (2018–2022). Fields classified as grassland 
across all five years were treated as permanent grassland and excluded. 
Additional management assumptions like sowing dates, fertiliser appli
cation rates, and other agronomic practices were derived from national 
guidelines, including the British Survey of Fertiliser Practice (Defra, 
2019, 2020, 2021a, 2022, 2023). For NW, livestock numbers were based 
on the lowland grazing livestock RFT and included both temporary and 
permanent pasture (Defra, 2021b).

2.2.2. STEP 2: data processing
Farm size data were limited (typically only 3–4 values per WFD 

waterbody), so we used the mean, minimum and maximum values to 
define three representative farm sizes at each site. We constructed 
empirical field size frequency distributions by grouping fields into 
nominal categories (e.g. 1–2 ha, 2–3 ha, etc.) and calculated the mean 
field size within each. We used these to estimate the number of fields per 
farm. We then allocated fields to size categories in proportions that 
reproduced the empirical distribution as closely as possible.

At each site, the dominant RFT from the catchment was used to 
assign a representative farming system. At RR, this was ‘cereals’, and we 
assumed all land was under arable management. At NW, the dominant 
RFT was ‘lowland grazing livestock’ for which we assumed 75 % of the 
land was permanent grassland, and the remaining 25 % was cropped for 
livestock feed (Table 2).

Observed daily weather data were used to generate synthetic 
weather series using LARS-WG 8.07.0 (Semenov et al., 2024). For each 
site, we generated 1000 realised years of synthetic daily weather, then 
divided the output into 50 replicate sets of 20 years.

Soil series were selected to cumulatively represent at least ≥65 % of 
the catchment area. Soil profile properties were standardised into three 

uniform depth layers (0–23 cm,23–46 cm, 46–100 cm) as required by 
the PBM used in this study.

Crop sequences were generated using the generator developed by 
Sharp et al. (2021).We rescaled their transition matrices to represent 
only the crops observed in each catchment. This provided cropping se
quences that reflect local agronomic conditions and practice more 
closely than regionally averaged transition probabilities.

2.2.3. STEP 3: simulation
To demonstrate application of the framework, we used the Roth

amsted Landscape Model (RLM) to generate field-scale outputs for both 
exemplar sites. While these case studies employ a single PBM, for 
illustration, the framework is fully compatible with ensemble modelling, 
allowing multiple models with harmonised inputs to be run in parallel to 
assess structural uncertainty and improve robustness. In this study, we 
simulated a baseline “business-as-usual” (BAU) management scenario 
representative of current local practices (based on national and 
catchment-level datasets). The framework is, however, designed to 
support scenario testing including comparison of alternative manage
ment options (e.g., modified crop rotations, fertiliser strategies, tillage 
intensity, or grazing regimes). Such scenarios can be implemented by 
substituting or parameterising the relevant management input datasets. 
While scenario testing is beyond the scope of the present study, this 
capability will be applied in future work to evaluate the resilience im
plications of agri-environmental interventions.

2.2.3.1. Demonstration model: Rothamsted landscape model (RLM). RLM 
is a daily timestep PBM developed to simulate crop production and 
environmental impacts across field and farm landscapes (Coleman et al., 
2017). It incorporates established modules including RothC (Coleman 
and Jenkinson, 2014), LINTUL (Wolf, 2012), and Century (Parton et al., 
1994), supplemented by new routines, including an improved water 
model (Coleman et al.,. 2017). RLM has been calibrated and validated 
using long-term UK data.

RLM outputs a wide range of variables capturing both the produc
tivity and environmental impact of the farmed landscape. For this study 
we focus on three contrasting indicators: calorific production (from crop 
and livestock outputs), nitrate losses via runoff, and N2O emissions.

Each input dataset from Step 2 (soils, crop rotations, field layout, 
weather, and management) was formatted to meet RLM requirements. 
For each selected soil series at each site, we generated 100 replicate 
field-scale simulations. Each replicate combined a unique crop sequence 
(for arable land) with a randomly assigned starting crop and ran using 
one of 50 weather realisations (each spanning 20 years). Simulations 
began on 1st September and ran for 19 full cropping seasons. This 
created a structured simulation matrix capturing variation in soil, crop 
sequence, and weather. This matrix underpins the later construction of 
SUAs and supports analysis of both within- and between-site variation in 
farm-scale outcomes.

2.2.4. STEP 4: model output sampling
To explore variation at the farm scale, we generated 30 SUAs per site: 

10 replicates each for small, medium, and large farm sizes based on farm 
size data from the data-collection zone.

