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Abstract

This study proposes a geographically weighted (GW) quantile machine learning (GWQML)
framework for soil moisture (SM) prediction, integrating spatial kernel functions with
quantile-based prediction and uncertainty quantification. The framework incorporates
satellite radar backscatter, meteorological re-analysis, and topographic variables, applied
across 15 SM stations and six land use systems at the North Wyke Farm Platform, southwest
England, UK. GWQML was implemented using Gaussian and Tricube spatial kernels across
a range of kernel bandwidths (500-1500 m). Model performance was evaluated using both
in-sample and Leave-One-Land-Use-Out validation schemes, and a global quantile machine
learning model (QML) without spatial weighting served as the benchmark. GWQML
achieved R? values up to 0.85 and prediction interval coverage probabilities up to 0.9,
with intermediate kernel bandwidths (750-1250 m) offering the best balance between
accuracy and uncertainty calibration. Spatial autocorrelation analysis using Moran’s I
revealed a lower residual clustering under GWQML relative to the benchmark model,
which suggests improved handling of local spatial variation. This study represents one of
the first applications of geographically weighted kernel functions in a quantile machine
learning framework for daily soil moisture prediction. The approach implicitly captures
spatially varying relationships while delivering calibrated uncertainty estimates for scalable
SM monitoring across heterogenous agricultural landscapes.

Keywords: varying parameter models; uncertainty analysis; spatial autocorrelation; farm-
scale; land use

1. Introduction

Soil moisture (SM) is a key variable in hydrology, agronomy, and environmental
science [1]. It controls the movement of water and energy between atmosphere, vegetation,
and soil [2], and influences essential processes such as plant growth, microbial activity,
runoff generation, and drought development [3-5]. A precise estimation of SM is important
for crop modelling, irrigation scheduling, and climate impact assessment. However, SM is
variable in both space and time. Its dynamics are shaped by interactions between soil type,
vegetation, land managements, topography, and meteorological conditions which often
vary across short distances [6]. This variability presents a challenge for large-scale timely
prediction and limits the reliability of predictive models trained on aggregated data.
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The increasing availability of remote sensing data has improved the ability to predict
SM over a range of spatial and temporal scales [7]. Passive microwave observations,
such as those from SMOS and SMAP, provide direct measurements of surface SM at
coarse resolution, and have been widely used in large-scale hydrological and climate
studies. SMOS products have shown improved accuracy in dense vegetation conditions
and heterogeneous surfaces when evaluated against global in situ networks [8]. Algorithm
developments, including neural network-based retrievals, have further enhanced the
spatial consistency of SMOS across diverse eco-climatic regions [9]. SMAP observations
have also been applied to monitor SM dynamics in response to seismic events, highlighting
their utility beyond conventional hydrological contexts [10]. However, the coarse spatial
resolution of passive microwave SM products (typically 25-50 km) limits their applicability
in field-scale studies, motivating research into spatial downscaling techniques [11]. Active
microwave systems, including radar backscatter from Sentinel-1 and similar missions, offer
finer spatial detail and greater sensitivity to changes in surface roughness and moisture,
particularly under vegetated conditions. Recent studies have demonstrated the value of
Sentinel-1 data for high-resolution SM prediction at the global scale using dual-polarization
retrieval algorithms, achieving spatial resolutions of 1 km with strong agreement to in situ
observations [12]. At the field scale, the integration of Sentinel-1 with ground-penetrating
radar has further enhanced the accuracy of moisture mapping under heterogeneous surface
conditions, supporting precision agriculture and localised water management [13]. Optical
and thermal sensors, including MODIS and Landsat, do not sense SM directly but provide
vegetation and temperature indices that are often used as proxies for SM availability.
MODIS-derived NDVI and land surface temperature have been used to estimate SM at a
1 km resolution across diverse land cover types in China, with model performance shown
to vary by vegetation and soil properties [14]. In a separate study by Zhang et al. [15] over
the Tibetan Plateau, Landsat 8 data combined with ensemble learning models produced
SM predictions at 30 m resolution. These remotely sensed data sources are increasingly
combined with re-analysis climate products such as ERA5-Land, and terrain attributes
based on elevation models to generate predictor sets for empirical models [16-18]. This
integration enables near real-time SM predictions at resolutions compatible with field or
region-level applications.

To predict SM across space and time, two broad classes of modelling approaches
have been widely used, as follows: process-based and data-driven models. Process-based
models (PBMs) simulate the physical and biochemical mechanisms that govern soil water
movement, infiltration, and evapotranspiration. Models such as SWAP [19] and SWAT [20],
which represent SM as a function of hydraulic properties, boundary conditions, and vegeta-
tion parameters have successfully simulated SM in different landscapes [20,21]. However,
their application requires detailed site-specific parametrisation and input parameters that
are not always easy to generate at scale. The second approach of SM modelling is based
on data-driven and statistical association. These models learn directly from data without
explicit representation of the underlying processes and have been widely adopted to predict
SM across agricultural and hydrological systems [22]. They often require fewer assumptions
and less computationally intensive calibrations [23]. However, their effectiveness depends
on the representativeness and quality of the training data [24]. Another limitation is that
data-driven models often assume that the relationships learned are spatially invariant
across study areas [25], potentially reducing accuracy in heterogenous landscapes.

The assumption of spatial stationary is problematic in heterogenous landscapes where
soil properties, land management, and vegetation vary over short distances [26,27]. In
such contexts, a global (non-spatial) model may fail to capture the spatial variation in
predictor-response relationships, leading to systematic biases and unreliable uncertainty
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estimates [28]. Spatially adaptive frameworks have been always considered as a possible
solution [29,30]. By enabling the structure of the model to vary over space during learning
processes, geographically weighted (GW) machine learning (GWML) models incorporate
spatial kernels that assign location-specific weights to training data. Thus, they can ac-
commodate local heterogeneity and reduce spatial bias in predictions. Applications of GW
approaches have demonstrated improved performance in downscaling coarse-resolution
satellite moisture products. For instance, Zhong et al. [31] applied a multiscale GW re-
gression to downscale SMAP SM in semi-arid regions. The results showed that the model
not only effectively captured variable spatial influence of predictions such as NDVI and
LST but also achieved lower prediction errors compared to conventional moving-window
methods. Similarly, Tong et al. [32] combined GWML with radiative transfer models to
disaggregate SMAP brightness temperature from 36 km to 1 km in the ShanDian River
Basin, producing high-resolution SM prediction that aligned more closely with in situ
measurements than standard SMAP products.

