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Understanding interactions between soil structure, microbial communities, and greenhouse gas dynamics is
critical for predicting carbon losses from drained agricultural peatlands. This study tested the hypothesis that
land use alters soil structure and microbial communities, thereby shaping CO, flux, using high-resolution XCT,
microbial profiling, and gas and soil measurements across winter wheat, sugar beet, and bare soil treatments on a
productive UK farm on peatland. Bare soil exhibited the highest pore connectivity and gas diffusivity (Dp/Do:
0.08-0.10 in dry conditions), declining to near-zero during wet periods in October. Fungal alpha-diversity
(Shannon index: 2.8-3.2) was significantly higher in cropped soils compared to bare soil (2.0-2.5), with sugar
beet supporting the most diverse fungal communities. Sordariomycetes dominated fungal assemblages (50-75 %
relative abundance), while Actinobacteria and Vicinamibacteria consistently comprised 20-30 % of bacterial
communities. Soil moisture strongly regulated diffusivity (R> = 0.93, p < 0.001), driving seasonal shifts in gas
transport and microbial dynamics. Fungal communities showed stronger treatment differentiation (R?> =
0.24-0.49) than bacterial communities, with distinct assemblages observed in sugar beet at 20 cm depth (R2 =
0.489, p = 0.011). An XGBoost machine learning model explained 82 % of the variance in CO, concentrations,
identifying key fungal (OTU_15_F, OTU_6_F) and bacterial (OTU_901, OTU_5115) taxa as top predictors. These
results highlight that crop selection can alter microbial diversity by up to 60 % and drive tenfold changes in soil
gas diffusivity, underscoring the importance of integrating soil structural and microbial metrics into greenhouse
gas models. Such insights can guide sustainable peatland management strategies that balance productivity with
carbon conservation.

1. Introduction transforming these carbon sinks into significant sources of CO, (Lang

et al., 2024; Page and Baird, 2016). This shift highlights the urgent need

Global efforts to mitigate climate change increasingly recognise the
importance of understanding carbon dynamics in agricultural systems
(Allan et al., 2023; Kamyab et al., 2024). Peatlands are exceptional
carbon reservoirs, storing nearly one-third of the world's soil carbon
despite covering only 3 % of the land surface (Harenda et al., 2018;
Joosten et al., 2012; Nath et al., 2024). However, the conversion of
peatlands to arable land has drastically altered their ecological function,

to identify strategies for managing peatland agriculture in a way that
minimises its contribution to greenhouse gas emissions while main-
taining productivity (Lloyd et al., 2023).

Traditionally, studies on CO; flux from arable peatland soils have
focused on environmental factors, such as soil moisture, temperature,
and pH, or management practices like fertilization and tillage (Dutta and
Dutta, 2016). Crop type also influences emissions, as root exudates,
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residue quality, and nutrient demands vary between crops, affecting soil
carbon dynamics (Gui et al., 2023; Ma et al., 2022; Yang et al., 2020).
However, an often-overlooked factor is the soil microbiome, the diverse
community of microorganisms driving organic matter decomposition,
nutrient cycling, and greenhouse gas fluxes (Jansson and Hofmockel,
2020). These microbial processes underpin carbon release or seques-
tration, yet their specific roles in agricultural peatlands remain poorly
understood (Jansson and Hofmockel, 2020; Levine et al., 2011). Mi-
crobes in the soil are the primary producers of greenhouse gases (GHG)
such as COjy, nitrous oxide (N2O), and methane (CH4) (Singh et al.,
2010). These gases are released as by-products of various microbial
metabolic processes, including respiration, denitrification, nitrification,
and methanogenesis (Kolb and Horn, 2012; Li et al., 2024). Microbial
activity is influenced by factors such as the availability and quality of
organic matter, nutrient levels, moisture and temperature (Cruz-Paredes
etal., 2021; Jansson and Hofmockel, 2020). These elements are essential
for microbial function, as they provide the necessary energy for micro-
bial metabolism and growth (Jansson and Hofmockel, 2020; Neira et al.,
2015). They are additionally influenced by soil physical properties such
as soil porosity, moisture content, texture, and compaction as those
determine the movement of nutrients, energy, and oxygen through the
soil (Neira et al., 2015).

Recent advances in high-throughput sequencing and bioinformatics
have revealed that soil microbial communities are sensitive to envi-
ronmental change and responsive to crop type, with different crops
selecting distinct microbial consortia through root exudates and rhizo-
sphere interactions, potentially altering CO» production (Andersen
etal., 2013; Bahram et al., 2018). For example, different crops can select
for distinct microbial consortia through root exudates and rhizosphere
interactions, potentially altering the soil's capacity to generate COy (Gui
et al., 2023). However, how these microbial shifts interact with soil
physical structure to regulate gas transport and emissions in agricultural
peatlands remains poorly understood (Philippot et al., 2024; Tiemeyer
et al., 2016). Most studies examine either microbial composition (e.g.,
(Levine et al., 2011; Li et al., 2024; Yang et al., 2024) or soil structure (e.
g., (Buragiene et al., 2019) in isolation, overlooking their combined
influence, a critical gap given that structural changes in drained peat can
directly affect aeration, moisture distribution, and microbial meta-
bolism (Lang et al., 2024). This study addresses this gap by jointly
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analysing soil microstructure and microbial communities across con-
trasting crop types on cultivated peat providing an integrated view of
their role in driving CO, emissions. We combine field measurements of
CO, concentrations, soil physicochemical properties, and microbial
community composition with 3D X-ray computed tomography (XCT) to
quantify pore network structure. Using statistical and machine learning
models (XGBoost), we test the extent to which microbial composition
can predict CO, dynamics. Crucially, we also explore the mechanistic
links between microbial communities and soil physical structure,
focusing on air-filled porosity, gas diffusivity, and connected pore
domain volume. By assessing both predictive performance and bio-
physical constraints on respiration, we aim to identify how soil structure
moderates' microbial activity and contributes to emergent COy flux
patterns.