For each farm size, we estimated the number of fields by dividing the 
farm area by the site-specific mean field size. Fields were then allocated 
to size categories to reflect the empirical distribution of field sizes at 
each site. Soil types and initial crops were then independently sampled 
for each field from the catchment-level discrete distributions (see Fig. 2, 
for the characteristics of an example SUA for a medium-sized farm at 
RR). This random allocation mirrors the heterogeneity in real farms and 
enables sampling across plausible combinations of land use and soils. 
Because field sizes, soil series, and initial crops are sampled indepen
dently, some rare combinations may not appear in every SUA, especially 
on smaller farms—this is intentional and reflects real-world variation.
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Each field was assigned a model simulation from the corresponding 
pool of RLM outputs (Step 3), consistent with its soil type and initial 
crop. Simulation replicates were randomly permuted to ensure that no 
replicate was reused within a single SUA, though replicates could appear 
across multiple SUAs.

2.2.5. STEP 5: analysis and interpretation
Here, we use our case study sites to illustrate how modelled in

dicators can be aggregated and statistically compared using our frame
work. The analyses serve as examples of the types of evaluation possible 
and demonstrate how PBM outputs can be explored using a consistent, 
statistically robust approach. They are not intended to represent all 
relevant scientific questions

To compare productivity across crop sequences and between arable 
and livestock systems, we converted crop yields and livestock outputs to 
calorific equivalents, accounting for losses from harvest to consumption 
(for methods see Sharp et al., 2024).

Nitrate runoff and N2O emissions are outputted from RLM on a daily 
timestep. We calculated their sum over each cropping year. These were 
then used as response variables. Farm-level weighted means were 
calculated per SUA, and cropping year, using field area as the weights 
(from Step 4).

2.2.5.1. Assessing system performance. Each site produced 28,500 
weighted mean responses (10 SUAs × 3 farm sizes × 50 weather sets ×
19 cropping years). We used ANOVA to assess variation in mean re
sponses, testing null hypotheses that farm size, cropping year, and their 
interaction had no effect on calorific production, nitrate runoff and N2O 
emissions. A hierarchical blocking structure was assumed: cropping 
years nested within weather sets, nested within SUAs. Farm size was 
assessed relative to the between-SUA variation and cropping year and 
the interaction were assessed relative to the between-cropping year 
variation.

2.2.5.2. Assessing system resilience. We quantified resilience as the 
temporal stability of SUA responses across years. For each SUA ×
weather set × response variable, we calculated the standard deviation 
(used in preference to variance to satisfy the ANOVA homogeneity of 
variance assumption), and a scale-adjusted coefficient of variation (aCV) 
following Döring and Reckling (2018). which removes dependence of 
the standard CV from the mean.

We combined datasets across sites to compare resilience at NW and 
RR. As farm size and weather sets were site-specific, a nested treatment 
structure was appropriate: weather sets nested within each of the 60 
SUAs. Site, and farm size (within site) effects, were estimated at the 
between-SUA level; weather effects and their interaction with site at the 
between-weather set level. This enabled identification of specific 
weather realisations associated with poor resilience, potentially 
reflecting extreme weather events.

2.2.5.3. Distributions of outputs. With 500 SUA replicates per farm size 
per site, ANOVA was statistically overpowered. Nearly all effects 
appeared significant, even where practical or biological differences were 
negligible. To aid interpretation, we therefore used violin and box-and- 
whisker plots to visualise response distributions across cropping years 
and farm sizes.

2.2.5.4. Assessing sources of variation. In addition to the analysis rec
ommended within step 5 of our framework, we additionally wanted to 
demonstrate, using our case study sites, the degree to which the 
collected input data represents both the absolute values and levels of 
variation observed on farms. We assessed both the realism of generated 
model inputs and the importance of different sources of variation.

Weather: We compared generated and observed weather data at 
each site using t-tests to compare monthly means (temperature, 

radiation) and total (precipitation) values, and F-tests to compare 
monthly variances. We applied Kolmogorov-Smirnov tests to compare 
distributions.

Soils: Generated soil inputs were compared with published farm 
surveys, assessing soil series and associated properties.

Crop sequences: Annual area-weighted crop proportions were 
calculated for the experimental farm, the catchment, and SUAs. We 
plotted these as stacked bar charts for visual comparison.

Sources of output variation: We used ANOVA on field-level outputs 
(summarised annually, pre-SUA aggregation) to evaluate effects of soil 
type, weather set, and cropping years, including interactions. A hierar
chical blocking structure was assumed: cropping years nested within 
weather sets, nested within soil types, nested within the 100 replicate 
runs comprising different cropping sequences. As with other analyses, p- 
values were interpreted cautiously due to high statistical power

While the present implementation focuses on RLM outputs, the 
framework and analytical workflow are model-agnostic and can be 
applied across other agroecosystem PBMs given equivalent input and 
output structures.

2.2.5.5. Statistical packages. Daily RLM outputs were processed in R 
(v4.4.1; (R Core Team, 2025) using the data.table (Barrett et al., 2025), 
dplyr (Wickham et al., 2025) and future.apply (Bengtsson, 2021) 
packages. SUA construction, resampling, and ANOVA were conducted 
using Genstat (23rd Edition) (VSN International, 2023). Farm-level 
output summaries were computed in R. Scale-adjusted CVs were 
calculated using the metan R package (Olivoto and Lúcio, 2020). 
Graphics were generated in Genstat, and in R using the ggplot2 package 
(Wickham, 2016).

