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Group 15 pre-emergent
herbicides differentially affect
plant growth, cuticular wax
composition, and fatty acid
metabolism in blackgrass
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Richard P. Haslam®, Frédéric Beaudoin®
and Dana R. MacGregor™

tRothamsted Research, Harpenden, United Kingdom, 2Gowan Crop Protection Ltd,
Harpenden, United Kingdom

Pre-emergent herbicides are essential tools in weed management, yet for some,
we lack a molecular-level understanding of how they work. Here, we investigated
how three Group 15 pre-emergent herbicides - flufenacet, S-ethyl
dipropylthiocarbamate (EPTC), and tri-allate - affected growth and biochemical
responses of two blackgrass (Alopecurus myosuroides) biotypes. Using a sterile,
agar-based system, we quantified early seedling growth across a range of
herbicide concentrations. ED4q doses defined from these (60 nM for flufenacet
on shoots, 90 mM for flufenacet on roots, 600 nM for EPTC, and 6 uM for tri-
allate) were used to assess the herbicides’ effects on cuticular wax composition
and fatty acid metabolism using two biotypes: herbicide-sensitive “Rothamsted”,
and “Peldon” which has well-characterized metabolic herbicide resistance.
Flufenacet and tri-allate both-werg less effective on Peldon. At the ED40 dose,
EPTC was less effective on Rothamsted. Flufenacet inhibited both shoot and root
growth. Tri-allate and EPTC inhibited shoot growth but had no significant effect
on root growth. As expected for Group 15 herbicides, total shoot wax content
was affected by EPTC (Peldon -32% and Rothamsted -20%), flufenacet (Peldon
-13% and Rothamsted -48%) and tri-allate (Peldon -10% and Rothamsted -32%)
as were many of the compounds with chain lengths >C26. Unexpectedly, many
of the C14-C26 species measured were altered in tri-allate, e.g. shoot a-linolenic
acid was reduced by 80% and 93% in Peldon and Rothamsted, respectively.
Together, these results reveal Group 15 pre-emergent herbicides cause distinct,
biotype- and organ-specific actions and suggest they have different target(s)
in planta.

KEYWORDS

pre-emergent herbicides, blackgrass (Alopecurus myosuroides), group 15 herbicides,
fatty acid metabolism, cuticular wax composition
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Introduction

Herbicides are essential tools for managing weeds in
agricultural systems. They are classified by the Herbicide
Resistance Action Committee (HRAC) based on factors such as
chemical structure, mode of action (MoA), timing of application,
and target weed species (HRAC, 2024). This classification system is
widely used by growers as rotating or mixing herbicides from
different classes is shown to improve control efficacy and reduce
selection pressure for resistance. Indeed, proper stewardship and
integrated weed management practices are particularly important as
the repeated use of the same herbicide or herbicides with a similar
MoA can lead to the selection of herbicide-resistant weed
populations (Hicks et al., 2018; Comont et al., 2019, 2020).

In 2020, HRAC updated the MoA classification system and
transitioned from letter to number MoA codes (Liebl et al., 2020).
The system was further updated in 2024 (Lerchl et al., 2024). As part
of this update, herbicides previously within Groups N (“Lipid
synthesis inhibition (not ACCase)”), Z (“Unknown mode of
action”), and K3 (“Inhibition of cell division (inhibition of
VLCFAs)”) were reclassified into Group 15 (HRAC, 2010, 2024;
Liebl et al., 2020). Group 15 herbicides are suspected to act in the
“Inhibition of Very Long-Chain Fatty Acid Synthesis (VLCFA)”
(HRAC, 2024) where VLCFAs are fatty acids that contain more
than 18 carbon atoms. VLCFA-inhibitors are characterized by 1)
inducing phenotypes resembling those of elongase mutants
(Lechelt-Kunze et al., 2003) and 2) ability to kill plants by
disrupting the composition and abundance of VLCFAs in waxes,
phospholipids, and sphingolipids, which are essential for plant
viability (Bach and Faure, 2010). Data from Gronwald (1991)
suggest that while the thiocarbamates (e.g. EPTC and triallate)
inhibit acyl-CoA elongases associated with the endoplasmic
reticulum, Group 15 chloroacetamides (e.g. alachlor, metolachlor,
acetochlor) may also inhibit fatty acid desaturases located in the
chloroplast envelope. In line with this hypothesis, Beffa et al. (2024)
proposed that, unlike most herbicide groups that inhibit a single
enzyme, Group 15 herbicides may act via multiple enzymes or
pathways in the VLCFA biosynthetic pathway. The outputs of this
complex biosynthetic pathway that requires multiple enzymes and
enzyme complexes and is compartmentalized within the cell are
essential for plant life as described more fully below.

Several studies support the view that Group 15 herbicides affect
the VLCFA biosynthesis pathway. For instance, changes in
composition and content of wax, cuticular lipids, and foliar fatty
acid and hydrocarbons content are directly correlated with the rate
of application of EPTC (S-ethyl dipropylthiocarbamate) (Gentner,
1966). Additionally, flufenacet (N-(4-fluorophenyl)-N-(propan-2-
yD)-2-{[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl] oxy} acetamide)
inhibits VLCFA elongation and alters lipid profiles in
heterologous yeast systems expressing Arabidopsis or other plant
3-KETOACYL-COA SYNTHASEs (KCS) enzymes (Le Ruyet et al.,
2025; Trenkamp et al, 2004). By contrast, tri-allate (S-2,3,3-
trichloroallyl di-isopropylthiocarbamate) did not affect elongases
in the heterologous system (Trenkamp et al., 2004), although it
reduced fatty acid levels in susceptible wild oat populations,
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presumably by acting on fatty acid synthase (FAS) (Rashid
et al., 1997).