Additionally, we explore the potential of microbial biomarkers spe-
cific operational taxonomic units (OTUs) correlated with CO5 flux to
improve the predictive power of greenhouse gas models and better
represent microbial contributions to peatland carbon cycling. Given the
mounting pressures on peatlands from agriculture and climate change,
our study aims to provide a novel perspective on the interplay between
crops, microbes, and CO; flux in one of the planet's most critical eco-
systems. We hypothesised that (i) crop type alters soil structure and
microbial community composition, (ii) these changes influence CO5 flux
through their effects on gas transport and microbial activity, and (iii)
integrating structural and microbial predictors into greenhouse gas
models increases their predictive accuracy (Fig. 1).

2. Materials and methods
2.1. Study area and soil sampling

This study was conducted from June to October 2024 on a working
arable farm on peatland in the Fenlands of eastern England. The region
has a mean temperature of 10 °C and receives 600-800 mm of precipi-
tation annually. The soils are high in organic matter and are considered
very fertile. Three fields representing different land-use treatments were
selected: (i) sugar beet (Beta vulgaris) - 13.71 ha (52°3027.3'N
0°24'17.5"E); (ii) bare field (left uncultivated for one year) - 9.62 ha
(52°50'41.5"N 0°40'03.10"E) opposite the sugar beet field, and (iii)
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Fig. 1. Conceptual framework linking crop type, soil structural connectivity (Conn.D), microbial community composition, and CO, emission dynamics in productive
UK peat soils. This study explores functional relationships among these components using integrated structural, microbial, and gas datasets from a working

farm system.
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winter wheat field (Triticum aestivum) - 6.6 ha (52°51'47.9'N
0°38'96.8"E) located about 150 m from the sugar beet field measured.

Sampling points were selected to capture both the spatial heteroge-
neity of the fields and the effects of land use on soil properties and COy
emissions. The Big W sampling design (Munroe, 2018) was employed
because it provides cost-effective yet statistically robust coverage for on-
farm trials. Within each field, the W transect was laid across a 250 m grid
to ensure representation of field-scale variability. Sampling locations
were positioned at each turning point of the W (two ends, centre, and
two intermediate points), covering different topographic positions and
management zones. At each location, composite soil samples were ob-
tained by pooling 3-5 subsamples within a 0.1-1 m radius to reduce
microsite variability and improve representativeness. This design
ensured that selected points reflected both within-field variability and
treatment-specific conditions, providing a scientifically rigorous basis
for comparing the influence of different crops on peat soil structure,
microbial communities, and CO, emissions.

Sampling was carried out during the peak growing season to capture
active microbial and soil processes. The winter wheat field received 220
kg/ha/year of ammonium nitrate, while the sugar beet fields were
fertilized with 200 kg/ha/year of ammonium nitrate.

2.2. COy emission measurements

CO flux were measured using a portable LI-COR Biosciences LI-
8100 A single-chamber soil flux system (LI-COR Biosciences, Lincoln,
Nebraska) equipped with a closed-chamber design allowing air circu-
lation within the sealed chamber, which has a diameter of 20 cm
(Madsen, Xu et al. 2009). Measurements were conducted at soil depths
of 5 cm, 10 cm, and 20 cm at five systematically distributed locations
within each field plot, encompassing all crop types. Data collection was
repeated every two weeks from June to September. COy flux was
calculated based on the rate of concentration change within the
chamber.

2.3. Soil physicochemical properties

Soil moisture was determined using ML3 ThetaProbe soil moisture
sensor (ThetaKit, Delta-T, Great Britain). Soil temperature at the time of
sampling was recorded using an in-field thermometer probe HI
98509-01 (Hanna Instruments Pty Ltd). Both soil moisture and tem-
perature measurements were taken at depth; 5 cm, 10 cm and 20 c¢cm at
locations adjacent to the CO, measurement positions within each field.
Soil pH was measured in a 1:2.5 soil-to-water suspension using a cali-
brated pH meter.

2.4. DNA extraction and sequencing

At each site, soil cores were taken from depths of 5 cm, 10 cm and 20
cm using a standardized auger at locations adjacent to the CO2 mea-
surement positions. Samples were collected in five replicates for each
depth and land-use treatment from the five sampling positions indicated
above, providing spatial replication across the field. To minimise cross-
contamination, tools were sterilised between samples with 70 %
ethanol. Soil samples were placed in sterile containers, transported on
ice, and stored at —20 °C prior to analysis. Total DNA was extracted from
0.25 g of soil using the DNeasy PowerSoil Kit (Qiagen) following the
manufacturer's protocol. For bacteria the V3-V4 hypervariable region of
the 16S ribosomal RNA (rRNA) gene was amplified using primers
[CCTAYGGGRBGCASCAG,GGACTACNNGGGTATCTAAT] and for
fungal the internal transcribed spacer for the endophytic region (ITS1-
1F) [CTTGGTCATTTAGAGGAAGTAA,GCTGCGTTCTTCATCGATGC]
was amplified. DNA quality was assessed with a NanoDrop™ 1000
spectrophotometer (Thermo Scientific™), and only samples with 260/
280 ratios ~1.8 and 260/230 ratios 2.0-2.2 were retained. Target re-
gions were PCR-amplified using barcoded primers, and amplicons of the
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expected size were verified by agarose gel electrophoresis. Equimolar
products were pooled, end-repaired, A-tailed, and ligated with Illumina
adapters. Library quality was checked by Qubit, qQPCR, and an Agilent
Bioanalyzer. No extraction blanks or PCR negative controls were sub-
mitted, but all library preparation and sequencing followed Novogene's
standard quality control protocols. Sequencing was performed on an
[llumina NovaSeq 600 PE250 platform.

To analyse the microbial community composition in each sample,
raw sequences were quality-filtered, clustered into operational taxo-
nomic units (OTUs) at 97 % similarity, and taxonomically assigned using
the Silva 138.1 annotation database for 16S rRNA data and Unite v9.0
annotation database for ITS data. Microbial diversity indices, including
Shannon and Simpson indices, were calculated using QIIME2.

