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A B S T R A C T

In agricultural production, bioaerosols inevitably pose health hazards to animals and workers. Currently, there is 
a lack of research on real-time bioaerosol concentration monitoring at agricultural sites. We conducted a real- 
time airborne bioaerosol measurement study using the Multiparameter Bioaerosol Spectrometer (MBS) and 
applied a Uniform Manifold Approximation and Projection (UMAP) approach to classify bioaerosol emissions 
from the North Wyke Farm Platform between April and May. Penicillium and Cladosporium were the most 
dominant fungi. Another machine learning approach, Generalized Additive Model (GAM) was also constructed to 
explore the relationship with meteorological data and selected trace gases. It was found that animal houses and 
agricultural fields were the main sources of bioaerosols, and significant dispersion was observed downwind of 
these point sources. Two main bioaerosol types were Cladosporium and Penicillium, which accounted for 29.8 % 
and 24.1 % of the total, respectively. Cladosporium had an average concentration of 3.79 L-1 in the animal house 
direction, which is 2.19 L-1 higher and about 2.37 times that in the farmland direction (1.60 L-1). For Penicillium, 
the average concentration was 2.44 L-1 in the animal house direction, 0.93 L-1 higher and 1.61 times that in the 
farmland direction (1.52 L-1). And both bioaerosols are more active at temperatures above 15 ◦C and relative 
humidity above 80 %.

These results may provide recommendations for detection and identification of bioaerosol composition and 
emission patterns in the agricultural environments, and emission profiles associated with animal farms to provide 
better understanding for agricultural regional planning and public health perspectives.

1. Introduction

As defined by Whitby et al. (2022) bioaerosols are “suspensions of 
airborne particulate matter of biological origin, representing a distinct 
category of aerosols”. They can be defined as suspended airborne par
ticles that are emitted by living organisms (Crawford et al., 2023; GSJ 
et al., 2023). They contain diverse biological particles with a wide range 
of sizes such as pollen (10–100 μm) (Bennett and Willis, 2001), bacteria 
(0.2–10 μm) (Katz et al., 2003), fungal spores (2–50 μm) (Patel et al., 
2018), viruses (<0.2 μm) (Grgacic and Anderson, 2006). Due to the 
small aerodynamic diameter of some airborne bioaerosols, they can 
easily enter the body through the respiratory system and be deposited in 
the lungs (GSJ et al., 2023; Sajjad et al., 2023). Prolonged exposure can 
lead to respiratory diseases such as asthma and even severe organ 

damage (Bennett and Willis, 2001; Maya-Manzano et al., 2021; Sauva
geat et al., 2020). Bioaerosols can also act as cloud condensation and ice 
nuclei, accelerating the rate of cloud and precipitation formation (Tang 
et al., 2022; Uetake et al., 2019). Cloud formation and rainfall, in turn, 
can further influence regional climate, as well as local bioaerosol release 
contributing to the so-called bio-precipitation cycle (Bigg et al., 2014).

Meanwhile, human agriculture activities, and natural agricultural 
bioaerosol emissions also have an impact on local and regional air 
quality and ecosystems (Sabban and van Hout, 2011). In the livestock 
industry, processes such as feed preparation, animal activity and manure 
management all lead to increased concentrations of bioaerosols, espe
cially fungi, and bacteria, in the farming area (Kumar et al., 2024). 
Subsequent dispersion into the atmosphere through ventilation equip
ment poses a major challenge to the diversity and concentration of 
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bioaerosols in the surrounding area (Kumar et al., 2021, 2024). Elevated 
concentrations of bacteria, fungi, and endotoxins were reportedly 
detected downwind of intensive farms (Gladding et al., 2020; Ko et al., 
2008). For example, zoonotic pathogens and antibiotic-resistant bacte
ria (e.g. Escherichia coli and Staphylococcus aureus) can be detected in the 
atmosphere within 150–200 m of pig and poultry farms (Gibbs et al., 
2006; Kumar et al., 2024). However, for the time being, it remains un
certain whether farm-sourced bioaerosols pose a health risk to the 
public. Radon et al. (2007) noted a corresponding increase in asthma 
prevalence around the animal house as exposure to animal feeding op
erations. However, Smit et al. (2014) showed a statistically negative 
correlation between PM concentrations around the farm and public 
health outcomes. The UK Environment Agency reported in 2008 that 
chicken coops have the highest emission rates for total microorganisms, 
fungi and endotoxins. Fungi and bacteria were detected above back
ground values at distances of 200 and 400 m from the barns (Scaife et al., 
2008). Also, for livestock barns, the more frequent the animal activity, 
the more bioaerosols are emitted (Scaife et al., 2008).

Based on the serious challenges posed by bioaerosols to the agri
cultural sector, rapid monitoring and characterisation of bioaerosol 
particles is of great importance. Based on the physical and chemical 
characteristics of bioaerosols, such as size, fluorescence spectra, ab
sorption spectra, and shape, a series of single particle on-line detection 
system have recently been developed. The advantage of such systems is 
that they enable detection of relatively low concentrations of bioaerosol 
particles within generally larger ambient concentrations of other at
mospheric aerosol particles (Pan et al., 2022). Currently, the key tech
nology being applied for online detection of airborne bioaerosols are 
based on single particle ultraviolet light induced fluorescence (UV-LIF) 
spectrometry (Gabbarini et al., 2019; Huffman et al., 2020). The 
Multi-Parameter Bioaerosol Spectrometer (MBS) employed in this study 
is such an typical instrument based on this technology (Foot et al., 
2008).