3. Results

3.1. Assessing system performance

Simulated calorific production varied widely between the two sites 
(Fig. 4) with RR producing more food than NW. Farm-scale simulated 
wheat yields at RR were comparable to farm measurements, whereas at 
NW simulated yields were approximately 3 t/ha higher. At both sites, 
simulated yields within SUAs were less variable than the observed data 
(see supplementary figure S1). NW showed greater variability in calo
rific production, with a few high-performing SUAs and many low per
forming ones (Fig. 4B). ANOVA identified no significant differences in 
calorific production across virtual farm sizes (RR: F2, 27=0.306, p =
0.739; NW: F2, 27=0.148, p = 0.864; supplementary figure S2). In 
contrast, both the cropping year main effect and the interaction effect 
between cropping year and farm size were significant (RR: cropping year 
F18, 26,946=218.042, p < 0.001; interaction F36,26,946=14.083, p < 0.001; 
NW: cropping year F18, 26,946=41.727, p < 0.001; interaction F36, 

26,946=16.678, p < 0.001). These effects likely reflect differences in 
generated cropping sequences and crop distributions across years (see 
Fig. 9), rather than weather variation, as all 30 SUAs per site shared 50 
common weather datasets. The significant interactions almost certainly 
reflect the overpowered nature of the tests as the means across all three 
farm sizes were similar and so changes in their relative order are of little 
practical consequence (supplementary figure S2). Total simulated food 
production varied by year, and within-year variation among SUAs was 
also substantial (Fig. 4). At RR, distribution plots reveal distinct peaks, 
indicating strong effects of SUA composition on calorific output 
(Fig. 4B).

Simulated nitrate loss via runoff was typically lower at NW than RR 
(Fig. 5), with clear temporal fluctuations and a significant effect of 
cropping year (RR: F18, 26,946=208.329, p < 0.001; NW: F18, 

26,946=1438.474, p < 0.001; supplementary figure S3). Variation among 
SUAs within years was substantial (Fig. 5). There was no significant farm 
size effect (RR: F2, 27=2.584, p = 0.094; NW: F2, 27=0.023, p = 0.977), 
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Fig. 4. Simulated calorific production across a sequence of 19 cropping years at A) NW and B) RR sites. Box and whisker plots show the median (black bar), 
interquartile range (IQR; box) and the smallest/largest values no further than 1.5 IQR from the first/third quartile (whiskers). Density plots indicate the distribution 
of SUA values. Values represent weighted means of combinations of individual field simulations constructed to capture the potential variation present between farms, 
and for 50 independently generated weather datasets.
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Fig. 5. Simulated nitrate runoff across a sequence of 19 cropping years at A) NW and B) RR sites. Box and whisker plots show the median (black bar), interquartile 
range (IQR; box) and the smallest/largest values no further than 1.5 IQR from the first/third quartile (whiskers). Density plots indicate the distribution of SUA values. 
Values represent weighted means of combinations of individual field simulations constructed to capture the potential variation present between farms, and for 50 
independently generated weather datasets.
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but small statistically significant interaction effects between cropping 
year and farm size (RR: F36, 26,946=5.791, p < 0.001; NW: F36, 

26,946=29.576, p < 0.001).
N2O emissions simulated using the framework also varied signifi

cantly by cropping year (RR: F18, 26,946=539.15, p < 0.001; NW: F18, 

26,946=522.557, p < 0.001; supplementary figure S4), with no signifi
cant farm size effect (RR: F2, 27=1.341, p = 0.279; NW: F2, 27=0.566, p =
0.575) and small, but significant, interaction effects between cropping 
year and farm size (RR: F36, 26,946=18.878, p < 0.001; NW: F36, 

26,496=33.816, p < 0.001). Emissions were generally higher at RR, with 
substantial within-year variation among SUAs, particularly at RR 
(Fig. 6).

These results illustrate how the framework can capture and compare 
farm-scale variability in modelled production and environmental out
puts across contrasting sites, using harmonised inputs.

3.2. Assessing system resilience

Applying the frameworks resilience metrics to simulated calorific 
outputs revealed significantly more resilience in calorific production at 
RR than at NW, with lower SD and aCV values (SD: F1, 54=16.673, p <
0.001; aCV: F1, 54=139.616, p < 0.001; Fig. 7). No significant differences 
in farm-scale calorific production resilience were observed across farm 
sizes nested within site (SD: F4, 54=0.480, p = 0.750; aCV: F4, 54=0.154, 
p = 0.960), though this may reflect large variation among SUAs within 
each size category, especially at NW where the proportion of the total 
field area allocated to arable crops varied substantially between SUAs. 
Weather set (nested within site) had a significant, but modest, effect on 
calorific production resilience (SD: F98, 2646=3.042, p < 0.001; aCV: F98, 

2646=2.129, p < 0.001). There was a small, but significant, interaction 
between farm size and weather sets for SD (F196, 2646=1.226, p = 0.021), 
but no statistically significant interaction effect for aCV (F196, 

2646=1.085, p = 0.207).
These results suggest that calorific production resilience varies with 

weather patterns and that farm size can mediate this effect. At RR, large 
virtual farms were generally the most resilient, though under certain 
weather sets (e.g. 23, 44, 50), medium farms were more resilient 
(Fig. 7). At NW, where mixed systems were simulated, small virtual 
farms were the least resilient indicating that farm composition may be 
influential, with greater year-to-year variation in calorific production 
due to crop composition.

