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A B S T R A C T

Understanding interactions between soil structure, microbial communities, and greenhouse gas dynamics is 
critical for predicting carbon losses from drained agricultural peatlands. This study tested the hypothesis that 
land use alters soil structure and microbial communities, thereby shaping CO2 flux, using high-resolution XCT, 
microbial profiling, and gas and soil measurements across winter wheat, sugar beet, and bare soil treatments on a 
productive UK farm on peatland. Bare soil exhibited the highest pore connectivity and gas diffusivity (Dp/D0: 
0.08–0.10 in dry conditions), declining to near-zero during wet periods in October. Fungal alpha-diversity 
(Shannon index: 2.8–3.2) was significantly higher in cropped soils compared to bare soil (2.0–2.5), with sugar 
beet supporting the most diverse fungal communities. Sordariomycetes dominated fungal assemblages (50–75 % 
relative abundance), while Actinobacteria and Vicinamibacteria consistently comprised 20–30 % of bacterial 
communities. Soil moisture strongly regulated diffusivity (R2 = 0.93, p < 0.001), driving seasonal shifts in gas 
transport and microbial dynamics. Fungal communities showed stronger treatment differentiation (R2 =

0.24–0.49) than bacterial communities, with distinct assemblages observed in sugar beet at 20 cm depth (R2 =

0.489, p = 0.011). An XGBoost machine learning model explained 82 % of the variance in CO2 concentrations, 
identifying key fungal (OTU_15_F, OTU_6_F) and bacterial (OTU_901, OTU_5115) taxa as top predictors. These 
results highlight that crop selection can alter microbial diversity by up to 60 % and drive tenfold changes in soil 
gas diffusivity, underscoring the importance of integrating soil structural and microbial metrics into greenhouse 
gas models. Such insights can guide sustainable peatland management strategies that balance productivity with 
carbon conservation.

1. Introduction

Global efforts to mitigate climate change increasingly recognise the 
importance of understanding carbon dynamics in agricultural systems 
(Allan et al., 2023; Kamyab et al., 2024). Peatlands are exceptional 
carbon reservoirs, storing nearly one-third of the world's soil carbon 
despite covering only 3 % of the land surface (Harenda et al., 2018; 
Joosten et al., 2012; Nath et al., 2024). However, the conversion of 
peatlands to arable land has drastically altered their ecological function, 

transforming these carbon sinks into significant sources of CO2 (Lång 
et al., 2024; Page and Baird, 2016). This shift highlights the urgent need 
to identify strategies for managing peatland agriculture in a way that 
minimises its contribution to greenhouse gas emissions while main
taining productivity (Lloyd et al., 2023).

Traditionally, studies on CO2 flux from arable peatland soils have 
focused on environmental factors, such as soil moisture, temperature, 
and pH, or management practices like fertilization and tillage (Dutta and 
Dutta, 2016). Crop type also influences emissions, as root exudates, 
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residue quality, and nutrient demands vary between crops, affecting soil 
carbon dynamics (Gui et al., 2023; Ma et al., 2022; Yang et al., 2020). 
However, an often-overlooked factor is the soil microbiome, the diverse 
community of microorganisms driving organic matter decomposition, 
nutrient cycling, and greenhouse gas fluxes (Jansson and Hofmockel, 
2020). These microbial processes underpin carbon release or seques
tration, yet their specific roles in agricultural peatlands remain poorly 
understood (Jansson and Hofmockel, 2020; Levine et al., 2011). Mi
crobes in the soil are the primary producers of greenhouse gases (GHG) 
such as CO2, nitrous oxide (N2O), and methane (CH4) (Singh et al., 
2010). These gases are released as by-products of various microbial 
metabolic processes, including respiration, denitrification, nitrification, 
and methanogenesis (Kolb and Horn, 2012; Li et al., 2024). Microbial 
activity is influenced by factors such as the availability and quality of 
organic matter, nutrient levels, moisture and temperature (Cruz-Paredes 
et al., 2021; Jansson and Hofmockel, 2020). These elements are essential 
for microbial function, as they provide the necessary energy for micro
bial metabolism and growth (Jansson and Hofmockel, 2020; Neira et al., 
2015). They are additionally influenced by soil physical properties such 
as soil porosity, moisture content, texture, and compaction as those 
determine the movement of nutrients, energy, and oxygen through the 
soil (Neira et al., 2015).

Recent advances in high-throughput sequencing and bioinformatics 
have revealed that soil microbial communities are sensitive to envi
ronmental change and responsive to crop type, with different crops 
selecting distinct microbial consortia through root exudates and rhizo
sphere interactions, potentially altering CO2 production (Andersen 
et al., 2013; Bahram et al., 2018). For example, different crops can select 
for distinct microbial consortia through root exudates and rhizosphere 
interactions, potentially altering the soil's capacity to generate CO2 (Gui 
et al., 2023). However, how these microbial shifts interact with soil 
physical structure to regulate gas transport and emissions in agricultural 
peatlands remains poorly understood (Philippot et al., 2024; Tiemeyer 
et al., 2016). Most studies examine either microbial composition (e.g., 
(Levine et al., 2011; Li et al., 2024; Yang et al., 2024) or soil structure (e. 
g., (Buragienė et al., 2019) in isolation, overlooking their combined 
influence, a critical gap given that structural changes in drained peat can 
directly affect aeration, moisture distribution, and microbial meta
bolism (Lång et al., 2024). This study addresses this gap by jointly 

analysing soil microstructure and microbial communities across con
trasting crop types on cultivated peat providing an integrated view of 
their role in driving CO2 emissions. We combine field measurements of 
CO2 concentrations, soil physicochemical properties, and microbial 
community composition with 3D X-ray computed tomography (XCT) to 
quantify pore network structure. Using statistical and machine learning 
models (XGBoost), we test the extent to which microbial composition 
can predict CO2 dynamics. Crucially, we also explore the mechanistic 
links between microbial communities and soil physical structure, 
focusing on air-filled porosity, gas diffusivity, and connected pore 
domain volume. By assessing both predictive performance and bio
physical constraints on respiration, we aim to identify how soil structure 
moderates' microbial activity and contributes to emergent CO2 flux 
patterns.

