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ARTICLE INFO ABSTRACT

Keywords: In agricultural production, bioaerosols inevitably pose health hazards to animals and workers. Currently, there is
Biﬂ?eros"ls a lack of research on real-time bioaerosol concentration monitoring at agricultural sites. We conducted a real-
Agriculture time airborne bioaerosol measurement study using the Multiparameter Bioaerosol Spectrometer (MBS) and
I]\)A;Z}:;:nleammg applied a Uniform Manifold Approximation and Projection (UMAP) approach to classify bioaerosol emissions

from the North Wyke Farm Platform between April and May. Penicillium and Cladosporium were the most
dominant fungi. Another machine learning approach, Generalized Additive Model (GAM) was also constructed to
explore the relationship with meteorological data and selected trace gases. It was found that animal houses and
agricultural fields were the main sources of bioaerosols, and significant dispersion was observed downwind of
these point sources. Two main bioaerosol types were Cladosporium and Penicillium, which accounted for 29.8 %
and 24.1 % of the total, respectively. Cladosporium had an average concentration of 3.79 L! in the animal house
direction, which is 2.19 L1 higher and about 2.37 times that in the farmland direction (1.60 L’l). For Penicillium,
the average concentration was 2.44 L' in the animal house direction, 0.93 L' higher and 1.61 times that in the
farmland direction (1.52 L'l). And both bioaerosols are more active at temperatures above 15 °C and relative
humidity above 80 %.

These results may provide recommendations for detection and identification of bioaerosol composition and
emission patterns in the agricultural environments, and emission profiles associated with animal farms to provide
better understanding for agricultural regional planning and public health perspectives.

1. Introduction

As defined by Whitby et al. (2022) bioaerosols are “suspensions of
airborne particulate matter of biological origin, representing a distinct
category of aerosols”. They can be defined as suspended airborne par-
ticles that are emitted by living organisms (Crawford et al., 2023; GSJ
et al., 2023). They contain diverse biological particles with a wide range
of sizes such as pollen (10-100 pm) (Bennett and Willis, 2001), bacteria
(0.2-10 pm) (Katz et al., 2003), fungal spores (2-50 pm) (Patel et al.,
2018), viruses (<0.2 pm) (Grgacic and Anderson, 2006). Due to the
small aerodynamic diameter of some airborne bioaerosols, they can
easily enter the body through the respiratory system and be deposited in
the lungs (GSJ et al., 2023; Sajjad et al., 2023). Prolonged exposure can
lead to respiratory diseases such as asthma and even severe organ
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damage (Bennett and Willis, 2001; Maya-Manzano et al., 2021; Sauva-
geat et al., 2020). Bioaerosols can also act as cloud condensation and ice
nuclei, accelerating the rate of cloud and precipitation formation (Tang
et al., 2022; Uetake et al., 2019). Cloud formation and rainfall, in turn,
can further influence regional climate, as well as local bioaerosol release
contributing to the so-called bio-precipitation cycle (Bigg et al., 2014).

Meanwhile, human agriculture activities, and natural agricultural
bioaerosol emissions also have an impact on local and regional air
quality and ecosystems (Sabban and van Hout, 2011). In the livestock
industry, processes such as feed preparation, animal activity and manure
management all lead to increased concentrations of bioaerosols, espe-
cially fungi, and bacteria, in the farming area (Kumar et al., 2024).
Subsequent dispersion into the atmosphere through ventilation equip-
ment poses a major challenge to the diversity and concentration of
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bioaerosols in the surrounding area (Kumar et al., 2021, 2024). Elevated
concentrations of bacteria, fungi, and endotoxins were reportedly
detected downwind of intensive farms (Gladding et al., 2020; Ko et al.,
2008). For example, zoonotic pathogens and antibiotic-resistant bacte-
ria (e.g. Escherichia coli and Staphylococcus aureus) can be detected in the
atmosphere within 150-200 m of pig and poultry farms (Gibbs et al.,
2006; Kumar et al., 2024). However, for the time being, it remains un-
certain whether farm-sourced bioaerosols pose a health risk to the
public. Radon et al. (2007) noted a corresponding increase in asthma
prevalence around the animal house as exposure to animal feeding op-
erations. However, Smit et al. (2014) showed a statistically negative
correlation between PM concentrations around the farm and public
health outcomes. The UK Environment Agency reported in 2008 that
chicken coops have the highest emission rates for total microorganisms,
fungi and endotoxins. Fungi and bacteria were detected above back-
ground values at distances of 200 and 400 m from the barns (Scaife et al.,
2008). Also, for livestock barns, the more frequent the animal activity,
the more bioaerosols are emitted (Scaife et al., 2008).

Based on the serious challenges posed by bioaerosols to the agri-
cultural sector, rapid monitoring and characterisation of bioaerosol
particles is of great importance. Based on the physical and chemical
characteristics of bioaerosols, such as size, fluorescence spectra, ab-
sorption spectra, and shape, a series of single particle on-line detection
system have recently been developed. The advantage of such systems is
that they enable detection of relatively low concentrations of bioaerosol
particles within generally larger ambient concentrations of other at-
mospheric aerosol particles (Pan et al., 2022). Currently, the key tech-
nology being applied for online detection of airborne bioaerosols are
based on single particle ultraviolet light induced fluorescence (UV-LIF)
spectrometry (Gabbarini et al., 2019; Huffman et al., 2020). The
Multi-Parameter Bioaerosol Spectrometer (MBS) employed in this study
is such an typical instrument based on this technology (Foot et al.,
2008).