For simulated farm-scale nitrate runoff resilience, site had no sig
nificant effect on SD (F1, 54=0.271, p = 0.605), but did affect aCV (F1, 

54=31.692, p < 0.001), reflecting similar SD at both sites, but higher 
mean nitrate runoff at RR than NW (Supplementary figure S5), reflecting 
the different crop compositions. Farm size (nested within site) did not 
have a significant effect for either metric (SD: F4, 54=1.078, p = 0.376; 
aCV: F4, 54=0.832, p = 0.511). Weather set (nested within site) signifi
cantly affected both nitrate runoff SD and aCV (SD: F98, 2646=94.259, p 
< 0.001; aCV: F98, 2646=97.864, p < 0.001), but there was no evidence of 
a site × weather set interaction (SD: F196, 2646=1.072, p = 0.241; aCV: 
F196, 2646=0.907, p = 0.812).

The framework simulated farm-scale stability of N2O emissions 
differed significantly between sites for SD (F1, 54=34.166, p < 0.001) but 
not for aCV (F1, 54=0.702, p = 0.406), with higher variability and 
emissions at RR (Supplementary Figure S6). There was no evidence for a 
farm size effect (SD: F4, 54=2.498, p = 0.053; aCV: F4, 54=1.066, p =
0.383). Weather set significantly affected both metrics (SD: F98, 

2646=14.723, p < 0.001; aCV: F98, 2646=96.391, p < 0.001), but inter
action effects between weather set and farm size were not significant 
(SD: F196, 2646=1.124, p = 0.122;aCV: F196, 2646=1.085, p = 0.207), 
indicating sensitivity to specific weather scenarios across farm sizes.

This demonstrates how the framework can be used to identify site- 
and weather driven diffferences in system stability, independent of PBM 
structure.

3.3. Assessing sources of variation

The framework input harmonisation allows weather, soil, and 
cropping variation to be explored systematically across sites.

3.3.1. Weather
Both sites followed typical UK seasonal temperature patterns. Daily 

maximum temperatures peaked in July–August, with no significant 
differences in monthly means between observed and framework- 
generated data (via LARS-WG) at either site (Fig. 8A). Minimum tem
peratures peaked in May–July (Fig. 8B), again with no significant dif
ferences in means between framework-generated and observed data. RR 
showed greater annual temperature variation, reflecting milder NW 
winters. Solar radiation peaked in July, more sharply at RR (Fig. 8C). 
January radiation was overestimated in the generated data (NW: p =
0.010; RR: p = 0.003). NW had higher, more winter-skewed rainfall, 
while RR’s rainfall was more evenly spread (Fig. 8D). No significant 
differences between observed and generated monthly precipitation were 
detected, though variances were generally lower for generated data, 
significantly so in 4 months at NW and 3 months at RR. Kolmogorov- 
Smirnov tests suggested the monthly distributions of generated and 
observed weather were statistically similar.

Analysis of pre-aggregation model outputs (summarised for cropping 
years, but pre-SUA construction) confirmed that the framework suc
cessfully captures the sensitivity of outputs to underlying input varia
tion. Weather set significantly affected calorific production, nitrate loss 
via runoff, and N2O emissions, supporting the use of multiple weather 
realisations.

3.3.2. Soil characteristics
At NW, the experimental farm is dominated by Halstow series 

(Pelostagnogley soils, Avery, 1980; classified as Stagni-vertic cambisol 
under the FAO system and Typic haplaquept in US soil taxonomy). In 
contrast, Hallsworth series dominated our framework-generated SUAs, 
while Halstow covered only 8.9 % of simulated land (6.0 % of the 
catchment, Table 3). The two series are similar in clay content (Halstow: 
34.0 %, Hallsworth: 39.5 %) but differ in silt (36.0 % vs 43.6 %), acidity 
(pH 5.8 vs. 6.8), and organic content (3.6 % vs. 3.2 %).

At RR, soils range from clay loam to silty clay loam; mainly Batcombe 
series (Avery and Catt, 1995; Avery et al., 2024; classified as Chromic 
Luvisol (or Alisol) by the FAO and Aquic (or Typic) Paleudalf in US soil 
taxonomy). Typical Batcombe covers 46.61 % of the RR farm, with 
Heavy Batcombe adding 6.71 %. In our framework-generated SUAs, 
Batcombe accounted for 40.1 % of land (26.2 % of the catchment, 
Table 3).

