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A B S T R A C T

Computer vision is increasingly used in farmers' fields and agricultural experiments to quantify important traits. 
Imaging setups with a sub-millimeter ground sampling distance enable the detection and tracking of plant 
features, including size, shape, and colour. Although today's AI-driven foundation models segment almost any 
object in an image, they still fail for complex plant canopies. To improve model performance, the global wheat 
dataset consortium assembled a diverse set of images from experiments around the globe. After the head 
detection dataset (GWHD), the new dataset targets a full semantic segmentation (GWFSS) of organs (leaves, 
stems and spikes) covering all developmental stages. Images were collected by 11 institutions using a wide range 
of imaging setups. Two datasets are provided: i) a set of 1096 diverse images in which all organs were labelled at 
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the pixel level, and (ii) a dataset of 52,078 images without annotations available for additional training. The 
labelled set was used to train segmentation models based on DeepLabV3Plus and Segformer. Our Segformer 
model performed slightly better than DeepLabV3Plus with a mIOU for leaves and spikes of ca. 90 %. However, 
the precision for stems with 54 % was rather lower. The major advantages over published models are: i) the 
exclusion of weeds from the wheat canopy, ii) the detection of all wheat features including necrotic and se
nescent tissues and its separation from crop residues. This facilitates further development in classifying healthy 
vs. unhealthy tissue to address the increasing need for accurate quantification of senescence and diseases in 
wheat canopies.

1. Introduction

Wheat is one of the most important crops in the world, providing 18 
% of calorie intake and 19 % of protein intake globally [1]. While the 
area of farmland used to grow wheat has remained stable, global wheat 
yields have quadrupled since 1960, mainly due to technical innovation, 
such as the widespread use of N fertilisers, and the breeding of modern 
wheat varieties [1]. However, the rate of yield gain has stagnated or 
even decreased in the last two decades in different regions of the world 
[2], imposing a challenge to fulfilling the projected demands for wheat 
production in the future [3]. In addition, climate change-induced 
stresses [1], plant disease adaptation, and pest outbreaks, combined 
with the need for more efficient crops that require less input in terms of 
fertilisers, water, and pesticides place additional constraints on wheat 
production. Increasing wheat yield is a multi-faceted problem which 
involves genetic, physiologic, and agronomic improvement to enhance 
resource-use efficiency. Novel phenotyping approaches provide 
advanced tools and methodologies to enhance wheat management, 
optimise breeding, and achieve efficient resource utilization. These 
methodologies are key to enabling precise repeatable measurements in 
agricultural fields and research networks across the globe, as high
lighted in a survey on field-based phenotyping in Europe [4]. In their 
survey, Morisse et al. [4] emphasise the capability of these platforms to 
enable the rapid collection of datasets at breeding scale, including 
hundreds of plots with various genotypes and treatments. Moreover, 
data can be collected during the entire crop growth cycle, enabling 
tracking of wheat responses to biotic and abiotic stresses or management 
practices. Although a wide range of possible sensors are available, 
including 3D scanners [5] to characterise canopy architecture or 
hyperspectral imaging [6,7] to monitor plant health and productivity, 
we focus here on high spatial-resolution imaging with red, green and 
blue (RGB) spectra. Such imaging provides a broad range of phenotyp
ing capabilities at relatively low equipment costs and high spatial res
olution. In a comprehensive review on translating high-throughput 
phenotyping (HTP) into genetic gain, Araus et al. [8], posed a key 
question: “Will low-cost HTP tools be adopted regularly by breeders in the 
next decades? If so, are RGB cameras, mobile apps, and drones the natural 
candidates?” Classical RGB cameras can be mounted on handheld de
vices [9], ground-based vehicles [8,10], gantries [11], or drones [12], 
making them adaptable to various scales and platforms. The advantage 
of RGB sensors is their relatively high spatial resolution and low cost 
compared to other HTP tools [13]. This enables the capture of sufficient 
details to separate plant features from complex canopies. However, 
robust feature extraction requires algorithms capable of extracting in
formation from images taken under a wide range of conditions. The 
development of such algorithms demands a sufficient number of 
well-annotated training images capturing this diversity.

Several pioneer datasets published related wheat-linked tasks in field 
conditions focusing either on (i) spike detection and quantification with 
the SPIKE [14] and GHWD dataset [15,16], and a dataset provided by 
Madec et al. [17], (ii) vegetation segmentation on wheat only with EWS 
dataset [18] or on multispecies including wheat with SegVeg and 
VegAnn [9,19] or (iii) disease detection on wheat with the NWRD 
dataset [20], the wheat leaf dataset for strip rust and septoria [21], the 
CDTS for strip rust [22], the wheat nitrogen deficiency and leaf rust 

image dataset [23] and the CGIAR Computer Vision for Crop Disease for 
stem and leaf rust [24]. Despite these contributions, existing datasets are 
often limited in terms of geographic diversity, genotype variations, and 
growth stages, which may limit the generalisation power of models 
trained on these datasets. Furthermore, only a few datasets are collab
orative, involving multiple countries and institutions [9,15,16,19]. To 
address this limitation, the collaborative Global Wheat Dataset Con
sortium was established. This consortium aims to aggregate datasets 
from multiple institutions, make them publicly available, and provide 
the necessary data to develop robust algorithms. In previous GWHD 
editions 2020–2021 [15,16], we released a large dataset with a total of 
6515 high-resolution RGB images, containing annotations for 275,187 
labelled wheat heads. The early design of GWHD focused on providing 
bounding-box annotations for wheat heads, including images of 
different genotypes captured under varying environmental, manage
ment and growth conditions. GWHD played a pivotal role in various 
research studies, particularly in developing and benchmarking wheat 
head detection and counting methods using supervised models [25–31], 
semi-self-supervised models [32,33] and self-supervised models [34], 
generating a reference dataset to improve deep learning model perfor
mance [35–37] and improving head count models in dense plots [38]. 
These robust detection models allow the counting of wheat heads per 
unit area [29,39], as long as the footprint of the image at the top of the 
canopy is known. In addition, the dynamics of head counts may be used 
to approximate heading dates [40]. The flowering date of wheat is often 
approximated by the heading date because it is easier to assess head 
emergence or presence than anther extrusion which is more affected by 
time of day, wind conditions and operator experience [40,41]. Thus, 
heading is the most widely assessed trait related to cereal phenology and 
an important trait to understand the effect of environmental stresses, 
such as heat and drought, on grain yield [42].

While counting wheat heads is important as it is one of the yield 
components, it is not the only targeted trait. Wheat continuously adjusts 
its yield potential during the entire vegetation period. Low germination 
or plant damage due to winter kill is compensated for by increased 
tillering, while during stem elongation, excessive tillering is compen
sated by tiller abortion. Later in the season, the different organs can 
undergo different senescence dynamics, as demonstrated by Anderegg 
et al. [43]. A deeper understanding of how yield is formed throughout 
the growth season will benefit from a non-destructive assessment of its 
components. The imaging and semantic segmentation of all the plant 
organs visible in the image, from emergence to maturity, have great 
potential to shed light on the yield formation process. Examples of tar
geted traits are seedling count [44,45], canopy cover [18,19,46,47], 
biomass estimation [48] and leaf area index (LAI) [49,50]. In most cases, 
segmentation of wheat canopies from other background features, such 
as soil or weeds, is required. The comparably simple task of segmenting 
canopies from the soil background was previously solved by manual 
adjustments [51], using automatic threshold methods, such as the Otsu 
algorithm [52,53] or shallow machine learning [13,54,55].

