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ARTICLE INFO ABSTRACT
Keywords: Computer vision is increasingly used in farmers' fields and agricultural experiments to quantify important traits.
Wheat organ segmentation Imaging setups with a sub-millimeter ground sampling distance enable the detection and tracking of plant
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features, including size, shape, and colour. Although today's Al-driven foundation models segment almost any
object in an image, they still fail for complex plant canopies. To improve model performance, the global wheat
dataset consortium assembled a diverse set of images from experiments around the globe. After the head

detection dataset (GWHD), the new dataset targets a full semantic segmentation (GWFSS) of organs (leaves,
stems and spikes) covering all developmental stages. Images were collected by 11 institutions using a wide range
of imaging setups. Two datasets are provided: i) a set of 1096 diverse images in which all organs were labelled at
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the pixel level, and (ii) a dataset of 52,078 images without annotations available for additional training. The
labelled set was used to train segmentation models based on DeepLabV3Plus and Segformer. Our Segformer
model performed slightly better than DeepLabV3Plus with a mIOU for leaves and spikes of ca. 90 %. However,
the precision for stems with 54 % was rather lower. The major advantages over published models are: i) the
exclusion of weeds from the wheat canopy, ii) the detection of all wheat features including necrotic and se-
nescent tissues and its separation from crop residues. This facilitates further development in classifying healthy
vs. unhealthy tissue to address the increasing need for accurate quantification of senescence and diseases in

wheat canopies.

1. Introduction

Wheat is one of the most important crops in the world, providing 18
% of calorie intake and 19 % of protein intake globally [1]. While the
area of farmland used to grow wheat has remained stable, global wheat
yields have quadrupled since 1960, mainly due to technical innovation,
such as the widespread use of N fertilisers, and the breeding of modern
wheat varieties [1]. However, the rate of yield gain has stagnated or
even decreased in the last two decades in different regions of the world
[2], imposing a challenge to fulfilling the projected demands for wheat
production in the future [3]. In addition, climate change-induced
stresses [1], plant disease adaptation, and pest outbreaks, combined
with the need for more efficient crops that require less input in terms of
fertilisers, water, and pesticides place additional constraints on wheat
production. Increasing wheat yield is a multi-faceted problem which
involves genetic, physiologic, and agronomic improvement to enhance
resource-use efficiency. Novel phenotyping approaches provide
advanced tools and methodologies to enhance wheat management,
optimise breeding, and achieve efficient resource utilization. These
methodologies are key to enabling precise repeatable measurements in
agricultural fields and research networks across the globe, as high-
lighted in a survey on field-based phenotyping in Europe [4]. In their
survey, Morisse et al. [4] emphasise the capability of these platforms to
enable the rapid collection of datasets at breeding scale, including
hundreds of plots with various genotypes and treatments. Moreover,
data can be collected during the entire crop growth cycle, enabling
tracking of wheat responses to biotic and abiotic stresses or management
practices. Although a wide range of possible sensors are available,
including 3D scanners [5] to characterise canopy architecture or
hyperspectral imaging [6,7] to monitor plant health and productivity,
we focus here on high spatial-resolution imaging with red, green and
blue (RGB) spectra. Such imaging provides a broad range of phenotyp-
ing capabilities at relatively low equipment costs and high spatial res-
olution. In a comprehensive review on translating high-throughput
phenotyping (HTP) into genetic gain, Araus et al. [8], posed a key
question: “Will low-cost HTP tools be adopted regularly by breeders in the
next decades? If so, are RGB cameras, mobile apps, and drones the natural
candidates?” Classical RGB cameras can be mounted on handheld de-
vices [9], ground-based vehicles [8,10], gantries [11], or drones [12],
making them adaptable to various scales and platforms. The advantage
of RGB sensors is their relatively high spatial resolution and low cost
compared to other HTP tools [13]. This enables the capture of sufficient
details to separate plant features from complex canopies. However,
robust feature extraction requires algorithms capable of extracting in-
formation from images taken under a wide range of conditions. The
development of such algorithms demands a sufficient number of
well-annotated training images capturing this diversity.

Several pioneer datasets published related wheat-linked tasks in field
conditions focusing either on (i) spike detection and quantification with
the SPIKE [14] and GHWD dataset [15,16], and a dataset provided by
Madec et al. [171], (ii) vegetation segmentation on wheat only with EWS
dataset [18] or on multispecies including wheat with SegVeg and
VegAnn [9,19] or (iii) disease detection on wheat with the NWRD
dataset [20], the wheat leaf dataset for strip rust and septoria [21], the
CDTS for strip rust [22], the wheat nitrogen deficiency and leaf rust

image dataset [23] and the CGIAR Computer Vision for Crop Disease for
stem and leaf rust [24]. Despite these contributions, existing datasets are
often limited in terms of geographic diversity, genotype variations, and
growth stages, which may limit the generalisation power of models
trained on these datasets. Furthermore, only a few datasets are collab-
orative, involving multiple countries and institutions [9,15,16,19]. To
address this limitation, the collaborative Global Wheat Dataset Con-
sortium was established. This consortium aims to aggregate datasets
from multiple institutions, make them publicly available, and provide
the necessary data to develop robust algorithms. In previous GWHD
editions 2020-2021 [15,16], we released a large dataset with a total of
6515 high-resolution RGB images, containing annotations for 275,187
labelled wheat heads. The early design of GWHD focused on providing
bounding-box annotations for wheat heads, including images of
different genotypes captured under varying environmental, manage-
ment and growth conditions. GWHD played a pivotal role in various
research studies, particularly in developing and benchmarking wheat
head detection and counting methods using supervised models [25-31],
semi-self-supervised models [32,33] and self-supervised models [34],
generating a reference dataset to improve deep learning model perfor-
mance [35-37] and improving head count models in dense plots [38].
These robust detection models allow the counting of wheat heads per
unit area [29,39], as long as the footprint of the image at the top of the
canopy is known. In addition, the dynamics of head counts may be used
to approximate heading dates [40]. The flowering date of wheat is often
approximated by the heading date because it is easier to assess head
emergence or presence than anther extrusion which is more affected by
time of day, wind conditions and operator experience [40,41]. Thus,
heading is the most widely assessed trait related to cereal phenology and
an important trait to understand the effect of environmental stresses,
such as heat and drought, on grain yield [42].