In parallel to efforts towards spatial adaptivity, increasing attention has been given to
probabilistic modelling frameworks that capture not only point predictions but also the
range of likely outcomes [33,34]. Quantile regression provides an effective way to charac-
terise the conditional distribution of a target variable and has been integrated into machine
learning algorithms such as quantile random forests [35] and gradient-boosted quantile
trees [36]. These models produce interval estimates that quantify predictive uncertainty;,
which is important for risk-aware decision-making in agricultural and environmental appli-
cation. Despite the advantages of quantile-based models, their standard implementations
are global and do not incorporate spatial weighting. Consequently, they inherit the same
limitations as other spatially invariant models in heterogeneous settings. While spatially
weighted models and quantile-based approaches have each been used to address distinct
challenges in SM modelling, no prior study has combined them into a unified framework
for SM prediction. This absence limits the ability to simultaneously account for spatial
heterogeneity and quantify predictive uncertainty in heterogenous landscapes.

To address this gap, the present study introduces a GW Quantile Machine Learning
(GWQML) framework for spatially adaptive and uncertainty-aware predictions of SM.
The framework combines quantile regression with spatial kernel weighting, allowing,
subsequently, the conditional distribution of predictions to vary across space. The model
incorporates fixed-bandwidth Gaussian and Tricube kernels to weight training observations
based on their spatial proximity to each prediction location. The approach is applied to
15 SM stations at the three research farms of the North Wyke Farm Platform (NWEFP) in
southwest England, in which the landscape has been managed under six different land
use systems. The objectives of this study are to (i) evaluate whether a spatially weighted
quantile model improves predictive accuracy and uncertainty estimates compared to a
global (non-spatial) quantile model; (ii) assess their ability to generalise to previously
unseen land use systems; and (iii) examine the extent to which spatial weighting mitigates
spatial dependence in model residuals relative to a global baseline. Model performance
was evaluated under both conventional random cross-validation and a Leave-One-Land-
Use-Out (LOLUO) scheme to assess spatial generalisability. A global quantile machine
learning model (QML) without spatial weighting served as a benchmark. Residual spatial
autocorrelation in prediction error was evaluated to determine whether the proposed model
improved spatial consistency relative to the non-spatial baseline.
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2. Materials and Methods
2.1. Experimental Setup

This study was conducted at the NWFD, a long-term experimental research site sit-
uated in Devon, southwest England (50°46’N, 3°54’W). Established in 2010, the NWFP
is designed to support integrated research on sustainable land management and agri-
environmental processes under temperate conditions [37-39]. The platform spans ap-
proximatively 63 hectares and is subdivided into 15 hydrologically isolated catchments
equally grouped across three farmlets (termed Red, Green, and Blue), where each farmlet
is managed according to a distinct land use strategy (Figure 1) that periodically changes
to facilitate multiple land use comparisons. The NWEFP lies within a temperate maritime
climate zone characterised by mild temperatures and high rainfall, with a mean annual pre-
cipitation of approximatively 1031 mm and a mean air temperature of 10.1 °C. Precipitation
is unevenly distributed across the year, with most rainfall occurring between October and
March, often leading to seasonally saturated soils. The predominant soil types across the
platform are Hallsworth and Halstow series [40]. The Hallsworth soils are poorly drained,
heavy clay loams prone to waterlogging, while Halstow soils offer better drainage and
moderate water retention [41].

3°54.757'W 3°54.467'W 3°54.177'W 3°53.887'W 3°53.598'W
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Figure 1. Location of the 15 study catchments, 15 soil moisture stations, and 3 farmlets at the North
Wyke Farm Platform, southwest England, UK.

Land use varied both spatially and temporally across the 15 catchments (Figure 2). In
total, six land use types were investigated across the study period (2015-2021): permanent
pasture (PP), high-sugar grass (HSG), high-sugar grass with clover (HSG-C), deep-rooted
grass (DRG), deep-rooted grass with clover (DRG-C), and (winter) wheat. The Red farmlet
initially supported a mix of PP, DRG, and HSG systems, but all the Red farmlet’s catchments
were converted to winter wheat in 2019. The Green farmlet was consistently managed
under PP throughout the study period. The Blue farmlet included catchments that remained
under DRG-C and HSG-C, while others initially under PP transitioned to HSG-C. Observe
that some of the 15 catchments consist of two fields and that the DRG and DRG-C land use
was limited in implementation to only 2 catchments [42,43].
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Figure 2. Temporal allocation of six land uses across the 15 catchments at the North Wyke Farm
Platform from 2015 to 2021. PP—Permanent Pasture; HSG—High-Sugar Grass; DRG—Deep-Rooted
Grass; HSG-C—High-Sugar Grass with Clover; DRG-C—Deep-Rooted Grass with Clover.

2.2. Soil Moisture Data

Soil moisture (SM) measurements were obtained using a network of 15 SM stations,
each equipped with capacitance-based probes (Adcon SM1, model A51730) installed to 30 cm
depths and reported high-resolution SM at 15 min intervals. Data from the six land use
categories were first quality controlled and harmonised from scaled frequency units (SFU) to
volumetric moisture content (m3/m?3) using a series of protocols [42]. Only SM data at 10 cm
depths were used due to unreliability in deeper probe readings. Figure 3 presents the temporal
evolution of SM for each land use from January 2015 to October 2021. Daily SM averages were
calculated to characterise seasonal patterns across land uses and to reduce high-frequency
temporal autocorrelation present in the original 15 min measurements, thereby improving
the independence of observations used in subsequent modelling and validation steps. All
land uses showed a clear seasonal cycle, with higher SM values during winter (typically >
0.38 m3/m3) and progressive drying during spring and summer. DRG and DRG-C land uses
displayed the most dynamic seasonal ranges, with frequent declines below 0.2 m3/m3 during
summer droughts. Descriptive statistics summarising the full distributions of SM by land use
are presented in Table 1. A detailed year-wise distribution of SM observations for each land
use is provided in Appendix A (Table A1).

