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A B S T R A C T

Staple foods such as bread are key contributors to the diet. Accordingly, there is growing emphasis on improving 
the nutritional composition of wheat (e.g., increasing the dietary fibre content); however, the impacts of such 
improvements on bread characteristics remains unclear. A series of experiments were conducted to determine the 
relationship between physical properties (slice dimensions, cell crumb, water activity, moisture content, colour 
and texture analysis) and sensory profile (via a trained sensory panel; n = 12) of five newly developed white 
breads compared with a commercial standard. Overall, sensory profiling identified twenty-seven attributes to 
describe the breads; key differences between breads related to the appearance (i) colour: crust (top/side) and 
crumb (centre) and (ii) density which could be explained by physical properties to varying extents. For example, 
breads higher in dietary fibre tended to have smaller slice height, larger cell area, higher water activity and 
moisture content as well as instrumental texture (springiness) and colour (darker) differences. In summary, 
findings are promising in terms of tested white bread prototypes and provide key insights for further product 
development. Going forwards, developing nutritionally enhanced white bread without modulating cost and 
quality could have noteworthy public health benefits.

1. Introduction

Bakery goods are widely consumed and considered ideal products to 
deliver enhanced nutritional properties; accordingly, biofortification 
and/or reformulation can be strategies to make such products healthier 
(Fischer, 2018; Lin, 2022). Approximately 40 % of average daily dietary 
fibre intake in the UK comes from cereal based products; therefore, they 
have a key role in the diet (Public Health England, 2020). More spe
cifically, bread can be described as a fundamental staple food in the UK 
where nearly all households buy bread, with sliced white bread being 
the most commonly purchased bread type (Lockyer & Spiro, 2020; 

Statista, 2023; UK Flour Millers, 2023). However, white bread is pro
duced from refined flour resulting in lower contents (due to bran and 
germ of the grain removal during the milling process) of important 
nutrients (e.g., dietary fibre, vitamins, minerals, phytoestrogens, 
phenolic compounds, etc.); thereby, adversely negatively contributing 
to disease risk (Lal et al., 2021; Lin, 2022; Slavin et al., 1999). Hence, 
improving the quality of staple food sources (such as wheat-based 
products) could have widespread public health benefits (Mattei et al., 
2015). For example, dietary fibre is essential for human health and 
improving intake can reduce risk of cardiovascular disease, coronary 
events, stroke, type 2 diabetes and cancer (colorectal); however, 
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consumption is often below recommendations (Kebbe et al., 2021; Koc 
et al., 2020; Public Health England, 2020; Reynolds et al., 2019; SACN, 
2015; Scheelbeek et al., 2020; Stephen et al., 2017). UK adults (aged 19 
years and over) are recommended to consume 30 g/d of dietary fibre yet 
mean intake typically below the 20 g/d threshold (Public Health En
gland, 2020; SACN, 2015). Therefore, there is increasing demand from 
the food industry to develop strategies to promote dietary fibre without 
impacting products cost and quality, at a population level.

Thus, growing wheat with naturally higher dietary fibre could be a 
viable strategy to help shift consumption patterns. Arabinoxylan is the 
predominant cell wall polysaccharide of wheat grain and constitutes 
around 50 % of the total dietary fibre fraction of white (refined) flour 
(Barron et al., 2020; Gebruers et al., 2008). Moreover, the arabinoxylan 
content varies between wheat cultivars and is also affected by envi
ronmental factors (Lovegrove et al., 2020). Genetic differences have 
been exploited to develop lines with naturally higher dietary fibre 
(Lovegrove et al., 2020; Tremmel-Bede et al., 2017, 2020). However, 
dietary fibre (arabinoxylan) and other factors can modulate bread pa
rameters (e.g., dough, bread, sensorial properties, oral processing) and 
the subsequent impact depends on the specific source, amount, frac
tional composition, ingredients and baking procedures (Pietiainen et al., 
2022; Prieto-Vazquez del Mercado et al., 2022; Pu et al., 2021; Trem
mel-Bede et al., 2017; Zannini et al., 2022). More broadly, dietary fibre 
and protein can influence loaf volume, crumb structure, water absorp
tion, colour, texture and sensory aspects of bread to differing extents; 
therefore, modulating consumer acceptance and potential uptake (Bagdi 
et al., 2016; Curti et al., 2013; Gomez et al., 2003; Grigor et al., 2016; 
Hemdane et al., 2017; Ktenioudaki & Gallagher, 2012; Lin, 2022; Martin 
et al., 2013; Prieto-Vazquez del Mercado et al., 2022; Rosell & Santos, 
2010; Schonhofen et al., 2017; Zhang et al., 2019). The relationships 
between instrumental and sensorial aspects have not been widely 
explored. Accordingly, the aim of this paper is to investigate the physical 
and sensorial characteristics of new nutritionally enhanced white bread 
in the context of lower or higher dietary fibre (arabinoxylan) and protein 
content to gain initial insights for future development.