The interpretation of data generated by real-time monitoring in
struments involves two aspects: first, the use of machine learning clas
sifiers to categorize data into distinguishable taxonomic classes, and 
second, the application of statistical models to quantify and visually 
represent the relationship between bioaerosols and meteorological fac
tors. In this manuscript, we employ Uniform Manifold Approximation 
and Projection (UMAP) for dimensional reduction to classify data from 
the MBS (Crawford et al., 2023; McInnes et al., 2018). UMAP has been 
demonstrated to exhibit robust classification performance (Crawford 
et al., 2023; Zhao et al., 2024). By reducing dimensionality, it preserves 
both global and local relationships within the data, making the classi
fication process more concise and accurate (Mpaka and von der Heyden, 
2024). After obtaining the classified data, we introduce the Generalized 
Additive Model (GAM), proposed by Hastie and Tibshirani, to construct 
models for feature parameters (whether linear or nonlinear) (Hastie, 
2017; Yan et al., 2024). Traditional regression models, such as linear 
regression, are not particularly effective in capturing nonlinear re
lationships between meteorological parameters and aerosol concentra
tions (Cheng et al., 2021). While deep learning models such as neural 
network models may achieve more accurate results, they require 
significantly greater computational resources and time (Du et al., 2022). 
In comparison to these two types of statistical models, GAM outperforms 
regression models in capturing nonlinear relationships while providing 
relatively accurate and interpretable results with less computational 
time (Lundberg and Lee, 2017). Consequently, GAM is also widely 
applied in atmospheric pollutant monitoring and impact assessment 
(Cheng et al., 2021; Qi et al., 2021; Ramsey et al., 2014).

Kumar et al. (2024) noted that although much research has been 
done, little is known about the bioaerosol species, exposure levels, and 
their environmental impacts within feedlots and dispersal areas. To 
elucidate these knowledge gaps, here we conducted a focussed ambient 
sampling experiment using an MBS to monitor concentrations of bio
aerosols in real-time dispersed downwind of an animal farm, the North 

Wyke Farm Platform (NWFP). The aims of the experiment were to 
evaluate a) the bioaerosol species detected in the agricultural area; b) 
the identification of their sources; c) the quantification of the relation
ship between detected bioaerosol, meteorological parameters and select 
trace gases using a machine learning approach. Through these objec
tives, the quantification of real-time bioaerosol species and the obser
vation of their impacts on the environment can deepen the 
understanding of the composition of bioaerosols in the agricultural 
sector and provide a basis for future decision-making on scientific 
management and land use, as well as provide a reference for the risk 
assessment of these agricultural facilities.

2. Methods

2.1. Sampling location

The North Wyke Farm Platform (NWFP) is situated at the North 
Wyke grassland site of Rothamsted Research (location: 50◦46′10″ N, 
3◦54′05″ W), 20 km north of Dartmoor National Park, which is the 
largest upland area in south-west England (Orr et al., 2011). NWFP 
comprises three farming systems in “farmlets”, each consisting of five 
component catchments totalling approximately 21 ha per farmlet. These 
farmlets are used to monitor soil, livestock and silage performance 
(Hawkins et al., 2023a). Fig. 1 shows a summary map of NWPF farm 
station and the associated land management regions (Hawkins et al., 
2023b).

The asterisk indicates the location of the MBS instrument on the ‘Top 
Burrows’ field, which is elevated compared with the surrounding fields. 
To the north-west of the instrument lies several livestock sheds which 
were housing cattle and sheep during the measurement period. The 
surrounding fields are a mixture of arable and pastoral land.

2.2. Sampling methods

2.2.1. Modulair sensor for atmospheric pollutants
A QuantAQ sensor (Modulair) was used to continuously measure CO, 

NO2, O3, and size resolved particulate matter (PM) concentrations. Also 
included in this sensor system is a measure of internal temperature and 
relative humidity, and a Global System for Mobile Communications unit 
for sending logged data to an external database. The sensor system was 
coupled with a Davis® Sonic Anemometer to provide in-situ wind di
rection and wind speed measurements. Prior to deployment at North 
Wyke, the sensor underwent calibration and verification with scientific 
grade reference instrument at the NERC Air Quality Supersite in Man
chester (Diez et al., 2022, 2024). The sensor was mounted at a height of 
2 m within 200 m of the MBS detector. Data were processed using the 
QUANT AQ dashboard and exported for further analysis.

2.2.2. The multiparameter bioaerosol spectrometer
The Multiparameter Bioaerosol Spectrometer (MBS) is a bio

fluorescence spectrometer developed by the University of Hertfordshire. 
By analysing the autofluorescence spectra, size, and morphological pa
rameters of single particles it is possible to detect and classify bioaerosol 
particles in real time. Previous research has demonstrated that the 
outputs of real-time measurement instruments with similar technology 
are in good agreement with offline fungal tracers (Gosselin et al., 2016). 
In this study, we calibrate the size and fluorescence performance of MBS 
by using standard and fluorescent doped PSLs following the approach 
described previously for similar UVLIF spectrometers (Wideband Inte
grated Bioaerosol Sensors, WIBS), as described by Robinson et al. (2013)
and Crawford et al. (2015). The MBS detection principle is briefly 
described below. An optically filtered xenon flash lamp (280 nm) is used 
to excite individual aerosol particles in the sensing area through deep 
ultraviolet (UV) excitation; the resultant autofluorescence is detected 
via a grating spectrometer and multichannel photodetector over 8 bands 
in the 315–640 nm range. This configuration covers the emission ranges 
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Fig. 1. The North Wyke Farm Platform fields. Farmlets and land use and management are shown with: High sugar grass areas outlined in red, white clover mix area 
outlined in blue, permanent pasture areas are outlined in green. The purple boxed sections highlight the cattle and sheep. The location of the bioaerosol instrument 
measurements (MBS) is indicated by the asterisk (orange).
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of several key biofluorophores commonly found in bioaerosol of interest 
at 280 nm excitation which are now listed (Könemann et al., 2019). 

• Tyrosine: 310 ± 20 nm;
• Tryptophan: 365 ± 40 nm;
• Riboflavin: 520 ± 30 nm;
• Chlorophyll b: 640 ± 10 nm.