Additionally, we explore the potential of microbial biomarkers spe
cific operational taxonomic units (OTUs) correlated with CO2 flux to 
improve the predictive power of greenhouse gas models and better 
represent microbial contributions to peatland carbon cycling. Given the 
mounting pressures on peatlands from agriculture and climate change, 
our study aims to provide a novel perspective on the interplay between 
crops, microbes, and CO2 flux in one of the planet's most critical eco
systems. We hypothesised that (i) crop type alters soil structure and 
microbial community composition, (ii) these changes influence CO2 flux 
through their effects on gas transport and microbial activity, and (iii) 
integrating structural and microbial predictors into greenhouse gas 
models increases their predictive accuracy (Fig. 1).

2. Materials and methods

2.1. Study area and soil sampling

This study was conducted from June to October 2024 on a working 
arable farm on peatland in the Fenlands of eastern England. The region 
has a mean temperature of 10 ◦C and receives 600–800 mm of precipi
tation annually. The soils are high in organic matter and are considered 
very fertile. Three fields representing different land-use treatments were 
selected: (i) sugar beet (Beta vulgaris) - 13.71 ha (52◦30′27.3″N 
0◦24′17.5″E); (ii) bare field (left uncultivated for one year) - 9.62 ha 
(52◦50′41.5″N 0◦40′03.10″E) opposite the sugar beet field, and (iii) 

Fig. 1. Conceptual framework linking crop type, soil structural connectivity (Conn.D), microbial community composition, and CO2 emission dynamics in productive 
UK peat soils. This study explores functional relationships among these components using integrated structural, microbial, and gas datasets from a working 
farm system.
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winter wheat field (Triticum aestivum) - 6.6 ha (52◦51′47.9″N 
0◦38′96.8″E) located about 150 m from the sugar beet field measured.

Sampling points were selected to capture both the spatial heteroge
neity of the fields and the effects of land use on soil properties and CO2 
emissions. The Big W sampling design (Munroe, 2018) was employed 
because it provides cost-effective yet statistically robust coverage for on- 
farm trials. Within each field, the W transect was laid across a 250 m grid 
to ensure representation of field-scale variability. Sampling locations 
were positioned at each turning point of the W (two ends, centre, and 
two intermediate points), covering different topographic positions and 
management zones. At each location, composite soil samples were ob
tained by pooling 3–5 subsamples within a 0.1–1 m radius to reduce 
microsite variability and improve representativeness. This design 
ensured that selected points reflected both within-field variability and 
treatment-specific conditions, providing a scientifically rigorous basis 
for comparing the influence of different crops on peat soil structure, 
microbial communities, and CO2 emissions.

Sampling was carried out during the peak growing season to capture 
active microbial and soil processes. The winter wheat field received 220 
kg/ha/year of ammonium nitrate, while the sugar beet fields were 
fertilized with 200 kg/ha/year of ammonium nitrate.

2.2. CO2 emission measurements

CO2 flux were measured using a portable LI-COR Biosciences LI- 
8100 A single-chamber soil flux system (LI-COR Biosciences, Lincoln, 
Nebraska) equipped with a closed-chamber design allowing air circu
lation within the sealed chamber, which has a diameter of 20 cm 
(Madsen, Xu et al. 2009). Measurements were conducted at soil depths 
of 5 cm, 10 cm, and 20 cm at five systematically distributed locations 
within each field plot, encompassing all crop types. Data collection was 
repeated every two weeks from June to September. CO2 flux was 
calculated based on the rate of concentration change within the 
chamber.

2.3. Soil physicochemical properties

Soil moisture was determined using ML3 ThetaProbe soil moisture 
sensor (ThetaKit, Delta-T, Great Britain). Soil temperature at the time of 
sampling was recorded using an in-field thermometer probe HI 
98509–01 (Hanna Instruments Pty Ltd). Both soil moisture and tem
perature measurements were taken at depth; 5 cm, 10 cm and 20 cm at 
locations adjacent to the CO2 measurement positions within each field. 
Soil pH was measured in a 1:2.5 soil-to-water suspension using a cali
brated pH meter.

2.4. DNA extraction and sequencing

At each site, soil cores were taken from depths of 5 cm, 10 cm and 20 
cm using a standardized auger at locations adjacent to the CO2 mea
surement positions. Samples were collected in five replicates for each 
depth and land-use treatment from the five sampling positions indicated 
above, providing spatial replication across the field. To minimise cross- 
contamination, tools were sterilised between samples with 70 % 
ethanol. Soil samples were placed in sterile containers, transported on 
ice, and stored at − 20 ◦C prior to analysis. Total DNA was extracted from 
0.25 g of soil using the DNeasy PowerSoil Kit (Qiagen) following the 
manufacturer's protocol. For bacteria the V3–V4 hypervariable region of 
the 16S ribosomal RNA (rRNA) gene was amplified using primers 
[CCTAYGGGRBGCASCAG,GGACTACNNGGGTATCTAAT] and for 
fungal the internal transcribed spacer for the endophytic region (ITS1- 
1F) [CTTGGTCATTTAGAGGAAGTAA,GCTGCGTTCTTCATCGATGC] 
was amplified. DNA quality was assessed with a NanoDrop™ 1000 
spectrophotometer (Thermo Scientific™), and only samples with 260/ 
280 ratios ~1.8 and 260/230 ratios 2.0–2.2 were retained. Target re
gions were PCR-amplified using barcoded primers, and amplicons of the 

expected size were verified by agarose gel electrophoresis. Equimolar 
products were pooled, end-repaired, A-tailed, and ligated with Illumina 
adapters. Library quality was checked by Qubit, qPCR, and an Agilent 
Bioanalyzer. No extraction blanks or PCR negative controls were sub
mitted, but all library preparation and sequencing followed Novogene's 
standard quality control protocols. Sequencing was performed on an 
Illumina NovaSeq 600 PE250 platform.

To analyse the microbial community composition in each sample, 
raw sequences were quality-filtered, clustered into operational taxo
nomic units (OTUs) at 97 % similarity, and taxonomically assigned using 
the Silva 138.1 annotation database for 16S rRNA data and Unite v9.0 
annotation database for ITS data. Microbial diversity indices, including 
Shannon and Simpson indices, were calculated using QIIME2.

2.5. Elemental and isotopic analysis

Samples were placed in a freezer overnight and then freeze dried for 
24 h using a Mini Lyotrap freeze dryer. 1 mg samples were weighed 
using a Sartorius CP2P microbalance and encapsulated within tin cups. 
The samples were then analysed for total carbon (TC), total nitrogen 
(TN) and the isotopes of both carbon (δ13C (‰)) and nitrogen (δ15N (‰)) 
in the Stable Isotope Laboratory at the University of Leicester using a 
Sercon ANCA GSL elemental analyser interfaced to a Sercon Hydra 20- 
20 continuous flow isotope ratio mass spectrometer. Carbon isotope 
results are expressed relative to VPDB (Vienna Pee Dee Belemnite). Ni
trogen isotope results were expressed relative to atmospheric nitrogen.