Blackgrass (Alopecurus myosuroides), the most problematic
weed in UK cereal systems, presents an ideal and agronomically
relevant context system to study Group 15 herbicide responses. All
three herbicides, flufenacet (Diicker et al., 2020, 2019), EPTC (Fryer
and Makepeace, 1978), and tri-allate (Allison, 2024), are applied
pre-emergence to control blackgrass (Lainsbury, 2024). Blackgrass
populations exhibit rapid adaptation, multiple-herbicide resistance,
and enhanced metabolism traits (Comont et al., 2022), traits that
collectively cause serious yield losses and generate management
challenges (Varah et al,, 2020). Although Group 15 resistance has
been reported in Germany and Sweden (Heap, 2024), little is known
about blackgrass’s response(s) to our selected Group 15 herbicides.
Here, we focused on two well-characterized blackgrass biotypes that
have been selected to exhibit archetype phenotypes: either
“Sensitive” (Rothamsted) or “Non-target Site Resistance (NTSR)”
conferred by enhanced metabolism (Peldon) from (Mellado-
Sanchez et al,, 2020). We are beginning to gain an understanding
of the range of molecular mechanisms that underpin various weedy
traits in these populations (Fu et al., 2023; Harrison et al., 2024; Cai
et al., 2023), but their responses to Group 15 herbicides
are unreported.

Therefore, to fill the knowledge gap identified by Beffa et al.
(2024) additional data that determine which Group 15 herbicides
have the same or similar effects on the VLCFA biosynthetic pathway
are needed. It is important to do these experiments in relevant
plants, preferably agricultural weeds, as metabolic differences in the
yeast system limit the capacity to gain mechanistic insights into the
effects of herbicides on VLFCA biosynthesis. For example yeast uses
type I cytosolic FAS rather than the type II plastidial FAS system
used by plants (Giinenc et al., 2022). Furthermore, several
Arabidopsis KCSs that are active in planta are inactive in yeast,
likely due to missing cofactors (Batsale et al., 2023). Most relevant
here, tri-allate’s proto-herbicidal form requires metabolic activation
in planta, which is unlike to occur in yeast (Schuphan and Casida,
1979). As far as we are aware there are no data showing that EPTC
has been tested in these systems. Mechanistic studies conducted in
Arabidopsis or model species are informative, e.g. in Arabidopsis
flufenacet inhibits cytokinesis and mimics elongase (Lechelt-Kunze
etal., 2003; Bach et al., 2011), however, Arabidopsis lacks KCS10, an
enzyme involved in condensing C22-C24 VLCFAs (Venegas-
Caleron et al., 2007; Batsale et al., 2023). Moreover, without
biochemical evidence, attributing decreased VLCFAs to direct
inhibition of elongase activity is misleading, because in plants the
substrate pools that make VLCFAs depend on both plastidial and
mitochondrial metabolism (i.e. the acyl-CoA and malonyl CoA
pools respectively). Therefore, existing data may not transfer
directly to agriculturally relevant weeds.

Fatty acid (FA) biosynthesis in plants is compartmentalized,
with de novo synthesis of C16 and C18 fatty acids occurring in
plastids and subsequent elongation to VLCFAs in the endoplasmic
reticulum (ER). These processes have been studied in detail in plant
and other organisms and have been reviewed extensively (Batsale
et al., 2021; Li-Beisson et al., 2013; Ohlrogge and Jaworski, 1997;
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Harwood, 2005; Giinenc et al, 2022). VLCFA biosynthesis is
catalyzed by the fatty acid elongase (FAE) complex, and involves
four sequential enzymes, including KCSs, which determine chain-
length specificity (Haslam and Kunst, 2013; Kunst and Samuels,
2009). These VLCFAs are incorporated into membrane
phospholipids, sphingolipids, suberin and cuticular waxes,
contributing to essential structural and physiological functions.
Likewise, the current understanding of VLCFA-inhibiting
herbicides have been reviewed recently by Jhala et al. (2024).
While there is evidence that some Group 15 herbicides, including
a thiocarbamate, inhibit KCS activity in yeast (Le Ruyet et al., 2025),
as we argue above, not all (e.g. tri-allate and EPTC) have been
adequately tested and it is possible that some of these compounds
have a more complex mode of action with multiple enzyme targets
(Beffa et al., 2024). Therefore, it is necessary to consider plant cell
metabolism at a larger scale considering that differences in
physiological status and metabolic pathways between tissues and
organs may also result in difference in sensitivity to
specific compounds.

To clarify the distinct and potentially multifaceted modes of
action of Group 15 herbicides in an agriculturally relevant weed
species, we assessed physiological and biochemical responses in
blackgrass following exposure to flufenacet, EPTC, and tri-allate
under sterile, controlled conditions. These analyses focused on
plant growth, wax content, and FA composition across two
contrasting blackgrass biotypes: Rothamsted (sensitive) and
Peldon (NTSR via enhanced metabolism). By directly comparing
herbicide effects on shoot and root development and lipid profiles,
our study aimed to resolve whether these herbicides operate via
shared or distinct mechanisms and whether biotype-specific traits
influence sensitivity.

Materials and methods
Alopecurus myosuroides biotypes

The processes used to generate the “purified populations” are
fully described in Mellado-Sanchez et al. (2020). In short, the seed
lines were selected specifically to robustly exhibit “Herbicide
Sensitive” or “NTSR-only Resistance” phenotypes. The resistant
population (Peldon) were derived from individuals originally
collected by (Moss, 1990), but selected to exhibit strong NTSR
herbicide resistance against acetyl-coenzyme A carboxylase
(ACCase)-inhibiting herbicide (fenoxaprop) while carrying the
wild-type alleles of all known TSR mutations for acetolactate
synthase (ALS) or ACCase. The herbicide-sensitive population
(Rothamsted) were derived from clones of plants that were tested
to be completely sensitive to a panel of herbicides from individuals
originally collected from the herbicide-free section of Broadbalk
(Moss et al., 2004).
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Seed sterilization and media preparation

Surface sterilization of blackgrass seed was performed following
an adapted version of the method from Speakman and Kriiger
(1983). Seeds were soaked in Terramycin (10 ppm) for 20 hours on
a rotator in the dark, rinsed, and then treated with AgNO; (0.1%)
and NaCl (0.5%) solutions before final rinses with sterile water.