Table 1. Descriptive statistics of daily soil moisture (m3/m3) by land use. Summary includes number
of observations (N), standard deviation, minimum, first quartile (Q1), median third quartile (Q3),
and maximum values for the period 2015-2021. PP—Permanent Pasture; HSG—High-Sugar Grass;
DRG—Deep-Rooted Grass; HSG-C—High-Sugar Grass with Clover; DRG-C—Deep-Rooted Grass
with Clover.

Land Use N Mean SD Min Q1 Median Q3 Max
(obs.) (m3/m3) (m3/m3) (m3/m3) (m3/m?3) (m3/m3) (m3/m3) (m3/m3)

DRG 439 0.32 0.07 0.15 0.27 0.35 0.38 0.39

DRG-C 649 0.33 0.08 0.15 0.28 0.37 0.40 0.45

HSG 1809 0.34 0.06 0.12 0.30 0.37 0.39 043

HSG-C 2707 0.33 0.05 0.16 0.30 0.35 0.38 0.41

PP 3442 0.35 0.05 0.16 0.31 0.37 0.39 0.42

Wheat 661 0.36 0.05 0.19 0.34 0.39 0.40 0.41
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Figure 3. Daily mean soil moisture (m3/m3) by land use from 2015 to 2021 at the North Wyke Farm
Platform. PP—Permanent Pasture; HSG—High-Sugar Grass; DRG—Deep-Rooted Grass; HSG-C—
High-Sugar Grass with Clover; DRG-C—Deep-Rooted Grass with Clover.

2.3. Satellite-Derived and Temporal Predictors

Environmental predictor variables were extracted using Google Earth Engine [44],
covering radar backscatter, meteorological re-analysis, and terrain-based topographic
indices. Data were processed at daily resolution and spatially summarised using a 10 m
buffer around each soil moisture station. Backscatter data were obtained from Sentinel-1
Ground Range Detected (GRD) products in interferometric wide swath mode, restricted to
descending orbits with dual-polarised (VV and VH) acquisitions. From these base channels,
multiple polarimetric indices were computed to enhance sensitivity to surface moisture
vegetation structure and roughness. The Water Index (WI) was calculated as

o0
WI= <1>
Oyy +0oyy T€
where 0V, and 0¥, are the co-polarised and cross-polarised backscatter coefficients, re-
spectively, and ¢ is a small constant added to avoid division by zero. This ratio serves a
radar-based proxy for surface wetness, particularly in vegetated environments [45]. In
addition, the Depolarisation Power (DP) was derived as

DP = /00, 0¥y, )

The Depolarisation Power reflects the intensity of depolarised radar returns and is of-
ten associated with heterogeneous canopy or rough soil surfaces. In addition to polarimetric
indices, the raw VV and VH backscatter coefficients were included as standalone variables
to capture direct radar reflectance from surface and vegetation structures. Meteorological
variables were also extracted from ERA5-Land at hourly resolutions and aggregated to
daily values. These include the 2 m air temperature, surface pressure, total precipitation,
surface runoff, and daily net solar radiation. Terrain variables were also computed from
the Shuttle Radar Topography Mission (SRTM) digital elevation model at 90 m resolution.
These variables included elevation, hill-shade, and slope. The Topographic Position Index
(TPI) was calculated by subtracting the mean elevation of a circular neighbourhood from
each pixel’s elevation [46]. The Topographic Wetness Index (TWI) was computed as
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TWI — log(a+1) 3)
tan(p +¢)

where « is upslope contributing area, 5 is the slope in radians, and ¢ is a small constant
to avoid division by zero. TWI is widely used to represent the spatial distribution of SM
potential based on terrain configuration [47,48]. Although the study area is relatively small,
local variations in slope and upslope contributing area can influence lateral water redistri-
bution and surface saturation. Including TWI therefore helps capture micro-topographic
controls on soil moisture dynamics that may interact with land use and meteorological
variability at fine scales.

To account for the intra-annual periodicity of SM dynamics and retrieved remotely
sensed data, a cyclic temporal signal (CTS) was incorporated and defined as

27T - d)
365

CTS = cos( 4)
where d denotes the day of the year. This transformation has been widely adopted in
environmental and land surface modelling to encode periodic and climatic drivers [49,50].
Given the non-linear, tree-based nature of LightGBM (v3.3.5), which is robust to multi-
collinearity, no formal diagnostic was applied. The CTS signal was retained based on its
contribution to prediction accuracy in preliminary experiments.

2.4. Methodological Framework

To model spatially heterogeneous SM dynamics and their associated uncertainty, we
implemented a probabilistic, kernel-weighted machine learning framework composed of a
Global Quantile Machine Learning Model (QML) and a spatially localised, GW Quantile
Machine Learning Model (GWQML). Both models were fitted using Light Gradient Boost-
ing Machine [51], a gradient-boosting decision tree algorithm that supports native quantile
regression and enables direct estimation of conditional quantiles through its asymmetric
loss function. All predictor variables were aggregated into a unified feature vector for
each observation and standardised using z-score normalisation. These features served as
direct inputs to the quantile LightGBM models. In the QML (global) model, all training
samples contributed equally, whereas in the GWQML setting, the same inputs were used
but each sample was weighted according to its spatial proximity to the test point using
kernel functions. The spatial weights thus modulated the influence of each training instance
during learning, without altering the structure or selection of input features. For a given
quantile level T € (0,1), the objective function minimised by the model is the quantile loss:

o Ty—=9, y=7
dc(y,9) —{ (1—1)(9—y), otherwise (5)

where y is the observed SM and 7 is the predicted quantile. This formulation was used
to independently estimate the 0.1, 0.5, and 0.9 conditional quantiles of SM, with predictor
variables standardised using a z-score normalisation prior to fitting [52]. The global model,
QML, served as a benchmark where no spatial structure was introduced, while the localised
model, GWQML, assigned distance-based kernel weights to training samples to account
for spatial non-stationarity in predictor-response relationships. This distinction reflects
the difference between a spatially uniform model and one that adapts locally via distance-
based weighting. In the GWQML setting, spatial weights were assigned using a kernel
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function based on haversine distances between the test location and all training samples.
The haversine distance is defined as

d; = 2r.arcsin <\/sin2 (Q’;%> + cos(9;)cos(9)sin? (Q—Zéo> ) (6)

where (9;,(;) are the latitude and longitude of the training sample, (9,,{,) denote the

centroid of the test sample, and r is the Earth’s radius. The resultant distance was then
transformed into a sample weight using two alternative kernel functions. The geographical
weighting term corresponds to kernel-derived weights computed from the distance between
each training point and the test location. The Gaussian kernel is defined as

w; = ez () (7)

while the Tricube kernel is defined as

w; = (l‘ (@3)3' fai<b ®)