The above-mentioned approaches based on colour information at the 
pixel-level, have the shortcoming that they cannot take context into 
account. Modern deep learning methodologies enable the learning of 
contextual information. This requires human-annotated training data to 
supervise feature detection in complex images containing many plants 
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growing together in a canopy. The different plant organs in such can
opies are not simply green but might have different shades of green or 
yellow due to senescence, chlorosis, or necrotic tissues. Necrotic plant 
tissues may have a similar brown colour as crop residues and can only be 
segmented in RGB images based on context. Green canopy segmentation 
using deep learning models has become a standard procedure, with 
training data sourced from a wide range of crops, such as the VegAnn 
dataset [9] combining 3775 RGB images of 12 different crops. With the 
existence of large datasets and the advancements in computer vision, 
new possibilities of data processing and feature extraction have been 
unlocked through the utilization of data-driven deep learning ap
proaches. Existing deep learning-based segmentation is mainly based on 
encoder-decoder architecture like DeeplabV3Plus [56–60] and Atrous 
convolution [61,62] architecture, with application-specific adaptation. 
More recently, transformer-based segmentation models (e.g., SegFormer 
[63]) have gained attention due to their ability to capture long-range 
dependencies and global context effectively. These models show prom
ise in addressing complex segmentation tasks, offering improved per
formance and adaptability in agricultural applications. Despite their 
potential to achieve promising performance, transformer-based models 
require relatively larger datasets that are currently lacking in agricul
tural domains [64].

Within the wheat canopy, segmentation of organs including leaves, 
stems, and heads is required, followed by the extraction of relevant 
phenotypes from each organ. Many wheat researchers have collected 
their own wheat datasets or made their own annotations from existing 
ones to achieve semantic segmentation of heads [35,59,65–67], spike
lets [68], grains [69], stems and foliage [43] infected [20,70–72] and 
senescent [19] tissues, or a combination of disease and senescence [73]. 
The data provided in these publications largely advance wheat pheno
typing at the organ level, offering tools for detailed studies of yield 
components such as spike number, spikelets per spike, spikelet size, leaf 
disease resistance, and senescence dynamics. However, there is a lack of 
integrated datasets enabling simultaneous segmentation of all wheat 
organs (leaves, spikes, stems) from soil, crop residues, weeds and other 
background elements. Moreover, wheat has a complex canopy due to its 
high planting density, strong development of tillers (lateral shoots), thin 
stems, overlapping leaves and occluded organs. Variations in appear
ance caused by growth stages, lighting conditions, wind patterns and 
imaging angles make it a challenging plant species to phenotype. To 
advance our capabilities beyond the wheat head-centred GWHD dataset 
2021–2022, we assembled the Global Wheat Full Semantic Segmenta
tion (GWFSS) dataset collected by different phenotyping platforms from 
11 institutes and universities across the globe under various light and 
weather conditions. This diversity ensures that the dataset addresses the 
extensive requirements of wheat phenotyping across a range of genetic 
backgrounds, environments, and management practices throughout the 
growing season. The images were collected with an average ground 
sampling distance (GSD) between 0.09 and 0.71 mm per pixel. This is 
significant for accurately capturing organ features to allow precise dif
ferentiation and measurement of these smaller structures, rather than 
focusing solely on canopy-level traits. Our contribution can be sum
marised as follows: 

1. A full GWFSS dataset comprising 52,078 RGB images without labels 
is available in ETH research collection.

2. An annotated GWFSS dataset providing 1096 pixel-level annotations 
(masks) for the following classes: leaves, stems, heads, and 
background.

3. The results of two state-of-the-art segmentation models, Deep
LabV3Plus and Segformer, fine-tuned on the full dataset. The models 
were trained as a baseline performance benchmark for organ 
segmentation.

2. Material and methods

2.1. Field experiment

The dataset includes images from field experiments conducted by 11 
institutions worldwide, as detailed in Table 1. Wheat plots at 67 
different field sites were imaged using proximal RGB imaging setups 
throughout the growing seasons (Fig. 1). The experiments cover a wide 
range of planting densities, agronomic inputs, environmental condi
tions, as well as disease and weed pressures. Thus, the GWFSS dataset 
spans diverse agroclimatic zones and management practices. The im
aging setups used by the 11 institutions and the data sets derived are 
described in detail in Table S1 and Table 2, respectively. Additional 
information related to the datasets is given as follows with institutions 
listed in alphabetic order: 

1. Arvalis
ARVALIS_1–200: The 200 subsets were acquired in 2022 and 

2023 in a network of 18 sites representing the main agroclimatic 
zones and the most common practices in France. The trials cover 
different themes: evaluation of different wheat genotypes at 
diverse nitrogen fertilisation regimes, management methods, 
diseases, pests and water stress. Some trials comply with the 
specifications of organic farming or include wheat in combina
tion with other species. Seed densities are a typical common 
practice in France. Images at most sites have been collected with 
the LITERAL [74], a handheld system with high-resolution cam
eras working without flash; The images at the location GREOUX 
were acquired by PHENOMOBILE [9], an autonomous robot 
equipped with industrial cameras and flashlights.

2. International Center for Agricultural Research in the Dry 
Areas (ICARDA)

ICARDA_MCH_2023: Data collected at Merchouche Station (the 
main ICARDA experimental station near Rabat, Morocco), under 
drought conditions. This set includes 960 entries from stage 2 of 
the durum wheat breeding program. Three acquisitions were 
taken with ICARDA's PHENOBUGGY (equipped with RGB cam
era, multispectral and LiDAR) in March 2023. ICAR
DA_MCH_2024: Data collected at Merchouche, also during a quite 
dry year. This set comprise 3 different trials (5 acquisitions each): 
1) CWR panel as part of the Crop Trust project BOLD representing 
60 elite durum wheat lines obtained from crosses with crop wild 
relatives; 2) CEREALMED including 288 entries of the Durum 

Table 1 
Summary of Institutions, the number of unique geolocations, the number of 
unique Image Setups, and the number of images per subset in the full dataset. A 
full description of the datasets (GWFSS_v1.0_subsets.csv) is available in the ETH 
research collection referenced in the Data Availability section.

Institution Country Geolocations (by 
lat/long)

Image 
Setups

Images in 
full set

1 ARVALIS France 17 3 4134
2 ICARDA Morocco 1 1 5088
3 CIMMYT- 

CENEB
Mexico 1 1 5773

4 NJAU China 4 2 5008
5 INRAE France 3 2 4102
6 ETHZ Switzerland 2 3 7175
7 ULIEGE- 

CRAW
Belgium 7 3 5199

8 UQ Australia 28 2 4265
9 UTokyo Japan 1 1 6130
10 USask Canada 1 1 200
11 RRes UK 1 3 5004
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Global Panel of landraces, modern and old varieties mainly from 
Mediterranean countries; 3) a root rot trial of 24 elite lines.

3. International Maize and Wheat Improvement Center (CIM
MYT)

CIMMYT-CENEB_1–7: The CIMMYT dataset includes images 
collected for 319 spring bread wheat genotypes, consisting of 
elite, pre-breeding and exotic germplasm phenotyped during 
2020 and 2021 field seasons in Campo Experimental Norman E. 
Borlaug (CENEB) in Ciudad Obregon, Sonora, Mexico. The ge
notypes were imaged from heading to maturity under irrigated, 
drought and terminal heat stress conditions in the field.