The interpretation of data generated by real-time monitoring in-
struments involves two aspects: first, the use of machine learning clas-
sifiers to categorize data into distinguishable taxonomic classes, and
second, the application of statistical models to quantify and visually
represent the relationship between bioaerosols and meteorological fac-
tors. In this manuscript, we employ Uniform Manifold Approximation
and Projection (UMAP) for dimensional reduction to classify data from
the MBS (Crawford et al., 2023; Mclnnes et al., 2018). UMAP has been
demonstrated to exhibit robust classification performance (Crawford
et al., 2023; Zhao et al., 2024). By reducing dimensionality, it preserves
both global and local relationships within the data, making the classi-
fication process more concise and accurate (Mpaka and von der Heyden,
2024). After obtaining the classified data, we introduce the Generalized
Additive Model (GAM), proposed by Hastie and Tibshirani, to construct
models for feature parameters (whether linear or nonlinear) (Hastie,
2017; Yan et al., 2024). Traditional regression models, such as linear
regression, are not particularly effective in capturing nonlinear re-
lationships between meteorological parameters and aerosol concentra-
tions (Cheng et al., 2021). While deep learning models such as neural
network models may achieve more accurate results, they require
significantly greater computational resources and time (Du et al., 2022).
In comparison to these two types of statistical models, GAM outperforms
regression models in capturing nonlinear relationships while providing
relatively accurate and interpretable results with less computational
time (Lundberg and Lee, 2017). Consequently, GAM is also widely
applied in atmospheric pollutant monitoring and impact assessment
(Cheng et al., 2021; Qi et al., 2021; Ramsey et al., 2014).

Kumar et al. (2024) noted that although much research has been
done, little is known about the bioaerosol species, exposure levels, and
their environmental impacts within feedlots and dispersal areas. To
elucidate these knowledge gaps, here we conducted a focussed ambient
sampling experiment using an MBS to monitor concentrations of bio-
aerosols in real-time dispersed downwind of an animal farm, the North
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Wyke Farm Platform (NWFP). The aims of the experiment were to
evaluate a) the bioaerosol species detected in the agricultural area; b)
the identification of their sources; c) the quantification of the relation-
ship between detected bioaerosol, meteorological parameters and select
trace gases using a machine learning approach. Through these objec-
tives, the quantification of real-time bioaerosol species and the obser-
vation of their impacts on the environment can deepen the
understanding of the composition of bioaerosols in the agricultural
sector and provide a basis for future decision-making on scientific
management and land use, as well as provide a reference for the risk
assessment of these agricultural facilities.

2. Methods
2.1. Sampling location

The North Wyke Farm Platform (NWFP) is situated at the North
Wyke grassland site of Rothamsted Research (location: 50°46'10" N,
3°54'05” W), 20 km north of Dartmoor National Park, which is the
largest upland area in south-west England (Orr et al., 2011). NWFP
comprises three farming systems in “farmlets”, each consisting of five
component catchments totalling approximately 21 ha per farmlet. These
farmlets are used to monitor soil, livestock and silage performance
(Hawkins et al., 2023a). Fig. 1 shows a summary map of NWPF farm
station and the associated land management regions (Hawkins et al.,
2023b).

The asterisk indicates the location of the MBS instrument on the ‘Top
Burrows’ field, which is elevated compared with the surrounding fields.
To the north-west of the instrument lies several livestock sheds which
were housing cattle and sheep during the measurement period. The
surrounding fields are a mixture of arable and pastoral land.

2.2. Sampling methods

2.2.1. Modulair sensor for atmospheric pollutants

A QuantAQ sensor (Modulair) was used to continuously measure CO,
NO,, Os, and size resolved particulate matter (PM) concentrations. Also
included in this sensor system is a measure of internal temperature and
relative humidity, and a Global System for Mobile Communications unit
for sending logged data to an external database. The sensor system was
coupled with a Davis® Sonic Anemometer to provide in-situ wind di-
rection and wind speed measurements. Prior to deployment at North
Wyke, the sensor underwent calibration and verification with scientific
grade reference instrument at the NERC Air Quality Supersite in Man-
chester (Diez et al., 2022, 2024). The sensor was mounted at a height of
2 m within 200 m of the MBS detector. Data were processed using the
QUANT AQ dashboard and exported for further analysis.

2.2.2. The multiparameter bioaerosol spectrometer

The Multiparameter Bioaerosol Spectrometer (MBS) is a bio-
fluorescence spectrometer developed by the University of Hertfordshire.
By analysing the autofluorescence spectra, size, and morphological pa-
rameters of single particles it is possible to detect and classify bioaerosol
particles in real time. Previous research has demonstrated that the
outputs of real-time measurement instruments with similar technology
are in good agreement with offline fungal tracers (Gosselin et al., 2016).
In this study, we calibrate the size and fluorescence performance of MBS
by using standard and fluorescent doped PSLs following the approach
described previously for similar UVLIF spectrometers (Wideband Inte-
grated Bioaerosol Sensors, WIBS), as described by Robinson et al. (2013)
and Crawford et al. (2015). The MBS detection principle is briefly
described below. An optically filtered xenon flash lamp (280 nm) is used
to excite individual aerosol particles in the sensing area through deep
ultraviolet (UV) excitation; the resultant autofluorescence is detected
via a grating spectrometer and multichannel photodetector over 8 bands
in the 315-640 nm range. This configuration covers the emission ranges
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Fig. 1. The North Wyke Farm Platform fields. Farmlets and land use and management are shown with: High sugar grass areas outlined in red, white clover mix area
outlined in blue, permanent pasture areas are outlined in green. The purple boxed sections highlight the cattle and sheep. The location of the bioaerosol instrument
measurements (MBS) is indicated by the asterisk (orange).
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of several key biofluorophores commonly found in bioaerosol of interest
at 280 nm excitation which are now listed (Konemann et al., 2019).

e Tyrosine: 310 £ 20 nm;

e Tryptophan: 365 + 40 nm;

e Riboflavin: 520 + 30 nm;

e Chlorophyll b: 640 + 10 nm.