0, Otherwise

where b is a kernel bandwidth that controls the spatial extent of influence. To systematically
evaluate the sensitivity of model performance to the scale of spatial weighting, we used a
fixed set of five bandwidth values: 500, 750, 1000, 1250, and 1500 m. These values were
selected to span the full range of pairwise distances observed among the 15 SM stations
at the NWFP. The decay behaviour of both kernel types across the selected bandwidths is
shown in Figure 4.

Model complexity was controlled by training each configuration with 50 boosting
iterations. The 0.5 quantile provided the central prediction, while the 0.1 and 0.9 quantiles
formed a symmetric 80% uncertainty band. To ensure calibrated interval estimates, we used
conformal prediction on a held-out calibration set (30% of training samples). Conformal
intervals were defined as

70

are the lower and upper quantile predictions, and ¢, and ¢, are the

—¢€p <Y < 32(0'9) + €up )

(0.1) (0.9)

where §7°*) and §
nonparametric offsets obtained from the empirical distribution of residuals in the calibration
set. Model performance was assessed using two complementary validation schemes. In-
sample performance was assessed using a stratified random split, maintaining land use
proportions in the training and test sets. For model generalisation, we applied a Leave-One-
Land-Use-Out (LOLUO) cross-validation strategy. In each fold, all samples from one of the
six land use classes (PP, HSG, HSG-C, DRG, DRG-C, and wheat) was excluded entirely from
model training and used only for testing. This allowed us to quantify the model’s ability to
extrapolate to land use types not seen during training. The stratified random split provides
an estimate of model accuracy under typical data distributions where all land use types are
represented in both training and test sets. In contrast, the LOLUO scheme represents a more
challenging test of generalisability, simulating the model’s predictive robustness when
exposed to entirely unseen land use conditions. All validation experiments, including the
stratified random split and the LOLUO strategy, were conducted under consistent kernel
and bandwidth configurations. Each kernel type (Gaussian and Tricube) was evaluated
independently across the five selected bandwidths. An overview of the full modelling
workflow is presented in Figure 5. As the models were trained and evaluated exclusively at
the sensor locations, and this study focuses on probabilistic point-level predictions rather
than spatial interpolation across continuous surfaces.
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Figure 4. Behaviour of the two kernel weight functions (Tricube and Gaussian) used in the Geograph-
ically Weighted Quantile Machine Learning Model (GWQML). Each panel shows how weights decay
with distance for five bandwidths (500, 750, 1000, 1250, and 1500 m). The Tricube kernel (top) exhibits
finite support, assigning zero weight beyond the specified bandwidth, while the Gaussian kernel
(bottom) decays smoothly with infinite support.

To ensure consistency across data sources, all predictor variables were temporally
matched at the daily scale. The input datasets included Sentinel-1 radar data (acquired on
non-uniform observation dates), ERA5-Land meteorological re-analysis at hourly resolu-
tion, and SRTM terrain indices derived from static elevation data. These sources differ in
their native temporal resolutions. To maintain consistency, only those dates for which all
required variables were available across the 15 soil moisture stations were retained. This
filtering ensured that each record used in model training corresponded to a complete and
temporally aligned set of predictors. No temporal interpolation or imputation was applied
in order to preserve data integrity.
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Figure 5. Methodological workflow for probabilistic soil moisture prediction using Geographically
Weighted Quantile Machine Learning (GWQML). The plot in step 4 illustrates spatial weighting
applied during model tuning, comparing decay behaviour of Gaussian and Tricube kernels at
a bandwidth of 750. The vertical red line indicates the bandwidth cutoff used for visualization
purposes only and does not represent the fixes threshold across modelling steps.

2.5. Model Performance

Model performance was evaluated using both accuracy and uncertainty quantification
metrics, computed separately for the in-sample and LOLUO validation schemes. Accuracy
was assessed using the coefficient of determination (R?) and the root mean square error
(RMSE), all computed on the predicted mean (t = 0.5) quantile:

3 Z?:1(yi* gi)z
i (yi— )

RMSE — \/ %27:1 ( Y — 371.)2 (11)

where y; denotes the observed SM, ?i the predicted median, and y the sample mean.
To quantify the predictive uncertainty, we computed the Prediction Interval Coverage
Probability (PICP) and the Mean Prediction Interval Width (MPIW) using the predicted
lower and upper quantiles at T = 0.1 and T = 0.9, respectively. The PICP measures the
proportion of true observations that fall within the predicted interval. It is defined as

R? = (10)

PICP = % Y1 [y}-(“l) < y < 9 (12)
i=1

where 7 is the number of test samples, y; is the observed SM for sample i, and yAi(O'l) and
1,099 are the predicted 10th and 90th quantiles of SM and 1[.] is the indicator returning 1 if
the condition is satisfied and 0 otherwise. The MPIW quantifies the average width of the
predicted uncertainty intervals for SM and defined as
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1 n
Z 2.(09) _ .~ (0.1)
MIPW = = (yz Yi ) (13)

where the difference 3;(*%) — 3,(%1

represents the predictive interval width for sample i.
In the context of soil quantile modelling, a high PICP value close to the nominal level (e.g.,
0.8 for an 80% interval) indicates well-calibrated predictive intervals, meaning the model
appropriately accounts for uncertainty. At the same time, a narrow MPIW suggests sharper,
more informative estimates. Together, PICP and MPIW represent a reliable assessment of
the model’s ability to represent uncertainty in SM predictions and balance coverage and

interval width.