For media preparation, Hoagland’s No. 2 Basal Salt Mixture
(H2395-10L, Merck) was mixed with Ultrapure Milli-Q water to
create a 0.85X solution, the pH was adjusted to 7.0 with 1IN KOH
and Agar was added for a final concentration of 0.7%. This mixture
was then autoclaved for 15 minutes at 121 °C. Herbicides were
added once the media had cooled to ~55 °C at appropriate volumes
to obtain the doses required. The herbicide formulations tested in
this study included Avadex 480 (480 g/l tri-allate), Eptam (800 g/1
EPTC), and Sunfire (500 g/l flufenacet). 140 mL media without
(control) or with the herbicide (treatment) was added to each
labelled sterile container (E1674.0001 DUCHEFA 0S140,
Melford). Sterilized seed were then placed on the surface of the
solidified agar.

Plant growth conditions and sampling
procedure

For testing responses to different herbicide doses, 10-12
sterilized seeds were spaced out on the prepared agar media and
grown under controlled conditions in a Controlled Environment
Chamber (17 °C/11 °C with 16 hours of light at 220 pmol m™ s™)
for two weeks. Three dose-response curves were generated for each
herbicide to narrow down the relevant range (See Figure 1;
Supplementary Figure 1). The differences in herbicide doses
required to induce these changes in our agar-based system (e.g.
Figure 1) reflect the differences in recommended field rate use for
these herbicides; e.g. recommended rates for field use of tri-allate
are approximately 10X that of flufenacet (2250 g tri-allate/ha
compared to 240 g flufenacet/ha (Lainsbury, 2024).

Each dose-response series was completed as a separate
experimental run. For each herbicide dose, there were three
replica containers. After two weeks, each seedling was gently
removed from its container with forceps and laid between two
sheets of acetate. Each row between the acetate sheets corresponds
to a biological replicate (a single container of 10-12 seedlings). The
acetate-mounted seedling rows were scanned using a flatbed
scanner (with white and black background contrast). Image
analysis was conducted in Image] measuring the length of each
plant’s root and shoot separately.

For the material used in lipid analysis, referred to as “single-
dose experiments”, an increased number of 18-20 seeds were grown
under the same controlled conditions. Each single-dose experiment
for a given herbicide (EPTC, tri-allate, or flufenacet) was conducted
as a separate experimental run, with treated and control samples
grown and processed concurrently. Application of the herbicides
were conducted in independent runs at different times. From each
single-dose experiment, one replicate set (three biological replicates
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FIGURE 1

Example curves illustrating the different effects of the pre-emergent herbicides on the two blackgrass biotypes on shoots and roots. Average lengths
relative to the biotype control + standard error for (A, B) EPTC; (C, D) tri-allate; and (E, F) flufenacet. Statistical analyses for these data are presented

in Supplementary Tables 1, 2.
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each of control and treated containers) was used to verify that the
ED40 dose achieved the expected growth inhibition. The remaining
three replicate sets (nine control containers and nine herbicide-
treated containers total) were used for lipid extraction and analysis.
Seedlings from these were carefully removed from the container,
and then, using sterilized scissors, roots and shoots were separated
from the seed and placed into a pre-weighed glass tube. One tube
contained root or shoot material from one biological replicate (one
container). After adding the material, the tubes were reweighed to
determine the fresh weight, then freeze-dried overnight and sealed
for storage.

Herbicide dose response testing, ED40
identification and analysis

Image] was used to quantify root and shoot lengths from
scanned images that included a reference ruler. The data were
analyzed in Excel to calculate growth means and standard errors.
For each treatment replicate, the measured length was divided by
the average length of the corresponding control group replicates
from the same experimental batch. This normalization step
expressed the data as a ratio relative to the control mean,
centering the control values at 1.0. Therefore, treatment values
greater than 1.0 indicate increased growth compared to control,
while values less than 1.0 represent growth inhibition relative to the
untreated state.

Response data were visualized in Excel, and normalized data
were used to identify the herbicide and dose resulting in
approximately 40% growth inhibition (ED40) by interpolation
from dose-response curves. ED40 doses were established through
this dose-response analysis and validated in an independent
replicate series grown in parallel under identical conditions before
proceeding with biochemical sampling. This approximate effective
dose was chosen as the target dose for herbicide treatments to
ensure sufficient plant tissue, especially root tissue, would be
available for subsequent analyses while still inducing an herbicidal
effect on plant growth.

EPTC was tested across three dose-response series (test 1: 0,
0.50, 1.00, 5.00, 10.0 uM; test 2: 0, 0.25, 0.50, 1.00, 2.50 uM; test 3: 0,
0.20, 0.40, 0.80, 1.00 uM) and a single dose at 0.60 uM with a
control. Tri-allate received similar testing across three dose-
response series (test 1: 0, 0.50, 1.00, 5.00, 10.0 uM; test 2: 0, 5.00,
10.0, 25.0, 50.0 uM; test 3: 0, 2.00, 4.00, 8.00, 15.0 uM) and a single
dose at 6.00 UM with control. Flufenacet was assessed across three
dose-response series spanning broader concentration ranges (test 1:
0, 0.10, 10.0, 100.0, 1000 pM; test 2: 0, 50.0, 100, 250, 500 nM; test 3:
0, 60.0, 120, 180, 240 nM) with two single doses at 60 nM and 90
nM with controls.