2. Materials and methods

2.1. Breadmaking

Initial pilot baking was conducted to screen new “Minax” flours for 
suitability in white bread based on different analyses (such as wheat 
analysis, flour quality and test baking performance) using Allied Tech
nical Centre (ATC) in-house procedures. The “Minax” flours are novel 
UK grown (Rothamsted, UK) with naturally higher dietary fibre (ara
binoxylan) compared with conventional white flour and varied in pro
tein content (13.6–17.5 %) (Lovegrove et al., 2020; Tremmel-Bede et al., 
2017, 2020). Accordingly, five “Minax” flours were selected and 
described as lower (Minax-61, 128 and 168 – total (TOT): 22.6–25.9 mg 
g− 1; water extractable (WE): 12.7–16.0 mg g− 1) or higher (minax-100 
and 159 – TOT: 30.8–31.3 mg g− 1; WE: 19.9–20.6 mg g− 1) in dietary 
fibre coupled with a standard commercial white flour resulting in six 
breads for breadmaking and additional analyses.

Breads were baked (in duplicate) utilising the Chorleywood bread
making process (CBP) adhering to the standard in-house procedure 
(hence benefiting from industry expertise) (800 g into a four-piece 
lidded loaf using a four-strap tin; ingredients (all supplied by ATC) are 
outlined in Table 1). The doughs were mixed using a Laboratory Z-blade, 
Morton, Scotland, UK) with the following settings: mixer (K5), energy 
(11.0 W h/kg) and baked at 250 ◦C for 24-min. The proportion of water 
added varied depending on the individual flour water absorption level 
(58.1–67.8 %) based on the Farinograph analysis (Gouseti et al., 2019). 
All breads were cooled at ambient temperature prior to slicing (20 slices 
per loaf at 13.2 mm thickness) and subsequently packaged (in sealed 
polythene bread bags) before freezing at − 18 ◦C on day one post baking, 
for future analyses. The breads were stored at − 18 ◦C until further 

analysis (e.g., removed from the freezer the day before and defrosted at 
room temperature) and microbiological clearance testing was completed 
prior to consumption at an accredited laboratory (SGS analytics, 
Northumberland, UK).

2.2. Physical properties

All analyses were conducted utilising four slices from two different 
loaves using a pre-allocated design to ensure consistency between 
breads (Fig. 1).

2.2.1. Slice dimensions
The bread slice dimensions (mm) were recorded by taking into ac

count the height (vertically; top to bottom) and width (horizontally; side 
to side) from a central perspective using a digital calliper (Fisherbrand™ 
Traceable™, Fisherbrand™, Texas, USA).

2.2.2. Cell crumb analysis
The bread slices were analysed (via scanned images) for cell crumb 

structure using a method adapted from Lau et al. (2022). In brief, the 
bread slice was scanned (HP Scanjet G2710 Photo Scanner, 
Hewlett-Packard, USA) adhering to tag image file format (TIFF), colour 
and 300 dots per inch (DPI) settings. The cropped images (slice crumb 
centre; 8.0 × 10.0 cm) were subsequently analysed by (i) selecting the 
blue colour from split channels (enhanced contrast 0.40 %; normalised); 
and (ii) binarizing the image post applying an optimal threshold, using 
image processing software (Image J, National Institutes of Health, USA). 
The parameters namely cell size (average) (mm2) and cell crumb area 
(%) were calculated.

2.2.3. Water activity and moisture content
Two bread slices (crumb + crust) were blended (Magimix 5200XL, 

Surrey, UK) into fine crumbs for 15-s to enable subsequent analysis: (1) 
water activity (aw) was recorded using a tabletop meter (HydroLab C1, 
Rotronic, UK); and (2) moisture content (%) was measured utilising a 
moisture analyser (Sartarious MA37, Goettingen, Germany) at 105 ◦C.