While counting wheat heads is important as it is one of the yield
components, it is not the only targeted trait. Wheat continuously adjusts
its yield potential during the entire vegetation period. Low germination
or plant damage due to winter kill is compensated for by increased
tillering, while during stem elongation, excessive tillering is compen-
sated by tiller abortion. Later in the season, the different organs can
undergo different senescence dynamics, as demonstrated by Anderegg
et al. [43]. A deeper understanding of how yield is formed throughout
the growth season will benefit from a non-destructive assessment of its
components. The imaging and semantic segmentation of all the plant
organs visible in the image, from emergence to maturity, have great
potential to shed light on the yield formation process. Examples of tar-
geted traits are seedling count [44,45], canopy cover [18,19,46,47],
biomass estimation [48] and leaf area index (LAI) [49,50]. In most cases,
segmentation of wheat canopies from other background features, such
as soil or weeds, is required. The comparably simple task of segmenting
canopies from the soil background was previously solved by manual
adjustments [51], using automatic threshold methods, such as the Otsu
algorithm [52,53] or shallow machine learning [13,54,55].

The above-mentioned approaches based on colour information at the
pixel-level, have the shortcoming that they cannot take context into
account. Modern deep learning methodologies enable the learning of
contextual information. This requires human-annotated training data to
supervise feature detection in complex images containing many plants
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growing together in a canopy. The different plant organs in such can-
opies are not simply green but might have different shades of green or
yellow due to senescence, chlorosis, or necrotic tissues. Necrotic plant
tissues may have a similar brown colour as crop residues and can only be
segmented in RGB images based on context. Green canopy segmentation
using deep learning models has become a standard procedure, with
training data sourced from a wide range of crops, such as the VegAnn
dataset [9] combining 3775 RGB images of 12 different crops. With the
existence of large datasets and the advancements in computer vision,
new possibilities of data processing and feature extraction have been
unlocked through the utilization of data-driven deep learning ap-
proaches. Existing deep learning-based segmentation is mainly based on
encoder-decoder architecture like DeeplabV3Plus [56-60] and Atrous
convolution [61,62] architecture, with application-specific adaptation.
More recently, transformer-based segmentation models (e.g., SegFormer
[63]) have gained attention due to their ability to capture long-range
dependencies and global context effectively. These models show prom-
ise in addressing complex segmentation tasks, offering improved per-
formance and adaptability in agricultural applications. Despite their
potential to achieve promising performance, transformer-based models
require relatively larger datasets that are currently lacking in agricul-
tural domains [64].

Within the wheat canopy, segmentation of organs including leaves,
stems, and heads is required, followed by the extraction of relevant
phenotypes from each organ. Many wheat researchers have collected
their own wheat datasets or made their own annotations from existing
ones to achieve semantic segmentation of heads [35,59,65-67], spike-
lets [68], grains [69], stems and foliage [43] infected [20,70-72] and
senescent [19] tissues, or a combination of disease and senescence [73].
The data provided in these publications largely advance wheat pheno-
typing at the organ level, offering tools for detailed studies of yield
components such as spike number, spikelets per spike, spikelet size, leaf
disease resistance, and senescence dynamics. However, there is a lack of
integrated datasets enabling simultaneous segmentation of all wheat
organs (leaves, spikes, stems) from soil, crop residues, weeds and other
background elements. Moreover, wheat has a complex canopy due to its
high planting density, strong development of tillers (lateral shoots), thin
stems, overlapping leaves and occluded organs. Variations in appear-
ance caused by growth stages, lighting conditions, wind patterns and
imaging angles make it a challenging plant species to phenotype. To
advance our capabilities beyond the wheat head-centred GWHD dataset
2021-2022, we assembled the Global Wheat Full Semantic Segmenta-
tion (GWFSS) dataset collected by different phenotyping platforms from
11 institutes and universities across the globe under various light and
weather conditions. This diversity ensures that the dataset addresses the
extensive requirements of wheat phenotyping across a range of genetic
backgrounds, environments, and management practices throughout the
growing season. The images were collected with an average ground
sampling distance (GSD) between 0.09 and 0.71 mm per pixel. This is
significant for accurately capturing organ features to allow precise dif-
ferentiation and measurement of these smaller structures, rather than
focusing solely on canopy-level traits. Our contribution can be sum-
marised as follows:

1. A full GWFSS dataset comprising 52,078 RGB images without labels
is available in ETH research collection.

2. An annotated GWFSS dataset providing 1096 pixel-level annotations
(masks) for the following classes: leaves, stems, heads, and
background.

3. The results of two state-of-the-art segmentation models, Deep-
LabV3Plus and Segformer, fine-tuned on the full dataset. The models
were trained as a baseline performance benchmark for organ
segmentation.
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2. Material and methods
2.1. Field experiment

The dataset includes images from field experiments conducted by 11
institutions worldwide, as detailed in Table 1. Wheat plots at 67
different field sites were imaged using proximal RGB imaging setups
throughout the growing seasons (Fig. 1). The experiments cover a wide
range of planting densities, agronomic inputs, environmental condi-
tions, as well as disease and weed pressures. Thus, the GWFSS dataset
spans diverse agroclimatic zones and management practices. The im-
aging setups used by the 11 institutions and the data sets derived are
described in detail in Table S1 and Table 2, respectively. Additional
information related to the datasets is given as follows with institutions
listed in alphabetic order:

1. Arvalis

ARVALIS_1-200: The 200 subsets were acquired in 2022 and
2023 in a network of 18 sites representing the main agroclimatic
zones and the most common practices in France. The trials cover
different themes: evaluation of different wheat genotypes at
diverse nitrogen fertilisation regimes, management methods,
diseases, pests and water stress. Some trials comply with the
specifications of organic farming or include wheat in combina-
tion with other species. Seed densities are a typical common
practice in France. Images at most sites have been collected with
the LITERAL [74], a handheld system with high-resolution cam-
eras working without flash; The images at the location GREOUX
were acquired by PHENOMOBILE [9], an autonomous robot
equipped with industrial cameras and flashlights.

2. International Center for Agricultural Research in the Dry
Areas (ICARDA)

ICARDA_MCH _2023: Data collected at Merchouche Station (the
main ICARDA experimental station near Rabat, Morocco), under
drought conditions. This set includes 960 entries from stage 2 of
the durum wheat breeding program. Three acquisitions were
taken with ICARDA's PHENOBUGGY (equipped with RGB cam-
era, multispectral and LiDAR) in March 2023. ICAR-
DA_MCH_2024: Data collected at Merchouche, also during a quite
dry year. This set comprise 3 different trials (5 acquisitions each):
1) CWR panel as part of the Crop Trust project BOLD representing
60 elite durum wheat lines obtained from crosses with crop wild
relatives; 2) CEREALMED including 288 entries of the Durum

Table 1

Summary of Institutions, the number of unique geolocations, the number of
unique Image Setups, and the number of images per subset in the full dataset. A
full description of the datasets (GWFSS_v1.0_subsets.csv) is available in the ETH
research collection referenced in the Data Availability section.