2.5. Elemental and isotopic analysis

Samples were placed in a freezer overnight and then freeze dried for
24 h using a Mini Lyotrap freeze dryer. 1 mg samples were weighed
using a Sartorius CP2P microbalance and encapsulated within tin cups.
The samples were then analysed for total carbon (TC), total nitrogen
(TN) and the isotopes of both carbon (613C (%o)) and nitrogen (615N (%0))
in the Stable Isotope Laboratory at the University of Leicester using a
Sercon ANCA GSL elemental analyser interfaced to a Sercon Hydra 20-
20 continuous flow isotope ratio mass spectrometer. Carbon isotope
results are expressed relative to VPDB (Vienna Pee Dee Belemnite). Ni-
trogen isotope results were expressed relative to atmospheric nitrogen.

2.6. X-ray computed tomography and image analysis

Soil core and aggregate samples were scanned using a v|tome|x M
240 kV X-ray CT scanner (Baker and Hughes Digital Solutions GmbH,
Germany) at Rothamsted Research, Harpenden. The soil core sample
was scanned using micro-focal X-ray tube and soil aggregates samples
were scanned with nano-focal tube. The samples placed in a sample
holder and the holder was fixed on the specimen stage of the scanner. All
soil core samples were scanned with a 0.5-mm copper filter on the
micro-focal X-ray tube, at a potential energy of 120 kV, current of 150
pA with a spatial resolution of 37 pm. During the scan, the specimen
stage rotated through 360° at a rotation step increment of 0.16° col-
lecting a total of 2200 projection images. Exposure time of each pro-
jection image was 83 ms with image averaging of 3, and a skip of 1, and
each core scanned for 1 h 40 min as a multiscan mode. After scanning,
soil cores were air-dried at room temperature for one week. Six aggre-
gates (2-3 mm) were randomly selected from each core and scanned
using a nano-focus X-ray tube (60 kV, 240 pA, 2.5 pm voxel size). Each
scan captured 1700 projections over 45 min, with images reconstructed
in phoenix datos|x software (Baker and Hughes Digital Solutions GmbH,
Germany). Beam hardening correction (level 4) and motion corrections
were applied, and multi-scan routines were merged to generate
continuous 3D volume data.

Image stacks were processed in ImageJ, and segmentation was per-
formed using the Huang thresholding method, which separates pore
space from the solid phase based on grayscale intensity. Soil pore
network architecture was analysed using 3D X-ray computed tomogra-
phy (XCT) at a voxel resolution of 40 pm. After image segmentation and
binarization, connectivity was assessed using the Euler characteristic ()
and a derived metric called Conn.D, defined as the volume of the largest
connected pore domain (in mm®). This was calculated by identifying the
largest 26-connected cluster of pore voxels and summing their volume.
Conn.D reflects the effective percolating volume through which gas or
water can move and serves as a proxy for soil physical continuity. This
metric is particularly valuable in highly porous peat soils, where total
porosity alone may not distinguish functionally disconnected structures.



G.K. Oppong et al.
2.7. Soil gas diffusivity estimation

Soil gas diffusivity (Dp) was estimated to assess gaseous exchange
potential in relation to soil moisture and air-filled porosity across
different crop treatments and sampling dates. Relative gas diffusivity
(Dp/Dy), the ratio of soil gas diffusivity to that in free air, was calculated
using the Millington—-Quirk model:

Dp B (9a> 15 (l)
Dy \¢

where 0, is the air-filled porosity, ¢ is total porosity derived from bulk
density with an assumed particle density of 1.4 g cm™> (Faoziah et al.,
2019). The exponent 1.5 captures the nonlinear effects of tortuosity and
constriction in gas flow pathways as soils become wetter and air-filled
porosity decreases. Volumetric water content (0) was measured in situ
and used to calculate fa = ¢—@ at three depths (5, 10, and 20 cm) across
five sampling dates from June to October 2024.

2.8. Machine learning model for CO2 emission prediction

To identify key predictors of CO, flux across treatments, we imple-
mented an Extreme Gradient Boosting (XGBoost) regression model using
the xgboost package (version 1.7.8.1) in R (Chen and Guestrin, n.d).
Input variables were selected based on their ecological relevance to
peatland carbon cycling and their statistical contribution to model
performance. Specifically, soil physicochemical properties (pH, tem-
perature, moisture, total nitrogen, and total carbon) and microbial
community composition (OTU relative abundances) were included due
to their known influence on COs fluxes. Prior to model training, variance
and correlation filtering (r < 0.75) was applied to reduce dimensionality
and avoid multicollinearity, retaining only variables showing significant
variation across treatments. The model was trained with LOOCV (Leave-
One-Out Cross-Validation) to minimise overfitting, and performance
was evaluated using RZ, and root mean square error (RMSE). Variable
importance was assessed using the gain metric, which reflects each
feature's contribution to predictive power, and further interpreted with
SHAP (SHapley Additive exPlanations) values to determine both the
strength and direction of predictor influence. This approach enabled
ranking of influential microbial taxa and soil structural parameters,
identifying potential microbial biomarkers of carbon cycling in peat
systems. Importantly, XGBoost's ability to capture complex, non-linear
interactions provided mechanistic insights beyond those accessible to
linear or univariate models, offering a robust framework for modelling
greenhouse gas emissions from agricultural peatlands (Grinsztajn et al.,
2022).

2.9. Data availability

Data from this experiment is shared in the supplementary material.
All metagenomic sequence data generated in this study have been
deposited in the NCBI Sequence Read Archive (SRA) as raw FASTQ files
under BioProject accession number PRJNA1345951 for 16S rRNA
amplicon data (BioSample accessions SAMN52822337-SAMN528
22396) and BioProject accession number PRJNA1346049 for ITS
amplicon data (BioSample accessions SAMN52823209-SAMNS528
23268).

3. Results
3.1. Bacteria community composition

Bacterial communities were dominated by a stable core microbiome
across all treatments and soil depths. Actinobacteria and Vicinamibacteria

consistently accounted for 20-30 % of the community, while Alphap-
roteobacteria and Thermoleophilia together represented 15-25 % (Fig. 2a
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& b). Gammaproteobacteria maintained relatively stable abundances
(~5-7 %) across all samples. Acidimicrobiia were more abundant in
wheat fields, particularly at shallow depths, whereas the diverse
“Others” category (~25 %) indicated substantial background diversity.
The overall stability of these dominant taxa suggests a resilient core
bacterial microbiome, with subtle treatment-specific variations likely
reflecting localised environmental adaptations.