Ambient air is drawn into the instrument at a total flow rate of 1.8 L 
min− 1 through an inlet tube. 1.5 L min− 1 of the airflow is filtered and 
used as bleed flow and sheath flow. The bleed flow is used to keep the 
inner optical chamber clean, and the sheath flow is used to constrain the 
remaining sample flow (0.3 L min− 1). The constrained sample flow 
provides a single file of collimated aerosol for the detection system. A 
single particle carried in the sample flow is first detected and sized by a 
low power laser beam (12 mW, 635 nm) in the 0.5–15 μm diameter 
range via Mie scattering. A second high power pulsed laser (250 mW, 
637 nm) will be triggered when particles in this size range are detected. 
The high-power laser illuminates the particles with sufficient intensity 
to detect the morphology of particles via a dual 512-pixel complemen
tary metal-oxide-semiconductor (CMOS) image sensor array. The array 
can collect the scattered light from the illuminated particle and 
construct two cross-sectional chords from the 2D profile of the scattering 
pattern. Particle morphological parameters are automatically generated 
from the CMOS distributions which are now described (Crawford et al., 
2020). 

• Peakwidth: An estimate of the average width of the array peak.
• Peakmean: The ratio of the peak to mean parameters.
• Mirror: A measure of scattering symmetry between top and bottom 

half of each array.
• AsymLR: A measure of the scattering symmetry between the left and 

right arrays.
• AsymLRinv: Same with AsymLR, however the right hand array is 

inverted.

10 μs after this initial detection, the xenon flashlamp is triggered 
which illuminates the particle with a UV pulse at 280 nm for approxi
mately 1 μs. Any autofluorescence generated by this UV excitation is 
focused with two hemispherical mirrors onto a grating spectrometer to 
segregate the fluorescence by wavelength and this spectral signal is 
recorded by an 8-channel photomultiplier tube (PMT). The maximum 
strobe rate of the xenon flashlamp is approximately 125 Hz, limiting the 
maximum acquisition rate. However, this upper limit is rarely 
approached in practice so is still sufficient for expected ambient con
centrations (Crawford et al., 2023).

The fluorescence threshold is defined by the forced trigger (FT) cycle, 
where the xenon flashlamp is strobed at 10 Hz in the absence of particles 
during a "pump off" phase to determine the optical system background 
noise levels. The MBS is run in "forced trigger" mode for 10 s at the start 
of each new data file, where a new file is stared every 30,000 particles. 
The average of the FT spectral data +7 standard deviations is used to 
define the threshold for each channel (referred to as the 7σ threshold), 
which is then subtracted from the acquired data in post processing, and 
any negative result are set to zero. The value of 7σ retains most of the 
biofluorescence while rejecting non-biological interfering particles that 
are normally weakly fluorescent (Crawford et al., 2023; Savage et al., 
2017). Additionally, the particle must also satisfy the 7σ threshold in at 
least two channels to be classified as fluorescent to remove false posi
tives arising from spurious reflections and noise (Crawford et al., 2023; 
Könemann et al., 2019).

2.3. Data preparation

A brief summary of the meteorological, trace gas and bioaerosol data 
collected in the experiment is shown in Table 1.

Meteorological and trace gas data were recorded at 1-min intervals, 
single particle bioaerosol counts were averaged over 5-min periods. We 
extracted the meteorological and trace gas data corresponding to the 
bioaerosol sampling time and merged them with the bioaerosol data. 
The merging method was to map the meteorological data corresponding 
to the time points of sampling of bioaerosols. Subsequent calculation of 
hourly averages for the data was done by vector averaging for wind 
direction. The OpenAir package in R was used to produce distribution 
polar plots of the various aerosol and trace gas parameters (Carslaw and 
Ropkins, 2012).

2.4. Bioaerosol classification method

The Uniform Manifold Approximation and Projection for dimension 
reduction (UMAP) was used to classify particulate matter captured by 
MBS into more broadly representative BioPM species (McInnes et al., 
2018). UMAP downscales and compresses the spectral data and the 
CMOS morphological provided by MBS into 2D space and optimises the 
results using the training data, constructing a transformed space with a 
high degree of spatial separation for each of the classification results. 
Since UMAP achieves optimal performance when all input features are 
on a similar scale, each parameter was normalized based on its expected 
maximum value. The MBS training data used for UMAP were provided 
by experiments previously conducted at the ChAMBRe simulation 
chamber facility as described in detail by Crawford et al. (2023). The 
same analysis structures and procedures were adopted as described by 
Crawford et al. (2023) to discriminate bioaerosol classes. The basic 
fluorescence criteria for acceptance of MBS single particle data as po
tential biofluorescent aerosols for subsequent classification required 
fluorescence threshold intensity to 1) exceed a the 7σ threshold and 2) 
exhibit the fluorescence in at least two of the MBS fluorescence 
wavebands.

2.5. Generalized Additive Model (GAM)

GAM extends the framework of generalized linear models (GLMs) by 
replacing linear predictors with additive smooth functions (Hastie, 
2017; Herman and Hastie, 1990). The fundamental formulation follows: 

g[E(yi)] = β0 + f1(X1) + f2(X2) + f3(X3) + ⋯+fn(Xn) (1) 

where g() is the link function; E
(
yi
)

denotes the conditional expectation 
of the response variable; β0 is the intercept; Xn is the explanatory vari
ables; fn() is the smooth function.

fn() in GAM is a core tool for defining nonlinear smooth terms for 
independent variables, allowing the model to automatically learn 
nonlinear relationships through a data-driven approach.

In this experiment, we used the python-based pyGAM package for 
model construction (Servén and Brummitt, 2018). Created a 
single-factor GAM formula based on Equation (1), which is Equation (2): 

g[Yi] = β0 + S(x1) + S(x2) + S(x3) + ⋯ + S(xn) (2) 

Table 1 
Summary of meteorological parameters and trace gas concentration data during 
sampling period.