Ambient air is drawn into the instrument at a total flow rate of 1.8 L
min~! through an inlet tube. 1.5 L min~" of the airflow is filtered and
used as bleed flow and sheath flow. The bleed flow is used to keep the
inner optical chamber clean, and the sheath flow is used to constrain the
remaining sample flow (0.3 L min~'). The constrained sample flow
provides a single file of collimated aerosol for the detection system. A
single particle carried in the sample flow is first detected and sized by a
low power laser beam (12 mW, 635 nm) in the 0.5-15 pm diameter
range via Mie scattering. A second high power pulsed laser (250 mW,
637 nm) will be triggered when particles in this size range are detected.
The high-power laser illuminates the particles with sufficient intensity
to detect the morphology of particles via a dual 512-pixel complemen-
tary metal-oxide-semiconductor (CMOS) image sensor array. The array
can collect the scattered light from the illuminated particle and
construct two cross-sectional chords from the 2D profile of the scattering
pattern. Particle morphological parameters are automatically generated
from the CMOS distributions which are now described (Crawford et al.,
2020).

e Peakwidth: An estimate of the average width of the array peak.

e Peakmean: The ratio of the peak to mean parameters.

e Mirror: A measure of scattering symmetry between top and bottom
half of each array.

e AsymLR: A measure of the scattering symmetry between the left and
right arrays.

e AsymLRinv: Same with AsymLR, however the right hand array is
inverted.

10 ps after this initial detection, the xenon flashlamp is triggered
which illuminates the particle with a UV pulse at 280 nm for approxi-
mately 1 ps. Any autofluorescence generated by this UV excitation is
focused with two hemispherical mirrors onto a grating spectrometer to
segregate the fluorescence by wavelength and this spectral signal is
recorded by an 8-channel photomultiplier tube (PMT). The maximum
strobe rate of the xenon flashlamp is approximately 125 Hz, limiting the
maximum acquisition rate. However, this upper limit is rarely
approached in practice so is still sufficient for expected ambient con-
centrations (Crawford et al., 2023).

The fluorescence threshold is defined by the forced trigger (FT) cycle,
where the xenon flashlamp is strobed at 10 Hz in the absence of particles
during a "pump off" phase to determine the optical system background
noise levels. The MBS is run in "forced trigger" mode for 10 s at the start
of each new data file, where a new file is stared every 30,000 particles.
The average of the FT spectral data +7 standard deviations is used to
define the threshold for each channel (referred to as the 7¢ threshold),
which is then subtracted from the acquired data in post processing, and
any negative result are set to zero. The value of 7¢ retains most of the
biofluorescence while rejecting non-biological interfering particles that
are normally weakly fluorescent (Crawford et al., 2023; Savage et al.,
2017). Additionally, the particle must also satisfy the 7c threshold in at
least two channels to be classified as fluorescent to remove false posi-
tives arising from spurious reflections and noise (Crawford et al., 2023;
Konemann et al., 2019).

2.3. Data preparation

A brief summary of the meteorological, trace gas and bioaerosol data
collected in the experiment is shown in Table 1.
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Table 1
Summary of meteorological parameters and trace gas concentration data during
sampling period.

Units Mean Min Max
Bioaerosol Numbers/L 44 0 2050
Relative Humidity (RH) % 69.8 33.5 87.5
Temperature (T) °C 10.4 3.4 18.8
Wind Direction (WD) ° / 0 360
Wind Speed (WS) m/s 3.6 0 17.0
co ppm 191.25 188.51 442.05
NO ppb 1.96 1.32 29.16
NO, ppb 7.81 1.34 29.01
O3 ppb 39.72 14.55 53.72

Meteorological and trace gas data were recorded at 1-min intervals,
single particle bioaerosol counts were averaged over 5-min periods. We
extracted the meteorological and trace gas data corresponding to the
bioaerosol sampling time and merged them with the bioaerosol data.
The merging method was to map the meteorological data corresponding
to the time points of sampling of bioaerosols. Subsequent calculation of
hourly averages for the data was done by vector averaging for wind
direction. The OpenAir package in R was used to produce distribution
polar plots of the various aerosol and trace gas parameters (Carslaw and
Ropkins, 2012).

2.4. Bioaerosol classification method

The Uniform Manifold Approximation and Projection for dimension
reduction (UMAP) was used to classify particulate matter captured by
MBS into more broadly representative BioPM species (Mclnnes et al.,
2018). UMAP downscales and compresses the spectral data and the
CMOS morphological provided by MBS into 2D space and optimises the
results using the training data, constructing a transformed space with a
high degree of spatial separation for each of the classification results.
Since UMAP achieves optimal performance when all input features are
on a similar scale, each parameter was normalized based on its expected
maximum value. The MBS training data used for UMAP were provided
by experiments previously conducted at the ChAMBRe simulation
chamber facility as described in detail by Crawford et al. (2023). The
same analysis structures and procedures were adopted as described by
Crawford et al. (2023) to discriminate bioaerosol classes. The basic
fluorescence criteria for acceptance of MBS single particle data as po-
tential biofluorescent aerosols for subsequent classification required
fluorescence threshold intensity to 1) exceed a the 7c threshold and 2)
exhibit the fluorescence in at least two of the MBS fluorescence
wavebands.