Institution Country Geolocations (by Image Images in
lat/long) Setups full set

1 ARVALIS France 17 3 4134

2 ICARDA Morocco 1 1 5088

3 CIMMYT- Mexico 1 1 5773
CENEB

4 NJAU China 4 2 5008

5 INRAE France 3 2 4102

6 ETHZ Switzerland 2 3 7175

7 ULIEGE- Belgium 7 3 5199
CRAW

8 UuQ Australia 28 2 4265

9 UTokyo Japan 1 1 6130

10  USask Canada 1 1 200

11  RRes UK 1 3 5004
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NJAU_3: Trial in Xinxiang from 2022 to 2023 including 565
7 wheat cultivars, covering both introduced and domestic cultivars
w0 since 1950. Five cultivars were replicated 16 times, while the
remaining 560 cultivars had no replication. A total of 640 plots
® were established, with fertilisation and irrigation managed ac-
ﬁ 0 cording to local practices.
E_ZS NJAU_ 4-5: Trials in Yangling form 2021-2024 with the same
cultivars as NJAU 3.
- . National Research Institute for Agriculture, Food and Envi-
. ronment (INRAE)
The INRAE dataset was acquired in the frame of the FFAST
o o -0 Longitude 0 00 150 project (French National Grant ANR-21-CE45-0037). The dataset
includes images taken in field trials at three INRAE experimental
Fig. 1. An overview of the location of all trials included in GWFSS. sites UE APC at Auzeville (AUZ), UE DiaScope at Mauguio (MAU)
and UE PHACC at Clermont-Ferrand (CLE) in the years 2021,
Global Panel of landraces, modern and old varieties mainly from 2022 and 2023. All pictures were taken using the Phenomobile
Mediterranean countries; 3) a root rot trial of 24 elite lines. V2 ground robot (https://hal.inrae.fr/hal-03646863), equipped
3. International Maize and Wheat Improvement Center (CIM- with RGB cameras looking at nadir and at 45°. Images were taken
MYT) in active illumination conditions (flashes). The trials consisted of
CIMMYT-CENEB 1-7: The CIMMYT dataset includes images 10 French elite cultivars grown under 4 treatments (depending on
collected for 319 spring bread wheat genotypes, consisting of the site: irrigation, sowing date and seed density).
elite, pre-breeding and exotic germplasm phenotyped during . Swiss Federal Institute of Technology Zurich; ETH Zurich
2020 and 2021 field seasons in Campo Experimental Norman E. (ETHZ)
Borlaug (CENEB) in Ciudad Obregon, Sonora, Mexico. The ge- ETHZ_01: Images from the ‘field phenotyping platform’ (FIP) at
notypes were imaged from heading to maturity under irrigated, ETH Zurich in Eschikon [75]. The site covers typical climatic
drought and terminal heat stress conditions in the field. conditions of the Swiss Plateau. About 350 wheat varieties are
4. Nanjing Agricultural University (NJAU) monitored at least once per week to relate growth patterns to
The NJAU datasets were collected from field trials in different causal environmental factors. The set is available at [76]_
regions of China. Phenotyping data for NJAU 1-NJAU 4 were ETHZ_ 02: Organic farming conditions at 981 m altitude, long
collected using PhenoArm, a portable handheld imaging platform snow cover and 2084 mm annual precipitation peaking in sum-
with two high-resolution cameras. NJAU_5 used Phenotypette, a mer. Images show damage in spring caused by snow mould
pushcart platform integrating LiDAR, multispectral, and RGB (Microdochium nivale). The high precipitation fostered lodging
cameras. The pushcart was manually operated at a controlled and diseases in the summer. There was high weed pressure.
speed and equipped with RTK-GPS for automated data collection. . University of Liege and Walloon Agricultural Research Cen-
NJAU_1-2: Experiments in Jurong and Xuzhou during ter (ULIEGE-CRAW)
2020-2021, with 5 wheat cultivars under 3 nitrogen levels. ULIEGE-CRA-W_01-18: Images were acquired in winter wheat
Table 2

Imaging Setup Details. A full description of the imaging setups (GWFSS_v1.0_imaging setups.csv) is available in the ETH research collection referenced in the Data
Availability section.

Imaging Setup Vector Camera Model Viewing Focal Sensor Field of View Field of View Distance to GSD (mm/
Angle Length Resolution Horizontal (°) Vertical (°) Ground (m) px)
(mm) (pixel)
LITERAL1.0_0 Handheld Sony RX0 0 7.7 4800 x 3200 73 52 1.8 0.55
LITERAL1.0_45 Handheld Sony RX0 45 7.7 4801 x 3200 73 52 1.2 0.32
FIP1.0 Gantry Canon EOS 5D 0 35 5616 x 3744 54.43 37.85 3 0.5495
Mark II
GO1.0M_0 Cart JAI GO-5000C- 0 16 2560 x 2048 44.3 33.6 1 (to canopy) 0.3125
USB
GO1.0M_30 Cart JAI GO-5000C- 30 16 2560 x 2048 44.3 33.6 1 (to canopy) 0.3608
USB
GO1.6M_0 Cart JAI GO-5000C- 0 16 2560 x 2048 44.3 33.6 1.6 (to 0.5
USB canopy)
Rres_GT3300_top Gantry Prosilica 0 50 3296 x 2472 38 26 2.8 0.12
GT3300C
Rres_GT3300_south Gantry Prosilica 30 50 3296 x 2472 38 26 1.75 0.09
GT3300C
Rres_GT3300_north Gantry Prosilica 30 50 3296 x 2472 38 26 1.75 0.09
GT3300C
PhenoArm Handheld Sony RX0 0, 45 7.7 4800 x 3200 81.2 59.5 2 0.7143
Phenotypette Cart Sony RX0 0, 45 7.7 4800 x 3200 81.2 59.5 2 0.7143
Low-cost Cart Canon EOS 0 55 1920 x 1080 23 15 2.4 0.046
phenomobile 600D
PHENOMOBILE Ground Baumer HXG40 0 25 2040 x 2040 28 28 1.8 0.43
Vehicle
Phenobuggy Tractor Baumer VCXG- 0 25 4096 x 3000 32 24 1.8-2.4 0.24-0.33
Fobro 124C
UFPS Ground FLIR 0 16 2448 x 2048 26.4 19.8 2 0.45
Vehicle Chameleon3
USB3



https://hal.inrae.fr/hal-03646863

Z. Wang et al.

trials in the Hesbaye area (Belgium) between 2018 and 2022. The
18 subsets detail the differences between the trials. Images cover
mainly nitrogen fertilisation trials and nitrogen fertilisation x
fungicide trials [10]. Images also cover N, P and K fertilisation
trials (ULIEGE-CRA-W_04) and drought experiments (ULIEGE--
CRA-W_12, 18). The set also contains sample images from dense
time series of the same plots recorded in 15-min intervals
(ULIEGE-CRA-W_11). One series contains green reference spheres
used as control points in thermal images acquired in addition to
RGB images (ULIEGE-CRA-W_17).
8. The University of Queensland (UQ)

UQ_1-29: The 29 subsets detail the differences between trials
in which the images were acquired. Images are collected in the
2020 and 2021 National Variety Trials. Differences include var-
iations in geolocation, genotype, and growth stage across
Australia. The photographs were taken in 2020 and 2021, using
smartphone cameras from a top-down perspective at about
0.5-1.5m above the canopy.