Wax extraction and analysis by GC-FID/MS

Freeze-dried shoot and root samples were immersed for 60
seconds in 10 mL of chloroform containing 10 mM of docosane
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(C22 alkane) and eicosanol (C20 primary fatty alcohol) as Internal
Standards (IS) to extract surface lipids. Chloroform extracts were
transferred to a clean glass tube and evaporated under nitrogen.
Samples were derivatized in 100 pL of N,O-bis(trimethylsilyl)
trifluoroacetamide): trimethylchlorosilane (99:1; BSTFA/TMS) at
85 °C for 1 hour. Surplus BSTFA-TMCS was evaporated under N2
gas, and the samples dissolved in 200 pL of hexane and transferred
to a glass vial. Compounds are identified using a Mass Spectrometer
(MS) and quantified using a flame-ionization detector (FID). 1 mL
of silylated samples was analyzed by GC using a 30 m, 0.25-mm,
0.25 mm HP-1MS capillary column with helium as the carrier gas
using the following method: spitless injection, inlet and detector
temperatures were set at 325 °C, constant flow rate of 1.5 ml/min,
the oven start temperature was set at 50 °C and held for 1 min then
increased to 325 °C at a rate of 7 °C/min and the final temperature
was held at 325 °C for 15 min. Quantification is based on flame
ionization detector peak areas and an internal molecular standard.
The total amount of cuticular wax is expressed per unit of fresh
weight (FW).

Lipid extraction, fatty acid methyl ester,
analysis by GC-FID

Lipids were extracted from an average of 39.4 mg of leaf or an
average of 35.6 mg root material (for sample weights see relevant
extraction data file). Glassware was used throughout the procedure.
The samples and 1 ml of isopropanol were incubated at 75 °C for 20
minutes. Subsequently, 2 mL of chloroform/methanol (2:1) and 0.7
mL of water were added. After 30 seconds of vortexing, an
additional 2 mL of chloroform/water (1:1) was added. The
mixture was centrifuged for 3 minutes at 500 g, and the lower
chloroform phase was gently transferred to a new tube. Lipids were
extracted by adding 1 mL of chloroform to the first tube, repeating
the centrifugation, and recovering the lower phase. Both extractions
were combined. The chloroform was evaporated using N, gas while
keeping the sample in a 37°C block. Once all the solvent was
evaporated, the lipids were resuspended in 200 pL of chloroform
and stored at -80°C for subsequent fatty acid analysis.

Gas chromatographic (GC) analysis of fatty acid methyl esters
was chosen to rapidly determine oil composition and abundance.
The full process of fatty acid methyl ester (FAME) analysis consists
of the hydrolysis of lipids, the transesterification of the released fatty
acids, injection, separation, identification, and quantitation of the
FAMEs. Lipids are extracted and directly esterified in the
methylation mixture. FAMEs are identified by comparison of
their retention times with those of individual purified standards
and also by their absolute mass and fractionation pattern in GC
coupled with mass-spectrometry. Relative retention times and
equivalent chain-length values provide useful information for
identification. FAMEs are then quantitated by peak area after
correction using individual response factors. Absolute
concentrations are determined by adding an internal standard
e.g., C17:0 (carbons:desaturations).
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FAMEs were analyzed by Gas Chromatography (GC) (Agilent
7890A, Agilent Technologies) using an Agilent J&W 122-2332
column (30 m x 250 pm x 0.25 um, Agilent Technologies). Inlet
and detector temperatures were set to 250 °C, and 1 pL of each
sample was analyzed using a 15:1 split ratio injection and a constant
flow rate of 1.5 mL/minute. The oven temperature cycle has a start
temperature of 150 °C held for 2 minutes to allow vaporized
samples and the solvent (hexane) to condense at the front of the
column. The oven temperature was then increased to 240 °C at 10 °
C/minute. The final temperature of 240 °C was held for one minute
and 50 s, giving a total run time of 12 min and 50 s per sample.
FAMEs were detected using a Flame Ionization Detector (FID).
Chromatograms were analyzed using the offline session of the
Agilent ChemStation software (Agilent Technologies, USA). The
peak area of each FAME was normalized to the internal standard
and further normalized to the weight of the initial sample. The
retention time and identity of each peak were calibrated using the
Supelco® 37 Component FAME Mix (certified reference material
TraceCERT®, Sigma-Aldrich®).

Statistical analysis model

Student’s T-tests with a two-tailed distribution and two-sample
homoscedastic variance were used to compare within a biotype
between control and treated samples. Additionally, A two-way, fully
balanced analysis of variance (ANOVA) was performed for each
quantified lipid species in blackgrass shoots and roots, using
GenStat 23rd edition. The experimental design consisted of two
fixed factors: biotype (Peldon and Rothamsted) and treatment
(control and herbicide), arranged in a 2 x 2 factorial structure for
each herbicide (Tri-allate, EPTC, and FFT). Each FAMES and wax
component were analyzed separately using a univariate ANOVA
approach. The statistical model can be summarized as:

Y ~ Biotype + Treatment + (Biotype x Treatment)

where Y is the concentration of a given lipid species.

Means, standard errors of the difference (SEDs), F statistics, and
p-values were extracted for each main effect and their interaction.
All lipid-by-herbicide combinations were reported individually. In
the figures, P-values less than 0.05 (*) or 0.01 (**) are identified as
statistically significant.