2.5. Generalized Additive Model (GAM)

GAM extends the framework of generalized linear models (GLMs) by
replacing linear predictors with additive smooth functions (Hastie,
2017; Herman and Hastie, 1990). The fundamental formulation follows:

8IEY:)] = Bo + /1(X1) + fo(X2) + fa(X3) + - +fo(Xn) (@)

where g() is the link function; E(y;) denotes the conditional expectation
of the response variable; f, is the intercept; X, is the explanatory vari-
ables; f() is the smooth function.

fa() in GAM is a core tool for defining nonlinear smooth terms for
independent variables, allowing the model to automatically learn
nonlinear relationships through a data-driven approach.

In this experiment, we used the python-based pyGAM package for
model construction (Servén and Brummitt, 2018). Created a
single-factor GAM formula based on Equation (1), which is Equation (2):

8Yi] = Bo + S0x1) + S(x2) + S(x3) + -+ + S(xa) )
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Where Y; is the Processed bioaerosol data; S() is the spline term, which
has a penalty on their 2nd derivative, which encourages the functions to
be smoother (Servén and Brummitt, 2018). x, represents meteorological
and trace gas data been collected. The data itself needs to pass the
variance inflation factor (VIF) test to eliminate multicollinearity before
importing it where the VIF value > 5 would indicate multicollinearity.
The VIF test is done by SPSS (Landau and Everitt, 2003).

2.6. Model development

2.6.1. Box-Cox transform

It was found that the data distribution of the raw bioaerosol data was
right-skewed due to low atmospheric bioaerosol concentrations which
was limited by the instrumental sample volume. We therefore applied
the Box-Cox transformation to the data (Loaiza et al., 2023; Sakia,
1992). To explain the superiority of this data transformation, we illus-
trate it by introducing the Akaike Information Criterion (AIC) where a
smaller AIC value indicates a better model performance (Akaike, 1987).
After testing, the Box-Cox transformed data contributed to smaller AIC
values (—11237 and —10296). Quantile-Quantile plots (QQ-plots) of the
data distribution before and after the Box-Cox transformation, consis-
tent with the Gamma distribution, are provided in the appendix. This is
consistent with the general trend observed in environmental pollution
data, which often follow Poisson or Gamma distributions (Cheng et al.,
2021; Yan et al., 2024).

2.6.2. Model training and evaluation

To ensure robust performance evaluation, the dataset was parti-
tioned using a 5-fold cross-validation scheme (Anguita et al., 2012; dos
Santos et al., 2021). 80 % of the observations (4-fold) were used for
training and 20 % (1-fold) for testing in each iteration. The random state
was set to 42.

For the model training, based on the API pyGAM application manual,
we selected hyperparameters for each spline term, which include
“n_splines” and “lam”. Among these two, “n_splines” indicates the number
of splines to use for the feature function and “lam” indicates the strength
of smoothing penalty (Servén and Brummitt, 2018). The choice of these
two parameters is based on a hyperparameter optimization package
called Optuna, which allows users to search the best hyperparameter
match in the set time period (Akiba et al., 2019).

The evaluation of the model is based on two indicators, mean square
error (MSE) and coefficient of determination (R?). For MSE, the equation

Bounding radius = 20y,,
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can be written as:

MSE= 13" (fx) ~ ) ®)

The lower the MSE value the better model performance (Chai and
Draxler, 2014). The model selection is based on the higher R? value and
lower MSE value.

3. Results and discussion
3.1. UMAP classification results

The classification results based on the UMAP downscaled two-
dimensional map, are shown in Fig. 2. We then defined the boundary
of the transform space for each classification as twice the mean of the
standard deviations of the x, y components, written as 2 &y, in Fig. 2
(right). The training data for the model refer to Crawford et al. (2023),
and we use the same framework here. Based on the labels of the
ChAMBRe training data, the classification results were categorized into
the following categories: “Nettle”, “Bacteria”, “Penicillium”, “Cladospo-
rium”, “Unclassified” and “Non-bacteria bioaerosols” where the “Un-
classified” and “Non-bacteria bioaerosols” were bioaerosol species that
are not precisely defined or potentially strongly fluorescing interferents.

The classification of the fungal kingdom is clear. Both Cladosporium
and Penicillium are in their own transformed space. However, there was a
high degree of convergence in the classification of bacteria. Some were
distinguished as overlapping non-bacteria bioaerosols and bacterial
particles. These conflated particles may be potential fungal particles.
Unclassified particles were linked in three taxonomic spaces, especially
between fungal spaces. A small number of particles located on the right
side of the two-dimensional space during the sampling period were
classified as nettle; the low counts observed is consistent with the start of
the nettle pollen season in southwest England.

Fig. 3 compares the particle fluorescence response and morpholog-
ical parameters between the ambient sample and training data. In the
laboratory samples used as training data, bacteria rarely displayed
fluorescence in the fifth to eighth fluorescence channels, therefore any
particles initially classified as bacteria with fluorescence detected in
channels 5-8 are rejected from the bacteria classification in post pro-
cessing based on the laboratory results of Crawford et al. (2023). After
rejecting this fraction of particles, further examination of the remaining
subset revealed that some particles within the bacterial classification

Bounding radius = 20y,
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Fig. 2. Left: Devon data classification dimension reduce into 2D space. Right: 2D density scatter plot of the Devon data in the transformed space. The radius of the
classification boundary for each category was defined as twice the mean standard deviation of the x and y components of each category 2 &y, .
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Peakmean: ratio of peak to mean CMOS array values; Peakwidth: estimate of the mean width of the array, defined as mid-point between mean and peak values;

Mirror: measure of symmetry between top and bottom half of each array.

showed a fluorescent response in channel 4; based on procedure
described in Crawford et al. (2023), the intensity of fluorescence in
channel 4 (461 nm) should not be greater than that of channel 3 (414
nm) for bacterial particles. An additional filter is applied to the bacterial
subset, where any particles where the intensity of the 4th channel ex-
ceeds that of the 3rd channel are also rejected from the bacterial
classification.