3.2. Fungal community composition

Fungal communities were strongly dominated by Sordariomycetes,
which comprised 50-75 % of sequences across all treatments and
depths, with peak abundances observed in sugar beet fields at 10 cm
depth (Fig. 2c & d). Leotiomycetes formed the second most abundant
group, with consistent representation in wheat field samples across all
depths. Eurotiomycetes were more prevalent in bare fields (5 cm) and in
wheat fields, while Leotiomycetes showed a more uniform distribution in
sugar beet than in wheat soils. Despite some field-specific variations, the
overwhelming dominance of Sordariomycetes represents the most
prominent compositional feature of the fungal communities in these
agricultural peatland soils.

3.3. Bacterial and fungal alpha diversity

Here, alpha-diversity reflects the richness and evenness of microbial
species within each treatment, while beta-diversity highlights the dif-
ferences in community composition between crop types and bare soil.
Bacterial diversity across different land use treatment conditions and
soil depths was assessed using the Abundance-based Coverage Estimator
(ACE) and Shannon diversity index (Fig. 3a & b). The ACE index mea-
sures species richness, while the Shannon index accounts for both
richness and evenness within microbial communities. Bacterial alpha
diversity, as assessed by ACE and Shannon indices, did not differ
significantly across soil depths (5, 10, and 20 cm) or among field types
(B, S, and W) (Fig. 3a & b; Tukey's HSD; all p > 0.05). For ACE diversity,
the greatest positive mean difference was observed between the S field
at 20 cm depth and the B field at 5 cm depth (Fig. 3a; p = 0.28), while the
largest negative difference occurred between the S field at 5 cm and S
field at 20 cm (Fig. 3a; p = 0.12). Similarly, Shannon diversity showed
its largest positive difference between the W field at 10 cm and the S
field at 5 cm (Fig. 3b; p = 0.12), and its largest negative difference be-
tween the W field at 5 cm and the W field at 10 cm (Fig. 3b; p = 0.22).
Despite numerical variations across treatments and depths, the wide
confidence intervals and high adjusted p-values indicate that bacterial
alpha diversity remained broadly similar across the peatland soils.

Fungal Alpha diversity, measured by Shannon and ACE indices,
showed no significant differences across soil depths (5, 10, and 20 cm) or
field types (B, S, and W) (Fig. 3c & d; Tukey's HSD; all p > 0.05).
However, pairwise comparisons among certain treatment groups
revealed significant differences (Fig. 3d). For Shannon diversity, the
largest positive difference was observed between the W field at 10 cm
and the S field at 20 cm (Fig. 3d; p = 0.002), indicating significant higher
diversity in wheat soils at this depth. Similarly, the W field at 20 cm and
5 cm showed significantly higher Shannon values compared with S field
at 20 cm (Fig. 3d; p = 0.006 and 0.005, respectively). Though these
differences were not consistent across other pairwise comparisons, the
overall patterns suggest that both land use treatment and depth influ-
ence fungal diversity and richness, potentially reflecting shifts in fungal
community structure in response to environmental condition.

3.4. Bacterial beta diversity

The ADONIS (PERMANOVA) test, based on Bray-Curtis dissimilarity
indices, also revealed significant differences in bacterial community
composition across land use treatments and soil depths (Supplementary
Table 1). The most pronounced differences were observed in the Sugar
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Fig. 2. Taxonomic Composition of Soil Microbial Communities Across Different Land-Use Treatments and Soil Depths (a) Phylogenetic tree of bacterial communities
at the phylum level, showing relative abundances across different land-use treatments and soil depths.

(b) Bar plot depicting the relative abundance of bacterial phyla in different groups.

(c) Phylogenetic tree of fungal communities at the phylum level, displaying relative abundances across different land-use treatments and soil depths.
(d) Bar plot illustrating the relative abundance of fungal taxa at the class level in different groups.
Samples are categorized by land-use type and depth, with different colours representing taxonomic groups.

beet field at 5 cm, which significantly differed from all other land use
treatments and depths (Supplementary Table 1).

In contrast, within-field comparisons revealed vertical homogeneity
in bacterial communities at deeper depths. No significant differences
were observed between Sugar beet field.10 cm and Sugar beet field.20
em (F=1.12,R>= 0.12, p = 0.338) or within bare field and wheat field
samples across depths (all p > 0.1) (Supplementary Table 1).

The strongest dissimilarity was observed between bare field at 20 cm
of depth and wheat field at 20 cm of depth (F = 4.58, R? = 0.36, p =
0.006), suggesting substantial horizontal heterogeneity at this depth
(Supplementary Table 1).

Overall, these findings indicate that bacterial communities exhibit
both horizontal (land use treatment) and vertical (soil depth) struc-
turing, with the most distinct community at sugar beet field at 5 cm of
depth. The results suggest that environmental filtering and stochastic
processes shape microbial communities, with potential implications for
microbiome-mediated soil functions such as CO, emissions.

3.5. Fungal beta diversity

PERMANOVA analysis of Bray-Curtis dissimilarities revealed signif-
icant differences in fungal communities across land use treatments (p <
0.05), with R? values ranging from 0.24 to 0.49, indicating that 24-49 %
of the variation was attributable to land use (Supplementary Table 2).
The strongest dissimilarity was between sugar beet field at 20 cm of
depth and wheat field at 20 cm of depth (R?> = 0.489, p = 0.011)
(Supplementary Table 2).

Within-field depth comparisons showed no significant differences in
fungal community composition (all p > 0.05), suggesting vertical ho-
mogeneity in fungal distribution within each land use type. For example,
sugar beet field samples exhibited high similarity across depths (p >
0.49, R? < 0.1), a trend also observed in bare field, and wheat field
samples (Supplementary Table 2).

Among land use treatments, the wheat field had the most similar
fungal communities (R? = 0.159-0.244, p < 0.05), while bare field and
wheat field showed moderate differentiation (R? = 0.249-0.323, p <
0.01) (Supplementary Table 2). These results align with relative
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abundance patterns, where Sordariomycetes consistently dominated,
while taxa such as Eurotiomycetes, Mortierellomycetes, and Leotiomycetes
varied in representation between land use treatments rather than soil
depths (Fig. 2d).