2.6. X-ray computed tomography and image analysis

Soil core and aggregate samples were scanned using a v|tome|x M 
240 kV X-ray CT scanner (Baker and Hughes Digital Solutions GmbH, 
Germany) at Rothamsted Research, Harpenden. The soil core sample 
was scanned using micro-focal X-ray tube and soil aggregates samples 
were scanned with nano-focal tube. The samples placed in a sample 
holder and the holder was fixed on the specimen stage of the scanner. All 
soil core samples were scanned with a 0.5-mm copper filter on the 
micro-focal X-ray tube, at a potential energy of 120 kV, current of 150 
μA with a spatial resolution of 37 μm. During the scan, the specimen 
stage rotated through 360◦ at a rotation step increment of 0.16◦ col
lecting a total of 2200 projection images. Exposure time of each pro
jection image was 83 ms with image averaging of 3, and a skip of 1, and 
each core scanned for 1 h 40 min as a multiscan mode. After scanning, 
soil cores were air-dried at room temperature for one week. Six aggre
gates (2–3 mm) were randomly selected from each core and scanned 
using a nano-focus X-ray tube (60 kV, 240 μA, 2.5 μm voxel size). Each 
scan captured 1700 projections over 45 min, with images reconstructed 
in phoenix datos|x software (Baker and Hughes Digital Solutions GmbH, 
Germany). Beam hardening correction (level 4) and motion corrections 
were applied, and multi-scan routines were merged to generate 
continuous 3D volume data.

Image stacks were processed in ImageJ, and segmentation was per
formed using the Huang thresholding method, which separates pore 
space from the solid phase based on grayscale intensity. Soil pore 
network architecture was analysed using 3D X-ray computed tomogra
phy (XCT) at a voxel resolution of 40 μm. After image segmentation and 
binarization, connectivity was assessed using the Euler characteristic (χ) 
and a derived metric called Conn.D, defined as the volume of the largest 
connected pore domain (in mm3). This was calculated by identifying the 
largest 26-connected cluster of pore voxels and summing their volume. 
Conn.D reflects the effective percolating volume through which gas or 
water can move and serves as a proxy for soil physical continuity. This 
metric is particularly valuable in highly porous peat soils, where total 
porosity alone may not distinguish functionally disconnected structures.
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2.7. Soil gas diffusivity estimation

Soil gas diffusivity (Dp) was estimated to assess gaseous exchange 
potential in relation to soil moisture and air-filled porosity across 
different crop treatments and sampling dates. Relative gas diffusivity 
(Dp/D0), the ratio of soil gas diffusivity to that in free air, was calculated 
using the Millington–Quirk model: 

Dp

D0
=

(
θa

ϕ

)1.5

(1) 

where θa is the air-filled porosity, φ is total porosity derived from bulk 
density with an assumed particle density of 1.4 g cm− 3 (Faoziah et al., 
2019). The exponent 1.5 captures the nonlinear effects of tortuosity and 
constriction in gas flow pathways as soils become wetter and air-filled 
porosity decreases. Volumetric water content (θ) was measured in situ 
and used to calculate θa = ϕ− θ at three depths (5, 10, and 20 cm) across 
five sampling dates from June to October 2024.

2.8. Machine learning model for CO2 emission prediction

To identify key predictors of CO2 flux across treatments, we imple
mented an Extreme Gradient Boosting (XGBoost) regression model using 
the xgboost package (version 1.7.8.1) in R (Chen and Guestrin, n.d). 
Input variables were selected based on their ecological relevance to 
peatland carbon cycling and their statistical contribution to model 
performance. Specifically, soil physicochemical properties (pH, tem
perature, moisture, total nitrogen, and total carbon) and microbial 
community composition (OTU relative abundances) were included due 
to their known influence on CO2 fluxes. Prior to model training, variance 
and correlation filtering (r < 0.75) was applied to reduce dimensionality 
and avoid multicollinearity, retaining only variables showing significant 
variation across treatments. The model was trained with LOOCV (Leave- 
One-Out Cross-Validation) to minimise overfitting, and performance 
was evaluated using R2, and root mean square error (RMSE). Variable 
importance was assessed using the gain metric, which reflects each 
feature's contribution to predictive power, and further interpreted with 
SHAP (SHapley Additive exPlanations) values to determine both the 
strength and direction of predictor influence. This approach enabled 
ranking of influential microbial taxa and soil structural parameters, 
identifying potential microbial biomarkers of carbon cycling in peat 
systems. Importantly, XGBoost's ability to capture complex, non-linear 
interactions provided mechanistic insights beyond those accessible to 
linear or univariate models, offering a robust framework for modelling 
greenhouse gas emissions from agricultural peatlands (Grinsztajn et al., 
2022).

2.9. Data availability

Data from this experiment is shared in the supplementary material. 
All metagenomic sequence data generated in this study have been 
deposited in the NCBI Sequence Read Archive (SRA) as raw FASTQ files 
under BioProject accession number PRJNA1345951 for 16S rRNA 
amplicon data (BioSample accessions SAMN52822337–SAMN528 
22396) and BioProject accession number PRJNA1346049 for ITS 
amplicon data (BioSample accessions SAMN52823209–SAMN528 
23268).

3. Results

3.1. Bacteria community composition

Bacterial communities were dominated by a stable core microbiome 
across all treatments and soil depths. Actinobacteria and Vicinamibacteria 
consistently accounted for 20–30 % of the community, while Alphap
roteobacteria and Thermoleophilia together represented 15–25 % (Fig. 2a 

& b). Gammaproteobacteria maintained relatively stable abundances 
(~5–7 %) across all samples. Acidimicrobiia were more abundant in 
wheat fields, particularly at shallow depths, whereas the diverse 
“Others” category (~25 %) indicated substantial background diversity. 
The overall stability of these dominant taxa suggests a resilient core 
bacterial microbiome, with subtle treatment-specific variations likely 
reflecting localised environmental adaptations.