Units Mean Min Max

Bioaerosol Numbers/L 44 0 2050
Relative Humidity (RH) % 69.8 33.5 87.5
Temperature (T) ◦C 10.4 3.4 18.8
Wind Direction (WD) ◦ / 0 360
Wind Speed (WS) m/s 3.6 0 17.0
CO ppm 191.25 188.51 442.05
NO ppb 1.96 1.32 29.16
NO2 ppb 7.81 1.34 29.01
O3 ppb 39.72 14.55 53.72
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Where Yi is the Processed bioaerosol data; S() is the spline term, which 
has a penalty on their 2nd derivative, which encourages the functions to 
be smoother (Servén and Brummitt, 2018). xn represents meteorological 
and trace gas data been collected. The data itself needs to pass the 
variance inflation factor (VIF) test to eliminate multicollinearity before 
importing it where the VIF value > 5 would indicate multicollinearity. 
The VIF test is done by SPSS (Landau and Everitt, 2003).

2.6. Model development

2.6.1. Box-Cox transform
It was found that the data distribution of the raw bioaerosol data was 

right-skewed due to low atmospheric bioaerosol concentrations which 
was limited by the instrumental sample volume. We therefore applied 
the Box-Cox transformation to the data (Loaiza et al., 2023; Sakia, 
1992). To explain the superiority of this data transformation, we illus
trate it by introducing the Akaike Information Criterion (AIC) where a 
smaller AIC value indicates a better model performance (Akaike, 1987). 
After testing, the Box-Cox transformed data contributed to smaller AIC 
values (− 11237 and − 10296). Quantile-Quantile plots (QQ-plots) of the 
data distribution before and after the Box-Cox transformation, consis
tent with the Gamma distribution, are provided in the appendix. This is 
consistent with the general trend observed in environmental pollution 
data, which often follow Poisson or Gamma distributions (Cheng et al., 
2021; Yan et al., 2024).

2.6.2. Model training and evaluation
To ensure robust performance evaluation, the dataset was parti

tioned using a 5-fold cross-validation scheme (Anguita et al., 2012; dos 
Santos et al., 2021). 80 % of the observations (4-fold) were used for 
training and 20 % (1-fold) for testing in each iteration. The random state 
was set to 42.

For the model training, based on the API pyGAM application manual, 
we selected hyperparameters for each spline term, which include 
“n_splines” and “lam”. Among these two, “n_splines” indicates the number 
of splines to use for the feature function and “lam” indicates the strength 
of smoothing penalty (Servén and Brummitt, 2018). The choice of these 
two parameters is based on a hyperparameter optimization package 
called Optuna, which allows users to search the best hyperparameter 
match in the set time period (Akiba et al., 2019).

The evaluation of the model is based on two indicators, mean square 
error (MSE) and coefficient of determination (R2). For MSE, the equation 

can be written as: 

MSE =
1
n
∑n

i=1
(f(xi) − yi)

2 (3) 

The lower the MSE value the better model performance (Chai and 
Draxler, 2014). The model selection is based on the higher R2 value and 
lower MSE value.

3. Results and discussion

3.1. UMAP classification results

The classification results based on the UMAP downscaled two- 
dimensional map, are shown in Fig. 2. We then defined the boundary 
of the transform space for each classification as twice the mean of the 
standard deviations of the x, y components, written as 2 σx,y in Fig. 2
(right). The training data for the model refer to Crawford et al. (2023), 
and we use the same framework here. Based on the labels of the 
ChAMBRe training data, the classification results were categorized into 
the following categories: “Nettle”, “Bacteria”, “Penicillium”, “Cladospo
rium”, “Unclassified” and “Non-bacteria bioaerosols” where the “Un
classified” and “Non-bacteria bioaerosols” were bioaerosol species that 
are not precisely defined or potentially strongly fluorescing interferents.

The classification of the fungal kingdom is clear. Both Cladosporium 
and Penicillium are in their own transformed space. However, there was a 
high degree of convergence in the classification of bacteria. Some were 
distinguished as overlapping non-bacteria bioaerosols and bacterial 
particles. These conflated particles may be potential fungal particles. 
Unclassified particles were linked in three taxonomic spaces, especially 
between fungal spaces. A small number of particles located on the right 
side of the two-dimensional space during the sampling period were 
classified as nettle; the low counts observed is consistent with the start of 
the nettle pollen season in southwest England.

Fig. 3 compares the particle fluorescence response and morpholog
ical parameters between the ambient sample and training data. In the 
laboratory samples used as training data, bacteria rarely displayed 
fluorescence in the fifth to eighth fluorescence channels, therefore any 
particles initially classified as bacteria with fluorescence detected in 
channels 5–8 are rejected from the bacteria classification in post pro
cessing based on the laboratory results of Crawford et al. (2023). After 
rejecting this fraction of particles, further examination of the remaining 
subset revealed that some particles within the bacterial classification 

Fig. 2. Left: Devon data classification dimension reduce into 2D space. Right: 2D density scatter plot of the Devon data in the transformed space. The radius of the 
classification boundary for each category was defined as twice the mean standard deviation of the x and y components of each category 2 σx,y.
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showed a fluorescent response in channel 4; based on procedure 
described in Crawford et al. (2023), the intensity of fluorescence in 
channel 4 (461 nm) should not be greater than that of channel 3 (414 
nm) for bacterial particles. An additional filter is applied to the bacterial 
subset, where any particles where the intensity of the 4th channel ex
ceeds that of the 3rd channel are also rejected from the bacterial 
classification.

Bacterial particles rejected by post processing were relabelled as 
“Non-bacteria bioaerosols”. It maybe that these “Non-bacteria bio
aerosols” may arise due to optical alignment drift, differences in the 
emission characteristics of the detected spores, or as a result of atmo
spheric or other processing. Generally, the rejected bacterial particles 
share characteristic similarities to Penicillium spores, and are likely 
misclassified Penicillium or fungal spores with similar characteristics.