ANOVAs on pre-SUA model outputs revealed significant effects of 
soil series on all three modelled outputs, highlighting the importance of 
simulating multiple soil types at farm scale, and therefore the value of 
the framework in capturing the full potential variation in soils at the 
farm scale.

3.3.3. Cropping patterns
At NW, our framework identified the most likely farming system to 

be present as “lowland grazing livestock” and we therefore assumed 75 
% of land was permanent pasture, with 25 % under arable rotation. 
Since 2019, about one-third of the experimental farm has been arable, 
growing winter wheat, winter barley, oats, and field beans (Fig. 9). 
These, crops along with grass leys and other crops (Table 3), were 
included in our simulations. The remaining land is used for pasture. The 
partitioning of land use derived using our framework corresponds well 
with the real land-use on the experimental farm at NW.

At RR, winter wheat dominates the catchment (33.5 %) and the 
experimental farm, though 2021 featured more spring wheat. Spring 
and winter barley are common in the catchment (12.4 % and 10.2 %), 
while oats were prominent on the experimental farm (Fig. 9).

Fig. 9 shows that catchment-level cropping is stable over time due to 
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Fig. 6. Simulated N2O emissions across a sequence of 19 cropping years at A) NW and B) RR sites. Box and whisker plots show the median (black bar), interquartile 
range (IQR; box) and the smallest/largest values no further than 1.5 IQR from the first/third quartile (whiskers). Density plots indicate the distribution of SUA values. 
Values represent weighted means of combinations of individual field simulations constructed to capture the potential variation present between farms, and for 50 
independently generated weather datasets.
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the larger spatial extent than the experimental farm. Our SUA approach 
reintroduces variability, better capturing farm-level variation than 
catchment data alone.

Across all analyses, the framework enabled consistent comparison of 
outcomes across data sources, revealing how farm-scale heterogeneity 
influences both mean performance and resilience metrics.

4. Discussion

We developed and applied a model-independent framework to 
simulate realistic within-farm variation in agroecosystem processes, 
designed to complement existing PBMs. By systematically integrating 
variation in soils, weather, crop sequences, and farm management into 
model inputs, we constructed plausible virtual farms (SUAs) and 
assessed full distributions of farm-scale outcomes, including extremes, to 
support resilience assessments. Input variation, typically absent from 

modelling studies, strongly influenced model outcomes. Explicitly 
modelling this variation revealed how within-farm heterogeneity sup
ports performance and resilience, aligning with previous findings on 
diversity and agricultural stability (Beillouin et al., 2019; Lin, 2011). In 
doing so, the framework advances current modelling practice by 
bridging existing PBMs and resilience assessment approaches, offering a 
transparent, reproducible, and transferable structure for exploring sys
tem behaviour under realistic variation.

The two exemplar sites (NW and RR) were selected to represent 
contrasting ends of a dominant UK agroecosystem gradient: pasture- 
based lowland grazing versus arable cereal production. This contrast 
tests the framework’s capacity to capture and interpret diverse sources 
of variation across systems that differ in soils, climate, and management 
intensity. The shared set of resilience indicators provides a consistent 
basis for cross-system comparison, enabling lessons on how input het
erogeneity and farm structure influence performance to be generalised 

Fig. 7. Mean A) standard deviation (SD) and B) scale-adjusted Coefficient of Variation (aCV) of simulated calorific production across large (red), medium (blue) and 
small (green) farms at NW and RR sites. Each value is the mean SD/aCV across 10 SUAs for a site × farm size × weather set combination. Note that the actual sizes of 
large, medium, and small farms differ according to site. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.).
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to other farms. Thus, while the absolute results are site-specific, the 
methodological insights are transferable, illustrating how the frame
work can be used to identify both common resilience mechanisms and 
context-dependent vulnerabilities.

Our results support the idea that diversity in soils, crops, and man
agement creates functional redundancy, where poor performance in one 
component can be offset by others (Elmqvist et al., 2003). This hetero
geneity enables persistence pathways that uniform systems lack, making 
them more vulnerable to shocks or variable stresses. Although high 
output variability may signal instability (Scheffer et al., 2009), input 
heterogeneity can instead reflect adaptive capacity when it buffers risk 
(Kotschy et al., 2015). Variation across SUAs buffered farm-level out
comes despite local failures, aligning with resilience concepts that 
emphasise both resistance and response capacity (Biggs et al., 2015). 
Capturing this complexity is essential; simpler models risk under
estimating both vulnerabilities and adaptive potential.