3.2. Fungal community composition

Fungal communities were strongly dominated by Sordariomycetes, 
which comprised 50–75 % of sequences across all treatments and 
depths, with peak abundances observed in sugar beet fields at 10 cm 
depth (Fig. 2c & d). Leotiomycetes formed the second most abundant 
group, with consistent representation in wheat field samples across all 
depths. Eurotiomycetes were more prevalent in bare fields (5 cm) and in 
wheat fields, while Leotiomycetes showed a more uniform distribution in 
sugar beet than in wheat soils. Despite some field-specific variations, the 
overwhelming dominance of Sordariomycetes represents the most 
prominent compositional feature of the fungal communities in these 
agricultural peatland soils.

3.3. Bacterial and fungal alpha diversity

Here, alpha-diversity reflects the richness and evenness of microbial 
species within each treatment, while beta-diversity highlights the dif
ferences in community composition between crop types and bare soil. 
Bacterial diversity across different land use treatment conditions and 
soil depths was assessed using the Abundance-based Coverage Estimator 
(ACE) and Shannon diversity index (Fig. 3a & b). The ACE index mea
sures species richness, while the Shannon index accounts for both 
richness and evenness within microbial communities. Bacterial alpha 
diversity, as assessed by ACE and Shannon indices, did not differ 
significantly across soil depths (5, 10, and 20 cm) or among field types 
(B, S, and W) (Fig. 3a & b; Tukey's HSD; all p > 0.05). For ACE diversity, 
the greatest positive mean difference was observed between the S field 
at 20 cm depth and the B field at 5 cm depth (Fig. 3a; p = 0.28), while the 
largest negative difference occurred between the S field at 5 cm and S 
field at 20 cm (Fig. 3a; p = 0.12). Similarly, Shannon diversity showed 
its largest positive difference between the W field at 10 cm and the S 
field at 5 cm (Fig. 3b; p = 0.12), and its largest negative difference be
tween the W field at 5 cm and the W field at 10 cm (Fig. 3b; p = 0.22). 
Despite numerical variations across treatments and depths, the wide 
confidence intervals and high adjusted p-values indicate that bacterial 
alpha diversity remained broadly similar across the peatland soils.

Fungal Alpha diversity, measured by Shannon and ACE indices, 
showed no significant differences across soil depths (5, 10, and 20 cm) or 
field types (B, S, and W) (Fig. 3c & d; Tukey's HSD; all p > 0.05). 
However, pairwise comparisons among certain treatment groups 
revealed significant differences (Fig. 3d). For Shannon diversity, the 
largest positive difference was observed between the W field at 10 cm 
and the S field at 20 cm (Fig. 3d; p = 0.002), indicating significant higher 
diversity in wheat soils at this depth. Similarly, the W field at 20 cm and 
5 cm showed significantly higher Shannon values compared with S field 
at 20 cm (Fig. 3d; p = 0.006 and 0.005, respectively). Though these 
differences were not consistent across other pairwise comparisons, the 
overall patterns suggest that both land use treatment and depth influ
ence fungal diversity and richness, potentially reflecting shifts in fungal 
community structure in response to environmental condition.

3.4. Bacterial beta diversity

The ADONIS (PERMANOVA) test, based on Bray-Curtis dissimilarity 
indices, also revealed significant differences in bacterial community 
composition across land use treatments and soil depths (Supplementary 
Table 1). The most pronounced differences were observed in the Sugar 
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beet field at 5 cm, which significantly differed from all other land use 
treatments and depths (Supplementary Table 1).

In contrast, within-field comparisons revealed vertical homogeneity 
in bacterial communities at deeper depths. No significant differences 
were observed between Sugar beet field.10 cm and Sugar beet field.20 
cm (F = 1.12, R2 = 0.12, p = 0.338) or within bare field and wheat field 
samples across depths (all p > 0.1) (Supplementary Table 1).

The strongest dissimilarity was observed between bare field at 20 cm 
of depth and wheat field at 20 cm of depth (F = 4.58, R2 = 0.36, p =
0.006), suggesting substantial horizontal heterogeneity at this depth 
(Supplementary Table 1).

Overall, these findings indicate that bacterial communities exhibit 
both horizontal (land use treatment) and vertical (soil depth) struc
turing, with the most distinct community at sugar beet field at 5 cm of 
depth. The results suggest that environmental filtering and stochastic 
processes shape microbial communities, with potential implications for 
microbiome-mediated soil functions such as CO2 emissions.

3.5. Fungal beta diversity

PERMANOVA analysis of Bray-Curtis dissimilarities revealed signif
icant differences in fungal communities across land use treatments (p <
0.05), with R2 values ranging from 0.24 to 0.49, indicating that 24–49 % 
of the variation was attributable to land use (Supplementary Table 2). 
The strongest dissimilarity was between sugar beet field at 20 cm of 
depth and wheat field at 20 cm of depth (R2 = 0.489, p = 0.011) 
(Supplementary Table 2).

Within-field depth comparisons showed no significant differences in 
fungal community composition (all p > 0.05), suggesting vertical ho
mogeneity in fungal distribution within each land use type. For example, 
sugar beet field samples exhibited high similarity across depths (p >
0.49, R2 < 0.1), a trend also observed in bare field, and wheat field 
samples (Supplementary Table 2).

Among land use treatments, the wheat field had the most similar 
fungal communities (R2 = 0.159–0.244, p < 0.05), while bare field and 
wheat field showed moderate differentiation (R2 = 0.249–0.323, p <
0.01) (Supplementary Table 2). These results align with relative 

Fig. 2. Taxonomic Composition of Soil Microbial Communities Across Different Land-Use Treatments and Soil Depths (a) Phylogenetic tree of bacterial communities 
at the phylum level, showing relative abundances across different land-use treatments and soil depths. 
(b) Bar plot depicting the relative abundance of bacterial phyla in different groups. 
(c) Phylogenetic tree of fungal communities at the phylum level, displaying relative abundances across different land-use treatments and soil depths. 
(d) Bar plot illustrating the relative abundance of fungal taxa at the class level in different groups. 
Samples are categorized by land-use type and depth, with different colours representing taxonomic groups.

G.K. Oppong et al.                                                                                                                                                                                                                              Applied Soil Ecology 217 (2026) 106558 

5 



abundance patterns, where Sordariomycetes consistently dominated, 
while taxa such as Eurotiomycetes, Mortierellomycetes, and Leotiomycetes 
varied in representation between land use treatments rather than soil 
depths (Fig. 2d).