3.6. Canonical correspondence analysis of microbial communities and
environmental variables

Canonical Correspondence Analysis (CCA) was performed to assess
the influence of environmental variables on microbial community
composition, using both bacterial (16S rRNA) and fungal (ITS)
sequencing data. The analysis focused on three land use treat-
ments—Bare field (B), Winter wheat field (W), and Sugar beet field (S)—
at a soil depth of 20 cm. The CCA biplots (Fig. 4a & b) illustrate the
relationships between microbial community structure and key soil
properties, including soil moisture, pH, soil temperature, bulk density,
porosity percentage, electrical conductivity, and CO, emissions.

Distinct clustering of samples suggested that both bacterial and
fungal communities were structured by land-use treatment and soil
depth, with environmental gradients further shaping their composition
(Fig. 4a & b). For bacterial communities, soil moisture, total nitrogen
percentage (Total N) and total carbon percentage (Total C) exhibited a
strong positive correlation with the microbial composition. These pa-
rameters directly influence bacterial metabolic activity and growth, as
moisture availability determines nutrient diffusion rates and cellular
processes, while C and N availability controls energy and biosynthesis
pathways. Sugar beet samples aligned more closely with these vectors,
suggesting that enhanced nutrient cycling under sugar beet cultivation
creates favourable conditions for diverse bacterial communities
(Fig. 4a). Wheat samples were more dispersed along CCA2, suggesting
root exudate-driven selection of specific bacterial consortia, consistent
with known rhizosphere effects on microbial assembly (Fig. 4a).

CO;, flux were closely linked to the microbial communities in bare
soil plots across both datasets (Fig. 4a & b), reinforcing the observation
that areas with minimal plant cover exhibited distinct microbial com-
positions contributing to higher respiration rates (Xin et al., 2022). Soil

pH also influenced both bacterial and fungal communities, with a
greater effect observed in bacterial composition (Fig. 4a & b). Overall,
these results highlight that both chemical (moisture, Total N, Total C,
pH) and physical (bulk density, porosity) soil parameters jointly struc-
ture microbial communities, with direct implications for CO; flux dy-
namics in agricultural peatlands.

3.7. Comparison between fungal and bacterial community influence on
CO; emissions

Overall, both bacterial and fungal communities exhibited strong
responses to soil moisture, pH, and CO; flux, with fungi showing a
greater sensitivity to soil structure (bulk density, porosity) (Fig. 4a & b).
The results indicate that both microbial groups contribute to soil
respiration, but their interactions with environmental factors differ.
These findings highlight the importance of considering both bacterial
and fungal communities in predictive models of CO; flux from arable
peatlands.

3.8. Seasonal variability in soil gas diffusivity under different crop
treatments

Fig. 5 illustrates temporal variations in relative soil gas diffusivity
(Dn/Dyg) across three agricultural treatments sugar beet, bare soil, and
wheat at soil depths of 5 cm, 10 cm, and 20 cm during the growing
season (June to October 2024). Relative diffusivity increased markedly
from June to August, reflecting seasonal soil drying. The bare soil
consistently exhibited the highest diffusivity values (ranging up to
~0.7), indicative of lower moisture retention and greater air-filled pore
spaces, likely due to the absence of plant cover. In contrast, the sugar
beet treatment maintained the lowest diffusivity (typically <20 cm),
attributed to higher moisture retention facilitated by crop canopy
shading and root-mediated water uptake dynamics. Wheat exhibited
intermediate diffusivity profiles, highlighting the influence of crop type
and growth stage on soil moisture and gas transport properties. These
results emphasize that crop management significantly modulates soil
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Fig. 4. Canonical Correspondence Analysis (CCA) Biplot of (a) Bacteria community composition and environmental variables (b) Fungal community composition and
environmental variables. The CCA biplot illustrates the relationships between microbial (bacterial and fungal) community composition and environmental factors,
including CO, emissions, soil moisture, total nitrogen percentage (Total N), total carbon percentage (Total C), pH, soil temperature, bulk density, porosity per-
centage, and conductivity. Red points represent individual microbial taxa, while black circles denote sample sites. The arrows indicate the direction and strength of
environmental gradients influencing microbial distribution. Bare soil (B), winter wheat (W), and sugar beet (S) samples are labelled according to crop type and depth
(20 cm). CO, emissions are strongly associated with soil moisture, Total N and Total C, while other variables contribute to microbial community structure across
different land uses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

structure and moisture conditions, thereby affecting microbial respira-
tion dynamics and potential soil CO, emissions.

3.9. Relationship between pore connectivity (Conn.D) and cropping
systems

Analysis of pore connectivity (Conn.D), measured using X-ray
computed tomography (XCT), revealed differences among treatments,
reflecting changes in soil pore network characteristics associated with
crop type. The average Conn.D was highest in the bare soil (13.2 mm®),
followed by wheat (12.4 mm3), and lowest in the sugar beet (7.4 mmg).

Greater Conn.D values indicate a more extensive interconnected pore
space, potentially facilitating more efficient gas diffusion and influ-
encing microbial respiration dynamics. However, statistical analyses
indicated no significant treatment effect on Conn.D (P > 0.05), sug-
gesting that observed differences in connectivity were subtle or masked
by soil heterogeneity at the field scale. Despite the lack of significant
differences, the observed trends in connectivity may contribute to
explaining the higher diffusivity and elevated soil COy concentrations
measured under bare soil compared to the cropped treatments.
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3.10. Predictive modelling identifies potential biomarkers of soil microbial
communities linked to CO2 emissions

To evaluate whether soil bacterial and fungal community charac-
teristics can serve as biomarkers for CO; flux from arable peat soils, an
XGBoost regression model was developed using bacterial and fungal
operational taxonomic unit (OTU) relative abundances alongside soil
physicochemical properties (pH, soil moisture, soil temperature)
(Fig. 6). OTU counts were normalised to relative abundance prior to
modelling, accounting for differences in sequencing depth across sam-
ples. To mitigate overfitting given the limited training dataset, LOOCV
was employed to assess the model's predictive accuracy across different
classification levels.