4. Nanjing Agricultural University (NJAU)
The NJAU datasets were collected from field trials in different 

regions of China. Phenotyping data for NJAU_1–NJAU_4 were 
collected using PhenoArm, a portable handheld imaging platform 
with two high-resolution cameras. NJAU_5 used Phenotypette, a 
pushcart platform integrating LiDAR, multispectral, and RGB 
cameras. The pushcart was manually operated at a controlled 
speed and equipped with RTK-GPS for automated data collection.
NJAU_1–2: Experiments in Jurong and Xuzhou during 
2020–2021, with 5 wheat cultivars under 3 nitrogen levels.

NJAU_3: Trial in Xinxiang from 2022 to 2023 including 565 
wheat cultivars, covering both introduced and domestic cultivars 
since 1950. Five cultivars were replicated 16 times, while the 
remaining 560 cultivars had no replication. A total of 640 plots 
were established, with fertilisation and irrigation managed ac
cording to local practices.
NJAU_4–5: Trials in Yangling form 2021–2024 with the same 
cultivars as NJAU_3.

5. National Research Institute for Agriculture, Food and Envi
ronment (INRAE)

The INRAE dataset was acquired in the frame of the FFAST 
project (French National Grant ANR-21-CE45-0037). The dataset 
includes images taken in field trials at three INRAE experimental 
sites UE APC at Auzeville (AUZ), UE DiaScope at Mauguio (MAU) 
and UE PHACC at Clermont-Ferrand (CLE) in the years 2021, 
2022 and 2023. All pictures were taken using the Phenomobile 
V2 ground robot (https://hal.inrae.fr/hal-03646863), equipped 
with RGB cameras looking at nadir and at 45◦. Images were taken 
in active illumination conditions (flashes). The trials consisted of 
10 French elite cultivars grown under 4 treatments (depending on 
the site: irrigation, sowing date and seed density).

6. Swiss Federal Institute of Technology Zurich; ETH Zurich 
(ETHZ)

ETHZ_01: Images from the ‘field phenotyping platform’ (FIP) at 
ETH Zurich in Eschikon [75]. The site covers typical climatic 
conditions of the Swiss Plateau. About 350 wheat varieties are 
monitored at least once per week to relate growth patterns to 
causal environmental factors. The set is available at [76]. 
ETHZ_02: Organic farming conditions at 981 m altitude, long 
snow cover and 2084 mm annual precipitation peaking in sum
mer. Images show damage in spring caused by snow mould 
(Microdochium nivale). The high precipitation fostered lodging 
and diseases in the summer. There was high weed pressure.

7. University of Li�ege and Walloon Agricultural Research Cen
ter (ULIEGE-CRAW)

ULIEGE-CRA-W_01–18: Images were acquired in winter wheat 

Fig. 1. An overview of the location of all trials included in GWFSS.

Table 2 
Imaging Setup Details. A full description of the imaging setups (GWFSS_v1.0_imaging_setups.csv) is available in the ETH research collection referenced in the Data 
Availability section.

Imaging Setup Vector Camera Model Viewing 
Angle

Focal 
Length 
(mm)

Sensor 
Resolution 
(pixel)

Field of View 
Horizontal (◦)

Field of View 
Vertical (◦)

Distance to 
Ground (m)

GSD (mm/ 
px)

LITERAL1.0_0 Handheld Sony RX0 0 7.7 4800 × 3200 73 52 1.8 0.55
LITERAL1.0_45 Handheld Sony RX0 45 7.7 4801 × 3200 73 52 1.2 0.32
FIP1.0 Gantry Canon EOS 5D 

Mark II
0 35 5616 × 3744 54.43 37.85 3 0.5495

GO1.0M_0 Cart JAI GO-5000C- 
USB

0 16 2560 × 2048 44.3 33.6 1 (to canopy) 0.3125

GO1.0M_30 Cart JAI GO-5000C- 
USB

30 16 2560 × 2048 44.3 33.6 1 (to canopy) 0.3608

GO1.6M_0 Cart JAI GO-5000C- 
USB

0 16 2560 × 2048 44.3 33.6 1.6 (to 
canopy)

0.5

Rres_GT3300_top Gantry Prosilica 
GT3300C

0 50 3296 × 2472 38 26 2.8 0.12

Rres_GT3300_south Gantry Prosilica 
GT3300C

30 50 3296 × 2472 38 26 1.75 0.09

Rres_GT3300_north Gantry Prosilica 
GT3300C

30 50 3296 × 2472 38 26 1.75 0.09

PhenoArm Handheld Sony RX0 0, 45 7.7 4800 × 3200 81.2 59.5 2 0.7143
Phenotypette Cart Sony RX0 0, 45 7.7 4800 × 3200 81.2 59.5 2 0.7143
Low-cost 

phenomobile
Cart Canon EOS 

600D
0 55 1920 × 1080 23 15 2.4 0.046

PHENOMOBILE Ground 
Vehicle

Baumer HXG40 0 25 2040 × 2040 28 28 1.8 0.43

Phenobuggy Tractor 
Fobro

Baumer VCXG- 
124C

0 25 4096 × 3000 32 24 1.8–2.4 0.24–0.33

UFPS Ground 
Vehicle

FLIR 
Chameleon3 
USB3

0 16 2448 × 2048 26.4 19.8 2 0.45
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trials in the Hesbaye area (Belgium) between 2018 and 2022. The 
18 subsets detail the differences between the trials. Images cover 
mainly nitrogen fertilisation trials and nitrogen fertilisation ×
fungicide trials [10]. Images also cover N, P and K fertilisation 
trials (ULIEGE-CRA-W_04) and drought experiments (ULIEGE-
CRA-W_12, 18). The set also contains sample images from dense 
time series of the same plots recorded in 15-min intervals 
(ULIEGE-CRA-W_11). One series contains green reference spheres 
used as control points in thermal images acquired in addition to 
RGB images (ULIEGE-CRA-W_17).

8. The University of Queensland (UQ)
UQ_1–29: The 29 subsets detail the differences between trials 

in which the images were acquired. Images are collected in the 
2020 and 2021 National Variety Trials. Differences include var
iations in geolocation, genotype, and growth stage across 
Australia. The photographs were taken in 2020 and 2021, using 
smartphone cameras from a top-down perspective at about 
0.5–1.5m above the canopy.

9. University of Saskatchewan (USask)
The USask dataset was collected from wheat phenotyping field 

trials at the Kernen Crop Research Farm in Saskatchewan, Canada 
in 2019. The images comprise a single field trial with 32 diverse 
wheat cultivars at the heading stage. Images were collected with 
the University of Saskatchewan Field Phenotyping System 
(UFPS), a custom-built, self-propelled ground vehicle equipped 
with a range of imaging instrumentation, RTK-GPS, and on-board 
data processing.

10. University of Tokyo (UTokyo)
The UTokyo dataset was collected from wheat phenotyping 

field trials at the Institute for Sustainable Agro-ecosystem Ser
vices (ISAS) in Tokyo, Japan, in the 2014–2015 season. A Field 
Server system [77] collected images of five genotypes through the 
whole growth stage. The camera module of the system is based on 
a digital single-lens reflex (DSLR) camera, the Canon EOS Kiss X5 
camera, with an EF-S18-55 mm lens (Canon Inc., Tokyo) that 
provides high-quality and high-resolution (18 megapixels) image 
data. A preprogrammed microcontroller board controls the 
power and shutter of the camera automatically.