Assessing full output distributions enabled nuanced resilience eval
uation beyond averages. While some local outcomes were extreme, 
overall farm heterogeneity provided stability. Contrary to prior findings 
(Nelson et al., 2022) larger farm sizes did not consistently buffer vari
ability, highlighting the dominant influence of weather and soil 

variability and the more pervasive resilience challenge across farm sizes.
In this study, simulated yields showed lower interannual variability 

than observed data, a common outcome when models are calibrated to 
mean conditions rather than tuned for full variance representation. This 
likely reflects both the smoothing effects of synthetic weather genera
tion and the omission of unmodelled stochastic events such as pest 
damage, machinery failure, or disease outbreaks, which contribute to 
observed yield variability. While the RLM and other PBMs that can be 
used within the framework have been previously calibrated and vali
dated against long-term experimental data (e.g. Coleman et al., 2017), 
future work could refine calibrations to explicitly include variability 
metrics or benchmark results against multi-year field datasets for yield, 
N₂O emissions, and nitrate runoff. Such validation would strengthen the 
interpretation of modelled resilience indicators.

4.1. Methodological strengths and innovations

Our framework advances agroecosystem modelling by enabling 
farm-scale spatial (between-field) variation to be represented using 
simulated utilised areas (SUAs) as proxies for heterogeneous farm 
landscape units. By integrating spatial and temporal heterogeneity 

Fig. 8. Monthly mean weather variables at North Wyke (NW) and the Harpenden (RR) sites. Grey bars represent generated weather data, and black bars show 
observed measurements. Error bars indicate ± standard error of the mean (SEM). (A) Maximum daily temperature, (B) Minimum daily temperature, (C) Solar ra
diation, (D) Total rainfall.
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through subsampling of soil types and crop sequences, we reintroduce 
stochasticity and therefore generate full outcome distributions, 
including emergent extremes. This supports more robust farm resilience 
assessments and helps identify rare risks masked by simpler determin
istic approaches.

While the current implementation uses SUAs constructed from 
probabilistic combinations of field sizes, soils, and land uses, we 
recognise that in reality, field boundaries and soil types are spatially 
fixed, while management varies through time. Where detailed spatial 
datasets are available, the framework can readily incorporate actual 
field and soil boundaries, enabling management variation to be simu
lated directly on mapped units. The present approach, however, is 
motivated by the more common situation in which such detailed data 
are unavailable or incomplete. In this case, SUAs provide a derived 
analytical unit that allows consistent aggregation of field-scale model 
outputs to the farm scale and enables cross-site comparison under a 
unified structure.

The framework is flexible, modular, transparent, reproducible, and 
model-independent, enabling diverse agroecological questions and sys
tem comparisons. Whilst some advanced models such as DAESim 
(Taghikhah et al., 2022) and the unified process model developed by 
Sharma et al. (2025) integrate biophysical and data driven components, 
our approach focusses instead on harmonising spatially and temporally 
variable inputs and aggregating outputs to the decision-making scale. 
Our framework complements such models by providing a transferable 
cross-compatible structure for consistent comparison, model ensemble 
application, and systematic resilience assessment for research, policy, 
and practice.

Our approach lays a foundation for simulating multiple sources of 
farm-scale variation and assessing resilience more robustly. It accom
modates model ensembles for exploring temporal variability and tipping 
points and for predicting a great range of outcomes (Hassall et al., 2022). 
While Pret et al. (2025) noted most modelling studies assess few resil
ience attributes, our framework can represent all five defined by Meu
wissen et al. (2019): reserves (e.g. soil fertility, livestock), openness 
(input/output breadth), modularity (land use allocation), feedback 
tightness (mechanistically described in PBMs) and diversity (crop/live
stock richness).

4.2. Limitations

Despite its strengths, several limitations remain. Process-based 

models require detailed parameterisation of biophysical processes, and 
extensive data for calibration and evaluation. Our framework does not 
remove these demands but provides a transparent structure for doc
umenting assumptions, harmonising inputs, and consistently repre
senting sources of uncertainty across simulations.

Synthetic weather generators, while effective for typical climatic 
patterns, tend to underrepresent extremes (Semenov, 2008; Wilks and 
Wilby, 1999). This was evident in the reduced variance of generated vs 
observed weather at our exemplar sites, limiting assessments under 
extreme events and future climate scenarios. Integrating downscaled 
climate projections or hybrid weather generators could improve the 
representation of both typical and extreme conditions (Bhuvandas et al., 
2014; Curceac et al., 2021).

The framework currently applies fixed crop sequences without dy
namic or adaptive farmer decision-making. Real-world management 
often responds to in-season constraints or opportunities, like switching 
to spring wheat after failed autumn drilling—seen but not modelled at 
RR in 2021 (Fig. 9). Capturing such adaptive behaviour would require 
coupling the framework with rule- or agent-based decision models (El 
Fartassi et al., 2025). Real-world decisions also reflect financial factors. 
Incorporating economic models or multi-criteria optimisation would 
enhance the utility of our framework for actual decision support as 
opposed to more generic scenario exploration.

Our current implementation includes only field areas, omitting non- 
field components like yards, housing, and storage facilities, which can 
influence farm sustainability and resilience. While the framework cap
tures spatial variation via field-level aggregation, it does not yet allow 
for interactions between fields (e.g., water and associated pollutant 
flow), nor post-harvest operations.