Results

Phenotypic characterization of biotype
responses to pre-emergent herbicides

The three pre-emergent herbicides inhibited shoot and/or root
growth of blackgrass to different extents (Figures 1, 2;
Supplementary Figure 1; Supplementary Tables 1, 2). Flufenacet
and tri-allate had distinct differences between the Rothamsted and
Peldon biotypes (Figures 1, 2; Supplementary Figure 1). Flufenacet
exhibited the highest efficacy, requiring nanomolar concentrations

Frontiers in Agronomy

10.3389/fagro.2025.1704268

to inhibit growth (Figures 1E, F; Supplementary Figure 1).
Complete inhibition occurred =1 uM flufenacet for Rothamsted
and >10 uM flufenacet for Peldon (Supplementary Figure 1).
Although VLCFA-inhibiting herbicides are described as shoot-
growth-inhibiting herbicides (Jhala et al., 2024), flufenacet
affected both shoot and root growth of blackgrass biotypes,
although shoots were consistently more affected than roots at
equivalent doses (Figures 1E, F; Supplementary Figure 1). At 90
nM flufenacet, Rothamsted shoots were 3-fold more sensitive than
Peldon, and Rothamsted roots were 1.5-fold more sensitive than
Peldon (Figures 1C, D, 2; Supplementary Figure 1). Tri-allate
required micromolar concentrations to achieve comparable results
in both biotypes (Figures 1C, D, 2; Supplementary Figure 1).
Complete inhibition occurred >25 uM tri-allate for Rothamsted
and >50 uM tri-allate for Peldon (Supplementary Figure 1). At 6
UM tri-allate, Rothamsted shoots were 1.6-fold more sensitive than
Peldon shoots (Figure 2). EPTC displayed intermediate efficacy,
acting in the low micromolar range, with no additional inhibition
above 5 UM for either biotype (Figures 1A, B, 2; Supplementary
Figure 1). Unlike the flufenacet and tri-allate, over a range of doses
the two blackgrass biotypes exhibited similar sensitivity to EPTC
(Figures 1A, B, 2; Supplementary Figure 1). Opposite to tri-allate or
flufenacet, Rothamsted shoots were 1.3-fold less sensitive to EPTC
than Peldon at 600nM EPTC (Figure 2). As observed with tri-allate,
EPTC inhibited shoot growth more strongly than root growth
(Figures 1A, B; Supplementary Figure 1). These differences in
herbicide efficiency are consistent with reported field use
(Lainsbury, 2024).

The dose used for further biochemical analysis was based on the
ED4, for the most sensitive blackgrass biotype (Figure 1;
Supplementary Figure 1). For EPTC and tri-allate, shoot growth
was a more sensitive indicator of herbicide effects. For flufenacet,
which also affected root growth, an additional “root” ED,, was
determined. The estimated ED,, values were 60 nM for flufenacet
(based on Rothamsted shoot responses), 90 nM for flufenacet
(based on Rothamsted root responses), 600 nM for EPTC (based
on Peldon shoot responses), and 6 uM for tri-allate (based on
Rothamsted shoot responses) (Figure 2).

Analysis of differences in total waxes with
or without pre-emergent herbicides

In the closed, sterile, agar-based experimental conditions, the
average leaf surface wax load was 15.6 ng/mg for Peldon and 16.6
ng/mg for Rothamsted (based on values for control treatments in
Table 1). The leaf cuticular wax composition of blackgrass was
unusual, consisting of approximately 91% very long chain fatty
alcohols (VLC-FAOH), 5.8% fatty aldehyde and 3.5% alkanes
(Table 1, average of controls). Hexacosanol (C26:0 FAOH)
represents about 84% of total leaf wax (Figure 3; Supplementary
Table 3). Only one molecular species of fatty aldehyde, hexacosanal
(C26), was detected, and alkanes ranged from C27 to C35 (Table 1;
Figure 3); although detected, values for C27 and C31 were close to
the level of detection; therefore, they are not reported herein.
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FIGURE 2

Bar plots of the average length of shoots (up) and roots (down) relative to the untreated controls for each Blackgrass biotype and herbicide single-
dose treatment. The outlines represent the control, while the fill represents the response to herbicide treatment at the selected respective dose:
EPTC (600 nMolar), tri-allate (6 uM) and flufenacet (60 nM and 90 nMolar). Where the fill (herbicide) extends past the outline (control), the herbicide-
treated samples are larger than the control. Error bars represent standard error. Significance codes results of paired t-tests comparing control to the
herbicide-treated samples of the same biotype, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, *****P < 0.00001.

TABLE 1 Percentage mass composition of fatty alcohols (FAOH), aldehydes (ADH), and alkanes (ALK) in the total shoot wax content of two blackgrass

biotypes.
Herbicide Biotype Treatment FAOH ADH ALK Total wax ng/mg FW
EPTC Peld Control 92 5.2 2.4 11.2
Herbicide 95 4.4 0.6 7.6
Roth Control 92 4.8 3.1 12.2
Herbicide 93 4.8 22 9.8
Tri-allate Peld Control 88 8.1 4.2 16.1
Herbicide 92 5.8 2.3 14.4
Roth Control 91 5.5 33 17.3
Herbicide 95 3.8 1.6 11.7
Flufenacet Peld Control 90 5.7 4.1 19.7
Herbicide 91 5.0 3.6 17.2
Roth Control 91 5.3 3.6 204
Herbicide 91 52 3.6 10.5
Peld, blackgrass biotype Pedon; Roth, blackgrass biotype Rothamsted.
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FIGURE 3

Rothamsted and Peldon shoot wax average composition ng/mg FW sample with and without herbicide treatment with (A) EPTC, (B) Tri-allate and
(C) flufenacet (FFT). Analysis of data generated through GC-FID. The outlines represent the control, while the fill represents the response to
herbicide treatment, n=3. *P < 0.05 and **P < 0.01 by Student'’s T-tests with a two-tailed distribution and two-sample homoscedastic variance. Peld,

blackgrass biotype Pedon; Roth, blackgrass biotype Rothamsted.