11. Rothamsted Research (RRes)
The Rothamsted dataset includes images collected for 391 

wheat genotypes, captured throughout the growth cycle, from 
tillering to maturity, using the LemnaTec Field Scanalyzer [11]. 
The NIT subsets relate to the evaluation of four commercial va
riety growing supply with six levels of nitrogen input over two 
years (2019 and 2021). Images of the NIT subsets were captured 
from three angles: 30◦ north, 0◦ top, and 30◦ south, providing 
comprehensive spatial coverage. The PxCS and the PxG subsets 
provide images from two mapping populations that were planted 
in 2019 and 2021, respectively. The populations displayed a large 
range of variation in terms of phenology and height.

2.2. Image acquisition

The imaging setups consist of a vector and a camera ranged from 
hand-held over manual push-cart to fully automated rovers, gantry 
systems or a cable-suspended system mounted on poles (Table 2). Im
ages were acquired with RGB cameras of at least 1920 × 1080 pixel 
sensor resolution, oriented from nadir (0◦) to a 45◦ viewing angle. All 
carriers positioned the camera between 3 m and 1 m above the ground, 
leading to ground sampling distances between 0.09 and 0.71 mm.

2.3. Data selection for the annotation pool

For data selection, we entrusted expert judgment. To assemble a 
diverse set of images for annotation, each participating institution was 
asked to provide approximately 5000 images encompassing different 

phenological stages for the dataset and a diverse subset of 200 for the 
annotation pool. The selection of images prioritised diversity across key 
factors, including variations in phenological stages, geographic loca
tions, cultivars, and imaging conditions. Additionally, institutions were 
encouraged to include treatments, such as varying nitrogen levels, irri
gation, or other input variations, aiming to encompass a broad spectrum 
of scenarios in the dataset. From the annotation pool, a total of 1096 
images were selected through a stratified approach, ensuring propor
tional representation across contributing institutions. Specifically, the 
selected image set comprises 110 images from each of the seven in
stitutions (i.e., INRAE, ETHZ, USASK, Arvalis, RRES, NJAU, and UQ), 
109 images from two institutions (i.e., ULiege and Utokyo), and 108 
images from CIMMYT.

The selection process was driven by a joint consideration of feature 
geometry and institutional balance. Specifically, image features were 
extracted using a ResNet model [78] pre-trained on ImageNet. A 
k-means clustering algorithm was then applied to group the images 
based on their feature similarity. To ensure representative sampling, 
images closest to the cluster centres were selected, while also main
taining a balanced distribution across institutions. This process was 
designed to maximize the uniqueness of the selected images based on 
their embedding distributions. As a final data preprocessing step, all 
images were standardised to ensure consistent resolution and compa
rable ground sampling distances. This was accomplished by applying a 
centre crop to achieve a resolution of 512 × 512 pixels for most datasets. 
An exception was made for data contributed by UTokyo, where a reso
lution of 1024 × 1024 pixels was used to accommodate the more 
detailed ground sampling distance. Fig. 2 illustrates the images sampled 
from our proposed dataset, showcasing its diversity.

2.4. Labeling

2.4.1. Targeted wheat entities
The annotation process was carried out centrally by expert annota

tors using the Darwin annotation tool provided by V7 Darwin.9 During 
annotation, temporary adjustments of brightness and contrast were 
done to enhance the distinction among features. The annotation process 
and quality control were handled by HIPHEN. In case of annotation 
mistakes, images were sent back to the annotators with respective in
structions. In these cases, segmentation masks were modified using the 
brush and eraser tools. The global wheat experts team for labelling 
reviewed and resolved the unclear cases as needed. We refer readers to 
the appendix for the detailed GWFSS labelling guide. Initially, a small 
set of image tags was assigned to enhance understanding of image 
content and quality (see Table 3). Subsequently, pixel-level annotations 
were performed for the following classes: head, leaf, stem and back
ground. As a reference for tissue types, we largely used the BRENDA 
Tissue Ontology (BTO10) retrieved in the EMBL-EBI Ontology Lookup 
Service.11 The targeted entities were i) “heads” defined as spike 
(BTO_0001278) excluding awns (BTO_0005641), ii) “leaves” defined as 
the leaf lamina (BTO_0000719) including ligule, and iii) “stems” 
(BTO_0001300) including the surrounding leaf sheath (BTO_0005094). 
The peduncle was not labelled separately but included in “stem” (Fig. 3). 
The peduncle (PO_0009053) is the shoot axis that extends from the last 
foliage leaf on a stem (i.e. the flag leaf) until the next distal node (i.e. the 
basal end of spike).

Consequently, the wheat stem labelling included leaf sheaths, pe
duncles and bare stems (e.g. towards the end of the growing season). 
This decision considers that it is difficult to separate the different classes 
in complex images. The clear identification of the peduncle requires a 
visible ear (indicated by “P” in Fig. 3 d); the clear identification of a leaf 

9 https://darwin.v7labs.com.
10 https://bioportal.bioontology.org/ontologies/BTO.
11 https://www.ebi.ac.uk/ols4.
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sheath requires either its edge or the attached leaf blade is visible 
(indicated by “S” in Fig. 3 d). In many cases, it was not possible to decide 
if the structure was sheath, bare stem or peduncle. The wheat head label 
specifically encompassed only spikelets, excluding awns. Awns are distal 
bristle-like extensions of the lemma surrounding the florets of wheat 
[79]. Thus, while spikelets including glumes and florets were labelled as 
part of the wheat head, awns were treated as “invisible” features (Fig. 3
f, h). There are practical challenges in annotating individual awns in all 
imaging scenarios, particularly when awns appear blurry or lack distinct 
contours. Thus, when awns overlapped with the targeted organ, they 

were treated as if they were absent and the polygon was drawn across 
the organ in the background (Fig. 3 f, h). Detached senescent plant 
material, such as debris or residue resulting from no-till practices, was 
excluded from annotation and classified as background. All targeted 
entities were labelled as long as they were still attached to the wheat 
plant regardless of their colour, i.e. chlorotic or necrotic tissue was also 
labelled.

The annotation process was exclusively focused on wheat, with 
weeds deliberately left unannotated and classified as background. All 
other non-wheat objects were similarly disregarded and annotated as 
background (Fig. 3 b, h).

2.5. Baseline segmentation models development

DeeplabV3Plus [80] is a classic semantic segmentation framework 
based on convolutional neural networks (CNN) that employs an 
Encoder-Decoder architecture. The model builds upon the strengths of 
Deeplabv3, which leverages Atrous Convolution to explicitly control the 
resolution of feature maps and adjust the reception field. In Deep
labv3Plus, encoder features are first up-sampled bilinearly by a factor of 
4 and then concatenated with the corresponding low-level features from 
the backbone network. 1 × 1 convolutions are applied to low-level 
features, reducing the number of channels to reweight rich contextual 
encoder features and simplify training. After the concatenation, the 
model refines these combined features using a series of 3 × 3 convolu
tions, ensuring the integration of detailed spatial information and 
high-level semantic context. The decoder finalises the segmentation 
mask with a simple bilinear upsampling operation by a factor of 4, 
delivering high-resolution predictions. This seamless combination of 

Fig. 2. Representative samples from our proposed GWFSS dataset.

Table 3 
Imaging tagging overview.

Tag 
Name

Description Possible Value

Institute The institute that 
contributes this image.

INRAE, ETHZ, USASK, Arvalis, RRES, 
NJAU, UQ, ULiege, Utokyo, CIMMYT.