9. University of Saskatchewan (USask)

The USask dataset was collected from wheat phenotyping field
trials at the Kernen Crop Research Farm in Saskatchewan, Canada
in 2019. The images comprise a single field trial with 32 diverse
wheat cultivars at the heading stage. Images were collected with
the University of Saskatchewan Field Phenotyping System
(UFPS), a custom-built, self-propelled ground vehicle equipped
with a range of imaging instrumentation, RTK-GPS, and on-board
data processing.

10. University of Tokyo (UTokyo)

The UTokyo dataset was collected from wheat phenotyping
field trials at the Institute for Sustainable Agro-ecosystem Ser-
vices (ISAS) in Tokyo, Japan, in the 2014-2015 season. A Field
Server system [77] collected images of five genotypes through the
whole growth stage. The camera module of the system is based on
a digital single-lens reflex (DSLR) camera, the Canon EOS Kiss X5
camera, with an EF-S18-55 mm lens (Canon Inc., Tokyo) that
provides high-quality and high-resolution (18 megapixels) image
data. A preprogrammed microcontroller board controls the
power and shutter of the camera automatically.

11. Rothamsted Research (RRes)

The Rothamsted dataset includes images collected for 391
wheat genotypes, captured throughout the growth cycle, from
tillering to maturity, using the LemnaTec Field Scanalyzer [11].
The NIT subsets relate to the evaluation of four commercial va-
riety growing supply with six levels of nitrogen input over two
years (2019 and 2021). Images of the NIT subsets were captured
from three angles: 30° north, 0° top, and 30° south, providing
comprehensive spatial coverage. The PxCS and the PxG subsets
provide images from two mapping populations that were planted
in 2019 and 2021, respectively. The populations displayed a large
range of variation in terms of phenology and height.

2.2. Image acquisition

The imaging setups consist of a vector and a camera ranged from
hand-held over manual push-cart to fully automated rovers, gantry
systems or a cable-suspended system mounted on poles (Table 2). Im-
ages were acquired with RGB cameras of at least 1920 x 1080 pixel
sensor resolution, oriented from nadir (0°) to a 45° viewing angle. All
carriers positioned the camera between 3 m and 1 m above the ground,
leading to ground sampling distances between 0.09 and 0.71 mm.

2.3. Data selection for the annotation pool
For data selection, we entrusted expert judgment. To assemble a

diverse set of images for annotation, each participating institution was
asked to provide approximately 5000 images encompassing different
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phenological stages for the dataset and a diverse subset of 200 for the
annotation pool. The selection of images prioritised diversity across key
factors, including variations in phenological stages, geographic loca-
tions, cultivars, and imaging conditions. Additionally, institutions were
encouraged to include treatments, such as varying nitrogen levels, irri-
gation, or other input variations, aiming to encompass a broad spectrum
of scenarios in the dataset. From the annotation pool, a total of 1096
images were selected through a stratified approach, ensuring propor-
tional representation across contributing institutions. Specifically, the
selected image set comprises 110 images from each of the seven in-
stitutions (i.e., INRAE, ETHZ, USASK, Arvalis, RRES, NJAU, and UQ),
109 images from two institutions (i.e., ULiege and Utokyo), and 108
images from CIMMYT.

The selection process was driven by a joint consideration of feature
geometry and institutional balance. Specifically, image features were
extracted using a ResNet model [78] pre-trained on ImageNet. A
k-means clustering algorithm was then applied to group the images
based on their feature similarity. To ensure representative sampling,
images closest to the cluster centres were selected, while also main-
taining a balanced distribution across institutions. This process was
designed to maximize the uniqueness of the selected images based on
their embedding distributions. As a final data preprocessing step, all
images were standardised to ensure consistent resolution and compa-
rable ground sampling distances. This was accomplished by applying a
centre crop to achieve a resolution of 512 x 512 pixels for most datasets.
An exception was made for data contributed by UTokyo, where a reso-
lution of 1024 x 1024 pixels was used to accommodate the more
detailed ground sampling distance. Fig. 2 illustrates the images sampled
from our proposed dataset, showcasing its diversity.

2.4. Labeling

2.4.1. Targeted wheat entities

The annotation process was carried out centrally by expert annota-
tors using the Darwin annotation tool provided by V7 Darwin.’ During
annotation, temporary adjustments of brightness and contrast were
done to enhance the distinction among features. The annotation process
and quality control were handled by HIPHEN. In case of annotation
mistakes, images were sent back to the annotators with respective in-
structions. In these cases, segmentation masks were modified using the
brush and eraser tools. The global wheat experts team for labelling
reviewed and resolved the unclear cases as needed. We refer readers to
the appendix for the detailed GWFSS labelling guide. Initially, a small
set of image tags was assigned to enhance understanding of image
content and quality (see Table 3). Subsequently, pixel-level annotations
were performed for the following classes: head, leaf, stem and back-
ground. As a reference for tissue types, we largely used the BRENDA
Tissue Ontology (BTO'9) retrieved in the EMBL-EBI Ontology Lookup
Service.!’ The targeted entities were i) “heads” defined as spike
(BTO_0001278) excluding awns (BTO_0005641), ii) “leaves” defined as
the leaf lamina (BTO_0000719) including ligule, and iii) “stems”
(BTO_0001300) including the surrounding leaf sheath (BTO_0005094).
The peduncle was not labelled separately but included in “stem” (Fig. 3).
The peduncle (PO_0009053) is the shoot axis that extends from the last
foliage leaf on a stem (i.e. the flag leaf) until the next distal node (i.e. the
basal end of spike).

Consequently, the wheat stem labelling included leaf sheaths, pe-
duncles and bare stems (e.g. towards the end of the growing season).
This decision considers that it is difficult to separate the different classes
in complex images. The clear identification of the peduncle requires a
visible ear (indicated by “P” in Fig. 3 d); the clear identification of a leaf

9 https://darwin.v7labs.com.
10 https://bioportal.bioontology.org/ontologies/BTO.
11 https://www.ebi.ac.uk/ols4.
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Fig. 2. Representative samples from our proposed GWFSS dataset.