Bacterial particles rejected by post processing were relabelled as
“Non-bacteria bioaerosols”. It maybe that these “Non-bacteria bio-
aerosols” may arise due to optical alignment drift, differences in the
emission characteristics of the detected spores, or as a result of atmo-
spheric or other processing. Generally, the rejected bacterial particles
share characteristic similarities to Penicillium spores, and are likely
misclassified Penicillium or fungal spores with similar characteristics.

According to the UMAP classification results, the most dominant
class was Cladosporium, which accounted for 29.8 % of the total detected
aerosols, followed by Penicillium with 24.1 % of the total detected
aerosols. The fungal spores represented by Cladosporium and Penicillium
together accounted for 54 % of the total. Bacteria is the next most
abundant at 7.5 % contribution to the fluorescent population, while the
lowest was Nettle pollen, at 0.1 %. The remaining “Unclassified” results
accounted for 19.1 % and the “Non-bacteria bioaerosols” class accoun-
ted for 19.3 %. Potential fungal spores were included in the “Non-

bacteria bioaerosols” class, which implies that the actual fraction of
fungal spores is greater than 54 %. These two detected fungi are also
noted in the UK Environment Agency report as the main types of fungi
present on farms (Scaife et al., 2008).

3.2. Temporal and spatial distribution of bioaerosol number
concentrations

Fig. 4 shows the time evolution of the classified data and meteoro-
logical parameters from April 13th to 29th. According to Fig. 4a, prior to
21st April, three bioaerosol classes originated mainly in the direction of
agricultural land. Significant increases in concentration between April
24th and April 27th were seen followed by a gradual decline, main-
taining elevated residual concentrations. The animal house source epi-
sodes clearly overlap with significant concentration enhancements.
Among the fungal spores, the Cladosporium and Penicillium classes have
similar variations. Both fungal spore types showed several peaks in
concentration between April 20th and 27th, with large fluctuations
during April 27th. Similarly, there were more peaks and higher con-
centrations in the direction of the animal house than in the direction of
the farmland. Cladosporium had an average concentration of 3.79 L'! in
the animal house direction and 1.60 L'! in the farmland direction. For
Penicillium, the average concentration was 2.44 L' in the animal house
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Fig. 4. Illustrates temporal variations in atmospheric concentrations of distinct microbial categories recorded between April 13 and 29, 2024. Plot a): hourly rolling
averages of classified fungi; shaded areas indicate farmland sources (southwest) and animal house sources (northeast), respectively; b): box and whisker plot of three
classified bioaerosols concentration comparation between the direction from the farmland and animal house. Whiskers denote the 5th and 95th percentiles; c): the
time series of temperature versus relative humidity; d): the time series of CO (ppm) and Os(ppb); shaded areas indicate farmland sources (southwest) and animal

house sources (northeast), respectively.

direction and 1.52 L! in the farmland direction. This concentration
range is similar to the bioaerosol concentrations observed on agricul-
tural farms by Tarigan et al. (2017). This finding suggests that the
release of bioaerosols is influenced by animal and human activities
within the animal house area. Additionally, the diurnal variation curve
of Cladosporium concentrations shown in Supplementary Fig. S5 does
not align with the expected release timings of these spores, which
typically exhibit high emissions between 11 a.m. and 2 p.m. (St¢palska
and Wotek, 2009). Instead, an increase in emissions is observed between
4 am. and 10 a.m., coinciding with peak worker/animal activity.
Meanwhile, following April 27th, significant livestock behavioral events
were recorded at the station. Bacterial concentrations were observed to
be relatively low with initially little variability. Similarly, April 21st the
animal house direction showed a larger peak. Further comparing the
concentration values of the two sources, as shown in the box plot in
Fig. 4b, all three classified bioaerosol classes exhibit higher median
values in the animal house sector. Previous studies have reported that
90 % of emitted particulates associated with animal husbandry are in the
form of bioaerosols, the main sources of which include feed, litter, and
excreta, with bacterial components including Salmonella, Staphylo-
coccus, E.coil etc. (Gohel et al., 2024). It is reasonable to assume that
these feeding-related products and biowaste are likely to have produced
the main bacterial species detected downwind of the animal house by
the MBS. Changes in meteorological parameters show periodicity. Pre-
liminary analysis shows that the bioaerosol concentration increases
during the time periods when the temperature has increased. Fig. 4d
shows the curves for ozone and CO, with a significant peak in CO on 18

April, which could be instrumental calibration or artificial disturbance.

The spatial distribution of the concentrations of the main bioaerosol
classes are shown in Fig. 5. The polar plots for the two main bioaerosol
species, Cladosporium and Penicillium, both show clear areas of high
concentrations in the northeast, while Bacteria, although less concen-
trated overall relative to the other two fungal species, were also a strong
source in the northeast. However, the Cladosporium and Penicillium
classes also exhibit sources to the southwest with a much stronger Cla-
dosporium source appearing at higher wind speed, in particular, bio-
aerosol emissions are strongest at wind speeds of 5-15 m/s. Overall, all
three bioaerosols shared a common point source of emissions in the
direction of the northeastern animal house, and all were detected
diffusing downwind. However, the transport distance of the emissions
cannot be determined.