Finally, while management assumptions such as sowing dates, fer
tiliser application rates, and in-field practices were standardised here to 
reflect ‘typical’ conditions, these factors are often key determinants of 
yield variability. Future applications of the framework could incorpo
rate sensitivity analyses or targeted scenario testing to quantify the in
fluence of such management decisions and identify leverage points for 
improving best practices and resilience.

4.3. Future applications

The framework offers a robust foundation for capturing spatial and 
temporal heterogeneity in agroecosystems at scales relevant to farm 
management. Applying it to new regions, farming systems, and climate 

Table 3 
Description of exemplar sites. Each site represents a farm-scale management unit located within a 5 km water catchment, defined as including all waterbodies with ≥10 
% of their area inside the 5 km buffer. Dominant robust farm types are from the UK Agricultural Survey. Soils are from NATMAP 1000 (covering ≥65 % of the 
catchment). Crops reflect dominant types (2018–2022) from the Land Cover+ Crops dataset.

Site Name County, Region of 
England

Elevation / 
m

Catchment Area / 
km2

Robust Farm Type Dominant Soil Series ( % of 
area1)

Dominant Crops ( % arable 
land2)

North Wyke 
(NW)

Devon, 
Southwest England

177 211.6 
(4 water bodies)

Lowland Grazing 
Livestock

Hallsworth (19.9 %), 
Denbigh (8.5 %), 
Neath (8.5 %), 
Nercwys (8.0 %), 
Tedburn (7.5 %), 
Halstow (6.0 %), 
Crediton (5.1 %), 
Brickfield (3.7 %)

Grass Leys (29.7 %), 
Maize (13.2 %), 
Spring Barley (6.7 %), 
Winter Barley (11.9 %), 
Winter Wheat (22.4 %)

Rothamsted 
(RR)

Hertfordshire, 
East of England

128 340.5 
(3 water bodies)

Cereals Batcombe (26.2 %), 
Hornbeam (14.5 %), 
Carstens (6.7 %), 
Hamble (3.3 %), 
Windsor (3.2 %), 
Winchester (3.1 %), 
Hook (2.9 %), 
Wickham (2.8 %), 
Charity (2.7 %)

Field Beans (6.7 %), 
Grass leys (7.2 %), 
OSR (8.4 %), 
Spring Barley (12.4 %), 
Spring Wheat (5.3 %), 
Winter Barley (10.2 %), 
Winter Wheat (33.5 %)

1 Percentages shown until the cumulative total reaches ≥65 %.
2 Only crops covering >5 % of arable land are listed.
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scenarios could empower exploration of a wide range of resilience- 
focused questions, including multi-metric trade-offs, resilience map
ping, and comparisons of adaptive strategies under varying environ
mental and policy contexts.

By explicitly representing multiple sources of input heterogeneity, 
the framework provides a generic method for harmonising model inputs 
and assimilating outputs at the farm scale. It can be integrated with 
diverse PBMs to test how incentivization through agricultural policy 
affects resilience or how farm structural and management diversity 
buffers climate extremes. Its ability to simulate outcome distributions 
under varied weather and management also supports applications in 
farm advisory services and risk planning.

Beyond the case studies presented here, the framework provides a 
transferable foundation for harmonised simulation and evaluation of 
resilience across diverse agroecosystem contexts and beyond. Because it 
is model-independent and based on structured, modular inputs, it can be 
readily adapted to other disciplines where spatial and temporal het
erogeneity shape system performance at the decision-making scale, such 

as forestry, aquaculture, or rangeland management. More broadly, it 
contributes to resilience science by operationalising a tractable, 
simulation-based approach to assess how input variability and system 
structure influence stability. By formalising how farm-scale variability 
can be represented, simulated, and analysed, it contributes to the 
ongoing development of reproducible modelling frameworks that link 
ecological, biophysical, and socio-environmental dimensions of resil
ience. In this way, our framework helps bridge process-based environ
mental models with resilience science, extending their combined value 
for research, policy, and decision support. The framework establishes a 
transferable, model-independent approach for exploring how within- 
farm heterogeneity shapes resilience, providing an essential methodo
logical bridge between process-based modelling and real-world deci
sion-making.
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Döring, T.F., Reckling, M., 2018. Detecting global trends of cereal yield stability by 
adjusting the coefficient of variation. Eur. J. Agron. 99, 30–36. https://doi.org/ 
10.1016/j.eja.2018.06.007.

El Fartassi, I., Milne, A.E., Metcalfe, H., El Alami, R., Diarra, A., Alonso-Chavez, V., 
Zawadzka, J., Waine, T.W., Corstanje, R., 2025. An agent-based model of farmer 
decision making: application to shared water resources in Arid and semi-arid 
regions. Agric. Water. Manage 310, 109357. https://doi.org/10.1016/j. 
agwat.2025.109357.

Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., Norberg, J., 
2003. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1 
(9), 488–494. https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0. 
CO;2.