3.6. Canonical correspondence analysis of microbial communities and 
environmental variables

Canonical Correspondence Analysis (CCA) was performed to assess 
the influence of environmental variables on microbial community 
composition, using both bacterial (16S rRNA) and fungal (ITS) 
sequencing data. The analysis focused on three land use treat
ments—Bare field (B), Winter wheat field (W), and Sugar beet field (S)— 
at a soil depth of 20 cm. The CCA biplots (Fig. 4a & b) illustrate the 
relationships between microbial community structure and key soil 
properties, including soil moisture, pH, soil temperature, bulk density, 
porosity percentage, electrical conductivity, and CO2 emissions.

Distinct clustering of samples suggested that both bacterial and 
fungal communities were structured by land-use treatment and soil 
depth, with environmental gradients further shaping their composition 
(Fig. 4a & b). For bacterial communities, soil moisture, total nitrogen 
percentage (Total N) and total carbon percentage (Total C) exhibited a 
strong positive correlation with the microbial composition. These pa
rameters directly influence bacterial metabolic activity and growth, as 
moisture availability determines nutrient diffusion rates and cellular 
processes, while C and N availability controls energy and biosynthesis 
pathways. Sugar beet samples aligned more closely with these vectors, 
suggesting that enhanced nutrient cycling under sugar beet cultivation 
creates favourable conditions for diverse bacterial communities 
(Fig. 4a). Wheat samples were more dispersed along CCA2, suggesting 
root exudate-driven selection of specific bacterial consortia, consistent 
with known rhizosphere effects on microbial assembly (Fig. 4a).

CO2 flux were closely linked to the microbial communities in bare 
soil plots across both datasets (Fig. 4a & b), reinforcing the observation 
that areas with minimal plant cover exhibited distinct microbial com
positions contributing to higher respiration rates (Xin et al., 2022). Soil 

pH also influenced both bacterial and fungal communities, with a 
greater effect observed in bacterial composition (Fig. 4a & b). Overall, 
these results highlight that both chemical (moisture, Total N, Total C, 
pH) and physical (bulk density, porosity) soil parameters jointly struc
ture microbial communities, with direct implications for CO2 flux dy
namics in agricultural peatlands.

3.7. Comparison between fungal and bacterial community influence on 
CO2 emissions

Overall, both bacterial and fungal communities exhibited strong 
responses to soil moisture, pH, and CO2 flux, with fungi showing a 
greater sensitivity to soil structure (bulk density, porosity) (Fig. 4a & b). 
The results indicate that both microbial groups contribute to soil 
respiration, but their interactions with environmental factors differ. 
These findings highlight the importance of considering both bacterial 
and fungal communities in predictive models of CO2 flux from arable 
peatlands.

3.8. Seasonal variability in soil gas diffusivity under different crop 
treatments

Fig. 5 illustrates temporal variations in relative soil gas diffusivity 
(Dₚ/D0) across three agricultural treatments sugar beet, bare soil, and 
wheat at soil depths of 5 cm, 10 cm, and 20 cm during the growing 
season (June to October 2024). Relative diffusivity increased markedly 
from June to August, reflecting seasonal soil drying. The bare soil 
consistently exhibited the highest diffusivity values (ranging up to 
~0.7), indicative of lower moisture retention and greater air-filled pore 
spaces, likely due to the absence of plant cover. In contrast, the sugar 
beet treatment maintained the lowest diffusivity (typically <20 cm), 
attributed to higher moisture retention facilitated by crop canopy 
shading and root-mediated water uptake dynamics. Wheat exhibited 
intermediate diffusivity profiles, highlighting the influence of crop type 
and growth stage on soil moisture and gas transport properties. These 
results emphasize that crop management significantly modulates soil 

Fig. 3. Alpha-diversity of soil microorganisms across different land-use treatments. Overall comparison of species alpha-diversity among the four groups. (a) 
Boxplots display the ACE diversity index for bacteria (b), the Shannon diversity index for bacteria (c), the ACE diversity index for fungi (d), and the Shannon diversity 
index for fungi.
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structure and moisture conditions, thereby affecting microbial respira
tion dynamics and potential soil CO2 emissions.

3.9. Relationship between pore connectivity (Conn.D) and cropping 
systems

Analysis of pore connectivity (Conn.D), measured using X-ray 
computed tomography (XCT), revealed differences among treatments, 
reflecting changes in soil pore network characteristics associated with 
crop type. The average Conn.D was highest in the bare soil (13.2 mm3), 
followed by wheat (12.4 mm3), and lowest in the sugar beet (7.4 mm3). 

Greater Conn.D values indicate a more extensive interconnected pore 
space, potentially facilitating more efficient gas diffusion and influ
encing microbial respiration dynamics. However, statistical analyses 
indicated no significant treatment effect on Conn.D (P > 0.05), sug
gesting that observed differences in connectivity were subtle or masked 
by soil heterogeneity at the field scale. Despite the lack of significant 
differences, the observed trends in connectivity may contribute to 
explaining the higher diffusivity and elevated soil CO2 concentrations 
measured under bare soil compared to the cropped treatments.

Fig. 4. Canonical Correspondence Analysis (CCA) Biplot of (a) Bacteria community composition and environmental variables (b) Fungal community composition and 
environmental variables. The CCA biplot illustrates the relationships between microbial (bacterial and fungal) community composition and environmental factors, 
including CO2 emissions, soil moisture, total nitrogen percentage (Total N), total carbon percentage (Total C), pH, soil temperature, bulk density, porosity per
centage, and conductivity. Red points represent individual microbial taxa, while black circles denote sample sites. The arrows indicate the direction and strength of 
environmental gradients influencing microbial distribution. Bare soil (B), winter wheat (W), and sugar beet (S) samples are labelled according to crop type and depth 
(20 cm). CO2 emissions are strongly associated with soil moisture, Total N and Total C, while other variables contribute to microbial community structure across 
different land uses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Temporal and spatial variation in relative soil gas diffusivity Dp/Do by depth under different treatments: (a) Bare soil, (b) Wheat, and (c) Sugar beet. Each line 
represents a different sampling date across the growing season from June to October 2024, at three depths (5 cm, 10 cm, and 20 cm). Dp/Do was calculated using the 
Millington–Quirk model based on measured air-filled porosity.
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3.10. Predictive modelling identifies potential biomarkers of soil microbial 
communities linked to CO2 emissions

To evaluate whether soil bacterial and fungal community charac
teristics can serve as biomarkers for CO2 flux from arable peat soils, an 
XGBoost regression model was developed using bacterial and fungal 
operational taxonomic unit (OTU) relative abundances alongside soil 
physicochemical properties (pH, soil moisture, soil temperature) 
(Fig. 6). OTU counts were normalised to relative abundance prior to 
modelling, accounting for differences in sequencing depth across sam
ples. To mitigate overfitting given the limited training dataset, LOOCV 
was employed to assess the model's predictive accuracy across different 
classification levels.