2.2.4. Colour
The bread slice crumb and crust colour were analysed using a 

colorimeter (Chroma meter CR-400, Tokyo, Japan) utilising three 
measurements (top crust, side crust and centre crumb; to align with the 
sensory attributes) reflecting the CIELAB system (illuminant C and 10◦

viewing angle). Three colour-coordinates were recorded: (1) L* (dark- 
light); (2) a* (green-red) and (3) b* (blue-yellow) as well as the total 
colour difference (ΔE*) (comparing the standard with the Minax-based 
breads) which was subsequently recorded to understand human 
perceivable differences (e.g., less than one: non-perceivable differences, 
one to three: minor perceivable differences and more than three: 
perceivable differences) (Bodart et al., 2008). 

ΔE* =
[
(ΔL*)

2
+ (Δa*)

2
+ (Δb*)

2]1/2 

Table 1 
Summary of baking ingredients as % of flour weight.

Ingredients % of flour weight

White flour 100
Yeast 4.50
Dough conditioner 0.65
Vegetable fat 0.30
Salt 1.40
Soya 0.50
Enzyme softener 0.25
Vinegar (20 %) 0.30
Calcium propionate 0.22
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2.2.5. Texture profile analysis (TPA)
The textural properties of the bread slices were measured using a 

texture analyser (TAX-Plus, Stable Micro Systems, Surrey, UK). The 
analysis was performed on two stacked slices (2 × 40 g) in the centre 
using a double compression test adapted from the American Association 
of Cereal Chemists (AACC) 74–09 utilising: (i) 5 kg load cell; (ii) 40 mm 
flat-ended glass cylinder probe; (iii) 1.70 mm/s test speed; (iv) 40 % 
strain; and (v) 5-s waiting time (AACC, 1997). The resulting parameters: 
hardness (maximum force at first compression), chewiness (similar 
trend to hardness: hardness x gumminess x springiness), cohesiveness 
(relative resistance between compressions: area two divided by area 
one), springiness (ability to spring back: distance two divided by dis
tance one) and resilience (product’s fight to regain its original height: 
area four divided by area three) were recorded from the Exponent 
software (version 6.1.16.0, Stable Micro Systems, UK) (Texture Tech
nologies, 2023).

2.3. Sensory evaluation

The trained sensory panel (n = 12; 10 female and 2 male) utilised 
descriptive sensory profiling (an adapted quantitative descriptive anal
ysis (QDA) method) to determine the sensory profile adhering to ISO 
8586:2012 and 1132:2012 (Stone & Sidel, 2004; Heymann et al., 2012; 
International Organisation for Standardization, 2012a; International 
Organisation for Standardization, 2012b). In brief, the panellists 
(screened for sensory acuity and have extensive profiling experience) 
developed a consensus vocabulary identifying 27 attributes from 
different modalities: appearance (visual + touch), aroma, taste/flavour, 
mouthfeel and aftereffects (post 30-s delay). The panellists were pre
sented with a 40 g bread slice; all evaluation was conducted in 
temperature-controlled isolated booths (22 ◦C) under artificial daylight 
with palate cleansers (carrot sticks and filtered water) during the 2-min 
rest period between breads. In addition, the panellists agreed on an 
eating protocol namely: (1) panellists were asked to assess the bread for 
visual appearance followed by physically touching the bread (using 
approximately half a slice); and (2) the remaining slice was used for 
aroma, taste/flavour, mouthfeel and aftereffects consuming both the 
crust and crumb from the top corner of each slice. Panellists undertook 
scoring via Compusense Software (Compusense Cloud, Ontario, Canada) 

in separate sessions using visual analogue scales (VAS; 0–100) with 
relevant anchors on iPads (Apple, London, UK) adhering to a sequential 
randomly balanced allocated order. It should be noted that all panellists 
had consented to evaluate different food-based products as part of the 
company’s employment contract; therefore, this work was not subject to 
additional ethical review nor consent.

2.4. Statistical analysis

The physical properties data were analysed using a one-way analysis 
of variance (ANOVA) with multiple pairwise comparisons (on signifi
cant results) conducted with Tukey Honestly Significant Difference 
(HSD) in XLSTAT (version 2022.3.2.1348, Addinsoft, USA). SenPAQ 
(version 6.3, Qi Statistics, UK) was utilised to analyse the descriptive 
sensory profiling data via ANOVA as outlined in previous work (Norton 
et al., 2021). In brief, the main effects (product and panellists) were 
tested against the product by panellists’ interaction (fixed effect: prod
uct and random effect: panellists). If the ANOVA denoted a significant 
value subsequent multiple pairwise comparisons were performed by 
Tukey-Kramer HSD. In addition, multiple factor analysis (MFA) was 
carried out to explore the relationships between breads, composition 
(dietary fibre and protein), physical properties and sensory data using 
mean scores in XLSTAT. For all analyses significance was defined as p <
0.05.