2.6. Spatial Autocorrelation Analysis

To assess whether the residuals of the SM predictions showed latent spatial structure,
we computed Moran’s [ statistic for each model configuration. Moran’s I is a global
measure of spatial autocorrelation that quantifies the degree of similarity between data (in
this case, residuals) at geographically proximate locations [53]. Residuals were calculated
as the difference between the observed and predicted median values using in-sample test
predictions. Spatial weights were encoded using a fixed-distance threshold of 0.01 decimal
degrees applied to the coordinates of the 15 SM stations. A binary and symmetric spatial
weights matrix W was constructed, in which w;; entries were set to 1 if locations i and j lay
within the defined threshold distance and 0 otherwise. Moran’s I was then computed as

n i S wij(ri = 7) (rj = 7)

I= :
Yic1 Kjey wij Y (ri—7)°

(14)

where 7 is the number of spatial units, 7; is the residual at location 7, 7 is mean of all residuals,
and wj; is the element of the spatial weight matrix representing the spatial relationships
between observations i and j. A residual spatial autocorrelation analysis is recommended
in any GW-based analysis [54,55].

3. Results
3.1. Feature Correlation Analysis

The relationship between environmental predictors and daily SM was assessed using
stratified Pearson correlation coefficients (1) across the six land use systems (Figure 6). The
CTS showed the strongest positive correlation with SM across all systems, ranging from
coefficients of 0.5 in the DRG land use to 0.8 in the wheat land use. Surface runoff (RO) also
displayed consistently positive correlations with coefficients between 0.42 and 0.59. Air
temperature was negatively correlated with SM in all land uses with coefficients ranging
between —0.59 and —0.65. Among the radar-based features, the Water Index (WI) and
VV backscatter demonstrated positive correlations with SM, particularly in HSG, HSG-C
and wheat systems. Maximum correlations reached 0.56 for WI and 0.67 for VV in wheat.
Depolarisation Power (DP) showed variable correlations with SM across land use types,
ranging from a weak positive association in DRG (r = 0.06) to a strong negative correlation
in wheat (r = —0.6). Topographic features such as TWI, TP], slope aspect, and elevation
showed weak correlations with SM, generally with an absolute value below 0.25 across
all land uses. Correlation values are not reported for topographic predictors in DRG and
DRG-C systems as these land uses were present only in one catchment each (Figure 2). A
detailed correlation matrix is included in Appendix B (Figure A1).
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Figure 6. Stratified Pearson correlations between soil moisture and environmental predictors across
land use systems. PP—Permanent Pasture; HSG—High-Sugar Grass; DRG—Deep-Rooted Grass;
HSG-C—High-Sugar Grass with Clover; DRG-C—Deep-Rooted Grass with Clover.

3.2. Model Evaluation and Bandwidth Analysis

In-sample performance of the global model (QML) and the local, GW model (GWQML)
was evaluated across the six land uses. Results are summarised in Figure 7. Accuracy
metrics are based on the median prediction (t = 0.5), while uncertainty metrics use the
80% interval between the T = 0.1 and t = 0.9 quantiles, as described in Section 2.4. Across
all systems, GWQMLs outperformed the global baseline in terms of R?> and RMSE. In
the DRG system, GWQML using a Gaussian kernel achieved a maximum of R? of 0.81
and a minimum RMSE of 0.0306 m3/m3. Similarly, in the DRG-C system, the highest
R? was obtained using the Tricube kernel (0.82), with a corresponding RMSE OF 0.0322
m3/m3. In the HSG system, the Gaussian kernel led to the highest observed R? of 0.85,
with a minimum RMSE of 0.0241 m®/m?>. Across all systems, the global model performed
consistently poorer to the GWQML configurations—both in terms of explained variance
and the prediction errors.

Prediction interval coverage probabilities (PICP) were consistently higher (and thus
better) for the GWQML models compared to the global baselines. The highest PICP was
recorded for the HSG system with GWQML under a Gaussian kernel at 750 m (PICP of
0.9), followed by the DRG (0.88 at 1500 m) and DRG-C systems (0.87 at 1500 m) under the
same kernel. While the GWQMLs provided broader coverage, spatial weighting did not
consistently enhance prediction sharpness with lower MPIW in wheat and HSG under
the global model. Model performance was sensitive to the choice of bandwidth. At low
bandwidths (e.g., 500 m), both predictive accuracy and interval coverage declined, likely
due to sparse spatial support. At high bandwidths (e.g., 1500 m), GWQML performance
resembled the global model. The best-performing GWQML configurations were typically
at intermediate bandwidths (750-1250 m).
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Figure 7. In-sample model evaluation of the global (QML) and Geographically Weighted Quantile
Machine Learning (GWQML) models across the investigated land uses. R? and RMSE are computed
based on the median prediction (T = 0.5). Prediction Interval Coverage Probability (PICP) is evaluated
at the nominal level of 0.8. Mean Prediction Interval Width (MPIW) represents the width of the 80%
prediction intervals.

To evaluate generalisation to unseen land use systems, model performance was as-
sessed using a LOLUO strategy. In each fold, one of the six land use classes was excluded
from training and used exclusively for testing. Results are shown in Figure 8 (t = 0.5 for ac-
curacy metrics, T = 0.1-0.9 for 80% uncertainty intervals). The GWQML model consistently
provided higher performance compared to the global baseline model across all held-out
systems. Among the six land uses, HSG was the most predictable when excluded from
training with a maximum R? of 0.81 and a minimum RMSE of 0.0272 m3/m? (Gaussian
kernel, 1250 m bandwidth). Permanent pasture (PP) and DRG-C also showed relatively
strong generalisation performance, with R? values of 0.76 and 0.77 and RMSE values below
0.033 m3/m3. These land uses appear to be well represented by information learned from
the remaining land uses. In contrast, lower out-of-sample performance was observed when
DRG and wheat were held out, with maximum R? values of 0.74 and 0.71, respectively. In
terms of prediction uncertainty, PICP values ranged from 0.63 to 0.87, with highest interval
coverage observed in HSG, HSG-C, and PP. These values suggest that the GWQML model
was well calibrated in those systems, closely matching the nominal 80% coverage level.
However, the lower PICP scores in DRG (0.67) and wheat (0.63) indicate under-coverage
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and less reliable uncertainty estimates in these cases. Across both kernel types, the most
reliable generalisation performances were generally attained at intermediate bandwidths
(1000-1250 m).
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Figure 8. Out-of-sample predictive performance and uncertainty quantification across land use sys-
tems under Leave-One-Land-Use-Out (LOLUO) for the global (QML) and Geographically Weighted
Quantile Machine Learning (GWQML) models. R? and RMSE are computed based on the median
prediction (t = 0.5). Prediction Interval Coverage Probability (PICP) is evaluated at the nominal level
of 0.8. Mean Prediction Interval Width (MPIW) represents the width of the 80% prediction intervals.