Table 3
Imaging tagging overview.

Tag Description Possible Value
Name
Institute The institute that INRAE, ETHZ, USASK, Arvalis, RRES,

contributes this image.
Name The unique image name.
Size The width and height of
the original image.

NJAU, UQ, ULiege, Utokyo, CIMMYT.
Not Applicable.

(4800 x 3200), (2048 x 2048), (4096 x
3000),(3456 x 5184), (5184 x 3456),
(5634 x 3753), (2040 x 2044), (4080 x
2704), (4080 x 3200), (3296 x 2472),
(2560 x 2048), (1024 x 1024), (5184 x

3456).
Anthers The existence of anthers. True, False.
Bending The existence of ear True, False.
bending.
Lighting The existence of shadow.  True, False.
Stage Phenological Stage. Emergence, Vegetative, Stem Elongation,

Ear Emergence, Early Filling, Early
Senescence, Late Senescence, Maturity.

sheath requires either its edge or the attached leaf blade is visible
(indicated by “S” in Fig. 3 d). In many cases, it was not possible to decide
if the structure was sheath, bare stem or peduncle. The wheat head label
specifically encompassed only spikelets, excluding awns. Awns are distal
bristle-like extensions of the lemma surrounding the florets of wheat
[791. Thus, while spikelets including glumes and florets were labelled as
part of the wheat head, awns were treated as “invisible” features (Fig. 3
f, h). There are practical challenges in annotating individual awns in all
imaging scenarios, particularly when awns appear blurry or lack distinct
contours. Thus, when awns overlapped with the targeted organ, they

were treated as if they were absent and the polygon was drawn across
the organ in the background (Fig. 3 f, h). Detached senescent plant
material, such as debris or residue resulting from no-till practices, was
excluded from annotation and classified as background. All targeted
entities were labelled as long as they were still attached to the wheat
plant regardless of their colour, i.e. chlorotic or necrotic tissue was also
labelled.

The annotation process was exclusively focused on wheat, with
weeds deliberately left unannotated and classified as background. All
other non-wheat objects were similarly disregarded and annotated as
background (Fig. 3 b, h).

2.5. Baseline segmentation models development

DeeplabV3Plus [80] is a classic semantic segmentation framework
based on convolutional neural networks (CNN) that employs an
Encoder-Decoder architecture. The model builds upon the strengths of
Deeplabv3, which leverages Atrous Convolution to explicitly control the
resolution of feature maps and adjust the reception field. In Deep-
labv3Plus, encoder features are first up-sampled bilinearly by a factor of
4 and then concatenated with the corresponding low-level features from
the backbone network. 1 x 1 convolutions are applied to low-level
features, reducing the number of channels to reweight rich contextual
encoder features and simplify training. After the concatenation, the
model refines these combined features using a series of 3 x 3 convolu-
tions, ensuring the integration of detailed spatial information and
high-level semantic context. The decoder finalises the segmentation
mask with a simple bilinear upsampling operation by a factor of 4,
delivering high-resolution predictions. This seamless combination of
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Fig. 3. Examples for the labelling process with original images (a, c, e, g) and labelled images (b, d, g, h) showing the segmentation masks for leaves (green), stems
(purple) and spikes (orange). Red dotted lines in a) show the edge of the leaf sheath wrapped around the stem. A leaf sheath (S) as part of the stem can be either
recognized by this edge or its connection to a leaf blade. A peduncle (P) is a part of the stem located between a visible spike and the collar of the flag leaf. For our
analysis awns were treated as invisible by drawing the segmentation masks above them (f, h). Weeds and crop residues were considered background (b, h).
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multiscale context aggregation through the encoder and spatial detail
recovery in the decoder positions Deeplabv3Plus as a robust and flexible
solution for semantic segmentation tasks.

Segformer [63] processes an input image of size H x W x 3 by first
dividing it into 4 x 4 overlapping patches. These patches are fed into a
hierarchical Transformer encoder to extract multilevel features,
leveraging an Overlapped Patch Merging strategy to ensure spatial
continuity and capture richer local context. The encoder utilises efficient
self-attention mechanisms by applying dimension reduction, which re-
duces the time complexity of the self-attention mechanism. This signif-
icantly optimises computational efficiency with minimal impact on
segmentation performance.

The extracted features are then processed by a lightweight multi-
layer perceptron decoder. Unlike traditional hand-crafted designs such
as Deeplabv3Plus, this approach simplifies the decoding process while
improving the effective receptive field, enabling precise and efficient
segmentation. To cater to diverse performance and resource re-
quirements, Segformer introduces a family of Mix Transformer encoders
(MiT-BO to MiT-B5), which share the same architecture but vary in size,
offering flexibility in balancing computational cost and segmentation
accuracy. By integrating innovative design choices with practical
adaptability, Segformer delivers a robust and efficient solution for se-
mantic segmentation tasks.

2.5.1. Impact of distribution shift on segmentation performance

We conduct experiments under two different data-splitting settings.
(1) Random Split: In this setting, we randomly split the data into a
training set (70 %), a validation set (10 %) and a test set (20 %). (2)
Region Split: In this setting, we utilised data from Arvalis, CIMMYT,
ETHZ, INRAE, NJAU, RRES, and ULiege CRA-W as the training set, data
from UTokyo as the validation set, and data from UQ as the test set. The
UQ test set is rather challenging due to the massive diversity in geno-
types and Australian growing environments and imaging conditions. For
both of the settings, the validation mIOU was used to select the best
checkpoint, which was then used for testing.

2.5.2. Impact of training data scale and model size on segmentation
performance

We conducted two sets of experiments to investigate how the size of
the training dataset and the number of model parameters influence the
performance of the segmentation. To investigate the relationship

Emergence
Vegetative

Stem elongation
Ear emergence
Early filling

Early senescence
Late senescence
Maturity

UMAP Dimension 2

3 s
UMAP Dimension 1

(a)
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between the size of the training dataset and the performance of the
model, we trained SegFormer-BO using progressively larger subsets of
the full training dataset. Specifically, we sampled subsets containing 1
%, 5 %, 10 %, 20 %, 30 %, ..., 100 %, of images from the full training set
to train the model. To assess the impact of model size on segmentation
performance, we trained SegFormer-BO to B5 using the full training
dataset. As the model progresses from BO to B5, both the number of
parameters and computational cost increase, allowing us to analyse how
model complexity affects segmentation accuracy.