3.3. Single-factor modeling of bioaerosols and environmental variables

3.3.1. Spearman analysis

Fig. 6 shows the Spearman’s correlation coefficient analysis results,
which can determine the possible correlation between selected bio-
aerosol classes, in this case fungal spores, meteorological parameters
and trace gases were the focus of the analysis. Between the meteoro-
logical parameters, relative humidity (RH) was positively correlated
with fungal spores, and temperature (T), wind speed (WS), and wind
direction (WD) were all negatively correlated. The statistical signifi-
cance of all meteorological parameters were less than 0.001. Among the
range of trace gases measured, CO, NO and NO; showed positive
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Spearman correlation coefficients. However, the correlation for NO, was
not significant. O3 showed a significant negative Spearman’s coefficient.

Among the trace gases, the nitrogen dioxide, NO; P value was larger
than 0.05, but could not pass the significance test. The nitric oxide, NO,
Spearman value was relatively close to 0. After comprehensive analysis
it was decided to that these three variables were not significant in this
particular data set. Prior to introducing the remaining variables to the
GAM model, it was necessary to test for the presence of multicollinearity
between the individual predictor parameters. Multicollinearity affects
the fitting performance of the model and can be judged by the VIF value.
Through testing, RH, T, WD, WS, CO and O3 VIF values were all less than
5, indicating they can be used in the GAM regression model.

3.3.2. GAM and SHAP analysis

When using UMAP classified fungal spore concentrations as response
variables, the explanatory variables include RH, T (°C), WD, WS, CO
(ppm) and O3 (ppb). In the single factor model, the R? value for Penicil-
lium and Cladosporium on the test set were 0.36 and 0.34, and MSE were
0.005 and 0.006. The partial dependence plot (PDP), was then used
which shows the marginal effect of the different features on the model
predictive outcomes (Friedman, 2001). The result for two different
fungal spore species acts with each response parameter in the model is
shown in Fig. 7.

For Penicillium, Relative Humidity (RH) (Edof = 17.1, P < 0.001),
trends show an increase in fungal concentrations at high humidity.
Temperature (Edof = 20.7, P < 0.001) showed two peaks, which were
between 6 °C and 10 °C and greater than 15 °C. Overall, Penicillium
concentrations increased with increasing temperature. Source location,
based on wind direction (WD) and wind speed (WS) (Edof = 16, P <
0.001; Edof = 18.7), matched the results shown in the polar map. Most
of the Penicillium particles were found to be concentrated within wind
directions 0-90° indicating they were significantly influenced by the
proximity of animal housing, and with increased wind speeds, showing a
significant positive response, particularly for wind speeds greater than
10 m/s. Carbon monoxide (CO) (Edof = 9, P < 0.001) and Ozone (O3)
(Edof = 25.8, P < 0.001) concentrations showed a non-linear response,
where the positive effects of CO and O3 on fungal spore concentrations
diminished with increasing concentration.

For Cladosporium, Relative Humidity (RH) (Edof = 23.2, P < 0.001)
showed a similar trend to Penicillium. However, concentrations of Cla-
dosporium spores were more readily observed when RH was less than 50
%. Temperature (Edof = 12.6, P < 0.001) curves, in contrast, showed
that Cladosporium was more inactive at lower temperatures (<8 °C)
relative to Penicillium, whereas the positive effect was more pronounced
at greater than 16 °C. Wind direction and wind speed (Edof = 11.5, P <
0.001; Edof = 7.1, P < 0.001) showed the source location for these
particles was mainly from the animal house area. Meanwhile, the
highest contribution to the particle concentrations were observed in the
WS range 15-17 m/s. Carbon monoxide (Edof = 10.2, P < 0.001) and
Ozone (Edof = 3.7, P < 0.001) have similar pattern as Penicillium,
especially for O3 which will be discussed in more detail below.

The overall model predictions are significant, However, the R?
metrics are not high due to the size of the database, but the model results
reproduce the observed patterns well. The results are consistent with
both Penicillium and Cladosporium spores being produced in humid
conditions and released passively, which means that higher wind speed
and lower RH would favour their release after a period of high humidity.
Typically, these conditions occur during a night and day cycle.

The specific contribution of each parameter to the variation of the
GAM model can be visualised by the SHapley Additive exPlanations
(SHAP) values (Lundberg and Lee, 2017). The magnitude of the effect of
each parameter can be quantified by the absolute SHAP value. Fig. 8
displays the ranked impacts of each parameter on two fungal spore
concentrations.