3.3. Spatial Autocorrelation of Residuals

The spatial dependence of model residuals was assessed using the Moran’s [ statistic
across bandwidths for GWQMLs using Gaussian and Tricube kernels (Figure 9). In all cases,
residuals displayed significant negative spatial autocorrelation, confirming the absence of
spatial clustering. For both kernels. Moran’s I values tended to decrease (i.e., become more
negative) as the bandwidth decreased, particularly for the Tricube kernel at 500 m (Moran’s
I of 0.0063 and p < 0.001). This indicates a stronger decorrelation of residuals at narrower
spatial contexts. However, at wider bandwidths (e.g., 1250-1500 m), Moran’s I values
converged toward the global model reference line. Corresponding p-values aligned with
these trends, showing highly significant spatial independence for all Tricube configurations
(p <0.001) and most Gaussian ones, except at 1250 (p = 0.006). Compared to the global model,
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which retained moderate spatial autocorrelation (p = 0.011), spatial weighting in GWQML
clearly reduced residual spatial dependence in smaller to intermediate bandwidths.
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Figure 9. Spatial autocorrelation in model residuals across bandwidths for the Gaussian and Tricube
kernels used in GWQML. Moran’s I (top) and corresponding p-values (bottom) are displayed for
each configuration, with the global model (QML) shown as a dashed reference line.

4. Discussion
4.1. Bandwidth Sensitivity and Kernel Effect in Geographically Weighted Quantile Models

This study evaluated the performance of a GW Quantile Machine Learning frame-
work for probabilistic SM estimation at the NWEFP, focusing on performance trends across
different land use systems, kernel types, and spatial bandwidths. The results highlight
key implications for when spatial weighting benefit SM prediction and where its core
assumptions may not hold. Across all evaluated pasture systems, GWQML consistently
outperformed the global non-spatial baseline model, achieving R? values up to 0.84 and
PICPs nearing 0.8. These improvements confirm the importance of capturing spatial het-
erogeneity in SM processes, particularly in pasture systems where predictor-response
relationships remained spatially consistent (Figure 6). Similar patterns of spatial variability
in SM have been reported in sloped agroecosystems by Zhang et al. [56] who found that
vegetation cover, topographic position, and soil physical properties jointly influence SM
distribution across forest, terraced, and ridge-tilled systems. This highlights the importance
of considering land use and terrain-driven hydrological dynamics in spatial modelling
approaches. In pasture systems, such as HSG, where vegetation is perennial and man-
agement is relatively stable, the spatial weighting mechanism of GWQML effectively
captured local relationships between predictors and SM, leading to more accurate and
better-calibrated predictions. Although LightGBM is typically regarded as a black-box
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algorithm, the GWQML framework introduces a degree of interpretability through its
kernel-based weighting structure, which explicitly quantifies how the influence of obser-
vations decays with spatial distance. This spatial weighting mechanism clarifies localised
predictive relationships, a property absent in conventional, global machine learning models.
Performance trends across bandwidths revealed that intermediate spatial scales, specifi-
cally between 750 and 1250 m, produced the best balance between local adaptivity and
data support. These scales align with the 75th percentile of pairwise distance between SM
stations (i.e., 813 m) and remain within the maximum observed distance across the platform
(i.e., 1538 m). This range captures a significant portion of spatial structure at the NWFP
while remaining narrow enough to preserve local information. At these scales, the model
appears to include enough nearby observations to stabilise local learning without overly
smoothing. This balance is essential in GW models, where bandwidth selection governs
the trade-off between capturing local variation and maintaining model robustness [57]. At
smaller bandwidths (<750 m), performance declined, particularly with the Tricube kernel.
This is attributed to the Tricube kernel’s finite support, which excludes all training points
beyond the specified bandwidth. In spatially fragmented systems or where monitoring
stations are sparsely distributed, this leads to under-sampling and high-variance model
behaviour [58,59]. The Gaussian kernel, which has an infinite support, retained perfor-
mance even at smaller bandwidths by assigning low weights to more distant observations.
This distinction aligns with the theoretical expectations in spatial statistics, as shown by
Alberto et al. [60], who demonstrated that Gaussian kernels maintain robust generalisation
at small bandwidths due to their smooth decay and infinite support. As a result, under
narrow bandwidths and limited local sample support, particularly with the Tricube kernel,
GWQML occasionally showed a lower predictive accuracy than the global QML model due
to increased variance.

Performances at larger bandwidths (>1250 m) also declined, though the mechanisms
differ. While larger bandwidths include more training data and often improve uncertainty
coverage, they risk over smoothing. In our results, this trend was particularly evident with
the Gaussian kernel, where wider bandwidths caused the model to converge towards the
global behaviour, thereby diminishing the benefits of spatial adaptivity. This is consistent
with previous findings by [61,62] who showed that higher bandwidths in GW regressions
lead to coefficient estimates increasingly similar to those of global regression, with spatial
patterns appearing smooth across geographic space. Although PICP values remained high
at high scales, the explained variance declined. This suggests that the model compensated
for increased uncertainty by producing broader intervals. This trade-off reflects the differing
behaviour of coverage and accuracy under kernel smoothing. Sun et al. [63] showed
that bandwidths which optimise prediction interval coverage do not coincide with those
minimizing interval width, as the former favour variance reduction while the latter are more
sensitive to bias. These opposing objectives imply that interval reliability and sharpness
cannot be simultaneously optimised by a single bandwidth choice.