3. Results and discussion

3.1. Physical properties

3.1.1. Slice dimensions
The scanned images of the bread slices are summarised in Table 2. 

Breads significantly differed (p < 0.0001) in slice height where the 
standard and Minax-61 were the tallest in height and Minax-100 was the 
shortest (Table 2). There was also a noteworthy overall trend for slice 
width (p = 0.052); however, this resulted in no significant differences 
between individual breads (Table 3). This suggests that dietary fibre 
(arabinoxylan) and/or protein may modulate dough expansion subse
quently reducing slice height. This is in agreement with previous find
ings that high protein can lead to overstrong dough which restricts 

Fig. 1. Summary of physical properties measurements sites and pre-allocated design for each slice.
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expansion and arabinoxylan can negatively impact the gluten network 
structure (Gomez et al., 2003; Hemdane et al., 2017; Rosell & Santos, 
2010; Schofield, 1983).

3.1.2. Cell crumb structure
There was an overall significant difference (p = 0.04) relating to 

average cell size; however, there were no pairwise differences between 
individual breads (Table 3). In addition, breads significantly varied (p =
0.005) in terms of the cell area within the crumb; the standard, Minax 61 
and 168 had the smallest cell areas whereas Minax-159 had the largest 
cell area (Table 3). Therefore, it is likely that dietary fibre and/or protein 
increased the cell area due to the reduced gas cell stability leading to 
coalescence (Han et al., 2019; Ni et al., 2020).

3.1.3. Water activity and moisture content
There were significant differences between breads for water activity 

(p = 0.003) and moisture content (p < 0.0001) (Table 3). For example, 
Minax-128 had the lowest water activity whereas the standard, Minax- 
100 and 159 had the highest water activity. Breads (standard, Minax- 
61, 128, 159 and 168) had similar moisture content; yet, Minax-100 
had a higher moisture content. This implies that dietary fibre and/or 
protein increased both water activity and moisture content; such a 
finding could be expected due to the higher water absorbing capacity of 
arabinoxylan (e.g., x10 and x11 its dry weight for the water-insoluble 
and water-soluble fraction respectively) (Guzmán et al., 2015; Finnie 
& Atwell, 2016). In addition, arabinoxylan content can modulate 
various processing and quality traits (e.g., dough viscosity, flour 
water-absorption and bread quality); however, the extent varies with the 
solubility and molecular weight of the soluble fraction (Courtin & Del
cour, 2002).

3.1.4. Colour
Colour measurements were recorded in three areas resulting in 

varying results. There were no significant differences between breads 
relating to colour differences in terms of crust top (Table 3). However, 
there were significant differences (p = 0.02) relating to lightness values 
(L*) from the side crust where Minax-168 and Minax-100 were lighter 
and darker respectively (Table 3). The crumb colour significantly 
differed (p < 0.05) between breads for all colour coordinates (L*, a* and 
b*). For example, Minax-128 was the lightest in colour whereas Minax- 
100 was the darkest in colour. There were also significant differences (p 
< 0.0001) in degree of greenness where the standard and Minax-168 had 
lower and higher green values respectively. The breads also significantly 
differed (p = 0.04) in the extent of yellowness where Minax-128 was less 
yellow and the standard was more yellow (Table 3). Dietary fibre and/or 
protein can result in darker colour but the magnitude of this may depend 
on the dietary fibre type, source and amount (Almeida et al., 2013; 
Amoriello et al., 2020). However, it should be noted that the Minax 
breads were higher in protein than commercial breads and Maillard 
reactions or other protein-related effects may have resulted in increased 
crumb colour development. In addition, all colour differences (between 
the standard and Minax-based breads) were greater than 3.0 which, are 
considered to be human-perceivable differences (Bodart et al., 2008).

3.1.5. Texture profile analysis
The breads varied significantly (p < 0.05) in all measured instru

mental textural properties (Fig. 2). For example, Minax-168 was the 
hardest whereas the standard and Minax-128 was the softest. Similar 
trends were observed for chewiness where Minax-168 was the chewiest 
and the standard, Minax-61 and Minx-128 were least chewy. Minax-159 
and 168 were most springy whereas Minax-100 was least springy. 

Table 2 
Scanned images of white bread slices (scans reduced to 45 %).

Standard Minax-61 Minax-100 Minax-128 Minax-159 Minax-168

Table 3 
Physical properties (mean ± standard deviation) of white breads by dimensions, cell crumb, water activity, moisture content and colour.