The model demonstrated a strong predictive performance (R2 =

0.82), with predicted CO2 concentration values aligning well with actual 
measurements along the 1:1 reference line (Fig. 6a). However, the 
model exhibited a high Root Mean Square Error (RMSE = 37.39), with 
greater variability observed in predictions at higher CO2 concentrations. 
This pattern suggests potential non-linearity in the data or the influence 
of unaccounted environmental factors on soil respiration dynamics 
(Fig. 6a).

The feature importance analysis revealed specific microbial taxa 
particularly OTU_6_F (Syncephalis_sp, OTU_15_F (Hypocreales_sp), 
OTU_901 (Vicinamibacterales), OUT_116_F (Microascales_sp), and 
OTU_5115 (KD3-10) along with land use treatment (Bare soil) and soil 
temperature, as the strongest predictors of soil CO2 concentration 
(Fig. 6b). This underscores the critical role of microbial community 
composition and soil physical properties such as temperature and land 
use in driving CO2 emissions, with bacterial and fungal OTUs exhibiting 
varying degrees of influence. These findings highlight the potential of 
microbial indicators in understanding and predicting soil carbon flux 
dynamics.

4. Discussion

This study reveals how soil structure and microbial communities 
jointly influence CO2 flux in cultivated peatlands. By integrating XCT- 
derived pore metrics, microbial profiling, and in situ gas measure
ments, we demonstrate that specific pore characteristics and microbial 

taxa are key predictors of CO2 flux. These findings provide a novel, 
mechanistic framework for improving greenhouse gas models in agri
cultural peat soils.

Soil CO2 concentrations measured across treatments were consis
tently low, typically ranging between 420 and 700 μmol mol− 1. These 
values are notably lower than concentrations commonly reported in 
organic-rich or poorly drained systems, where CO2 levels can exceed 
2000–5000 μmol mol− 1 (Blodau and Moore, 2003). Several interacting 
factors likely contributed to this observation. First, soil structure ana
lyses revealed high total porosity and well-connected pore domains 
across treatments, especially in the bare soil and sugar beet plots. These 
structural conditions facilitate rapid gas exchange, which can prevent in 
situ accumulation of CO2 despite active microbial and root respiration. 
Second, measurements were made during daytime hours, when soil 
respiration is ongoing but CO2 is rapidly effluxing to the atmosphere. 
Midday sampling may therefore underestimate transient CO2 build-up 
that occurs overnight or under low-diffusion conditions. Bare soil 
plots, in particular, lacked recent root inputs and showed microbial 
communities dominated by oligotrophic taxa with potentially lower 
metabolic rates. Finally, sensor placement and small-scale heterogeneity 
could also have affected detection, especially in peat soils where gas 
production and diffusion can vary across millimetre scales. Taken 
together, these results suggest that the low measured concentrations 
reflect high gas diffusivity, rapid turnover, and spatial heterogeneity, 
rather than an absence of microbial activity. This reinforces the 
importance of interpreting soil gas measurements within the context of 
physical structure and ecological dynamics, particularly in porous, high- 
carbon systems like drained peat soils.

Although no statistically significant differences were found in con
nectivity (Conn.D) among treatments, subtle variations in pore structure 
may still lead to meaningful functional differences in gas diffusivity and 
microbial habitat characteristics. Statistical tests based solely on mean 
comparisons can sometimes mask ecologically relevant nuances, 
particularly in inherently heterogeneous soil environments where small 
structural differences can yield disproportionately large effects on mi
crobial activity and greenhouse gas fluxes. Future research employing 
higher replication or advanced non-linear analytical approaches may 
provide deeper insights into these subtle but functionally critical 
differences.

Fig. 6. Model evaluation (a) Predicted vs. actual CO2 emissions using an XGBoost model with leave-one-out cross-validation (LOOCV). The red dashed line rep
resents the ideal 1:1 relationship. (b) Top 20 most important features contributing to CO2 emission predictions based on the XGBoost model. The most influential 
features include OTU_6_F, OTU_15_F, OTU_901, OTU_116_F, crop type, OTU_239_F and soil temperature indicating the strong impact of bacterial and fungal com
munities on CO2 emissions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.1. Depth-dependent diversity patterns

The alpha diversity analyses (Fig. 3) provided critical insights into 
the vertical stratification of microbial communities. For bacteria, the 
higher richness and evenness observed at mid-depths (10 cm) across 
multiple land use treatments suggests optimal conditions for bacterial 
diversity at this soil horizon. This pattern could be explained by a bal
ance of resources—sufficient oxygen availability compared to deeper 
soils, coupled with more stable moisture and temperature conditions 
than surface layers (Eilers et al., 2012; Fierer et al., 2003).

In contrast, fungal diversity tended to increase with depth. This in
verse pattern between bacterial and fungal diversity with depth high
lights the different ecological strategies and environmental preferences 
of these microbial groups (Bahram et al., 2015; Li et al., 2019). Fungi, 
with their filamentous growth form, may be better adapted to exploit 
deeper soil horizons where oxygen levels are reduced but where more 
recalcitrant carbon sources persist (Baldrian et al., 2012; Crowther et al., 
2014).

These depth-dependent diversity patterns suggest that land man
agement practices altering soil physical structure, such as tillage in
tensity and depth, could differentially impact bacterial versus fungal 
communities across the soil profile. Consequently, agricultural man
agement decisions should consider these vertical microbial distribution 
patterns to optimize beneficial soil ecological functions while mini
mizing disruption to key microbial groups that contribute to soil health 
and carbon sequestration.

4.2. Environmental drivers of microbial community structure

The CCA (Fig. 4) revealed that soil moisture, total nitrogen per
centage and total carbon percentage emerged as the predominant factors 
shaping both bacterial and fungal communities, particularly in the sugar 
beet field. This finding underscores the fundamental importance of 
water availability, nitrogen and carbon content in regulating microbial 
metabolism and community assembly in peatland soils (Fenner and 
Freeman, 2011; Zhalnina et al., 2015). Mechanistically, soil moisture 
regulates microbial dynamics by influencing substrate solubility, 
enzyme diffusion, and oxygen availability. High moisture creates more 
anaerobic microsites, favouring anaerobic or facultative anaerobes, 
while well-drained conditions enhance aerobic respiration and the 
proliferation of fast-growing taxa (Manzoni et al., 2012; Zhang et al., 
2013).