2.6. Evaluation metrics

Mean Intersection over Union (mIoU) measures the level of
overlap between the predicted mask and the ground truth mask. Spe-
cifically, we have:

1 K P.NG
oU==Y) -~ 1
e c;mua.r W

where P, and G, denote the predicted mask and ground truth mask of the
c-th class.

Mean Pixel Accuracy (mAcc) focuses on the pixel-wise accuracy for
each class, which can be defined as:

1 &P =G,
Acc=— Y < 2
mAcc C; Gl (2
3. Results

3.1. UMAP visualisation of image diversity

The diversity of the training dataset is critical for the generalisation
capacity of segmentation models. The diversity of a crop dataset can be
affected by multiple factors, such as differences in phenological stages,
lighting conditions, background, growing environment conditions, and
genotype. In this work, the distribution of GWFSS images was analysed
using the UMAP technique on image features extracted by an ImageNet-
pretrained ResNet-50 model. The image embeddings of the top two
UMAP components visualise the distribution of all labelled GWFSS data.
The visualisation of images in the latent space was either colored by the
phenological stage (Fig. 4 a) or institution (Fig. 4 b). For the

UTokyo
UQ_new
CIMMYT
INRAE
ULiege_CRA-W
NJAU

RRES

USASK

Arvalis

ETHZ

UMAP Dimension 2
o
o
*
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Fig. 4. The UMAP visualisation of GWFSS labelled images colored by (a) phenological stage and (b) institution.
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spike

Table 4
Glossary of relevant terms used.
Term Abbreviation  Description Reference
Labels GWEFSS context: polygons used to generate masks for the different
organs.
Tags GWEFSS context: keywords added to an image, such as the developmental
stage displayed.
Tiles GWEFSS context: subsamples from the original image that are used for
labelling and training. Standard tiles are squares, often with 256 x 256
pixels.

Uniform Manifold UMAP Dimension reduction technique that can be used for latent feature Mclnnes, L, Healy, J, UMAP: Uniform Manifold
Approximation and visualisation Approximation and Projection for Dimension Reduction,
Projection ArXiv e-prints 1802.03426, 2018

Intersection over Union IoU IoU is a metric of segmentation performance of the area manually https://en.wikipedia.org/wiki/Jaccard_index

labelled (A) vs. the area detected by the model (B). The intersection size
between the two is divided by their union size. intersection union

Proximal sensing Sensing from proximity. Sensors are typically operated hand-held or

mounted on poles, gantries, or ground-based vehicles.

Imaging setup The combination of vector (carrier systems), sensor and lens (i.e. RGB https://en.wikipedia.org/wiki/Field_of view vor

camera-lens combination) as well as the working distance and camera definition of the field of view.
angle defining the field of view.

Phenology The study of periodic events in biological life cycles and how these are https://www.merriam-webster.com/dictionary/ph

influenced by seasonal and interannual variations in climate, as well as  enology
habitat factors (such as elevation)

Canopy Branches (stems), leaves, and spikes (inflorescences) of a population of ~ Adapted from different sources *

plants growing on a piece of land.

Crop ontology Cco Provides descriptions of agronomic, morphological, physiological, https://cropontology.org

quality, and stress traits along with their definitions and relationships.

Leaf area index LAI Trait, which characterise plant canopies, are defined as leaf green area C0_321:0000184

per unit of surface area

Initiation of booting Boot Phenological period prior to spike emergence where the flag leaf is fully =~ C0O_321:0000191

developed

Anthesis Ant Phenological period when pollination occurs in wheat C0_321:0000121

Heading Hd Phenological period from the time of emergence of the spike tip from the =~ C0_321:0000007

flag leaf until the spike has fully emerged
Maturity Mat Phenological stage when wheat stops remobilising assimilates to the C0_321:0000022

? We combined definitions from https://dictionary.cambridge.org/dictionary/english/canopy and https://www.ebi.ac.uk/ols4/search?q&equals;canopy as no

matching definition was found for the case of crop canopies.

phenological stages, the first UMAP dimension shows a clear clustering
in the sequence of stage progression. With the first UMAP feature
increased from O to 13 (Fig. 4 a, dimension 1), the growth stage
generally progresses from emergence and vegetation towards senes-
cence and maturity. Most of the images taken from emergence to stem
elongation clustered at a value below 7, while the other extreme images
around late senescence and maturity clustered above 7. Images con-
taining ears, i.e., starting from ear emergence, showed values above 4 in
dimension 1. The clustering in the second dimension tended to be driven
by the institution providing the images. Images from USASK, ULiege,
and RRES generally have the second UMAP feature valued below 8,
while most of the UQ and NJAU features are above 8. By viewing the
images of these institutions, this phenomenon could be attributed to the
difference in the lighting conditions. The datasets of UTokyo and NJAU
cover a wider range of dimension 2, while the dataset of Arvalis is the
only one spanning almost the entire latent space.

3.2. Balance of developmental stages and labelled classes

Images were tagged with the approximate developmental stage
estimated from the image (i.e. stages were not recorded as ground truth
in the field). Although the aim was to balance all the phenological stages
(for a definition see Table 4), this was not possible for all datasets. An
analysis of the tags across the whole dataset revealed an uneven distri-
bution across different phenological phases (Fig. 5, a). Notably, ‘early
filling’ and ‘early senescence’ were the most frequently observed (224
and 282 images, respectively), while ‘emergence’ was the least repre-
sented stage (8 images).

We also evaluated the balance of the labelled classes. At the image
level, background (BG) and leaves were the most prevalent, appearing in
1090 and 1080 images, respectively (Fig. 5, b). In contrast, the stems

and heads were present in 847 and 739 images, respectively, since they
predominantly emerge in the later phenological stages. At the pixel
level, a more pronounced class imbalance was evident, with the leaves
occupying the largest proportion of pixels, followed by the background,
while the stems and heads account for significantly fewer pixels (Fig. 5,
c). Thus, although heads and stems appear frequently at the image level,
they still constitute only a small fraction of the total pixel distribution,
compared to leaves and background.

3.3. Baseline segmentation models

Concerning the sampling strategies to split images into training,
validation and test sets, there was a noticeable performance gap be-
tween the random split vs region split strategy (Table 5). We attribute
this discrepancy to the distribution shift between the training and test
data in the region split setting. Among the evaluated models, Segformer
consistently outperformed DeepLabV3plus, achieving a 2.8 % higher
mloU in the random split setting and an 8.5 % improvement in the re-
gion split setting. Notably, in the Region split strategy, Segformer per-
formed substantially better for head and stem classification than did
DeepLabV3plus with little difference in estimation of background and
leaf. These results highlight the superior capability of Segformer in
addressing the wheat organ segmentation task, especially under distri-
bution shifts.