Parameters Standard Minax-61 Minax-100 Minax-128 Minax-159 Minax-168 p-value

Height (mm) 148.2 ± 2.3a 147.3 ± 3.7a 130.3 ± 5.5c 142.5 ± 1.2ab 136.9 ± 3.5bc 144.2 ± 7.3ab < 0.0001
Width (mm) 108.8 ± 2.8 107.2 ± 2.6 104.6 ± 3.9 105.0 ± 4.8 101.7 ± 1.0 108.2 ± 2.9 0.052
Cell size (mm2) 0.05 ± 0.009a 0.05 ± 0.008a 0.08 ± 0.03a 0.06 ± 0.02a 0.08 ± 0.03a 0.05 ± 0.007a 0.04
Cell crumb area (%) 53.2 ± 2.5b 54.8 ± 3.8b 60.6 ± 6.2ab 58.6 ± 5.4ab 66.6 ± 4.9a 55.3 ± 2.5b 0.005
Water activity (aw) 0.982 ± 0.003a 0.978 ± 0.003ab 0.984 ± 0.004a 0.973 ± 0.002b 0.982 ± 0.003a 0.979 ± 0.004ab 0.003
Moisture content (%) 39.8 ± 0.2b 39.6 ± 0.3b 41.8 ± 0.7a 40.3 ± 0.4b 40.5 ± 0.7b 40.6 ± 0.3b < 0.0001
Crust (top) - L*(dark-light) 42.7 ± 10.2 40.9 ± 4.5 38.4 ± 2.3 44.3 ± 7.7 47.4 ± 8.4 42.0 ± 5.7 0.58
Crust (top) - a* (green-red) 13.6 ± 1.1 14.7 ± 0.5 15.5 ± 1.5 13.9 ± 0.9 14.6 ± 0.5 15.2 ± 0.6 0.07
Crust (top) - b* (blue-yellow) 26.5 ± 4.9 25.3 ± 3.5 22.5 ± 4.1 26.8 ± 8.0 28.2 ± 6.8 26.1 ± 5.2 0.80
Crust (top) – ΔE* – 10.6 ± 9.3 9.5 ± 3.9 11.4 ± 7.6 7.8 ± 3.1 9.7 ± 7.6 0.97
Crust (side) - L* (dark-light) 73.9 ± 1.7ab 75.9 ± 2.8ab 69.6 ± 3.3b 73.7 ± 2.2ab 71.4 ± 4.9ab 77.7 ± 2.1a 0.02
Crust (side) - a* (green-red) 5.1 ± 1.2 3.0 ± 1.2 4.8 ± 0.3 4.0 ± 1.1 5.3 ± 2.0 3.0 ± 1.5 0.07
Crust (side) - b* (blue-yellow) 31.5 ± 2.0 27.2 ± 3.2 31.4 ± 1.5 29.0 ± 1.9 31.7 ± 2.1 29.3 ± 2.7 0.07
Crust (side) - ΔE* – 5.9 ± 3.9 5.6 ± 2.1 4.8 ± 1.2 7.8 ± 1.4 5.3 ± 3.4 0.55
Crumb (centre) - L* (dark-light) 79.2 ± 3.3ab 80.6 ± 2.9ab 76.2 ± 1.4b 83.9 ± 1.2a 77.7 ± 3.7ab 76.7 ± 5.4ab 0.04
Crumb (centre) - a* (green-red) − 0.8 ± 0.05a − 1.2 ± 0.1bc − 1.3 ± 0.07c − 1.1 ± 0.07b − 1.3 ± 0.08c − 1.7 ± 0.04d < 0.0001
Crumb (centre) - b* (blue-yellow) 12.1 ± 0.7a 11.3 ± 0.3ab 10.3 ± 0.9ab 10.1 ± 0.8b 10.7 ± 1.3ab 10.5 ± 0.7ab 0.04
Crumb (centre) - ΔE* – 4.2 ± 1.8 4.0 ± 2.4 7.1 ± 3.4 3.3 ± 1.3 7.0 ± 3.7 0.20