Name The unique image name. Not Applicable.
Size The width and height of 

the original image.
(4800 × 3200), (2048 × 2048), (4096 ×
3000),(3456 × 5184), (5184 × 3456), 
(5634 × 3753), (2040 × 2044), (4080 ×
2704), (4080 × 3200), (3296 × 2472), 
(2560 × 2048), (1024 × 1024), (5184 ×
3456).

Anthers The existence of anthers. True, False.
Bending The existence of ear 

bending.
True, False.

Lighting The existence of shadow. True, False.
Stage Phenological Stage. Emergence, Vegetative, Stem Elongation, 

Ear Emergence, Early Filling, Early 
Senescence, Late Senescence, Maturity.
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Fig. 3. Examples for the labelling process with original images (a, c, e, g) and labelled images (b, d, g, h) showing the segmentation masks for leaves (green), stems 
(purple) and spikes (orange). Red dotted lines in a) show the edge of the leaf sheath wrapped around the stem. A leaf sheath (S) as part of the stem can be either 
recognized by this edge or its connection to a leaf blade. A peduncle (P) is a part of the stem located between a visible spike and the collar of the flag leaf. For our 
analysis awns were treated as invisible by drawing the segmentation masks above them (f, h). Weeds and crop residues were considered background (b, h).
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multiscale context aggregation through the encoder and spatial detail 
recovery in the decoder positions Deeplabv3Plus as a robust and flexible 
solution for semantic segmentation tasks.

Segformer [63] processes an input image of size H × W × 3 by first 
dividing it into 4 × 4 overlapping patches. These patches are fed into a 
hierarchical Transformer encoder to extract multilevel features, 
leveraging an Overlapped Patch Merging strategy to ensure spatial 
continuity and capture richer local context. The encoder utilises efficient 
self-attention mechanisms by applying dimension reduction, which re
duces the time complexity of the self-attention mechanism. This signif
icantly optimises computational efficiency with minimal impact on 
segmentation performance.

The extracted features are then processed by a lightweight multi- 
layer perceptron decoder. Unlike traditional hand-crafted designs such 
as Deeplabv3Plus, this approach simplifies the decoding process while 
improving the effective receptive field, enabling precise and efficient 
segmentation. To cater to diverse performance and resource re
quirements, Segformer introduces a family of Mix Transformer encoders 
(MiT-B0 to MiT-B5), which share the same architecture but vary in size, 
offering flexibility in balancing computational cost and segmentation 
accuracy. By integrating innovative design choices with practical 
adaptability, Segformer delivers a robust and efficient solution for se
mantic segmentation tasks.

2.5.1. Impact of distribution shift on segmentation performance
We conduct experiments under two different data-splitting settings. 

(1) Random Split: In this setting, we randomly split the data into a 
training set (70 %), a validation set (10 %) and a test set (20 %). (2) 
Region Split: In this setting, we utilised data from Arvalis, CIMMYT, 
ETHZ, INRAE, NJAU, RRES, and ULiege CRA-W as the training set, data 
from UTokyo as the validation set, and data from UQ as the test set. The 
UQ test set is rather challenging due to the massive diversity in geno
types and Australian growing environments and imaging conditions. For 
both of the settings, the validation mIOU was used to select the best 
checkpoint, which was then used for testing.

2.5.2. Impact of training data scale and model size on segmentation 
performance

We conducted two sets of experiments to investigate how the size of 
the training dataset and the number of model parameters influence the 
performance of the segmentation. To investigate the relationship 

between the size of the training dataset and the performance of the 
model, we trained SegFormer-B0 using progressively larger subsets of 
the full training dataset. Specifically, we sampled subsets containing 1 
%, 5 %, 10 %, 20 %, 30 %, …, 100 %, of images from the full training set 
to train the model. To assess the impact of model size on segmentation 
performance, we trained SegFormer-B0 to B5 using the full training 
dataset. As the model progresses from B0 to B5, both the number of 
parameters and computational cost increase, allowing us to analyse how 
model complexity affects segmentation accuracy.

2.6. Evaluation metrics

Mean Intersection over Union (mIoU) measures the level of 
overlap between the predicted mask and the ground truth mask. Spe
cifically, we have: 

mIoU =
1
C

∑C

c=1

|Pc ∩ Gc|

|Pc ∪ Gc|
; (1) 

where Pc and Gc denote the predicted mask and ground truth mask of the 
c-th class.

Mean Pixel Accuracy (mAcc) focuses on the pixel-wise accuracy for 
each class, which can be defined as: 

mAcc =
1
C

∑C

c=1

|Pc = Gc|

|Gc|
: (2) 

3. Results

3.1. UMAP visualisation of image diversity

The diversity of the training dataset is critical for the generalisation 
capacity of segmentation models. The diversity of a crop dataset can be 
affected by multiple factors, such as differences in phenological stages, 
lighting conditions, background, growing environment conditions, and 
genotype. In this work, the distribution of GWFSS images was analysed 
using the UMAP technique on image features extracted by an ImageNet- 
pretrained ResNet-50 model. The image embeddings of the top two 
UMAP components visualise the distribution of all labelled GWFSS data. 
The visualisation of images in the latent space was either colored by the 
phenological stage (Fig. 4 a) or institution (Fig. 4 b). For the 

Fig. 4. The UMAP visualisation of GWFSS labelled images colored by (a) phenological stage and (b) institution.
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phenological stages, the first UMAP dimension shows a clear clustering 
in the sequence of stage progression. With the first UMAP feature 
increased from 0 to 13 (Fig. 4 a, dimension 1), the growth stage 
generally progresses from emergence and vegetation towards senes
cence and maturity. Most of the images taken from emergence to stem 
elongation clustered at a value below 7, while the other extreme images 
around late senescence and maturity clustered above 7. Images con
taining ears, i.e., starting from ear emergence, showed values above 4 in 
dimension 1. The clustering in the second dimension tended to be driven 
by the institution providing the images. Images from USASK, ULiege, 
and RRES generally have the second UMAP feature valued below 8, 
while most of the UQ and NJAU features are above 8. By viewing the 
images of these institutions, this phenomenon could be attributed to the 
difference in the lighting conditions. The datasets of UTokyo and NJAU 
cover a wider range of dimension 2, while the dataset of Arvalis is the 
only one spanning almost the entire latent space.

3.2. Balance of developmental stages and labelled classes

Images were tagged with the approximate developmental stage 
estimated from the image (i.e. stages were not recorded as ground truth 
in the field). Although the aim was to balance all the phenological stages 
(for a definition see Table 4), this was not possible for all datasets. An 
analysis of the tags across the whole dataset revealed an uneven distri
bution across different phenological phases (Fig. 5, a). Notably, ‘early 
filling’ and ‘early senescence’ were the most frequently observed (224 
and 282 images, respectively), while ‘emergence’ was the least repre
sented stage (8 images).

We also evaluated the balance of the labelled classes. At the image 
level, background (BG) and leaves were the most prevalent, appearing in 
1090 and 1080 images, respectively (Fig. 5, b). In contrast, the stems 

and heads were present in 847 and 739 images, respectively, since they 
predominantly emerge in the later phenological stages. At the pixel 
level, a more pronounced class imbalance was evident, with the leaves 
occupying the largest proportion of pixels, followed by the background, 
while the stems and heads account for significantly fewer pixels (Fig. 5, 
c). Thus, although heads and stems appear frequently at the image level, 
they still constitute only a small fraction of the total pixel distribution, 
compared to leaves and background.