The stronger response of fungal communities to soil physical prop
erties (bulk density, porosity) compared to bacteria highlights their 
greater sensitivity to soil structural architecture. This can be attributed 
to the hyphal growth strategy of fungi, which relies on interconnected 
pore networks for foraging and colonization (Harris, 2003; Rillig and 
Mummey, 2006). Reduced pore connectivity likely impedes fungal hy
phal extension and nutrient acquisition, while more connected and 
aerated soils facilitate fungal proliferation. This mechanism explains 
why management practices altering pore size distribution and connec
tivity may disproportionately affect fungal community dynamics 
(Lehmann et al., 2017; Six et al., 2006).

Difference in microbial community structure across land-use treat
ment further reflects underlying soil structural heterogeneity. CCA 
indicated that moisture, temperature, and pH were primary environ
mental gradients shaping microbial composition, this is consistent with 
studies in drained peat and organic soils (Andersen et al., 2013; 
Urbanová and Bárta, 2014). In the bare soil plots, where pore connec
tivity and diffusivity were highest, distinct microbial assemblages 
adapted to aerobic conditions were observed. Such conditions promote 
faster decomposition rates and elevated CO2 flux by supporting aerobic 
heterotrophs capable of rapid substrate turnover (Smith et al., 2005). 
Conversely, in the sugar beet plots with lower connectivity and diffu
sivity, restricted oxygen exchange likely limited aerobic decomposition, 
favouring microaerophilic or facultative anaerobic microbes and 

resulting in intermediate CO2 flux (Du et al., 2023). In wheat plots, the 
combination of moderate structural properties and active root systems 
may have suppressed microbial respiration through rhizosphere 
competition for oxygen and labile carbon substrates, explaining the 
lower CO2 flux observed (Lecomte et al., 2018). Overall, these findings 
suggest that environmental factors such as moisture, nutrient avail
ability, and pore structure interact to regulate microbial metabolism 
through mechanisms that control substrate accessibility, redox gradi
ents, and spatial colonization pathways (Lacroix et al., 2021). This 
mechanistic understanding strengthens the link between soil physical 
conditions, microbial community structure, and greenhouse gas fluxes 
in managed peatland systems.

4.3. Microbial respiration, CO2 diffusivity, and soil moisture

Microbial respiration is tightly regulated by soil gas diffusivity 
because oxygen availability and CO2 removal are essential for sustaining 
microbial metabolism (Jin and Jury, 1996; Moldrup et al., 2000). 
Reduced gas diffusivity limits oxygen supply, creating hypoxic or 
anaerobic conditions that suppress aerobic respiration and shift micro
bial processes toward anaerobic pathways such as denitrification and 
methanogenesis (Butterbach-Bahl et al., 2013; Kuzyakov and Blago
datskaya, 2015), consistent with microscale oxygen limitation theory 
(Or et al., 2007; Sexstone et al., 1985; Tecon and Or, 2017). Recent 
research has demonstrated that anaerobic microsites develop even in 
ostensibly well-aerated upland soils, representing an unrecognised 
mechanism for carbon storage and greenhouse gas production 
(Keiluweit et al., 2017). As soil water content increases, oxygen diffusion 
decreases and anaerobic soil volumes gradually expand into areas with 
lower oxygen consumption rates, creating a delicate balance between 
oxygen consumption and replenishment (Schlüter et al., 2025). Tem
poral and depth-dependent variations in diffusivity observed in this 
study (Fig. 5a, b, c) directly influenced microbial dynamics, particularly 
in plant-associated treatments where root activity alters soil structure 
and gas transport pathways. During wetter periods, such as October, 
near-zero diffusivity values indicate oxygen limitations that likely slow 
aerobic microbial activity while promoting the development of anaer
obic microsites. Water infiltration into pores reduces the volume and 
connectivity of air-filled pores, blocking pathways for atmospheric ox
ygen supply by diffusion (Du et al., 2023). Such microsites have been 
shown in other studies to enhance anaerobic respiration processes, 
contributing to increased emissions of reduced gases like N2O and CH4 
in saturated soils (Linn and Doran, 1984; Tecon and Or, 2017). This 
occurs because increasing soil moisture reduces gaseous diffusion rates, 
directly affecting microbial physiological status by limiting the supply of 
electron acceptors like oxygen (Banerjee et al., 2016). In contrast, drier 
conditions in August and September improved gas diffusivity, enhancing 
oxygen penetration and enabling aerobic heterotrophs to dominate 
decomposition, consistent with findings from well-aerated peat and 
mineral soils (Hall et al., 2013; Werner et al., 2007).

The inverse moisture–diffusivity relationship we observed (R2 =

0.93, p < 0.0001) accords with established transport theory (Jin and 
Jury, 1996; Moldrup et al., 2000) and the “bottleneck effect” of con
strained pore connectivity (Cook et al., 2013). Although treatments did 
not differ significantly in this relationship (F2,45 = 0.32, p > 0.05), crop- 
and management-driven moisture regimes likely imposed heteroge
neous redox and diffusional environments that modulate microbial 
processes and GHG fluxes (Ball, 2013), as reported for peat systems 
where oxygen penetration and water-table position govern redox cas
cades and CO2/CH4 production (Estop-Aragonés et al., 2016; Jaatinen 
et al., 2008). This spatial and temporal heterogeneity explains why 
denitrification activity is often concentrated in anoxic microsites and 
ephemeral events, presenting ongoing challenges for ecosystem-scale 
modelling (Schlüter et al., 2025).

The XGBoost regression model's success (R2 = 0.82) in predicting 
CO2 flux using microbial OTUs and soil physicochemical properties 
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represents a significant advancement in our understanding of the bio
logical drivers of carbon flux. The identification of specific bacterial and 
fungal taxa (OUT-15_F, OTU_901, OTU_6_F, OTU_116_F, OUT_5115) as 
important predictors suggests potential microbial biomarkers for carbon 
cycling processes, is consistent with approaches proposed by Trivedi 
et al. (2016) and Nazaries et al. (2013). These findings indicate that 
microbial community composition, in combination with soil physico
chemical properties, holds promise as a predictive biomarker for CO2 
flux in arable peat soils. Future research should focus on characterising 
these organisms' metabolic capabilities and ecological roles to better 
understand their contribution to CO2 production (Morales and Holben, 
2011; Žifčáková et al., 2016).