Data reflects four slices from two different batches (n = 4) and differing letters express significance from pairwise comparisons. L* denotes lightness ranging from 
0 (black) to 100 (white); a* evaluates greenness (negative values) and redness (positive values); b* measures blueness (negative values) and yellowness (positive 
values); and the total colour differences ΔE*compared the standard with Minax-based breads.
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Overall, there was a significant effect (p = 0.04) for cohesiveness; 
however, no significant differences were observed between individual 
breads. There were also differences in resilience; the standard and 
Minax-168 being the least and most resilient respectively. This suggests 
dietary fibre (arabinoxylan) content and/or protein had minimal impact 
on instrumental texture and the key effect related to springiness (e.g., 
the bread’s spring back ability post first compression cycle). However, 
dietary fibre-rich breads were polarised in terms of the result (e.g., 
enhanced dietary fibre lines represented both the least and most 
springy); therefore, additional investigation to establish the causation of 
this structural attribute is needed. Springiness is related to elasticity and 
freshness; accordingly, higher values are considered more desirable 
whereas lower springiness can contribute to crumbling post slicing 
(Matos & Rosell, 2012; McCarthy et al., 2005). In addition, it is likely 
that the causes of the reduction in slice height could also have impli
cations on the textural properties to varying extents depending on the 
specific dietary fibre source (Dhen et al., 2018).

3.2. Sensory profile

The descriptive sensory profiling demonstrated four significant dif
ferences (p < 0.05) from twenty-seven attributes between breads as 
summarised in Table 4. In summary, panellists perceived colour differ
ences relating to the top crust (lighter: Minax-61 and 168 and darker: 
Minax-128), side crust (lighter: Minax-128 and darker: standard) and 
crumb colour (lighter: Minax-168 and darker: Minax-159) as well as 
differences in density (size of bubbles; no differences between individual 
breads from pairwise comparisons). It should be noted that there were 
no significant differences for other modalities (such as appearance 
touch, aroma, taste + flavour, mouthfeel and aftereffects). It was 
important to understand whether subtle physical properties differences 
are perceivable by human senses using analytical methodology (e.g., 
descriptive analysis) to subsequently determine bread sensory quality 
(Stone & Sidel, 2004; Callejo, 2011). Overall, it was apparent that ara
binoxylan content and/or protein had minimal impact on the sensory 
profile and key effects related to the visual appearance. Such findings 
can be explained by the physical properties (e.g., larger cell area, smaller 
slice height and darker colour) to varying extents. It is likely that the 
lack of effects may relate to relatively small differences in dietary fibre 
content and how it was incorporated into the food matrix (using a more 
natural process compared with fortification) and subsequent bread
making recipes. Going forwards, next steps should focus on capturing 
consumers’ insights to understand the extent of perceivable differences 
by naïve consumers as well as utilising more sensitive sensory meth
odology (such as discrimination testing) to better identify commercially 

relevant differences (especially if breads only have small incremental 
increases in dietary fibre content) (Lignou & Norton, 2024). In addition, 
future work should focus on the most common applications of white 
sliced bread such as toast or sandwiches (Caines, 2022).

3.3. Multiple factor analysis (MFA)

MFA was used to further analyse the relationships between obser
vations (breads) and the multiple tables of variables (composition, 
physical properties and sensory data). This process involved performing 
principal component analysis (PCA) for each table of data individually 
(composition, physical properties and sensory data) before a weighted 
PCA on the combined columns of all tables was conducted. Fig. 3 shows 
the correlation maps of observations and variables respectively where 
the total variation (71.69 %) can be explained in components one (F1) 
and two (F2).

The standard, Minax-61 and 128 (lower in dietary fibre and protein) 
breads were positively correlated with the first factor and with attributes 
such as sweet and salty taste as well as exhibiting a more uniform crust 
colour and elasticity. In contrast, breads higher in dietary fibre and 
protein (Minax-100 and 159) were negatively correlated with first factor 
(located in quadrants two and three on the opposite side) and correlated 
with taste and aftereffect attributes such as sour, bitter and degree of 
baked. These two breads were also negatively correlated with size di
mensions (height and width) resulting in smaller slices overall. There 
were also various negative correlations such as cell crumb with density, 
lighter crust/crumb with less degree of baked and mouthdrying with 
salivating. It is also worth noting that the springiness instrumentally 
measured was positively correlated with the springiness as perceived by 
the panel which means that this parameter can be used as a good pre
dictor for assessing whether breads can return to their initial shape after 
pressing. Minax-168 (lower in dietary fibre and protein) was positively 
correlated with these variables alongside hardness resulting in a bread 
with desirable characteristics. This suggests MFA provides an appro
priate method to describe relevant relationships between composition 
(dietary fibre and protein) and bread characteristics (physical properties 
and sensory).