Application of any of the three herbicides decreased the total
surface wax amount in both biotypes (Table 1; Figure 3;
Supplementary Table 3) as supported by Student’s T-tests
(annotated by “*” in Figure 3) and ANOVA analyses
(Supplementary Table 4). However, the different Group 15
herbicides affected surface wax composition differently (Table 1;
Figure 3; Supplementary Tables 3,4). Each wax species was
quantified using a C22 Alkane as an internal standard. Consistent
with the morphological data in Figure 2, the change in
Rothamsted’s surface wax load in response to EPTC was less than
that of Peldon, with a 19.7% vs. 31.7% reduction in total surface
wax, respectively (Table 1). Also matching the morphological
effects, the opposite was observed with flufenacet and tri-allate.
Flufenacet and tri-allate reduced surface wax load in Rothamsted by
48.3% and 32.4% respectively, but only by 12.9% and 10.2% in
Peldon, respectively (Table 1). Similar differences were seen for all
molecular species of surface waxes (Figure 3). Supplementary
Figure 2 highlights the lower-abundance species. Flufenacet did
not affect the proportion of total fatty alcohols, aldehydes, and
alkanes in Rothamsted or Peldon. In contrast, the proportion of
aldehyde and alkane were decreased in Peldon after treatment with
EPTC and in both biotypes after treatment with Tri-allate (Table 1).
All three herbicides affected wax molecular species with carbon
chain lengths of 26 or longer, while having little effect on C22 and
C24 compounds (Figure 3).
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Analysis of differences in FAMES with or
without pre-emergent herbicides

Fatty acid contents from both shoot and root tissues were
quantified accurately using pentadecanoic acid (C15:0) as an
internal standard and response factors calculated for each
individual fatty acid using the 37 FAMEs standard (SUPELCO).
The resulting data reflected a fatty acid composition characteristic
of photosynthetic and non-photosynthetic tissues from shoot and
root tissues, respectively (Figure 4; Supplementary Figure 3,
Supplementary Tables 5-8). In green leaf tissue, the profile is
dominated by o-linolenic acid ((?18:3A9’12’15 n3; ca. 61%),
followed by linoleic acid (C18:2A%'? n6; ca. 19%) and palmitic
acid (C16:0; ca. 11%) (Figure 4; Supplementary Tables 5,6, control).
In root tissue, linoleic acid (C18:2A%'? n6; ca. 41%) is the dominant
fatty acid, followed by o.-linoleic acid (C18:3A%'>1% n3; ca. 22%) and
palmitic acid (C16:0; ca. 21%) (Table 2; Supplementary Tables 7, 8,
controls). Fatty acids with chain lengths ranging from 20 to 26
carbons were detected by GC-FID, but the combined proportion of
these is only 5% of the total fatty acids measured in shoots (Figure 4;
Supplementary Table 6, controls). C20-C26 fatty acids were slightly
more abundant in root tissue (7-9%) because they are incorporated
in the suberin polymer found in the endodermis (Casparian strip)
and periderm (Figure 4; Supplementary Table 8, controls).

Tri-allate produced the largest and most consistent changes in
fatty acid composition. In the FAMES analysis, tri-allate reduced
total fatty acids in shoots by 63% (Peldon) and 76% (Rothamsted)
(Table 2). The most significant changes were in the CI8
polyunsaturated fatty acids linoleic (C18:2A>'* n6) and o-
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Quantified differential accumulation of fames in blackgrass shoot and root following herbicide treatment (A-D) EPTC, (B-E) Tri-allate, and (C-F)
flufenacet (FFT). Analyzed using GC-FID. Control samples not treated with herbicide are included for baseline comparison. Each data point
represents the mean of three biological replicates, except for in (A) Peldon Herbicide treated and (E) Tri-allate Control, where n=2, with error bars
indicating a standard error. *P < 0.05 and **P < 0.01 by Student’s T-tests with a two-tailed distribution and two-sample homoscedastic variance.

Peld, blackgrass biotype Pedon; Roth, blackgrass biotype Rothamsted.

linolenic (C18:3A%'*'> n3) which were reduced by 68-94% across
biotypes (Figure 4; Supplementary Tables 5,6). Treatment with tri-
allate also significantly decreased palmitoleic acid (C16:1A%),
palmitic acid (C16:0), and myristic acid (C14:0) in Rothamsted
shoots by 39%, 20%, and 58% respectively (Figure 4; Supplementary
Figure 3; Supplementary Tables 5, 6). In roots, tri-allate produced
smaller but measurable decreases in total FAs (-13% in Peldon;
-46% in Rothamsted) and only minor changes in VLCFAs in Peldon
(-1%) but strong changes in Rothamsted (-38%) (Table 2;
Supplementary Tables 7, 8). By contrast, EPTC had far smaller
effects on C14-C22 species which was not statistically significant in
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most comparisons (Figure 4; Supplementary Figure 3;
Supplementary Tables 5-8). For all species measured by FAMES,
EPTC led to moderate percent changes with total changes of -7.6%
and -13% in Peldon shoots and roots respectively and -4.6% and
-11% in Rothamsted shoots and roots respectively (Table 2). The
saturated and monounsaturated VLCFAs were decreased in
Rothamsted by flufenacet treatment; shoots by -30% and roots by
-68% (Table 2) with species of chain lengths of C24 or longer (C24
+) significantly reduced in roots (Figure 4; Supplementary Table 7).
Therefore marked differences were observed between biotypes and
herbicides with regard to VLCFA content and composition.
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TABLE 2 Percentage change in FAMES split into FA and VLCFA ng/mg FW.