According to the UMAP classification results, the most dominant 
class was Cladosporium, which accounted for 29.8 % of the total detected 
aerosols, followed by Penicillium with 24.1 % of the total detected 
aerosols. The fungal spores represented by Cladosporium and Penicillium 
together accounted for 54 % of the total. Bacteria is the next most 
abundant at 7.5 % contribution to the fluorescent population, while the 
lowest was Nettle pollen, at 0.1 %. The remaining “Unclassified” results 
accounted for 19.1 % and the “Non-bacteria bioaerosols” class accoun
ted for 19.3 %. Potential fungal spores were included in the “Non- 

bacteria bioaerosols” class, which implies that the actual fraction of 
fungal spores is greater than 54 %. These two detected fungi are also 
noted in the UK Environment Agency report as the main types of fungi 
present on farms (Scaife et al., 2008).

3.2. Temporal and spatial distribution of bioaerosol number 
concentrations

Fig. 4 shows the time evolution of the classified data and meteoro
logical parameters from April 13th to 29th. According to Fig. 4a, prior to 
21st April, three bioaerosol classes originated mainly in the direction of 
agricultural land. Significant increases in concentration between April 
24th and April 27th were seen followed by a gradual decline, main
taining elevated residual concentrations. The animal house source epi
sodes clearly overlap with significant concentration enhancements. 
Among the fungal spores, the Cladosporium and Penicillium classes have 
similar variations. Both fungal spore types showed several peaks in 
concentration between April 20th and 27th, with large fluctuations 
during April 27th. Similarly, there were more peaks and higher con
centrations in the direction of the animal house than in the direction of 
the farmland. Cladosporium had an average concentration of 3.79 L-1 in 
the animal house direction and 1.60 L-1 in the farmland direction. For 
Penicillium, the average concentration was 2.44 L-1 in the animal house 

Fig. 3. Compared training data and environmental data, presented as box and whisker figures. Whiskers represent 5 %/95 %. Ith: fluorescent intensity at wavelength 
x [nm]; 

∑
I: sum of Ith; Dp: particle diameter; AsymLR: symmetry between left and right CMOS arrays; AsymLRinv: as AsymLR, but with the right array inverted; 

Peakmean: ratio of peak to mean CMOS array values; Peakwidth: estimate of the mean width of the array, defined as mid-point between mean and peak values; 
Mirror: measure of symmetry between top and bottom half of each array.
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direction and 1.52 L-1 in the farmland direction. This concentration 
range is similar to the bioaerosol concentrations observed on agricul
tural farms by Tarigan et al. (2017). This finding suggests that the 
release of bioaerosols is influenced by animal and human activities 
within the animal house area. Additionally, the diurnal variation curve 
of Cladosporium concentrations shown in Supplementary Fig. S5 does 
not align with the expected release timings of these spores, which 
typically exhibit high emissions between 11 a.m. and 2 p.m. (Stępalska 
and Wołek, 2009). Instead, an increase in emissions is observed between 
4 a.m. and 10 a.m., coinciding with peak worker/animal activity. 
Meanwhile, following April 27th, significant livestock behavioral events 
were recorded at the station. Bacterial concentrations were observed to 
be relatively low with initially little variability. Similarly, April 21st the 
animal house direction showed a larger peak. Further comparing the 
concentration values of the two sources, as shown in the box plot in 
Fig. 4b, all three classified bioaerosol classes exhibit higher median 
values in the animal house sector. Previous studies have reported that 
90 % of emitted particulates associated with animal husbandry are in the 
form of bioaerosols, the main sources of which include feed, litter, and 
excreta, with bacterial components including Salmonella, Staphylo
coccus, E.coil etc. (Gohel et al., 2024). It is reasonable to assume that 
these feeding-related products and biowaste are likely to have produced 
the main bacterial species detected downwind of the animal house by 
the MBS. Changes in meteorological parameters show periodicity. Pre
liminary analysis shows that the bioaerosol concentration increases 
during the time periods when the temperature has increased. Fig. 4d 
shows the curves for ozone and CO, with a significant peak in CO on 18 

April, which could be instrumental calibration or artificial disturbance.
The spatial distribution of the concentrations of the main bioaerosol 

classes are shown in Fig. 5. The polar plots for the two main bioaerosol 
species, Cladosporium and Penicillium, both show clear areas of high 
concentrations in the northeast, while Bacteria, although less concen
trated overall relative to the other two fungal species, were also a strong 
source in the northeast. However, the Cladosporium and Penicillium 
classes also exhibit sources to the southwest with a much stronger Cla
dosporium source appearing at higher wind speed, in particular, bio
aerosol emissions are strongest at wind speeds of 5–15 m/s. Overall, all 
three bioaerosols shared a common point source of emissions in the 
direction of the northeastern animal house, and all were detected 
diffusing downwind. However, the transport distance of the emissions 
cannot be determined.

3.3. Single-factor modeling of bioaerosols and environmental variables

3.3.1. Spearman analysis
Fig. 6 shows the Spearman’s correlation coefficient analysis results, 

which can determine the possible correlation between selected bio
aerosol classes, in this case fungal spores, meteorological parameters 
and trace gases were the focus of the analysis. Between the meteoro
logical parameters, relative humidity (RH) was positively correlated 
with fungal spores, and temperature (T), wind speed (WS), and wind 
direction (WD) were all negatively correlated. The statistical signifi
cance of all meteorological parameters were less than 0.001. Among the 
range of trace gases measured, CO, NO and NO2 showed positive 

Fig. 4. Illustrates temporal variations in atmospheric concentrations of distinct microbial categories recorded between April 13 and 29, 2024. Plot a): hourly rolling 
averages of classified fungi; shaded areas indicate farmland sources (southwest) and animal house sources (northeast), respectively; b): box and whisker plot of three 
classified bioaerosols concentration comparation between the direction from the farmland and animal house. Whiskers denote the 5th and 95th percentiles; c): the 
time series of temperature versus relative humidity; d): the time series of CO (ppm) and O3(ppb); shaded areas indicate farmland sources (southwest) and animal 
house sources (northeast), respectively.
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Fig. 5. Polar map for Bacteria, Cladosporium and Penicillium concentrations. The numbers on the circles in the figure represent wind speeds in m/s. The legend on 
the right represents the bioaerosol concentration per 5 min (L− 1).