In addition, it should be noted that protein can interact with other 
ingredients subsequently impacting processing and bread quality (e.g., 
water absorption, dough network structure, appearance and textural 
attributes, etc.) (Prieto-Vazquez del Mercado et al., 2022). Moreover, 
hard wheats used for breadmaking typically have higher protein con
tents than soft wheats due to various factors such as environmental ef
fects, agronomic treatments and genetic differences (Malik et al., 2013; 
Shevkani et al., 2024). Accordingly, to overcome such a challenge, the 

Fig. 2. Instrumental textural attributes (means ± standard deviation) of white breads by (A) hardness; (B) chewiness; (C) springiness; (D) cohesiveness; and (E) 
resilience. Data reflects four slices (analysis performed on two stacked slices) from two different loaves (n = 4) and differing letters express significance from multiple 
pairwise comparisons.
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recipe (informed from pilot baking) had sufficient dough conditioner 
and proportion of water added to help deal with potential challenges 
resulting from the higher protein content (range: 13.6–17.5 %) than 
expected in the flour. The breadmaking was also conducted by a com
mercial bakery which may have minimised measured differences 
resulting from the variation in protein and dietary fibre contents. 
Therefore, future work is required to explore the relationship between 
dietary fibre and protein in the context of white bread to fully quantify 
the extent of consumer-relevant differences. In addition, developing 
models that can predict the impact of dietary fibre variation on pro
cessing properties will enable bakers to adjust their processes in order to 
maximise benefits of high fibre white bread to consumers.

4. Conclusion

This paper conducted a series of experiments to determine the rela
tionship between physical properties and sensory characteristics of 
white bread prototypes varying in dietary fibre and protein content. It 
was evident that the key sensorial effects between breads related to the 
appearance (colour and density). This could be explained by the physical 
properties to varying extents such as breads higher in dietary fibre 
tended to have smaller slice height, larger cell area, higher water activity 
and moisture content as well as instrumental texture (springiness) and 
colour (darker) differences. Accordingly, future work should focus on 
additional product development to minimise cited reductions in quality 
resulting from enhancing dietary fibre/protein and explore the 

Table 4 
Sensory profile (mean ± standard error) of white breads by different modalities and corresponding reference and/or description.

Modality Attribute Reference and/or Description Standard Minax-61 Minax- 
100

Minax- 
128

Minax-159 Minax- 
168

p- 
value

Appearance 
visual

Crust colour 
uniformity

Overall uniformity of crust colour 45.7 ± 3.7 51.8 ± 3.1 50.1 ±
2.8

47.8 ±
3.4

42.2 ± 3.5 50.6 ±
3.5

0.23

Crust colour (top) Intensity of crust colour (top-down 
perspective)

61.7 ±
3.2ab

54.7 ± 3.4b 63.8 ±
3.0ab

64.7 ±
2.7a

57.1 ± 3.5ab 55.1 ±
1.9b

0.005

Crust colour (side) Intensity of crust colour (side 
perspective)

41.3 ±
2.6a

31.5 ± 2.3bc 36.9 ±
2.6abc

39.2 ±
2.7ab

27.4 ± 3.0c 33.4 ±
2.3abc

0.001

Crumb colour 
(centre)

Intensity of crumb colour (imagine a 
square in the middle)

28.7 ±
3.0abc

23.4 ± 2.5bc 30.4 ±
3.3ab

26.1 ±
3.4abc

31.5 ± 3.2a 21.1 ±
2.8c

0.002

Density Size of bubbles 51.5 ±
3.3a

55.7 ± 3.8a 43.4 ±
2.8a

50.4 ±
3.4a

44.1 ± 3.1a 55.0 ±
3.6a

0.02

Appearance 
touch

Elasticity Resistance to stretching (top-down) 43.5 ± 3.7 52.0 ± 4.0 44.9 ±
4.5

48.5 ±
3.8

37.9 ± 4.2 50.3 ±
3.4

0.06

Springiness Return to initial shape after pressing 
(press with thumb)

44.7 ± 3.6 40.5 ± 3.2 40.2 ±
3.1

43.5 ±
3.4

46.4 ± 4.0 49.0 ±
3.3

0.30

Surface Softness Degree of softness by touching 
(stroke it)