Our analysis shows that for both fungal spores, Os is the most
important model parameter associated with changes in Cladosporium
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and Penicillium concentrations. We used the model to capture the fact
that at a lower ozone concentration window (35-50 ppb), increases in
ozone concentration can still negatively affect fungal spore release. This
concentration window corresponds to common atmospheric ozone
concentrations in many non-urban ecosystems, e.g. average ozone
concentrations around 35 ppb in rural central England (Derwent et al.,
2010). In Supplementary Fig. S5, the diurnal variation curves of the two
bioaerosols exhibit high emissions during the early morning and evening
hours, with relatively low emissions at midday and in the afternoon. In
contrast, the diurnal variation of ozone shows the opposite pattern.
Additionally, it has been observed that in different wind sectors,
particularly in the direction of agricultural fields, there is a lag of
approximately 1-1.5 h following bioaerosol emissions. This conclusion
can be extended to a more environmentally representative range of
concentrations, suggesting that higher atmospheric ozone concentra-
tions may act as a proxy indicator for fungal spore release mechanisms.
Despite the lack of exploration of the possible mechanisms of direct or
ozone proxy related emission mechanisms in natural bioaerosol envi-
ronments, these results suggest a novel detailed approach for future
environmental studies. Previous studies on ozone related bioaerosol
responses have been limited. In a controlled laboratory environment,
Korzun et al. (2008) explored the impact of ozone on Cladosporium spp.
Their findings revealed that exposure to very high ozone concentrations
ranging from 11 to 12 ppm significantly compromised the survival of
Cladosporium spp. The extent of conidial viability reduction was directly
proportional to the duration of ozone exposure. Wen et al. (2020)
compared the total nitrogen (TN) content in a suspension of fungal
spores after ozone inactivation and found that the TN content in the
suspension increased after 10 min of ozone application, demonstrating
that ozone disrupts cellular integrity. In outdoor urban environments,
Yang et al. (2024) noted that during high ozone episodes (HO episodes,
ozone concentration: 102.3 + 66.2 pg m), a significant negative cor-
relation was found between ozone concentrations and total airborne
microbe (TAM) concentrations and that most of the bioaerosols were in
the form of fine particles (<2.1 pm). Mechanistically, ozone destroys
microbial DNA as well as cellular structure, and research has shown that
the structure of atmospheric Gram-negative bacterial communities can
be regulated by atmospheric ozone concentrations (Wang et al., 2020;
Xu et al., 2017). Based on this, some studies have applied ozone as a
method of suppressing fungal hazards in livestock houses. A study of
dairy farms in the province of Giza found that fumigation at 80 ppm
ozone for 10 min or 20 and 40 ppm for 20 min significantly inhibited the
growth of fungi and bacteria and was more economical and efficient
technique than traditional antimicrobials (Hassan et al., 2017). Despite
the consistency between the modelled and laboratory analyses of ozone
impacts, it is still important to consider that there may be some ‘noise’ in
the correlations, as concentrations of background airborne spores
arriving from more distant windward sources may be released from 1 h
to several days earlier than the sample time under different conditions
(Hirst et al., 1967). Further assessment of the effect of ozone on fungal
spore release and transport will requires additional measurements to
identify sources within the animal house.

CO ranked fourth in the Penicillium model and third in the Clado-
sporium model, and it is worth noting that CO has a negative effect on
Penicillium concentration and more positive feedback on Cladosporium
concentration. Interpretation of this phenomenon requires caution and
may be due to synergistic effects of carbon monoxide with other trace
gases or as a potential CO, transformation pathway affecting fungal
activity, or simply an artifact of effects such as wind speed. It has been
observed that under CO, enrichment conditions, the involvement of
ozone affects the enzymatic activity of fungal spores, which could also
be one of the underlying causes (Chung et al., 2006). However, we still
cannot confirm with this data set whether CO will influence the con-
centration of fungal spores in the atmosphere.

To further investigate the links between environmental variables and
bioaerosol concentrations, Fig. 9 shows the orthogonal distance
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Fig. 8. Shap analysis of influential factors.

regression (ODR) analysis between the two fungal spores, from the di-
rection of the animal house and the farmland, respectively, and the
environmental parameters.

For Penicillium and Cladosporium, the deviation of the fit between the
data points and meteorological data in the direction of the animal house
was small, whereas the deviation of the fit in the direction of the
farmland was large. Notably, for Cladosporium, relative humidity had a
positive effect on the concentration, especially at RH of 75 % or more,
which was particularly noticeable in the direction of the animal house.
The release pattern of Cladosporium is confirmed by most studies to be
inhibited at high relative humidity (Almeida et al., 2018; Grinn-Gofron
et al., 2019). The opposite trend in the present study may be due to 1)
Higher relative temperatures (and therefore lower RH) in the animal
house compared to the outdoor area, and greater release of Cladosporium
at higher temperatures; 2) Insect activities in the animal house, as well
as feed, straw mattresses, and faeces, may also be potential sources
(Breitenbach and Simon-Nobbe, 2002; Nicoletti et al., 2024).

According to Tang et al. (2015), alternating cycles of high (97 %) and
low relative humidity, where the low RH is below a critical threshold
between 11 % and 43 %, can effectively inhibit the growth of Clado-
sporium. Therefore, introducing controlled fluctuations in relative
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humidity—such as through dehumidification and improved ven-
tilation—may serve as a practical approach to suppress fungal prolif-
eration in indoor environments like animal housing.

3.4. Implications for bioaerosol impacts and management

This study is the first to conduct real-time monitoring of bioaerosol
concentrations within a single animal housing and the surrounding
farmland area in the UK, generating a unique dataset on bioaerosol
emission concentrations caused by animal activity behaviour. Machine
learning methods were employed to classify the monitored bioaerosols,
yielding reliable high time resolution results, which saved time and
reduced labour costs as compared to offline methods. Additionally, the
study captured the impact of various environmental variables on bio-
aerosol concentration changes under natural conditions.

Regarding the two primary bioaerosols, Cladosporium and Penicil-
lium, their small particle size facilitates deposition in the upper respi-
ratory tract of farm workers and livestock, potentially causing a range of
allergic reactions and pulmonary diseases (Bamotra et al., 2025; Cal-
deron-Ezquerro et al., 2025). In statistical studies in the UK and Europe,
Cladosporium has been shown to cause a high allergy risk at airborne
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fitted curve.

concentrations above 3000 spores per cubic metre (Breitenbach and
Simon-Nobbe, 2002; Sadys et al., 2016). Allergic reactions caused by
Cladosporium are predominantly nasal congestion, which can lead to
sinusitis and upper respiratory tract infections (Bamotra et al., 2025;
Weryszko-Chmielewska et al., 2018). Penicillium, on the other hand, has
been found to cause epidermal infections of the skin and nails, especially
in immunocompromised individuals (Egbuta et al., 2017). Furthermore,
when exposed to certain temperatures and humidity, filamentous fungi
such as Penicillium can produce mycotoxins that are not only harmful to
human health, but can also lead to hormonal disruption, immunosup-
pression and even death of livestock in animal houses (Brown et al.,
2012; Egbuta et al., 2017; Richard, 2007).