% change in ng/mg FW of shoots

10.3389/fagro.2025.1704268

% change in ng/mg FW of roots

Herbicide Biotype
FA VLCFA Total FA VLCFA Total
EPTC Peld -6.7% 27% -7.6% -15% 12% -13%
Roth -5.0% 4.8% -4.6% -9.6% -23% -11%
Tri-allate Peld -68% 32% -63% -14% -1.3% -13%
Roth -81% -7.3% -76% -46% -38% -46%
FFT Peld 11% -16% -11% 21% 22% 17%
Roth -6.2% -30% -7.5% 11% -68% -16%

Summed FA (C14:0 to C18:3), VLCFA (C20:0 to C26:0) and total FAMES, calculated percentage change using the formula: (((control - herbicide)/control)*-1)*100. The multiplication by minus

one helps illustrate the direction of change.

Discussion

Our analyses of shoot and root growth in response to herbicide
treatment suggest that these three pre-emergent herbicides alter
root and/or shoot growth differently. The amount of active
ingredient required to elicit growth inhibition differed between
the herbicides; flufenacet required the lowest doses, tri-allate the
highest doses, while EPTC displayed intermediate efficacy
(Figure 1). Although this result aligns with field rate
recommendations (Lainsbury, 2024), direct comparisons between
field rates are difficult because EPTC has a much broader spectrum
of activity compared to flufenacet or tri-allate. At the doses selected
in this study, tri-allate and EPTC affect only shoot growth, whereas
flufenacet inhibits both root and shoot growth (Figure 1). The
shoot-root differences we observed could reflect differences in
where in the plant the herbicides act or how they interact with
the different metabolic dependencies in these tissues. For example,
sugar sources for glycolysis differ between shoots and roots, and
malate import can provide an additional source of pyruvate and
NADPH to support fatty acid synthesis in roots and leucoplasts, the
non-photosynthetic plastids in roots and other non-photosynthetic
tissues. This process is mediated by the enzyme malic enzyme (ME),
which catalyzes the conversion of malate to pyruvate (Sun et al,
2019; Smith et al., 1992). As expected for Group 15 herbicides, these
herbicides reduced total leaf wax content (Figure 3). However, these
three Group 15 pre-emergent herbicides gave distinct metabolic
outcomes (Figure 4). Of note, although there was little effect on root
growth, tri-allate caused a decrease in total fatty acid content,
particularly the polyunsaturated fatty acids in shoots and roots.
This phenotype was not observed with EPTC or flufenacet. As our
data indicated that each herbicide differentially affects shoot and/or
length and lipid metabolism, and that the two different blackgrass
biotypes respond differently to a given treatment, these data support
the conclusion by Beffa et al. (2024) that these Group 15 herbicides
may operate through different MoAs and that different biotypes
have evolved different responses to them.

We observed that without herbicide application, the leaf wax
composition of blackgrass (Figure 3; Supplementary Figure 2,
Supplementary Table 3) is somewhat unusual compared to most
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plants analyzed to date, including Arabidopsis or mono- and
dicotyledonous crops (Lee and Suh, 2015). Blackgrass is in the
BOP clade of Poaceae, along with rice, oat, wheat, and barley. Plants
in this clade generally have leaf wax that contains significant
proportions of fatty alcohols and large amounts of diketone and
hydroxydiketone compounds; surprisingly, these were not detected
in blackgrass shoots in this study. Blackgrass’s leaf wax composition
was more similar to Taiwan oil millet, where the predominant wax
component is a C28 primary alcohol in the leaf blade and a C28-free
fatty acid in the leaf sheath (Anggarani et al,, 2024).

The three herbicides tested in this study all had a quantitative
effect on surface wax load (Figure 3; Supplementary Table 3), but
only the two thiocarbamates had a qualitative effect on the ratio
between the three main molecular species of waxes (Table 1). This is
consistent with other reports in the literature (Gronwald, 1991).
Tri-allate and EPTC, but not flufenacet, increased the proportion of
fatty alcohols and decreased the proportions of alkanes and
aldehydes (Figure 3, Table 1). This is interesting, as aldehydes
and alkanes are formed via the decarbonylation (alkane) pathway,
whereas fatty alcohols are synthesized via the reducing (alcohol)
pathway. While C22 and C24 compounds were not greatly affected
by these herbicides, surface wax molecular species with carbon
chain lengths of 26 or more were altered (Figure 3). These data
suggest that an elongation system that is insensitive to
thiocarbamate may be responsible for synthesizing waxes with up
to 24 carbons when the KCS-mediated fatty acid elongation
pathway is altered.

We used two well-characterized populations herein: a
herbicide-sensitive biotype used here (“Rothamsted”) that
originates from the Broadbalk long-term field experiment (Moss
et al., 2004) and represents a population which has never been
exposed to herbicide selection and remains sensitive to all
herbicides tested against it and a population of Peldon that does
not contain any known target site mutations but has been well-
characterized for exhibiting strong NTSR-mediated resistance to
multiple herbicides across different groups and MoAs (Moss, 1990;
Mellado-Sanchez et al., 2020). Our data show Rothamsted and
Peldon seeds respond differently to a given treatment. For shoot and
root lengths (Figures 1, 2), Rothamsted had greater sensitivity than
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Peldon at all doses of flufenacet and tri-allate, as expected, while
Rothamsted was similar to or even less sensitive than Peldon to a
given dose of EPTC. These changes in root and shoot length were
matched by smaller changes in wax and VLCFA composition in
EPTC-treated Rothamsted than Peldon (Figures 3, 4).