Concerning the size of the training data, the overall model perfor-
mance sharply increased between 1 % and 60 % (i.e. 460 images) of the
training data and plateaued thereafter (Fig. 6, a). Above these 460 im-
ages, there were only marginal improvements as the dataset size
approached 100 %. The heads and leaves were well segmented with only
10 % of the data (JoU > 75 %) and the model performance only pro-
gressed slowly when more data were used. The segmentation of stems
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Fig. 5. Statistics of the GWFSS dataset: (a) The distribution of growth stages for each image, where 1 — 8 on the x-axis indicates ‘Emergence’, ‘Vegetative’, ‘Stem
elongation’, ‘Ear emergence’, ‘Early filling’, ‘Early senescence’, ‘Late senescence’, and ‘Maturity’, respectively. (b) The class occurrence at the image level. (c) The

class occurrence at the pixel level.

Table 5

Comparison of Mean Intersection over Union (mIoU) and mean accuracy (mAcc) metrics for Deeplabv3plus (R101) and Segformer (B1) across Random- and Region-

based data splittings.

Segformer (B1)

DeeplabV3+ (R101)

Random Region Random Region
IoU Acc IoU Acc IoU Acc IoU Acc
Background 84.51 92.75 75.46 88.71 81.59 89.88 74.32 82.11
Head 82.85 90.14 66.11 86.84 81.46 89.05 46.25 48.27
Stem 44.92 53.89 19.23 20.95 39.40 46.73 6.64 7.06
Leaf 82.35 90.44 81.75 89.36 80.93 90.81 81.4 95.14
Average 73.66 81.81 60.64 71.47 70.85 79.12 52.15 58.15
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Fig. 6. Effect of (a) training data size and (b) segmentation model size on Segformer model performance. The effect of training data size on the intersection over
union (IoU) was evaluated for all object classes including the background (BG). The segmentation model size performance was evaluated as mean IoU (mloU) and
Giga Floating Point Operations per Second (GFLOPS). The higher GFLOPS indicates heavier computational complexity. Here BO indicates the smallest Segformer

model while B5 indicates the largest Segformer model.

improved with increases to 60 % of the training data but the perfor-
mance plateaued at a low IoU of 40 %.

To examine the impact of model size, we trained SegFormer models
of varying capacities (BO to B5) on the full training dataset and analysed
their performance (Fig. 6, b). The Giga Floating Point Operations per
Second (GFLOPS) served as an indicator of computational complexity,

where higher values denote greater computational demands. The results
indicate a steady improvement in performance from BO to B4. However,
when training SegFormer-B5 on the full dataset, performance degrada-
tion was observed. We attribute this decline to the insufficiency of
training data to adequately support the significantly larger parameter
space of SegFormer-B5, which nearly doubles that of B4.
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Fig. 7. Visualisation of original image (left strips), ground truth (centre strips) and prediction results (right strips) from Segformer-b1.

3.4. Visual inspection of segmented images

Key requirements of the model were to detect organs independently
of their colour and distinguish them from weeds or plant residues on the
ground. We conducted a systematic review of all five images that
contain weeds in the test set (Random Split, as described in Section
2.5.1). The weeds were of different types with different leaf shapes and
were mostly classified as background (Annex, Fig. S2). A sample is
displayed in Fig. 7 a, k and 1. Late in the season, weeds frequently
germinate between rows and obscure the senescence signal. Similarly,
the separation of plant residues from wheat plants (Fig. 7, b) is an
important advantage. When awns are present, the segmentation of the
spike without the awns (Fig. 7 a, d, f, h, i, j, k) is a useful feature that can
assist in the approximation of spike volumes. To evaluate the segmen-
tation of senescing canopies, we selected images from early senescence
to maturity within the random split test set (as detailed in Section 2.5.1).
This set representing later stages comprises 73 images. In general, the
model maintains strong performance (Table S2). However, performance
declined relative to the full test for the background (IoU of 73.5 vs. 84.5
for late stage vs. full set) and leaves (IoU of 73.7 vs. 82.3 for late stage vs.
full set). This is likely due to the increased visual similarity between
senescing leaves and background elements (e.g., soil or dried residue), as
well as reduced structural distinctiveness in ageing foliage, making ac-
curate segmentation more challenging.

4. Discussion
4.1. The challenges of organ labelling in complex canopies

We collected 52,078 images from 67 different field sites worldwide
with a ground sampling distance (GSD) between 0.09 and 0.71 mm per
pixel. The UMAP visualisation confirms the need for such diversity, as it
shows clustering by institution and developmental stage.

The collaborative effort to sample this diverse set of images and to
design the labelling strategy was essential to the success of the work. All
participating institutions operate imaging setups collecting images of
wheat canopies in the sub-millimeter range and are at the forefront of
enhancing the in-depth analysis of complex canopies. A first step was the
decision of which canopy features could be targeted, given the available
spatial resolution. In wheat, ground sampling distances below 10 mm
permit good estimates of canopy cover and leaf area index or crop
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density, while GSDs below one mm are needed to detect individual
leaves of emerging seedlings [81]. The given sub-millimeter resolution
was sufficient to label the targeted organs. Reliable labelling of awns
would likely require GSDs below 0.2 mm and substantially more labour
for manual labelling. New sensors with higher resolution will allow for
awn segmentation, even when operating with the same carrier system.

Given the experience in GWFSS, the term “plant organ” needs to be
understood in the context of imaging constraints. With this regard, we
would like to add a “sidenote” to protocols for the minimal requirements
to describe plant phenotyping experiments. The MIAPPE 1.1 [82].
release states that “Observed variables, traits, methods and scales are each
identified by name, and may have a reference to the corresponding ontology
concept (ideally from the Crop Ontology) ”. However, in the Crop Ontology
database,'? entities upon which traits are measured are not always
indexed with their own identifiers. For example, while stem colour
(C0O_321:0000973) is defined as “colouration of the stems,” the entity
“stem” itself is not defined. GWFSS aims to extract organs as entities on
which traits will be measured. For this reason, we prefer the BRENDA
Tissue Ontology (BTO'®), which is a vocabulary for the source tissues. As
such, it focuses on a detailed description of the entity rather than the
trait. The segmentation of the entities is the first step towards deriving
new phenotypes. Moreover, our digitally extracted “organs” do not quite
comply with classic ontology terms: heads exclude their spikes, and
stems include leaf sheaths. One challenge is therefore how to define a
trait which is based on more than one organ part (e.g stem = true stem
plus leaf sheath), given that trait ontologies are typically structured
hierarchically. Along these lines, Celestina et al. [83] have identified the
need to reconsider the classical growth scales, such as Zadoks [84] or the
derived unified BBCH scale [85] to fit the needs of image-based phe-
notyping. They draw up a list of the development stages that need to be
assessed by destructive sampling and the stages that can be assessed in a
non-destructive manner. We believe that their phases of the Population
of Culms Development Scale (PCDS) may be enhanced by image-derived
phases. At least heading and physiological maturity can be digitally
measured based on models derived from GWHD and GWFSS as we will
discuss below.