The control of bioaerosols from an environmental management point
of view is therefore crucial, especially in indoor closed environments
such as animal houses. Filtration is a widely used method to capture and
remove airborne bioaerosols through collision by varying the filter
material, pore size and air flow rate (Liu et al., 2017). Combining the
appropriate growth temperature and relative humidity thresholds for
the target bioaerosol and suppressing the emission of the corresponding
bioaerosol by changing the temperature and humidity. Ozone as a strong
oxidising agent has a strong effect on reducing bacteria, fungi, spores
etc. production, but at the same time it can cause irritation to the res-
piratory tract of humans or animals (Song et al., 2022). The current use
of ozone for disinfection must be in a controlled environment because
the effective disinfection concentration exceeds the recommended
safety threshold (Lu et al., 2025). However, this study found that at
lower ozone concentrations there may also be negative effects on certain
bioaerosol emissions, providing insights for the future development of
low-concentration ozone inactivation technologies.
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3.5. Limitations

In this experiment, based on the work by Crawford et al. (2023), the
post processing used to classify between airborne fungi and bacteria was
further refined by setting the bacterial filter threshold for the fluores-
cence channels 5-8 and restricting modal fluorescence reduced the
conflation pathway and showed good classification results. The 2D
classification space presented by the UMAP classifier may however not
contain all hotspot counts when using twice the standard deviation as
the classification boundary and will be examined in future studies.
Meanwhile, other frequently occurring allergy-causing fungi such as
Aspergillus and Basidiomycetes were not included due to the lack of
spectral and morphological training data. This dataset can be
re-investigated with updated classifiers following further laboratory
experiments.

Secondly, due to the limited duration of the database, interpretation
of some variables using GAM may result in high complexity and un-
certainty in interpretation. Temperature and RH did not change signif-
icantly during the sampling period, and there were no significant
weather events such as precipitation, which may have enhanced or
mitigated certain bioaerosol emissions. Therefore, the model may need
to be retrained under a wider range of weather conditions to fully cap-
ture the T, RH responses. At the same time, there is still space to improve
the fitting accuracy of the model due to the low concentration of bio-
aerosols in the natural environment and the limitations of the current
real-time measurement instruments (An et al., 2024; Santl-Temkiv et al.,
2020).

Thirdly, a potential improvement of this study would be to continue
cross-season sampling with supporting offline reference measurements
(e.g., Hirst sport trap) to better reflect the seasonal universality of bio-
aerosols. With seasonal changes, changes in relative humidity and
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temperature can also affect the release of bioaerosols and their con-
centration in the air. For indoor animal housing environments, the
tendency to close doors/windows to keep animals warm as temperatures
drop in autumn and winter, this behavior may lead to an accumulation
of bioaerosol concentrations indoors, causing health impacts for workers
and livestock. (Anderson et al., 2016).

4. Conclusions

In agricultural environments—particularly during the planning and
operation of livestock housing systems—it is essential to implement
effective protective measures to mitigate farm workers and nearby in-
habitants’ exposure to bioaerosols. A key step toward this goal is the
identification of bioaerosol sources and a better understanding of their
emission patterns and airborne concentrations. The main findings are
summarized as follows.

(1) Bioaerosol particles at the NWFP station were detected mainly
from the Northeast and south-west sectors, and high-intensity
point sources were clearly identified. The north-eastern sector
was in the direction of animal houses while the south-western
sector consisted mainly of farmlands. And the peak changes in
bioaerosol concentrations monitored in real time coincide with
the timing of animal behaviour recorded at the site. Cladosporium
and Penicillium animal house sources mean concentration were
2.37 times and 1.61 times farmland sources, respectively.
Bioaerosols appear to be generated from mainly local source
emissions compared to other wind sectors. The temporal trend
showed a peak on the second day of measurement and several
smaller peaks at intervals in the following days, but these dissi-
pated quickly showing an overall decreasing trend. This is likely
due to specific agricultural activities and or animal activities. At
the same time, the dispersion can be seen downwind of the point
source of the animal house, but the dispersion distance is
uncertain.

For bioaerosols, our model is able to reproduce the observation
that bioaerosol releases are low at low ozone concentration levels
within this study environment. This finding is informative for
improving future real-time bioaerosol emission modelling appli-
cations. However, there is still a lack of monitoring of the
response of bioaerosols to real-time variations with respect to
relevant meteorological drivers and atmospheric trace gases
within different ecosystems. It may also suggest the possibility of
using ambient ozone concentrations to inform future laboratory
studies for investigating potential mechanisms on the effect on
bioaerosols in this concentration window. However, it also needs
to be considered an uncertainty that there may be a negative
correlation effect due to a reduction in turbulence, an increase in
atmospheric concentrations of mixed ozone and a decrease in
emissions of source fungal spores. This uncertainty is of interest
to inform further research into these parameters.

(2

—

(3)

Overall, from a bioaerosol regulatory perspective, it is important to
strengthen monitoring around and downwind of agricultural facilities.
From a pollution control perspective, the possibility of applying
temperature-humidity regulation mechanism, and ozone sterilisation
within safe concentration thresholds for livestock houses cleaning could
be discussed. Future research will focus on 1) improvement of bioaerosol
classification techniques; 2) increasing routine real-time monitoring to
improve sampling periods to observe the effects of a wider range of
meteorological drivers on bioaerosols; 3) Study of general patterns and
relationships between bioaerosol releases and target trace gases in
conjunction with laboratory controlled variable experiments. These
works can further help to accurately classify bioaerosols and improve
the existing instrument technology to gain more in-depth insights into
the general laws of bioaerosol emissions.
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