Fig. 6. Heat map of Spearman’s correlation between meteorological factors, trace gases and fungal spore concentrations. (*** is p < 0.001, ** is p < 0.01, * is p < 0.05).
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Spearman correlation coefficients. However, the correlation for NO2 was 
not significant. O3 showed a significant negative Spearman’s coefficient.

Among the trace gases, the nitrogen dioxide, NO2 P value was larger 
than 0.05, but could not pass the significance test. The nitric oxide, NO, 
Spearman value was relatively close to 0. After comprehensive analysis 
it was decided to that these three variables were not significant in this 
particular data set. Prior to introducing the remaining variables to the 
GAM model, it was necessary to test for the presence of multicollinearity 
between the individual predictor parameters. Multicollinearity affects 
the fitting performance of the model and can be judged by the VIF value. 
Through testing, RH, T, WD, WS, CO and O3 VIF values were all less than 
5, indicating they can be used in the GAM regression model.

3.3.2. GAM and SHAP analysis
When using UMAP classified fungal spore concentrations as response 

variables, the explanatory variables include RH, T (◦C), WD, WS, CO 
(ppm) and O3 (ppb). In the single factor model, the R2 value for Penicil
lium and Cladosporium on the test set were 0.36 and 0.34, and MSE were 
0.005 and 0.006. The partial dependence plot (PDP), was then used 
which shows the marginal effect of the different features on the model 
predictive outcomes (Friedman, 2001). The result for two different 
fungal spore species acts with each response parameter in the model is 
shown in Fig. 7.

For Penicillium, Relative Humidity (RH) (Edof = 17.1, P < 0.001), 
trends show an increase in fungal concentrations at high humidity. 
Temperature (Edof = 20.7, P < 0.001) showed two peaks, which were 
between 6 ◦C and 10 ◦C and greater than 15 ◦C. Overall, Penicillium 
concentrations increased with increasing temperature. Source location, 
based on wind direction (WD) and wind speed (WS) (Edof = 16, P <
0.001; Edof = 18.7), matched the results shown in the polar map. Most 
of the Penicillium particles were found to be concentrated within wind 
directions 0–90◦ indicating they were significantly influenced by the 
proximity of animal housing, and with increased wind speeds, showing a 
significant positive response, particularly for wind speeds greater than 
10 m/s. Carbon monoxide (CO) (Edof = 9, P < 0.001) and Ozone (O3) 
(Edof = 25.8, P < 0.001) concentrations showed a non-linear response, 
where the positive effects of CO and O3 on fungal spore concentrations 
diminished with increasing concentration.

For Cladosporium, Relative Humidity (RH) (Edof = 23.2, P < 0.001) 
showed a similar trend to Penicillium. However, concentrations of Cla
dosporium spores were more readily observed when RH was less than 50 
%. Temperature (Edof = 12.6, P < 0.001) curves, in contrast, showed 
that Cladosporium was more inactive at lower temperatures (<8 ◦C) 
relative to Penicillium, whereas the positive effect was more pronounced 
at greater than 16 ◦C. Wind direction and wind speed (Edof = 11.5, P <
0.001; Edof = 7.1, P < 0.001) showed the source location for these 
particles was mainly from the animal house area. Meanwhile, the 
highest contribution to the particle concentrations were observed in the 
WS range 15–17 m/s. Carbon monoxide (Edof = 10.2, P < 0.001) and 
Ozone (Edof = 3.7, P < 0.001) have similar pattern as Penicillium, 
especially for O3 which will be discussed in more detail below.

The overall model predictions are significant, However, the R2 

metrics are not high due to the size of the database, but the model results 
reproduce the observed patterns well. The results are consistent with 
both Penicillium and Cladosporium spores being produced in humid 
conditions and released passively, which means that higher wind speed 
and lower RH would favour their release after a period of high humidity. 
Typically, these conditions occur during a night and day cycle.

The specific contribution of each parameter to the variation of the 
GAM model can be visualised by the SHapley Additive exPlanations 
(SHAP) values (Lundberg and Lee, 2017). The magnitude of the effect of 
each parameter can be quantified by the absolute SHAP value. Fig. 8
displays the ranked impacts of each parameter on two fungal spore 
concentrations.

Our analysis shows that for both fungal spores, O3 is the most 
important model parameter associated with changes in Cladosporium 

and Penicillium concentrations. We used the model to capture the fact 
that at a lower ozone concentration window (35–50 ppb), increases in 
ozone concentration can still negatively affect fungal spore release. This 
concentration window corresponds to common atmospheric ozone 
concentrations in many non-urban ecosystems, e.g. average ozone 
concentrations around 35 ppb in rural central England (Derwent et al., 
2010). In Supplementary Fig. S5, the diurnal variation curves of the two 
bioaerosols exhibit high emissions during the early morning and evening 
hours, with relatively low emissions at midday and in the afternoon. In 
contrast, the diurnal variation of ozone shows the opposite pattern. 
Additionally, it has been observed that in different wind sectors, 
particularly in the direction of agricultural fields, there is a lag of 
approximately 1–1.5 h following bioaerosol emissions. This conclusion 
can be extended to a more environmentally representative range of 
concentrations, suggesting that higher atmospheric ozone concentra
tions may act as a proxy indicator for fungal spore release mechanisms. 
Despite the lack of exploration of the possible mechanisms of direct or 
ozone proxy related emission mechanisms in natural bioaerosol envi
ronments, these results suggest a novel detailed approach for future 
environmental studies. Previous studies on ozone related bioaerosol 
responses have been limited. In a controlled laboratory environment, 
Korzun et al. (2008) explored the impact of ozone on Cladosporium spp. 
Their findings revealed that exposure to very high ozone concentrations 
ranging from 11 to 12 ppm significantly compromised the survival of 
Cladosporium spp. The extent of conidial viability reduction was directly 
proportional to the duration of ozone exposure. Wen et al. (2020)
compared the total nitrogen (TN) content in a suspension of fungal 
spores after ozone inactivation and found that the TN content in the 
suspension increased after 10 min of ozone application, demonstrating 
that ozone disrupts cellular integrity. In outdoor urban environments, 
Yang et al. (2024) noted that during high ozone episodes (HO episodes, 
ozone concentration: 102.3 ± 66.2 μg m− 3), a significant negative cor
relation was found between ozone concentrations and total airborne 
microbe (TAM) concentrations and that most of the bioaerosols were in 
the form of fine particles (<2.1 μm). Mechanistically, ozone destroys 
microbial DNA as well as cellular structure, and research has shown that 
the structure of atmospheric Gram-negative bacterial communities can 
be regulated by atmospheric ozone concentrations (Wang et al., 2020; 
Xu et al., 2017). Based on this, some studies have applied ozone as a 
method of suppressing fungal hazards in livestock houses. A study of 
dairy farms in the province of Giza found that fumigation at 80 ppm 
ozone for 10 min or 20 and 40 ppm for 20 min significantly inhibited the 
growth of fungi and bacteria and was more economical and efficient 
technique than traditional antimicrobials (Hassan et al., 2017). Despite 
the consistency between the modelled and laboratory analyses of ozone 
impacts, it is still important to consider that there may be some ‘noise’ in 
the correlations, as concentrations of background airborne spores 
arriving from more distant windward sources may be released from 1 h 
to several days earlier than the sample time under different conditions 
(Hirst et al., 1967). Further assessment of the effect of ozone on fungal 
spore release and transport will requires additional measurements to 
identify sources within the animal house.