4.4. Integrating microbial patterns with soil structure and implications for 
carbon loss in cultivated peat soils

Given the critical influence of soil moisture on gas transport and 
microbial activity, effective water management is essential for miti
gating greenhouse gas emissions from peatland soils (Evans et al., 2017; 
Regina et al., 2015). Although the moisture–diffusivity relationship was 
consistent across treatments, crop type and land management strongly 
influenced soil moisture dynamics, driving variability in microbial 
processes and carbon fluxes. Notably, higher CO2 flux from bare soils, 
particularly early in the growing season, highlight the risks of leaving 
peat soils unvegetated and reinforce the importance of continuous 
vegetation cover for reducing carbon losses (Evans et al., 2017; Tie
meyer et al., 2016). In vegetated fields, root exudates from wheat and 
sugar beet likely enhanced microbial metabolism, promoting deeper 
decomposition (Fig. 5a, c).

Water table regulation remains central to controlling soil aeration 
and microbial activity (Regina et al., 2015; Renger et al., 2002). Our 
results show that even small shifts in soil moisture can trigger threshold 
responses in microbial respiration (Manzoni et al., 2012), underscoring 
the need for hydrological strategies tailored to crop types and seasonal 
conditions (Knox et al., 2015).

A key finding of this study is the tight coupling between soil struc
ture, microbial community composition, and CO2 dynamics. Microbial 
communities do not operate in isolation but are shaped by the soil's 
physical architecture, particularly porosity, connectivity, and bulk 
density, which regulate oxygen and carbon availability. Bare soil plots, 
with higher pore connectivity and diffusivity, supported microbial as
semblages adapted to well-aerated conditions and showed elevated CO2 
efflux. In contrast, the more constrained pore structure of sugar beet 
plots limited diffusivity and CO2 release but fostered distinct fungal 
communities, likely adapted to fluctuating redox conditions. Fungal 
communities were especially sensitive to bulk density and porosity, 
reflecting their hyphal capacity to explore air-filled pores, while bacte
rial communities showed subtler shifts aligned with structural changes. 
These patterns are consistent with previous studies linking microscale 
heterogeneity in oxygen and water dynamics to microbial assembly and 
function in peat soils (Fenner and Freeman, 2011; Urbanová and Bárta, 
2014).

Understanding these soil–microbe–structure interactions is critical 
for improving greenhouse gas models. Carbon loss from peat is driven 
not only by temperature or microbial biomass but by the accessibility of 
oxygen and carbon substrates, processes governed by soil physical 
structure. By integrating XCT-derived structural data, microbial profiles, 
and in situ gas measurements, this study provides a framework for 
linking microscale habitat properties with ecosystem-scale carbon dy
namics. Future research should build on this integrative approach to 
develop predictive models that incorporate physical constraints on mi
crobial function for more accurate greenhouse gas accounting in 
managed peatlands.

5. Conclusion

This study demonstrates that soil structure, microbial community 
composition, and gas dynamics interact to control carbon cycling in 
cultivated peatlands. By combining XCT-derived pore metrics, in situ 
CO2 measurements, and microbial community profiling, we identified 
seasonal gas diffusivity variation (Dp/D0 ranging from 0.08 to 0.10 in 
dry periods to <0.01 during wet conditions) as the primary control on 
microbial function and CO2 flux, with soil moisture explaining 93 % of 
this variation.

Bare soil plots exhibited ~30 % higher CO2 concentrations and ~20 
% lower fungal diversity compared to cropped soils, underscoring the 
importance of maintaining vegetation cover to moderate carbon loss. 
Conversely, wheat and sugar beet treatments supported more diverse 
microbial communities, particularly fungi such as Mortierella, but had 
lower CO2 concentrations, likely reflecting the effects of restricted ox
ygen availability and plant–microbe interactions on microbial respira
tion. Fungal communities, dominated by Sordariomycetes, exhibited 
stronger sensitivity to land-use changes than bacterial communities, 
with sugar beet plots supporting the highest fungal diversity. Notably, 
microbial assemblages at 5 cm depth in sugar beet soils were distinct 
from other treatments, underscoring the strong influence of crop type on 
microbial community structure. Importantly, CO2 concentrations 
remained relatively low across treatments despite the high carbon 
content of these soils, highlighting the critical role of air-filled porosity 
and gas diffusivity in regulating soil–atmosphere exchange. These 
findings indicate that microbial activity and carbon loss in drained peat 
are constrained not solely by microbial abundance or temperature but 
by the physical accessibility of oxygen and carbon substrates within the 
soil matrix.

Among the measured soil physical parameters, relative gas diffu
sivity (Dp/D0), pore connectivity (Conn.D), porosity (φ), and bulk 
density emerged as key structural metrics regulating both microbial 
community composition and CO2 flux across land-use treatments. To 
identify the biological drivers of CO2 emissions, we employed an 
XGBoost machine learning model that explained 82 % of the variance in 
CO2 using microbial OTU abundances and physicochemical variables. 
This approach identified specific microbial taxa—OTU_6_F (Syncephalis 
sp.), OTU_15_F (Hypocreales sp.), OTU_901 (Vicinamibacterales), 
OTU_116_F (Microascales sp.), and OTU_5115 (KD3-10)—alongside 
land-use treatment (bare soil) and soil temperature as the strongest 
predictors of CO2 concentration. Collectively, these findings demon
strate the interconnected influence of soil structure, temperature, and 
microbial composition in driving carbon dynamics within cultivated 
peatlands. This integrated framework offers a promising route toward 
developing biological indicators of carbon cycling processes and pro
vides critical insights for incorporating microbial-structural interactions 
into greenhouse gas models and sustainable peatland management 
strategies.

While this study provides mechanistic insights into soil–microbe–gas 
interactions, we acknowledge the lack of true field-scale replication and 
the focus on CO2 alone without accounting for CH4 and N2O emissions as 
limitations. Future work incorporating multi-gas flux measurements and 
replicated designs will strengthen the predictive framework for green
house gas modelling in agricultural peatlands. We also recognise that 
extraction and PCR negative controls were not included during 
sequencing; however, all library preparation and sequencing were 
conducted under standard quality control procedures. Future studies 
will incorporate negative controls and cross-validation measures to 
further enhance data reliability. Overall, our findings highlight the value 
of integrating soil structural and microbial data to inform sustainable 
land management strategies aimed at reducing carbon losses and 
improving the resilience of cultivated peat systems.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.apsoil.2025.106558.
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