The model demonstrated a strong predictive performance ®R? =
0.82), with predicted CO5 concentration values aligning well with actual
measurements along the 1:1 reference line (Fig. 6a). However, the
model exhibited a high Root Mean Square Error (RMSE = 37.39), with
greater variability observed in predictions at higher CO, concentrations.
This pattern suggests potential non-linearity in the data or the influence
of unaccounted environmental factors on soil respiration dynamics
(Fig. 6a).

The feature importance analysis revealed specific microbial taxa
particularly OTU_6_F (Syncephalis.sp, OTU_15_F (Hypocreales sp),
OTU 901 (Vicinamibacterales), OUT_116_F (Microascales sp), and
OTU_5115 (KD3-10) along with land use treatment (Bare soil) and soil
temperature, as the strongest predictors of soil CO, concentration
(Fig. 6b). This underscores the critical role of microbial community
composition and soil physical properties such as temperature and land
use in driving CO2 emissions, with bacterial and fungal OTUs exhibiting
varying degrees of influence. These findings highlight the potential of
microbial indicators in understanding and predicting soil carbon flux
dynamics.

4. Discussion

This study reveals how soil structure and microbial communities
jointly influence CO; flux in cultivated peatlands. By integrating XCT-
derived pore metrics, microbial profiling, and in situ gas measure-
ments, we demonstrate that specific pore characteristics and microbial
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taxa are key predictors of COy flux. These findings provide a novel,
mechanistic framework for improving greenhouse gas models in agri-
cultural peat soils.

Soil CO5 concentrations measured across treatments were consis-
tently low, typically ranging between 420 and 700 pmol mol~!. These
values are notably lower than concentrations commonly reported in
organic-rich or poorly drained systems, where CO levels can exceed
2000-5000 pmol mol~! (Blodau and Moore, 2003). Several interacting
factors likely contributed to this observation. First, soil structure ana-
lyses revealed high total porosity and well-connected pore domains
across treatments, especially in the bare soil and sugar beet plots. These
structural conditions facilitate rapid gas exchange, which can prevent in
situ accumulation of CO; despite active microbial and root respiration.
Second, measurements were made during daytime hours, when soil
respiration is ongoing but COs is rapidly effluxing to the atmosphere.
Midday sampling may therefore underestimate transient CO4 build-up
that occurs overnight or under low-diffusion conditions. Bare soil
plots, in particular, lacked recent root inputs and showed microbial
communities dominated by oligotrophic taxa with potentially lower
metabolic rates. Finally, sensor placement and small-scale heterogeneity
could also have affected detection, especially in peat soils where gas
production and diffusion can vary across millimetre scales. Taken
together, these results suggest that the low measured concentrations
reflect high gas diffusivity, rapid turnover, and spatial heterogeneity,
rather than an absence of microbial activity. This reinforces the
importance of interpreting soil gas measurements within the context of
physical structure and ecological dynamics, particularly in porous, high-
carbon systems like drained peat soils.

Although no statistically significant differences were found in con-
nectivity (Conn.D) among treatments, subtle variations in pore structure
may still lead to meaningful functional differences in gas diffusivity and
microbial habitat characteristics. Statistical tests based solely on mean
comparisons can sometimes mask ecologically relevant nuances,
particularly in inherently heterogeneous soil environments where small
structural differences can yield disproportionately large effects on mi-
crobial activity and greenhouse gas fluxes. Future research employing
higher replication or advanced non-linear analytical approaches may
provide deeper insights into these subtle but functionally critical
differences.

Top 20 Important Features - XGBoost Model

TU_6_F 1

OTU_15_F 4

OTU_901
OTU_116_F 1

Importance

Fig. 6. Model evaluation (a) Predicted vs. actual CO, emissions using an XGBoost model with leave-one-out cross-validation (LOOCV). The red dashed line rep-
resents the ideal 1:1 relationship. (b) Top 20 most important features contributing to CO, emission predictions based on the XGBoost model. The most influential
features include OTU_6_F, OTU_15_F, OTU_901, OTU_116_F, crop type, OTU_239_F and soil temperature indicating the strong impact of bacterial and fungal com-
munities on CO, emissions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4.1. Depth-dependent diversity patterns

The alpha diversity analyses (Fig. 3) provided critical insights into
the vertical stratification of microbial communities. For bacteria, the
higher richness and evenness observed at mid-depths (10 cm) across
multiple land use treatments suggests optimal conditions for bacterial
diversity at this soil horizon. This pattern could be explained by a bal-
ance of resources—sufficient oxygen availability compared to deeper
soils, coupled with more stable moisture and temperature conditions
than surface layers (Eilers et al., 2012; Fierer et al., 2003).

In contrast, fungal diversity tended to increase with depth. This in-
verse pattern between bacterial and fungal diversity with depth high-
lights the different ecological strategies and environmental preferences
of these microbial groups (Bahram et al., 2015; Li et al., 2019). Fungi,
with their filamentous growth form, may be better adapted to exploit
deeper soil horizons where oxygen levels are reduced but where more
recalcitrant carbon sources persist (Baldrian et al., 2012; Crowther et al.,
2014).

These depth-dependent diversity patterns suggest that land man-
agement practices altering soil physical structure, such as tillage in-
tensity and depth, could differentially impact bacterial versus fungal
communities across the soil profile. Consequently, agricultural man-
agement decisions should consider these vertical microbial distribution
patterns to optimize beneficial soil ecological functions while mini-
mizing disruption to key microbial groups that contribute to soil health
and carbon sequestration.

4.2. Environmental drivers of microbial community structure

The CCA (Fig. 4) revealed that soil moisture, total nitrogen per-
centage and total carbon percentage emerged as the predominant factors
shaping both bacterial and fungal communities, particularly in the sugar
beet field. This finding underscores the fundamental importance of
water availability, nitrogen and carbon content in regulating microbial
metabolism and community assembly in peatland soils (Fenner and
Freeman, 2011; Zhalnina et al., 2015). Mechanistically, soil moisture
regulates microbial dynamics by influencing substrate solubility,
enzyme diffusion, and oxygen availability. High moisture creates more
anaerobic microsites, favouring anaerobic or facultative anaerobes,
while well-drained conditions enhance aerobic respiration and the
proliferation of fast-growing taxa (Manzoni et al., 2012; Zhang et al.,
2013).