Flufenacet treatment decreased saturated and monounsaturated
VLCFAs in Rothamsted, and this effect was greater in the roots than
in the shoots (Figure 4). In Peldon, this reduction in VLCFA
content was also generally observed in shoots and roots, but only
species with chain lengths of C24 or longer (C24+) are significantly
affected (Supplementary Figures 3C, F). These Rothamsted data are
consistent with previous data where flufenacet inhibits the activity
of all tested Arabidopsis VLCFA elongases in (Trenkamp et al,
2004) whereas the Peldon data suggest it exhibits partial resistance,
allowing the formation of VLCFAs up to C22 in both shoots and
roots. This could be due to an adaptation in Peldon involving a KCS
like KCS1 or KCS18 that produces mainly C20 and C22 VLCFAs
(Batsale et al, 2023).

Tri-allate affected the length of and the VLCFA content in the
shoots (Figures 1, 2, 4). It also affected VLCFA content in
Rothamsted roots without significantly altering root length
(Supplementary Figures 3B-E). The decrease of C26 in both
Rothamsted and Peldon shoots (Supplementary Figure 3B) is
consistent with the observed decrease in C26+ wax species
(Figure 3). The most noticeable and unexpected effect of tri-allate
on fatty acid content and composition in both biotypes was the
dramatic reduction in C18 unsaturated FAs. This initially suggested
that tri-allate affects fatty acid desaturation and is consistent with
previous data showing tri-allate significantly reduced fatty acid
fractions (C>18) in sensitive wild oat plants (Kern et al., 1997)
where tri-allate resistance was likely due to two independently
segregating recessive genes (Kern et al, 2002). Treatment of
blackgrass with tri-allate also decreased Palmitoleic acid (PO,
C16:1A9) content and OA, which could also suggest that tri-allate
influences the plastid-located steroyl-CoA delta-9 desaturase
(SAD). Analysis of palmitic acid (PA, C16:0) and stearic acid (SA,
C18:0) indicated a differential effect in the two biotypes tested. In
Peldon, the content of these two saturated fatty acids is not greatly
affected by tri-allate treatment in either shoots or roots (Figure 4).
In Rothamsted, PA and SA content are reduced in both shoots and
roots (Figure 4), suggesting the inhibition of fatty acid synthesis
upstream in the prokaryotic part of the biosynthetic pathway. This
would explain the greater reduction in total fatty acid content
observed in this ecotype in both shoots and roots after tri-allate
treatment (Figure 4). In Rothamsted, this reduction in C16 and C18
saturated FAs, as well as the general reduction in total FAs in both
the shoots and the roots, indicate that tri-allate may interfere with
enzymes upstream of C16:0-ACP formation, by acting on either the
plastid-located FAS complex and/or enzymes upstream in the
pathway. In Peldon treated with tri-allate, the FAMEs profiles
show decreased C18:1 content, impacting the profiles of all
desaturated C18 FAs in shoot and root tissue (Figure 4). The
differential effects of tri-allate on VLCFA profiles between both
biotypes in shoot and root tissues are interesting but more difficult
to explain.
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Our physiological data indicated EPTC’s effects on Rothamsted
were similar to, or even less than, those on Peldon (Figures 1A, B;
Supplementary Figures 1A, B, G, H). These differences were
correlated with differential changes in wax and VLCFA
composition between the biotypes, with the amount of change in
Rothamsted being less than in Peldon (Figures 3, 4), and the minor
decreases in VLCFAs in shoots were more pronounced in Peldon
than in Rothamsted (Figures 4A, D). Our data are consistent with
multiple studies that conclude S-ethyl dipropylthiocarbamate
(EPTC) inhibits wax deposition and cuticle formation by affecting
the conversion of fatty acids into hydrocarbons and the elongation
process Gronwald (1991) (Blackshaw et al, 1996). Collectively,
these data are consistent with the conclusion that these two
herbicides work through different mechanisms and strengthen
previous conclusions that herbicide resistance is both biotype and
MoA specific (Hamidzadeh Moghadam et al., 2021; Hamidzadeh
Moghadam et al., 2023; Cai et al., 2023). However, because at the
dose used in this study, EPTC had such a small effect on VLCFA
content in shoots and no effect on the root (Figures 4A, D, Table 2),
further investigation using additional herbicide doses are needed to
pinpoint where in the pathway EPTC is targeting and how targeting
might differ between biotypes.

Altogether, our findings show that Group 15 herbicides exert
distinct, biotype- and organ-specific effects on blackgrass shoot
length and lipid metabolism, underscoring the complexity of their
modes of action. The present work establishes a biochemical
baseline linking herbicide treatment to lipid profile modulation in
blackgrass, providing a foundation for future mechanistic
exploration. To fully elucidate the mechanisms underlying
herbicide selectivity and resistance, future metabolic pathway
mapping work is required to validate the molecular target(s), of
these and other Group 15 herbicides.
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SUPPLEMENTARY FIGURE 1

Additional dose testing curves showing the different effects of the pre-
emergent herbicides on the two blackgrass biotypes on shoots (A-F) and
roots (G-M). Showing average lengths relative to the biotype controls +
standard error for dose-response tests in EPTC (A-H), Tri-allate (C-J) and
flufenacet (FFT) (E, F, K, L).

SUPPLEMENTARY FIGURE 2

Shoot wax low abundance species, Rothamsted and Peldon average
composition ng/mg FW sample with and without herbicide treatment with
(A) EPTC, (B) Tri-allate and (C) flufenacet (FFT). Analysis of data generated
through GC-FID. The outlines represent the control, while the fill represents
the response to herbicide treatment n=3

SUPPLEMENTARY FIGURE 3

Lower abundance species blackgrass FAMES (i)shoot and (ii) root Following
Herbicide Treatment (A-D) EPTC, (B-E) Tri-allate (Tri) and (C-F) flufenacet
(FFT). Analyzed using GC-FID. Control samples not treated with herbicide are
included for baseline comparison. Each data point represents the mean of
three biological replicates, except for in (A) Peldon Herbicide treated and (E)
Tri-allate Control, where n=2, with error bars indicating a standard error.
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