CO ranked fourth in the Penicillium model and third in the Clado
sporium model, and it is worth noting that CO has a negative effect on 
Penicillium concentration and more positive feedback on Cladosporium 
concentration. Interpretation of this phenomenon requires caution and 
may be due to synergistic effects of carbon monoxide with other trace 
gases or as a potential CO2 transformation pathway affecting fungal 
activity, or simply an artifact of effects such as wind speed. It has been 
observed that under CO2 enrichment conditions, the involvement of 
ozone affects the enzymatic activity of fungal spores, which could also 
be one of the underlying causes (Chung et al., 2006). However, we still 
cannot confirm with this data set whether CO will influence the con
centration of fungal spores in the atmosphere.

To further investigate the links between environmental variables and 
bioaerosol concentrations, Fig. 9 shows the orthogonal distance 
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Fig. 7. Partial dependence plots (PDP) of two fungi species and environmental variables (including meteorological factors and trace gas data). The y-axis represents 
the degree to which bioaerosols respond to environmental variables. The x-axis denotates measured values of each factor. The blue line represents the response curve, 
and the red dotted line represents the 95 % confidence interval.
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regression (ODR) analysis between the two fungal spores, from the di
rection of the animal house and the farmland, respectively, and the 
environmental parameters.

For Penicillium and Cladosporium, the deviation of the fit between the 
data points and meteorological data in the direction of the animal house 
was small, whereas the deviation of the fit in the direction of the 
farmland was large. Notably, for Cladosporium, relative humidity had a 
positive effect on the concentration, especially at RH of 75 % or more, 
which was particularly noticeable in the direction of the animal house. 
The release pattern of Cladosporium is confirmed by most studies to be 
inhibited at high relative humidity (Almeida et al., 2018; Grinn-Gofroń 
et al., 2019). The opposite trend in the present study may be due to 1) 
Higher relative temperatures (and therefore lower RH) in the animal 
house compared to the outdoor area, and greater release of Cladosporium 
at higher temperatures; 2) Insect activities in the animal house, as well 
as feed, straw mattresses, and faeces, may also be potential sources 
(Breitenbach and Simon-Nobbe, 2002; Nicoletti et al., 2024).

According to Tang et al. (2015), alternating cycles of high (97 %) and 
low relative humidity, where the low RH is below a critical threshold 
between 11 % and 43 %, can effectively inhibit the growth of Clado
sporium. Therefore, introducing controlled fluctuations in relative 

humidity—such as through dehumidification and improved ven
tilation—may serve as a practical approach to suppress fungal prolif
eration in indoor environments like animal housing.

3.4. Implications for bioaerosol impacts and management

This study is the first to conduct real-time monitoring of bioaerosol 
concentrations within a single animal housing and the surrounding 
farmland area in the UK, generating a unique dataset on bioaerosol 
emission concentrations caused by animal activity behaviour. Machine 
learning methods were employed to classify the monitored bioaerosols, 
yielding reliable high time resolution results, which saved time and 
reduced labour costs as compared to offline methods. Additionally, the 
study captured the impact of various environmental variables on bio
aerosol concentration changes under natural conditions.

Regarding the two primary bioaerosols, Cladosporium and Penicil
lium, their small particle size facilitates deposition in the upper respi
ratory tract of farm workers and livestock, potentially causing a range of 
allergic reactions and pulmonary diseases (Bamotra et al., 2025; Cal
derón-Ezquerro et al., 2025). In statistical studies in the UK and Europe, 
Cladosporium has been shown to cause a high allergy risk at airborne 

Fig. 8. Shap analysis of influential factors.
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concentrations above 3000 spores per cubic metre (Breitenbach and 
Simon-Nobbe, 2002; Sadyś et al., 2016). Allergic reactions caused by 
Cladosporium are predominantly nasal congestion, which can lead to 
sinusitis and upper respiratory tract infections (Bamotra et al., 2025; 
Weryszko-Chmielewska et al., 2018). Penicillium, on the other hand, has 
been found to cause epidermal infections of the skin and nails, especially 
in immunocompromised individuals (Egbuta et al., 2017). Furthermore, 
when exposed to certain temperatures and humidity, filamentous fungi 
such as Penicillium can produce mycotoxins that are not only harmful to 
human health, but can also lead to hormonal disruption, immunosup
pression and even death of livestock in animal houses (Brown et al., 
2012; Egbuta et al., 2017; Richard, 2007).