European Commission, 2025. The JRC MARS Agro-Meteorological Database Provides 
Gridded Daily Agro-Meteorological Data At 25 Km Grid Resolution from 1979 to the 
Last Calendar Year completed, For the European Union and Neighbouring Countries. 
Joint Research Centre European Commission. Retrieved 23/06/2025 from. https: 
//agri4cast.jrc.ec.europa.eu/dataportal.

FAO, 2020. FAOSTAT [Online]. Retrieved 10 July 2025 from. https://www.fao. 
org/faostat/en/#home.

Folke, C., Carpenter, S.R., Walker, B., Scheffer, M., Chapin, T., Rockström, J., 2010. 
Resilience thinking: integrating resilience, adaptability and transformability. Ecol. 
Soc. 15 (4), 20.

Giltrap, D., Li, C., Saggar, S., 2010. DNDC: a process-based model of greenhouse gas 
fluxes from agricultural soils. Agric. Ecosyst. Environ. 136 (3–4), 292–300. https:// 
doi.org/10.1016/j.agee.2009.06.014.

Government of India, 2025. Agricultural Census. Retrieved 02 July 2025 from. htt 
ps://www.data.gov.in/sector/Agriculture.

Grimm, V., Augusiak, J., Focks, A., Frank, B., Gabsi, F., Johnston, A., Liu, C., Martin, B., 
Meli, M., Radchuk, V., Thorbek, P., Railsback, S., 2014. Towards better modelling 
and decision support: documenting model development, testing, and analysis using 
TRACE. Ecol. Modell. 280, 129–139. https://doi.org/10.1016/j. 
ecolmodel.2014.01.018.

Hassall, K.L., Coleman, K., Dixit, P.N., Granger, S.J., Zhang, Y., Sharp, R.T., Wu, L., 
Whitmore, A.P., Richter, G.M., Collins, A.L., Milne, A.E., 2022. Exploring the effects 
of land management change on productivity, carbon and nutrient balance: 
application of an Ensemble Modelling Approach to the upper River Taw observatory, 

H. Metcalfe et al.                                                                                                                                                                                                                               Ecological Modelling 513 (2026) 111432 

16 

https://doi.org/10.1016/j.ecolmodel.2025.111432
https://doi.org/10.1016/s1364-8152(00)00003-7
https://doi.org/10.1016/s1364-8152(00)00003-7
https://africafertilizer.org/#/en
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0003
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0003
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0004
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0004
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0004
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0005
https://doi.org/10.23637/rothamsted.98z89
https://r-datatable.com
https://doi.org/10.1088/1748-9326/ab4449
https://doi.org/10.1088/1748-9326/ab4449
https://doi.org/10.32614/RJ-2021-048
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0010
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0010
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0010
https://doi.org/10.1017/CBO9781316014240.006
https://doi.org/10.1017/CBO9781316014240.006
https://doi.org/10.1007/s10584-013-0822-4
https://doi.org/10.1007/s10584-013-0822-4
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0013
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0013
https://doi.org/10.1016/j.scitotenv.2017.07.193
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0015
https://doi.org/10.25919/pdct-9a97
https://doi.org/10.1016/j.jhydrol.2021.126442
https://doi.org/10.1016/j.jhydrol.2021.126442
https://doi.org/10.3763/ijas.2010.0480
https://doi.org/10.3763/ijas.2010.0480
https://doi.org/10.1080/14649357.2012.677124
https://doi.org/10.1080/14649357.2012.677124
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0020
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0020
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0021
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0021
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0022
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0022
https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0024
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0024
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0025
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0025
https://environment.data.gov.uk/catchment-planning
https://environment.data.gov.uk/catchment-planning
https://www.farmbusinesssurvey.co.uk/
https://www.farmbusinesssurvey.co.uk/
https://www.gov.uk/government/statistics/farm-practices-survey-february-2025
https://www.gov.uk/government/statistics/farm-practices-survey-february-2025
https://doi.org/10.1016/j.eja.2018.06.007
https://doi.org/10.1016/j.eja.2018.06.007
https://doi.org/10.1016/j.agwat.2025.109357
https://doi.org/10.1016/j.agwat.2025.109357
https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
https://agri4cast.jrc.ec.europa.eu/dataportal
https://agri4cast.jrc.ec.europa.eu/dataportal
https://www.fao.org/faostat/en/#home
https://www.fao.org/faostat/en/#home
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0034
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0034
http://refhub.elsevier.com/S0304-3800(25)00418-1/sbref0034
https://doi.org/10.1016/j.agee.2009.06.014
https://doi.org/10.1016/j.agee.2009.06.014
https://www.data.gov.in/sector/Agriculture
https://www.data.gov.in/sector/Agriculture
https://doi.org/10.1016/j.ecolmodel.2014.01.018
https://doi.org/10.1016/j.ecolmodel.2014.01.018


UK. Sci. Total Environ. 824, 153824. https://doi.org/10.1016/j. 
scitotenv.2022.153824.

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., 
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