4.2. Generalisation Across Land Use Systems

To evaluate the capacity of the GWQML framework to generalise across ecologically
distinct systems, a LOLUO cross-validation strategy was implemented. This approach tests
the model’s ability to make reliable SM predictions for a land use system that is entirely
excluded during training. When HSG and PP land uses were held out, GWQML achieved
the highest generalisation performance across all evaluated systems. HSG produced an
out-of-sample R? of 0.79 and PICP of 0.86, while PP achieved an R? and PICP of 0.74 and
0.77, respectively. This comparatively high out-of-sample performance may be attributed
to two key factors. First, the distributions of predictor variables in HSG and PP likely fell
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within the multivariate range covered by the training data, allowing the model to operate
within a familiar domain. This reduced the need for extrapolation, a scenario where pre-
diction accuracy typically deteriorates. Sugiyama et al. [64] demonstrated that when test
inputs deviate substantially from the training distribution, model performance tends to
decline even if the underlying learning algorithm remains unchanged. Second, the func-
tional relationships between predictors and SM in these systems may have been broadly
consistent with those characterising the other land uses. This facilitated the model’s ability
to transfer learned patterns across domains. Fang et al. [65] showed that in hydrological
settings, successful generalisation depends not only on input similarity, but also on the
stability of the predictor-response relationship across spatial units. The comparatively
weaker generalisation to clover-mixed systems (HSG-C and DRG-C) highlights limitations
in the model’s capacity to extrapolate across differences in vegetation composition. Al-
though both systems share management similarities with their non-clover counterparts,
their mixed-species composition introduces biophysical variability not accounted for in
the model. Clover inclusion can influence water use efficiency [66], soil [67], and canopy
structures [68], factors known to alter the relationships between SM and radar backscat-
ter [69,70]. Yet, the GWQML framework used relies exclusively on continuous remotely
sensed and meteorological predictors, with no input representing botanical composition
or sward functional traits. As such, the model implicitly assumes that spatial proximity
correlates with ecological similarity.

The wheat system showed the lowest generalisation performance, confirming that
models trained on pasture-based systems do not reliably transfer to annual arable fields.
Unlike perennial pastures, arable systems such as wheat undergo seasonal tillage, sowing,
and harvesting, which dynamically alter surface roughness and canopy structure, thereby
modulating radar backscatter. As demonstrated by Alemohammad et al. [71], the structural
configuration of vegetation plays a significant role in shaping scattering mechanisms, with
vertically aligned cereal crops often enhancing double-bounce returns while suppressing
random volume scattering. Moreover, this domain shift in biophysical and management
characteristics is further compounded by limited model transferability, as shown in tree
crop systems where conventional classifiers failed to generalise across heterogeneous
planting patterns and field sizes [72]. Such findings highlight the critical need for spatially
and contextually informed models that can adapt to varying crop morphologies and
landscape configurations.

4.3. Limitations and Future Directions

This study demonstrates that GWQML improves the prediction of SM in spatially
heterogeneous agricultural systems. The approach successfully combines spatial weight-
ing with quantile-based uncertainty estimation. A key strength of the method lies in its
localised modelling of spatial variation, which helped improve calibration in several land
use systems. However, the current implementation can be refined to enhance its broader
applicability. First, spatial weighting was based solely on geographic proximity, assuming
that neighbouring locations share similar soil-vegetation—climate conditions. This assump-
tion may not hold in heterogeneous landscapes, such as those at the NWFP where abrupt
changes in land use or management occur across short distances. More refined weighting
functions that incorporate land use similarity or vegetation characteristics alongside spatial
distance could better reflect spatial structure, as shown by Comber et al. [54], who integrated
land cover and spatial metrics in local models to improve land cover classification. Second,
the model relied entirely on continuous variables derived from radar, topography, and
re-analysis data. These variables capture large-scale environmental gradients but do not
include categorical attributes such as vegetation type or land management regime, which
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can shape the relationship between remote sensing signals and SM. Research by Wigneron
et al. [73] demonstrated that plant functional traits can significantly affect microwave signal
responses, highlighting the need to represent these aspects in predictive models. Third,
the inclusion of time-sensitive variables such as vegetation indices from optical satellites
(e.g., Landsat, Sentinel-2) could strengthen the model’s ability to track temporal dynamics.
Shafian and Maas [74] developed a Perpendicular SM Index (PSMI) using raw Landsat
reflectance values and showed that it closely matched field-measured SM (R? = 0.79) in
semi-arid croplands. Their findings support the use of multispectral indicators for SM
prediction at the field and regional scale. Moreover, using simulation outputs from crop
models like AquaCrop [75] or WOFOST [76] to derive biophysically meaningful features
may improve generalisation by providing detailed information about soil water fluxes and
crop status over time. Future work could explore the integration of feature attribution
methods to enhance the interpretability of the models. While our GWQML framework
inherently supports spatially and quantile-varying feature importance, presenting such
results in a clear and concise manner would require dedicated methodological treatment
and visualisation space. As this lies outside the scope of the current study, we recommend
it as a promising avenue for future research on interpretable and locally adaptive machine
learning in environmental applications. Another limitation of this study is that it does
not explicitly incorporate direct information on farming practices (e.g., grazing intensity;,
mowing, and fertilisation schedules), which can strongly modulate soil moisture dynamics
at the field scale. These management activities alter vegetation structure, soil compaction,
and evapotranspiration rates, thereby influencing the relationship between remote sensing
signals and in situ soil moisture. While the current model indirectly captures some of these
effects through radar backscatter and meteorological variables, explicitly incorporating
management data or proxies could reduce unexplained variability and improve model
generalisation. Integrating farm-level management records or remote sensing-derived
indicators of land use intensity would therefore be a valuable extension for future appli-
cations. Addressing these methodological gaps would help advance the robustness and
transferability of GWQML in support of SM monitoring across dynamic agroecosystems.