55.4 ± 4.2 51.3 ± 4.0 53.8 ±
3.6

52.6 ±
3.5

59.9 ± 3.9 56.0 ±
3.2

0.24

Aroma Sour Citric acid (0.76 g/L) 13.2 ± 2.3 13.2 ± 2.3 16.5 ±
2.9

12.3 ±
2.4

16.1 ± 3.1 14.8 ±
1.9

0.75

Yeasty Bread yeast & water 34.2 ± 3.0 37.0 ± 3.3 34.5 ±
3.5

36.3 ±
3.1

29.1 ± 2.8 36.6 ±
3.5

0.12

Doughy Flour & water mixture 39.3 ± 3.7 41.2 ± 4.0 35.6 ±
4.2

41.7 ±
3.6

33.1 ± 3.3 38.8 ±
4.1

0.39

Degree of baked 
(crust)

Intensity of baked note associated 
with the crust

54.4 ± 4.1 48.3 ± 3.9 57.7 ±
4.2

56.5 ±
4.3

54.8 ± 4.2 53.3 ±
3.6

0.36

Taste + flavour Salty Sodium chloride (1.19 g/L) 15.7 ± 1.7 15.1 ± 2.2 12.9 ±
1.4

13.6 ±
1.1

13.0 ± 1.6 14.6 ±
1.3

0.33

Sour Citric acid (0.76 g/L) 13.6 ± 2.6 11.0 ± 2.2 17.0 ±
3.1

12.1 ±
2.3

14.0 ± 2.9 12.5 ±
2.1

0.41

Sweet Sucrose (5.76 g/L) 18.7 ± 2.7 15.4 ± 2.4 15.1 ±
2.8

18.0 ±
2.7

16.0 ± 2.4 16.5 ±
2.3

0.34

Bitter Quinine (0.04 g/L) 13.6 ± 2.8 10.9 ± 2.7 16.2 ±
3.5

15.0 ±
3.0

16.7 ± 2.2 12.0 ±
2.0

0.22

Doughy Flour & water mixture 39.2 ± 3.4 36.5 ± 3.4 33.3 ±
2.5

36.6 ±
3.4

33.6 ± 3.2 32.3 ±
3.1

0.57

Degree of baked 
(crust)

Intensity of baked note associated 
with the crust

49.9 ± 3.7 45.1 ± 3.4 52.5 ±
4.0

53.6 ±
3.6

48.6 ± 3.5 43.6 ±
3.0

0.06

Mouthfeel Hardness Degree of force with first bite 37.8 ± 3.0 39.5 ± 3.2 37.1 ±
2.4

40.3 ±
3.6

40.4 ± 3.0 41.6 ±
3.5

0.56

Chewy Ease of ability to chew 49.1 ± 3.0 50.0 ± 3.1 48.4 ±
2.8

47.9 ±
3.4

46.0 ± 3.4 45.2 ±
3.2

0.72

Mouthdrying Drying sensation within the mouth 36.8 ± 3.6 36.5 ± 3.2 37.6 ±
3.7

36.3 ±
3.8

36.0 ± 2.8 34.8 ±
3.5

0.94

Tooth packing Bread crumb sticking to the teeth 
surface

37.3 ± 4.0 35.1 ± 3.5 33.3 ±
3.7

37.4 ±
3.5

34.7 ± 3.5 36.1 ±
3.3

0.72

Mouthcoating 
(film)

Film like coating within the mouth 26.1 ± 4.2 18.4 ± 3.6 24.7 ±
3.5

21.8 ±
3.7

24.6 ± 3.9 20.5 ±
3.5

0.12

Aftereffects Sour Citric acid (0.76 g/L) 12.3 ± 2.0 9.3 ± 2.0 13.7 ±
2.6

10.3 ±
2.3

12.8 ± 2.8 9.8 ± 1.8 0.39

Bitter Quinine (0.04 g/L) 10.4 ± 2.7 10.5 ± 3.1 12.2 ±
2.7

11.1 ±
3.1

11.1 ± 2.2 9.7 ± 2.2 0.94

Salivating Increased saliva within the mouth 30.1 ± 2.1 31.6 ± 1.9 29.6 ±
2.2

31.8 ±
2.9

31.3 ± 2.1 31.1 ±
2.2

0.95

Mouthdrying Drying sensation within the mouth 31.1 ± 3.2 34.1 ± 3.1 33.3 ±
3.7

32.5 ±
3.1

32.8 ± 2.8 32.4 ±
2.7

0.93

Data collected on visual analogue scales (VAS; 0–100) reflects two replicates (scored in separate sessions) from the trained sensory panel (n = 12) and differing letters 
express significance from pairwise comparisons.
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application of naturally higher-than-average wheat in other baked food 
matrices as well as capturing relevant consumer insights. Overall, 
developing white bread with enhanced nutritional composition without 
modulating cost, taste and current processes could have widespread and 
transformative benefits for the food industry and consumers.
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