The control of bioaerosols from an environmental management point 
of view is therefore crucial, especially in indoor closed environments 
such as animal houses. Filtration is a widely used method to capture and 
remove airborne bioaerosols through collision by varying the filter 
material, pore size and air flow rate (Liu et al., 2017). Combining the 
appropriate growth temperature and relative humidity thresholds for 
the target bioaerosol and suppressing the emission of the corresponding 
bioaerosol by changing the temperature and humidity. Ozone as a strong 
oxidising agent has a strong effect on reducing bacteria, fungi, spores 
etc. production, but at the same time it can cause irritation to the res
piratory tract of humans or animals (Song et al., 2022). The current use 
of ozone for disinfection must be in a controlled environment because 
the effective disinfection concentration exceeds the recommended 
safety threshold (Lu et al., 2025). However, this study found that at 
lower ozone concentrations there may also be negative effects on certain 
bioaerosol emissions, providing insights for the future development of 
low-concentration ozone inactivation technologies.

3.5. Limitations

In this experiment, based on the work by Crawford et al. (2023), the 
post processing used to classify between airborne fungi and bacteria was 
further refined by setting the bacterial filter threshold for the fluores
cence channels 5–8 and restricting modal fluorescence reduced the 
conflation pathway and showed good classification results. The 2D 
classification space presented by the UMAP classifier may however not 
contain all hotspot counts when using twice the standard deviation as 
the classification boundary and will be examined in future studies. 
Meanwhile, other frequently occurring allergy-causing fungi such as 
Aspergillus and Basidiomycetes were not included due to the lack of 
spectral and morphological training data. This dataset can be 
re-investigated with updated classifiers following further laboratory 
experiments.

Secondly, due to the limited duration of the database, interpretation 
of some variables using GAM may result in high complexity and un
certainty in interpretation. Temperature and RH did not change signif
icantly during the sampling period, and there were no significant 
weather events such as precipitation, which may have enhanced or 
mitigated certain bioaerosol emissions. Therefore, the model may need 
to be retrained under a wider range of weather conditions to fully cap
ture the T, RH responses. At the same time, there is still space to improve 
the fitting accuracy of the model due to the low concentration of bio
aerosols in the natural environment and the limitations of the current 
real-time measurement instruments (An et al., 2024; ̌Santl-Temkiv et al., 
2020).

Thirdly, a potential improvement of this study would be to continue 
cross-season sampling with supporting offline reference measurements 
(e.g., Hirst sport trap) to better reflect the seasonal universality of bio
aerosols. With seasonal changes, changes in relative humidity and 

Fig. 9. Orthogonal Distance Regression (ODR) plots of Penicillium and Cladosporium concentrations (L− 1) versus environmental parameters. Each fungal species was 
divided into two source directions, animal house (WD 0–90) shown in blue and farmland (WD 180–270) shown in green. The χ2 value was calculated for each 
fitted curve.
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temperature can also affect the release of bioaerosols and their con
centration in the air. For indoor animal housing environments, the 
tendency to close doors/windows to keep animals warm as temperatures 
drop in autumn and winter, this behavior may lead to an accumulation 
of bioaerosol concentrations indoors, causing health impacts for workers 
and livestock. (Anderson et al., 2016).

4. Conclusions

In agricultural environments—particularly during the planning and 
operation of livestock housing systems—it is essential to implement 
effective protective measures to mitigate farm workers and nearby in
habitants’ exposure to bioaerosols. A key step toward this goal is the 
identification of bioaerosol sources and a better understanding of their 
emission patterns and airborne concentrations. The main findings are 
summarized as follows. 

(1) Bioaerosol particles at the NWFP station were detected mainly 
from the Northeast and south-west sectors, and high-intensity 
point sources were clearly identified. The north-eastern sector 
was in the direction of animal houses while the south-western 
sector consisted mainly of farmlands. And the peak changes in 
bioaerosol concentrations monitored in real time coincide with 
the timing of animal behaviour recorded at the site. Cladosporium 
and Penicillium animal house sources mean concentration were 
2.37 times and 1.61 times farmland sources, respectively.

(2) Bioaerosols appear to be generated from mainly local source 
emissions compared to other wind sectors. The temporal trend 
showed a peak on the second day of measurement and several 
smaller peaks at intervals in the following days, but these dissi
pated quickly showing an overall decreasing trend. This is likely 
due to specific agricultural activities and or animal activities. At 
the same time, the dispersion can be seen downwind of the point 
source of the animal house, but the dispersion distance is 
uncertain.

(3) For bioaerosols, our model is able to reproduce the observation 
that bioaerosol releases are low at low ozone concentration levels 
within this study environment. This finding is informative for 
improving future real-time bioaerosol emission modelling appli
cations. However, there is still a lack of monitoring of the 
response of bioaerosols to real-time variations with respect to 
relevant meteorological drivers and atmospheric trace gases 
within different ecosystems. It may also suggest the possibility of 
using ambient ozone concentrations to inform future laboratory 
studies for investigating potential mechanisms on the effect on 
bioaerosols in this concentration window. However, it also needs 
to be considered an uncertainty that there may be a negative 
correlation effect due to a reduction in turbulence, an increase in 
atmospheric concentrations of mixed ozone and a decrease in 
emissions of source fungal spores. This uncertainty is of interest 
to inform further research into these parameters.

Overall, from a bioaerosol regulatory perspective, it is important to 
strengthen monitoring around and downwind of agricultural facilities. 
From a pollution control perspective, the possibility of applying 
temperature-humidity regulation mechanism, and ozone sterilisation 
within safe concentration thresholds for livestock houses cleaning could 
be discussed. Future research will focus on 1) improvement of bioaerosol 
classification techniques; 2) increasing routine real-time monitoring to 
improve sampling periods to observe the effects of a wider range of 
meteorological drivers on bioaerosols; 3) Study of general patterns and 
relationships between bioaerosol releases and target trace gases in 
conjunction with laboratory controlled variable experiments. These 
works can further help to accurately classify bioaerosols and improve 
the existing instrument technology to gain more in-depth insights into 
the general laws of bioaerosol emissions.
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