5. Conclusions

This study introduced a Geographically Weighted Quantile Machine Learning
(GWQML) framework for daily soil moisture prediction across a complex agricultural
landscape. The framework delivered improved predictive accuracy and well-calibrated
uncertainty intervals. These benefits were most pronounced in perennial pasture systems
with stable vegetation conditions, where spatial weighting enhanced the effectiveness of
quantile-based estimation. The model consistently outperformed a non-spatial baseline,
confirming the advantage of incorporating local spatial structure when modelling envi-
ronmental variables with known heterogeneity. Performance varied notably across the six
evaluated land use systems. The strongest results were achieved in the high-sugar grass
(HSG) and permanent pasture (PP) systems, where the model performed well, possibly due
to consistent vegetation cover and the presence of comparable training data across sites. The
weakest performance occurred in the wheat system, an annual arable land use with distinct
temporal and surface characteristics. Intermediate bandwidths achieved the best trade-off
between local adaptivity and generalisation, while residual spatial autocorrelation analysis
confirmed the added value of spatial weighting for reducing unexplained spatial patterns
in the model outputs. This study also identified key opportunities for further development.
Incorporating additional predictors that reflect vegetation traits and land management,
integrating temporal dynamics, and adopting more rigorous validation strategies would
enhance model transferability to broader agricultural settings. The GWQML approach
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offers a scalable and interpretable pathway for probabilistic soil moisture modelling in
support of precision agriculture, hydrological forecasting, and environmental monitoring.
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Abbreviations

The following abbreviations are used in this manuscript:

CTS Cyclic Temporal Signal

DEM Digital Elevation Model

DRG Deep-Rooted Grass

DRG-C Deep-Rooted Grass with Clover
ERA5 ECMWEF Re-analysis V5

GEE Google Earth Engine

GWML Geographically Weighted Machine Learning
GWQOML  Geographically Weighted Quantile Machine Learning
HSG High-Sugar Grass

HSG-C High-Sugar Grass with Clover

LOLUO  Leave-One-Land-Use-Out

PP Permanent Pasture

Appendix A

Table Al. Year-wise distribution of daily soil moisture (m3/m3) observations by land use from 2015
to 2021. For each land use class, the number of valid daily observations is reported annually. Land use
abbreviations: PP—Permanent Pasture; HSG—High-Sugar Grass; DRG—Deep-Rooted Grass; HSG-
C—High-Sugar Grass with Clover; DRG-C—Deep-Rooted Grass with Clover; Wheat—Rotational
Cropland with Winter Wheat.

Land Use Year N Mean SD Min Q1 Median Q3 Max
(obs.) (m3/m3) (m3/m?3) (m3/m?3) (m3/m?3) (m3/m?3) (m3/m?3) (m3/m?3)

DRG 2015 34 0.351 0.043 0.23 0.335 0.372 0.379 0.395

DRG 2016 70 0.338 0.047 0.221 0.305 0.349 0.383 0.399

DRG 2017 106 0.363 0.047 0.181 0.361 0.385 0.388 0.398

DRG 2018 165 0.277 0.087 0.15 0.186 0.279 0.36 0.393
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Table Al. Cont.

Land Use Year N Mean SD Min Q1 Median Q3 Max
(obs.) (m3/m3) (m3/m3) (m3/m?3) (m3/m?3) (m3/m?3) (m3/m?3) (m3/m?3)
DRG 2019 64 0.343 0.035 0.258 0.329 0.358 0.367 0.39
DRG-C 2015 34 0.341 0.068 0.203 0.307 0.379 0.39 0.412
DRG-C 2016 70 0.355 0.038 0.267 0.337 0.369 0.39 0.393
DRG-C 2017 106 0.372 0.033 0.269 0.361 0.386 0.392 0.404
DRG-C 2018 165 0.291 0.103 0.157 0.178 0.288 0.401 0.417
DRG-C 2019 88 0.345 0.073 0.176 0.287 0.386 0.404 0.452
DRG-C 2020 95 0.345 0.095 0.161 0.25 0.404 0.424 0.429
DRG-C 2021 91 0.355 0.069 0.211 0.306 0.376 0.42 0.43
HSG 2015 105 0.349 0.07 0.127 0.34 0.382 0.394 0.432
HSG 2016 276 0.358 0.043 0.235 0.335 0.368 0.393 0.404
HSG 2017 462 0.372 0.035 0.225 0.36 0.386 0.397 0.405
HSG 2018 656 0.321 0.078 0.176 0.25 0.342 0.399 0.406
HSG 2019 310 0.346 0.053 0.212 0.306 0.368 0.392 0.404
HSG-C 2015 106 0.355 0.044 0.217 0.33 0.367 0.391 0.403
HSG-C 2016 268 0.339 0.045 0.243 0.306 0.343 0.372 0.406
HSG-C 2017 480 0.356 0.035 0.225 0.344 0.369 0.379 0.401
HSG-C 2018 660 0.302 0.078 0.162 0.231 0.311 0.381 0.417
HSG-C 2019 448 0.35 0.046 0.24 0.313 0.369 0.382 0.413
HSG-C 2020 399 0.347 0.055 0.212 0.308 0.372 0.388 0.41
HSG-C 2021 346 0.349 0.042 0.25 0.318 0.358 0.383 0.409
PP 2015 234 0.348 0.053 0.167 0.317 0.364 0.388 0.427
PP 2016 348 0.339 0.053 0.223 0.291 0.349 0.39 0.41
PP 2017 589 0.37 0.036 0.21 0.357 0.379 0.395 0.409
PP 2018 815 0.319 0.08 0.163 0.244 0.342 0.397 0.41
PP 2019 584 0.358 0.049 0.183 0.334 0.373 0.394 0.426
PP 2020 486 0.366 0.045 0.232 0.341 0.383 0.403 0.411
PP 2021 386 0.366 0.034 0.274 0.345 0.374 0.395 0.408
Wheat 2019 95 0.391 0.022 0.325 0.37 0.402 0.404 0.414
Wheat 2020 350 0.355 0.07 0.194 0.281 0.396 0.406 0.416
Wheat 2021 216 0.361 0.044 0.237 0.336 0.371 0.395 0.413
Appendix B
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Figure Al. Pairwise Pearson correlation matrix among all environmental variables, including soil
moisture, radar backscatter indices, climate and topographic features, and temporal signals.
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