3.3. Baseline segmentation models

Concerning the sampling strategies to split images into training, 
validation and test sets, there was a noticeable performance gap be
tween the random split vs region split strategy (Table 5). We attribute 
this discrepancy to the distribution shift between the training and test 
data in the region split setting. Among the evaluated models, Segformer 
consistently outperformed DeepLabV3plus, achieving a 2.8 % higher 
mIoU in the random split setting and an 8.5 % improvement in the re
gion split setting. Notably, in the Region split strategy, Segformer per
formed substantially better for head and stem classification than did 
DeepLabV3plus with little difference in estimation of background and 
leaf. These results highlight the superior capability of Segformer in 
addressing the wheat organ segmentation task, especially under distri
bution shifts.

Concerning the size of the training data, the overall model perfor
mance sharply increased between 1 % and 60 % (i.e. 460 images) of the 
training data and plateaued thereafter (Fig. 6, a). Above these 460 im
ages, there were only marginal improvements as the dataset size 
approached 100 %. The heads and leaves were well segmented with only 
10 % of the data (IoU > 75 %) and the model performance only pro
gressed slowly when more data were used. The segmentation of stems 

Table 4 
Glossary of relevant terms used.

Term Abbreviation Description Reference

Labels GWFSS context: polygons used to generate masks for the different 
organs.

Tags GWFSS context: keywords added to an image, such as the developmental 
stage displayed.

Tiles GWFSS context: subsamples from the original image that are used for 
labelling and training. Standard tiles are squares, often with 256 × 256 
pixels.

Uniform Manifold 
Approximation and 
Projection

UMAP Dimension reduction technique that can be used for latent feature 
visualisation

McInnes, L, Healy, J, UMAP: Uniform Manifold 
Approximation and Projection for Dimension Reduction, 
ArXiv e-prints 1802.03426, 2018

Intersection over Union IoU IoU is a metric of segmentation performance of the area manually 
labelled (A) vs. the area detected by the model (B). The intersection size 
between the two is divided by their union size. intersection union

https://en.wikipedia.org/wiki/Jaccard_index

Proximal sensing Sensing from proximity. Sensors are typically operated hand-held or 
mounted on poles, gantries, or ground-based vehicles.

Imaging setup The combination of vector (carrier systems), sensor and lens (i.e. RGB 
camera-lens combination) as well as the working distance and camera 
angle defining the field of view.

https://en.wikipedia.org/wiki/Field_of_view vor 
definition of the field of view.

Phenology The study of periodic events in biological life cycles and how these are 
influenced by seasonal and interannual variations in climate, as well as 
habitat factors (such as elevation)

https://www.merriam-webster.com/dictionary/ph 
enology

Canopy Branches (stems), leaves, and spikes (inflorescences) of a population of 
plants growing on a piece of land.

Adapted from different sources a

Crop ontology CO Provides descriptions of agronomic, morphological, physiological, 
quality, and stress traits along with their definitions and relationships.

https://cropontology.org

Leaf area index LAI Trait, which characterise plant canopies, are defined as leaf green area 
per unit of surface area

CO_321:0000184

Initiation of booting Boot Phenological period prior to spike emergence where the flag leaf is fully 
developed

CO_321:0000191

Anthesis Ant Phenological period when pollination occurs in wheat CO_321:0000121
Heading Hd Phenological period from the time of emergence of the spike tip from the 

flag leaf until the spike has fully emerged
CO_321:0000007

Maturity Mat Phenological stage when wheat stops remobilising assimilates to the 
spike

CO_321:0000022

a We combined definitions from https://dictionary.cambridge.org/dictionary/english/canopy and https://www.ebi.ac.uk/ols4/search?q&equals;canopy as no 
matching definition was found for the case of crop canopies.
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improved with increases to 60 % of the training data but the perfor
mance plateaued at a low IoU of 40 %.

To examine the impact of model size, we trained SegFormer models 
of varying capacities (B0 to B5) on the full training dataset and analysed 
their performance (Fig. 6, b). The Giga Floating Point Operations per 
Second (GFLOPS) served as an indicator of computational complexity, 

where higher values denote greater computational demands. The results 
indicate a steady improvement in performance from B0 to B4. However, 
when training SegFormer-B5 on the full dataset, performance degrada
tion was observed. We attribute this decline to the insufficiency of 
training data to adequately support the significantly larger parameter 
space of SegFormer-B5, which nearly doubles that of B4.

Fig. 5. Statistics of the GWFSS dataset: (a) The distribution of growth stages for each image, where 1 − 8 on the x-axis indicates ‘Emergence’, ‘Vegetative’, ‘Stem 
elongation’, ‘Ear emergence’, ‘Early filling’, ‘Early senescence’, ‘Late senescence’, and ‘Maturity’, respectively. (b) The class occurrence at the image level. (c) The 
class occurrence at the pixel level.

Table 5 
Comparison of Mean Intersection over Union (mIoU) and mean accuracy (mAcc) metrics for Deeplabv3plus (R101) and Segformer (B1) across Random- and Region- 
based data splittings.

Segformer (B1) DeeplabV3+ (R101)

Random Region Random Region

IoU Acc IoU Acc IoU Acc IoU Acc

Background 84.51 92.75 75.46 88.71 81.59 89.88 74.32 82.11
Head 82.85 90.14 66.11 86.84 81.46 89.05 46.25 48.27
Stem 44.92 53.89 19.23 20.95 39.40 46.73 6.64 7.06
Leaf 82.35 90.44 81.75 89.36 80.93 90.81 81.4 95.14
Average 73.66 81.81 60.64 71.47 70.85 79.12 52.15 58.15

Fig. 6. Effect of (a) training data size and (b) segmentation model size on Segformer model performance. The effect of training data size on the intersection over 
union (IoU) was evaluated for all object classes including the background (BG). The segmentation model size performance was evaluated as mean IoU (mIoU) and 
Giga Floating Point Operations per Second (GFLOPS). The higher GFLOPS indicates heavier computational complexity. Here B0 indicates the smallest Segformer 
model while B5 indicates the largest Segformer model.
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3.4. Visual inspection of segmented images

Key requirements of the model were to detect organs independently 
of their colour and distinguish them from weeds or plant residues on the 
ground. We conducted a systematic review of all five images that 
contain weeds in the test set (Random Split, as described in Section 
2.5.1). The weeds were of different types with different leaf shapes and 
were mostly classified as background (Annex, Fig. S2). A sample is 
displayed in Fig. 7 a, k and l. Late in the season, weeds frequently 
germinate between rows and obscure the senescence signal. Similarly, 
the separation of plant residues from wheat plants (Fig. 7, b) is an 
important advantage. When awns are present, the segmentation of the 
spike without the awns (Fig. 7 a, d, f, h, i, j, k) is a useful feature that can 
assist in the approximation of spike volumes. To evaluate the segmen
tation of senescing canopies, we selected images from early senescence 
to maturity within the random split test set (as detailed in Section 2.5.1). 
This set representing later stages comprises 73 images. In general, the 
model maintains strong performance (Table S2). However, performance 
declined relative to the full test for the background (IoU of 73.5 vs. 84.5 
for late stage vs. full set) and leaves (IoU of 73.7 vs. 82.3 for late stage vs. 
full set). This is likely due to the increased visual similarity between 
senescing leaves and background elements (e.g., soil or dried residue), as 
well as reduced structural distinctiveness in ageing foliage, making ac
curate segmentation more challenging.

4. Discussion

4.1. The challenges of organ labelling in complex canopies

We collected 52,078 images from 67 different field sites worldwide 
with a ground sampling distance (GSD) between 0.09 and 0.71 mm per 
pixel. The UMAP visualisation confirms the need for such diversity, as it 
shows clustering by institution and developmental stage.