The stronger response of fungal communities to soil physical prop-
erties (bulk density, porosity) compared to bacteria highlights their
greater sensitivity to soil structural architecture. This can be attributed
to the hyphal growth strategy of fungi, which relies on interconnected
pore networks for foraging and colonization (Harris, 2003; Rillig and
Mummey, 2006). Reduced pore connectivity likely impedes fungal hy-
phal extension and nutrient acquisition, while more connected and
aerated soils facilitate fungal proliferation. This mechanism explains
why management practices altering pore size distribution and connec-
tivity may disproportionately affect fungal community dynamics
(Lehmann et al., 2017; Six et al., 2006).

Difference in microbial community structure across land-use treat-
ment further reflects underlying soil structural heterogeneity. CCA
indicated that moisture, temperature, and pH were primary environ-
mental gradients shaping microbial composition, this is consistent with
studies in drained peat and organic soils (Andersen et al., 2013;
Urbanova and Barta, 2014). In the bare soil plots, where pore connec-
tivity and diffusivity were highest, distinct microbial assemblages
adapted to aerobic conditions were observed. Such conditions promote
faster decomposition rates and elevated CO; flux by supporting aerobic
heterotrophs capable of rapid substrate turnover (Smith et al., 2005).
Conversely, in the sugar beet plots with lower connectivity and diffu-
sivity, restricted oxygen exchange likely limited aerobic decomposition,
favouring microaerophilic or facultative anaerobic microbes and
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resulting in intermediate CO; flux (Du et al., 2023). In wheat plots, the
combination of moderate structural properties and active root systems
may have suppressed microbial respiration through rhizosphere
competition for oxygen and labile carbon substrates, explaining the
lower CO; flux observed (Lecomte et al., 2018). Overall, these findings
suggest that environmental factors such as moisture, nutrient avail-
ability, and pore structure interact to regulate microbial metabolism
through mechanisms that control substrate accessibility, redox gradi-
ents, and spatial colonization pathways (Lacroix et al., 2021). This
mechanistic understanding strengthens the link between soil physical
conditions, microbial community structure, and greenhouse gas fluxes
in managed peatland systems.

4.3. Microbial respiration, CO; diffusivity, and soil moisture

Microbial respiration is tightly regulated by soil gas diffusivity
because oxygen availability and CO removal are essential for sustaining
microbial metabolism (Jin and Jury, 1996; Moldrup et al., 2000).
Reduced gas diffusivity limits oxygen supply, creating hypoxic or
anaerobic conditions that suppress aerobic respiration and shift micro-
bial processes toward anaerobic pathways such as denitrification and
methanogenesis (Butterbach-Bahl et al., 2013; Kuzyakov and Blago-
datskaya, 2015), consistent with microscale oxygen limitation theory
(Or et al., 2007; Sexstone et al., 1985; Tecon and Or, 2017). Recent
research has demonstrated that anaerobic microsites develop even in
ostensibly well-aerated upland soils, representing an unrecognised
mechanism for carbon storage and greenhouse gas production
(Keiluweit et al., 2017). As soil water content increases, oxygen diffusion
decreases and anaerobic soil volumes gradually expand into areas with
lower oxygen consumption rates, creating a delicate balance between
oxygen consumption and replenishment (Schliiter et al., 2025). Tem-
poral and depth-dependent variations in diffusivity observed in this
study (Fig. 5a, b, c) directly influenced microbial dynamics, particularly
in plant-associated treatments where root activity alters soil structure
and gas transport pathways. During wetter periods, such as October,
near-zero diffusivity values indicate oxygen limitations that likely slow
aerobic microbial activity while promoting the development of anaer-
obic microsites. Water infiltration into pores reduces the volume and
connectivity of air-filled pores, blocking pathways for atmospheric ox-
ygen supply by diffusion (Du et al., 2023). Such microsites have been
shown in other studies to enhance anaerobic respiration processes,
contributing to increased emissions of reduced gases like N2O and CH4
in saturated soils (Linn and Doran, 1984; Tecon and Or, 2017). This
occurs because increasing soil moisture reduces gaseous diffusion rates,
directly affecting microbial physiological status by limiting the supply of
electron acceptors like oxygen (Banerjee et al., 2016). In contrast, drier
conditions in August and September improved gas diffusivity, enhancing
oxygen penetration and enabling aerobic heterotrophs to dominate
decomposition, consistent with findings from well-aerated peat and
mineral soils (Hall et al., 2013; Werner et al., 2007).

The inverse moisture-diffusivity relationship we observed (R2
0.93, p < 0.0001) accords with established transport theory (Jin and
Jury, 1996; Moldrup et al., 2000) and the “bottleneck effect” of con-
strained pore connectivity (Cook et al., 2013). Although treatments did
not differ significantly in this relationship (F2 45 = 0.32, p > 0.05), crop-
and management-driven moisture regimes likely imposed heteroge-
neous redox and diffusional environments that modulate microbial
processes and GHG fluxes (Ball, 2013), as reported for peat systems
where oxygen penetration and water-table position govern redox cas-
cades and COy/CH4 production (Estop-Aragonés et al., 2016; Jaatinen
et al., 2008). This spatial and temporal heterogeneity explains why
denitrification activity is often concentrated in anoxic microsites and
ephemeral events, presenting ongoing challenges for ecosystem-scale
modelling (Schliiter et al., 2025).

The XGBoost regression model's success (R? = 0.82) in predicting
CO flux using microbial OTUs and soil physicochemical properties
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represents a significant advancement in our understanding of the bio-
logical drivers of carbon flux. The identification of specific bacterial and
fungal taxa (OUT-15_F, OTU_901, OTU_6_F, OTU_116_F, OUT_5115) as
important predictors suggests potential microbial biomarkers for carbon
cycling processes, is consistent with approaches proposed by Trivedi
et al. (2016) and Nazaries et al. (2013). These findings indicate that
microbial community composition, in combination with soil physico-
chemical properties, holds promise as a predictive biomarker for CO5
flux in arable peat soils. Future research should focus on characterising
these organisms' metabolic capabilities and ecological roles to better
understand their contribution to CO, production (Morales and Holben,
2011; Zifédkova et al., 2016).