The collaborative effort to sample this diverse set of images and to 
design the labelling strategy was essential to the success of the work. All 
participating institutions operate imaging setups collecting images of 
wheat canopies in the sub-millimeter range and are at the forefront of 
enhancing the in-depth analysis of complex canopies. A first step was the 
decision of which canopy features could be targeted, given the available 
spatial resolution. In wheat, ground sampling distances below 10 mm 
permit good estimates of canopy cover and leaf area index or crop 

density, while GSDs below one mm are needed to detect individual 
leaves of emerging seedlings [81]. The given sub-millimeter resolution 
was sufficient to label the targeted organs. Reliable labelling of awns 
would likely require GSDs below 0.2 mm and substantially more labour 
for manual labelling. New sensors with higher resolution will allow for 
awn segmentation, even when operating with the same carrier system.

Given the experience in GWFSS, the term “plant organ” needs to be 
understood in the context of imaging constraints. With this regard, we 
would like to add a “sidenote” to protocols for the minimal requirements 
to describe plant phenotyping experiments. The MIAPPE 1.1 [82]. 
release states that “Observed variables, traits, methods and scales are each 
identified by name, and may have a reference to the corresponding ontology 
concept (ideally from the Crop Ontology)”. However, in the Crop Ontology 
database,12 entities upon which traits are measured are not always 
indexed with their own identifiers. For example, while stem colour 
(CO_321:0000973) is defined as “colouration of the stems,” the entity 
“stem” itself is not defined. GWFSS aims to extract organs as entities on 
which traits will be measured. For this reason, we prefer the BRENDA 
Tissue Ontology (BTO13), which is a vocabulary for the source tissues. As 
such, it focuses on a detailed description of the entity rather than the 
trait. The segmentation of the entities is the first step towards deriving 
new phenotypes. Moreover, our digitally extracted “organs” do not quite 
comply with classic ontology terms: heads exclude their spikes, and 
stems include leaf sheaths. One challenge is therefore how to define a 
trait which is based on more than one organ part (e.g. stem = true stem 
plus leaf sheath), given that trait ontologies are typically structured 
hierarchically. Along these lines, Celestina et al. [83] have identified the 
need to reconsider the classical growth scales, such as Zadoks [84] or the 
derived unified BBCH scale [85] to fit the needs of image-based phe
notyping. They draw up a list of the development stages that need to be 
assessed by destructive sampling and the stages that can be assessed in a 
non-destructive manner. We believe that their phases of the Population 
of Culms Development Scale (PCDS) may be enhanced by image-derived 
phases. At least heading and physiological maturity can be digitally 
measured based on models derived from GWHD and GWFSS as we will 
discuss below.

Fig. 7. Visualisation of original image (left strips), ground truth (centre strips) and prediction results (right strips) from Segformer-b1.

12 https://cropontology.org/.
13 https://bioportal.bioontology.org/ontologies/BTO.
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4.2. GWFSS compared to other datasets for semantic segmentation of 
wheat organs

The availability of extensive open datasets has been crucial to 
remarkable progress in applications of modern computer vision in 
agriculture. Various datasets have been released to facilitate computer 
vision applications, such as for fruit detection [86], weed management 
[87], green coverage estimation [9], and plant disease identification 
[88]. For semantic segmentation, pixel-level annotation remains a 
cornerstone of segmentation tasks, but it is notoriously labour-intensive 
and expensive. Intensive collaboration among public and private in
stitutions is needed to generate sufficiently large, diverse, and consis
tently labelled data.

The novelty of the GWFSS dataset is its diversity, its coverage of all 
stages, and labelling of all organs of wheat. The GWFSS dataset contains 
fewer annotated images than GWHD [16], which labelled 6510 images 
from 16 institutions. However, GWFSS dataset samples the whole 
growing season while GWHD focuses on head detection during flower
ing, grain filling, and ripening. Moreover, for the GWFSS dataset, we 
decided to supply a large set of 52,078 images to enable users to pose 
solutions to other questions by applying their labelling. A similar dataset 
assembled by the global-rice dataset consortium is underway for rice 
[73].

For semantic segmentation, there are several smaller datasets 
available which are not included in GWFSS, mainly because they 
focused only on specific organs of wheat. Although most studies trained 
segmentation models, we will summarise only the characteristics of the 
annotated datasets as the most valuable part of the studies (see Table 6). 
With regard to wheat heads, several smaller datasets were collected in 
addition to the GWHD dataset [36,65,66]. Few researchers have 
collected datasets to train leaf segmentation during the early [72] or late 
phases of development [73]. The latest trend is to target features within 
organs within complex canopies in the field, such as spikelet segmen
tation [89], Fusarium head blight [71], or leaf diseases [90]. For such 
annotations of wheat head damage, a concise and coordinated labelling 
of diverse datasets may be highly valuable.

4.3. Organ segmentation - a path to integrative traits

Field phenotyping is often considered in the context of spatial and 
temporal scales. We believe that the ability to track organ development 
throughout the growing season will set a new standard for phenotyping. 
It will aid breeders, variety testers, or researchers in evaluating geno
types for improved canopy architecture, source-sink balance and resis
tance to environmental and disease stressors.

The ability to follow the different wheat organs through the season 
enables the testing of more complex phenotypes. For example, our 
model would permit quantification of the changes in tissue reflectance 

as they change from green to chlorotic to necrotic. In wheat, this was 
done, for example, using shallow learners based on colour spaces using a 
support vector machine classifier [19] or a multiclass random forest 
classifier [73]. Canopy segmentation followed by reflectance indices or 
the mentioned classifiers opens new possibilities for field phenotyping. 
For example, changes in leaf colour can be used to quantify canopy 
damage in winter due to frost or diseases. Later, it may be used to 
quantify nitrogen status.

Stem (or more precisely peduncle) senescence is a measure of 
physiological maturity of wheat [91]. It is time-consuming to assess and, 
therefore, rarely reported. Using a small semantic segmentation training 
dataset, Anderegg et al. [43] tracked the senescence process of leaves, 
stems, and heads through grain filling and showed that stems were the 
last organ to be senescent. In this work, the genotypes differed in their 
dynamics and timing of leaf, head, and stem senescence, highlighting 
the relevance of tracking the organs separately. The GWFSS training 
dataset is a major step forward in measuring physiological senescence 
and separating different canopy senescence processes.

We acknowledge that proximal sensing is currently not the primary 
choice in cases where thousands of plots are to be evaluated and 
breeding programs are more likely to require high-throughput remote 
sensing by means of unmanned aerial vehicles (UAV). Remote sensing 
by UAV equipped with lower pixel resolution multi-spectral sensors al
lows the estimation of traits like LAI and canopy senescence. However, 
these sensors are not ideal to study the different organs in the canopy. 
Plant organs may have substantially different proportions in the canopy, 
influencing its reflectance spectrum. Variation with time occurs due to 
environmental effects on crops (leaf rolling, frost, heat, drought, nutri
tion, and pest effects), stem elongation, spike appearance, and bending 
or lodging of spikes during grain filling. The transferability of reflec
tance spectra from one season or trial to a different one may be influ
enced by environmental conditions or diseases. Although proximal 
sensing has lower throughput, it can complement aerial measurements 
with information from the organ scale. This might enable upscaling from 
proximal to remote sensing. Alternatively, high-resolution RGB imaging 
is becoming readily available on UAV with cameras with a resolution 
ranging from 60 to 120 Mpx, though UAV are slow and difficult to 
localise when flown close to plots to take still shots. A solution is to fly 
UAVs closer to the plots and use video at high-shutter speeds to avoid 
blurring the image or disrupting the canopy with propeller downwash 
[92] were able to achieve a GSD of 0.13m flying a 20 Mpx camera using 
video at ca. 5m above the canopy at a speed of 2–3 m/s. Finally, there is 
an increasing number of phenotyping robots available, as well as higher 
resolution RGB UAV cameras that allow organ phenotyping of larger 
numbers of plots.

We recognise that RGB datasets are only a piece of the larger phe
notyping toolbox: Other technologies could and should be used in 
combination with data fusion methods. For example, LiDAR has been 

Table 6 
Summary of wheat segmentation datasets.

Dataset Size Resolution Focus

GWFSS 52,078 images Various All organs, all growth stages, geographic diversity, genotype variation
GWHD [16] 6510 images Various Wheat Head detection
WESS-Dataset [65] 120 images (6500 tiles) 4592 × 3448 px (256 × 256 tiles) Wheat heads
EarSegNet [66] 160 images 5184 × 3456 px (2500 × 2500 tiles) Flowering wheat heads
Najafian et al. [36] Limited manual + synthetic 12/48 megapixel Wheat heads
Deng et al. [72] 370 images (25,530 tiles) 3000 × 2000 px (256 × 256 tiles) Leaves
Anderegg et al. [73] 206 tiles 2400 × 2400 px Stem elongation
Liu et al. [71] 2200 images Not specified Fusarium Head Blight
Niu et al. [89] 450 images 3472 × 3472 px Head damage
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used to estimate biomass and crop growth rate [93]. Future RGB data
sets collected at the same time as LiDAR point clouds can be used to 
study biomass accumulation at deeper hierarchical levels, such as 
biomass partitioning in the different organs. Furthermore, RGB com
bined with thermal imagery can be used to assess abiotic stresses [94]. 
Breeders could focus on targeted breeding for specific organs and select 
new genotypes with increased water use efficiency, to exemplify a few 
cases where RGB organ segmentation can be made the most of.

4.4. Baseline model to guide the size of the training data

The main contribution of this work relates to the creation of a large 
open-access database of images capturing diverse field-grown wheat 
plots. However, without a basic model it was difficult to judge how large 
the training data should be. According to the trained baseline model, the 
1096 labelled images are sufficient for a segmentation of leaves and 
heads. For any organ, including stems, the increase in model perfor
mance levelled out when more than 60 % (ca. 600 images) of the totally 
available data were used for training. This indicates that either a 
massively larger amount of data or a different labelling or training 
strategy might be needed for substantial further improvement. Model 
performance was reduced when performing a region-specific data split.

Among the two evaluated models, we chose Segformer. It achieved 
good segmentation for leaves, heads and background (IoU 80 %), but the 
segmentation of the stems underperformed (IoU = 44.92 %). The low 
performance of the stem segmentation may be attributed to various 
reasons: stems are thin, partially occluded by leaves, and a limited 
proportion of total pixels compared to the other organs. During booting 
and spike emergence (i.e. the expansion of the growing spike within leaf 
sheaths), the cylindrical structure of the stem is lost and the foil-like 
structure of the sheaths becomes obvious. This may lead to low model 
performance during this stage, particularly for stems. Furthermore, 
annotation difficulties related to distinguishing stems from some soil 
residues and senescent or rolled leaves may produce label noise. 
Improving stem segmentation may require exploring loss functions 
associated with class imbalance or incorporating massively more images 
with annotated stem masks.

These findings highlight a critical requirement: current models for 
segmenting organs in plants are highly dependent on extensive, high- 
quality annotations to achieve strong performance. To address this, 
research should prioritise the development of annotation-efficient so
lutions that maintain high performance with fewer labelled samples. 
Promising directions include leveraging self-supervised learning, which 
utilises unlabelled data and semi-supervised or active learning, which 
strategically selects a minimal number of samples for annotation while 
maximising model learning.

Without being quantitative, visual observation of the segmented 
image confirmed that wheat plants were segmented independently of 
their colour while weeds or plant residues were classified as back
ground. This is a great step forward. Earlier models segmented plant 
tissue to a large degree based on colour. For example, in the case of 
Eschikon wheat segmentation training (EWS) [18], necrotic leaves were 
no longer detected as part of the canopy. This led to a decrease in canopy 
cover after winter due to necrotic leaves that suffered freezing damage 
[18]. Although the VegAnn model [9] included necrotic parts of plants 
in its segmentation while excluding crop residues, it was trained on a 
large number of different species and did not exclude weeds [34].

4.5. Value of the full GWFSS dataset without labels

Self-supervised learning (SSL) methods can leverage a large amount 
of unlabelled image data as a pre-training procedure to better initialize 
or condition a deep learning model for a subsequent downstream anal
ysis task. Ogidi et al. [34] found that a diverse source dataset in the same 
domain or similar as the target dataset combined with SSL can maximize 
performance in downstream plant phenotyping tasks. Our large, unla
belled dataset of 52,078 RGB images is meant as a training set for SSL 
methods. The idea of this dataset is to provide it as set for SSL while 
using the labelled data for validation and testing. The dataset can be also 
used for further labelling without the need to collect the data. It may be 
used for further segmentation tasks such as spikelet segmentations or 
other canopy features.

Beyond organ segmentation, the extensive dataset documented here 
provides a dynamic platform to develop predictive models that can 
capture temporal and spatial variability across multiple years and en
vironments. By integrating environmental data with image-derived 
traits and machine learning methods, such as random forest regression 
or XGBoost, which can handle a vast array of predictor variables, 
breeders can target more complex traits such as radiation use efficiency, 
harvest index and yield. More fundamental underlying traits can be 
capable of better account for genotype-by-environment interactions and 
permit breeding programs to optimise their pipelines on a global scale.

4.6. Conclusion and outlook

Segmentation models will reduce the subjectivity of field observa
tions by leveraging the generation of large and consistent datasets. 
Organ segmentation will enable the extraction of a range of additional 
traits from complex canopies. Such information is needed to advance our 
understanding of the interaction of Genotypes with the Environment they 
grow in and the Management practices they receive (often abbreviated as 
GxExM). To achieve robustness, the training data for the segmentation 
models needs to be large and diverse. Models derived from the GWFSS 
dataset will likely outperform many models derived from labelling in 
single experiments. As a further step, datasets from other small-grain 
cereals, such as barley, could be considered to enhance the training data.

While organ proportions will be directly available from the GWFSS- 
derived segmentation models, other traits will need to be developed and 
calibrated through secondary processing. For example, sensor fusion 
may allow one to integrate organ information derived from point sensors 
or sensors with lower resolution. Moreover, organ information may 
complement canopy-level traits derived from remote sensing.

Many of our images were derived from fully automated platforms, 
and these installations are often prototypes. With the advancement of 
agricultural robots, such platforms will become affordable for a greater 
community in the near future. But also smartphones or specifically 
designed hand-held devices, will bring image-based phenotyping to a 
greater community. This will leverage new possibilities for common 
research projects in science and citizen science communities.

Author contributions

The GWFSS consortium consisted of different working groups that 
focused on conceptualisation and steering, data collection and data 
supply, labelling, data curation, training the base model, and writing 
(Table 7). The display of the author's contribution was inspired by.14

14 https://www.nature.com/nature-index/news/researchers-embracing-v 
isual-tools-contribution-matrix-give-fair-credit-authors-scientific-papers.
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