4.4. Integrating microbial patterns with soil structure and implications for
carbon loss in cultivated peat soils

Given the critical influence of soil moisture on gas transport and
microbial activity, effective water management is essential for miti-
gating greenhouse gas emissions from peatland soils (Evans et al., 2017;
Regina et al., 2015). Although the moisture—diffusivity relationship was
consistent across treatments, crop type and land management strongly
influenced soil moisture dynamics, driving variability in microbial
processes and carbon fluxes. Notably, higher CO; flux from bare soils,
particularly early in the growing season, highlight the risks of leaving
peat soils unvegetated and reinforce the importance of continuous
vegetation cover for reducing carbon losses (Evans et al., 2017; Tie-
meyer et al., 2016). In vegetated fields, root exudates from wheat and
sugar beet likely enhanced microbial metabolism, promoting deeper
decomposition (Fig. 5a, c).

Water table regulation remains central to controlling soil aeration
and microbial activity (Regina et al., 2015; Renger et al., 2002). Our
results show that even small shifts in soil moisture can trigger threshold
responses in microbial respiration (Manzoni et al., 2012), underscoring
the need for hydrological strategies tailored to crop types and seasonal
conditions (Knox et al., 2015).

A key finding of this study is the tight coupling between soil struc-
ture, microbial community composition, and CO, dynamics. Microbial
communities do not operate in isolation but are shaped by the soil's
physical architecture, particularly porosity, connectivity, and bulk
density, which regulate oxygen and carbon availability. Bare soil plots,
with higher pore connectivity and diffusivity, supported microbial as-
semblages adapted to well-aerated conditions and showed elevated CO,
efflux. In contrast, the more constrained pore structure of sugar beet
plots limited diffusivity and CO, release but fostered distinct fungal
communities, likely adapted to fluctuating redox conditions. Fungal
communities were especially sensitive to bulk density and porosity,
reflecting their hyphal capacity to explore air-filled pores, while bacte-
rial communities showed subtler shifts aligned with structural changes.
These patterns are consistent with previous studies linking microscale
heterogeneity in oxygen and water dynamics to microbial assembly and
function in peat soils (Fenner and Freeman, 2011; Urbanova and Barta,
2014).

Understanding these soil-microbe-structure interactions is critical
for improving greenhouse gas models. Carbon loss from peat is driven
not only by temperature or microbial biomass but by the accessibility of
oxygen and carbon substrates, processes governed by soil physical
structure. By integrating XCT-derived structural data, microbial profiles,
and in situ gas measurements, this study provides a framework for
linking microscale habitat properties with ecosystem-scale carbon dy-
namics. Future research should build on this integrative approach to
develop predictive models that incorporate physical constraints on mi-
crobial function for more accurate greenhouse gas accounting in
managed peatlands.
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5. Conclusion

This study demonstrates that soil structure, microbial community
composition, and gas dynamics interact to control carbon cycling in
cultivated peatlands. By combining XCT-derived pore metrics, in situ
CO2 measurements, and microbial community profiling, we identified
seasonal gas diffusivity variation (Dp/Dy ranging from 0.08 to 0.10 in
dry periods to <0.01 during wet conditions) as the primary control on
microbial function and CO; flux, with soil moisture explaining 93 % of
this variation.

Bare soil plots exhibited ~30 % higher CO; concentrations and ~20
% lower fungal diversity compared to cropped soils, underscoring the
importance of maintaining vegetation cover to moderate carbon loss.
Conversely, wheat and sugar beet treatments supported more diverse
microbial communities, particularly fungi such as Mortierella, but had
lower CO» concentrations, likely reflecting the effects of restricted ox-
ygen availability and plant-microbe interactions on microbial respira-
tion. Fungal communities, dominated by Sordariomycetes, exhibited
stronger sensitivity to land-use changes than bacterial communities,
with sugar beet plots supporting the highest fungal diversity. Notably,
microbial assemblages at 5 cm depth in sugar beet soils were distinct
from other treatments, underscoring the strong influence of crop type on
microbial community structure. Importantly, CO; concentrations
remained relatively low across treatments despite the high carbon
content of these soils, highlighting the critical role of air-filled porosity
and gas diffusivity in regulating soil-atmosphere exchange. These
findings indicate that microbial activity and carbon loss in drained peat
are constrained not solely by microbial abundance or temperature but
by the physical accessibility of oxygen and carbon substrates within the
soil matrix.

Among the measured soil physical parameters, relative gas diffu-
sivity (Dp/Dg), pore connectivity (Conn.D), porosity (¢), and bulk
density emerged as key structural metrics regulating both microbial
community composition and CO, flux across land-use treatments. To
identify the biological drivers of CO» emissions, we employed an
XGBoost machine learning model that explained 82 % of the variance in
CO3 using microbial OTU abundances and physicochemical variables.
This approach identified specific microbial taxa—OTU_6_F (Syncephalis
sp.), OTU_15F (Hypocreales sp.), OTU901 (Vicinamibacterales),
OTU_116_F (Microascales sp.), and OTU_5115 (KD3-10)—alongside
land-use treatment (bare soil) and soil temperature as the strongest
predictors of CO, concentration. Collectively, these findings demon-
strate the interconnected influence of soil structure, temperature, and
microbial composition in driving carbon dynamics within cultivated
peatlands. This integrated framework offers a promising route toward
developing biological indicators of carbon cycling processes and pro-
vides critical insights for incorporating microbial-structural interactions
into greenhouse gas models and sustainable peatland management
strategies.

While this study provides mechanistic insights into soil-microbe-gas
interactions, we acknowledge the lack of true field-scale replication and
the focus on CO; alone without accounting for CH4 and N,O emissions as
limitations. Future work incorporating multi-gas flux measurements and
replicated designs will strengthen the predictive framework for green-
house gas modelling in agricultural peatlands. We also recognise that
extraction and PCR negative controls were not included during
sequencing; however, all library preparation and sequencing were
conducted under standard quality control procedures. Future studies
will incorporate negative controls and cross-validation measures to
further enhance data reliability. Overall, our findings highlight the value
of integrating soil structural and microbial data to inform sustainable
land management strategies aimed at reducing carbon losses and
improving the resilience of cultivated peat systems.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.aps0il.2025.106558.
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