12 https://cropontology.org/.
13 https://bioportal.bioontology.org/ontologies/BTO.
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Table 6

Summary of wheat segmentation datasets.
Dataset Size Resolution Focus
GWEFSS 52,078 images Various All organs, all growth stages, geographic diversity, genotype variation
GWHD [16] 6510 images Various Wheat Head detection

WESS-Dataset [65]
EarSegNet [66]
Najafian et al. [36]
Deng et al. [72]

120 images (6500 tiles)
160 images

Limited manual + synthetic
370 images (25,530 tiles)

12/48 megapixel

Anderegg et al. [73] 206 tiles 2400 x 2400 px
Liu et al. [71] 2200 images Not specified
Niu et al. [89] 450 images 3472 x 3472 px

4592 x 3448 px (256 x 256 tiles)
5184 x 3456 px (2500 x 2500 tiles)

3000 x 2000 px (256 x 256 tiles)

Wheat heads
Flowering wheat heads
Wheat heads

Leaves

Stem elongation
Fusarium Head Blight
Head damage

4.2. GWFSS compared to other datasets for semantic segmentation of
wheat organs

The availability of extensive open datasets has been crucial to
remarkable progress in applications of modern computer vision in
agriculture. Various datasets have been released to facilitate computer
vision applications, such as for fruit detection [86], weed management
[87], green coverage estimation [9], and plant disease identification
[88]. For semantic segmentation, pixel-level annotation remains a
cornerstone of segmentation tasks, but it is notoriously labour-intensive
and expensive. Intensive collaboration among public and private in-
stitutions is needed to generate sufficiently large, diverse, and consis-
tently labelled data.

The novelty of the GWFSS dataset is its diversity, its coverage of all
stages, and labelling of all organs of wheat. The GWFSS dataset contains
fewer annotated images than GWHD [16], which labelled 6510 images
from 16 institutions. However, GWFSS dataset samples the whole
growing season while GWHD focuses on head detection during flower-
ing, grain filling, and ripening. Moreover, for the GWFSS dataset, we
decided to supply a large set of 52,078 images to enable users to pose
solutions to other questions by applying their labelling. A similar dataset
assembled by the global-rice dataset consortium is underway for rice
[73].

For semantic segmentation, there are several smaller datasets
available which are not included in GWFSS, mainly because they
focused only on specific organs of wheat. Although most studies trained
segmentation models, we will summarise only the characteristics of the
annotated datasets as the most valuable part of the studies (see Table 6).
With regard to wheat heads, several smaller datasets were collected in
addition to the GWHD dataset [36,65,66]. Few researchers have
collected datasets to train leaf segmentation during the early [72] or late
phases of development [73]. The latest trend is to target features within
organs within complex canopies in the field, such as spikelet segmen-
tation [89], Fusarium head blight [71], or leaf diseases [90]. For such
annotations of wheat head damage, a concise and coordinated labelling
of diverse datasets may be highly valuable.

4.3. Organ segmentation - a path to integrative traits

Field phenotyping is often considered in the context of spatial and
temporal scales. We believe that the ability to track organ development
throughout the growing season will set a new standard for phenotyping.
It will aid breeders, variety testers, or researchers in evaluating geno-
types for improved canopy architecture, source-sink balance and resis-
tance to environmental and disease stressors.

The ability to follow the different wheat organs through the season
enables the testing of more complex phenotypes. For example, our
model would permit quantification of the changes in tissue reflectance
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as they change from green to chlorotic to necrotic. In wheat, this was
done, for example, using shallow learners based on colour spaces using a
support vector machine classifier [19] or a multiclass random forest
classifier [73]. Canopy segmentation followed by reflectance indices or
the mentioned classifiers opens new possibilities for field phenotyping.
For example, changes in leaf colour can be used to quantify canopy
damage in winter due to frost or diseases. Later, it may be used to
quantify nitrogen status.

Stem (or more precisely peduncle) senescence is a measure of
physiological maturity of wheat [91]. It is time-consuming to assess and,
therefore, rarely reported. Using a small semantic segmentation training
dataset, Anderegg et al. [43] tracked the senescence process of leaves,
stems, and heads through grain filling and showed that stems were the
last organ to be senescent. In this work, the genotypes differed in their
dynamics and timing of leaf, head, and stem senescence, highlighting
the relevance of tracking the organs separately. The GWESS training
dataset is a major step forward in measuring physiological senescence
and separating different canopy senescence processes.

We acknowledge that proximal sensing is currently not the primary
choice in cases where thousands of plots are to be evaluated and
breeding programs are more likely to require high-throughput remote
sensing by means of unmanned aerial vehicles (UAV). Remote sensing
by UAV equipped with lower pixel resolution multi-spectral sensors al-
lows the estimation of traits like LAI and canopy senescence. However,
these sensors are not ideal to study the different organs in the canopy.
Plant organs may have substantially different proportions in the canopy,
influencing its reflectance spectrum. Variation with time occurs due to
environmental effects on crops (leaf rolling, frost, heat, drought, nutri-
tion, and pest effects), stem elongation, spike appearance, and bending
or lodging of spikes during grain filling. The transferability of reflec-
tance spectra from one season or trial to a different one may be influ-
enced by environmental conditions or diseases. Although proximal
sensing has lower throughput, it can complement aerial measurements
with information from the organ scale. This might enable upscaling from
proximal to remote sensing. Alternatively, high-resolution RGB imaging
is becoming readily available on UAV with cameras with a resolution
ranging from 60 to 120 Mpx, though UAV are slow and difficult to
localise when flown close to plots to take still shots. A solution is to fly
UAVs closer to the plots and use video at high-shutter speeds to avoid
blurring the image or disrupting the canopy with propeller downwash
[92] were able to achieve a GSD of 0.13m flying a 20 Mpx camera using
video at ca. 5m above the canopy at a speed of 2-3 m/s. Finally, there is
an increasing number of phenotyping robots available, as well as higher
resolution RGB UAV cameras that allow organ phenotyping of larger
numbers of plots.

We recognise that RGB datasets are only a piece of the larger phe-
notyping toolbox: Other technologies could and should be used in
combination with data fusion methods. For example, LiDAR has been
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used to estimate biomass and crop growth rate [93]. Future RGB data-
sets collected at the same time as LiDAR point clouds can be used to
study biomass accumulation at deeper hierarchical levels, such as
biomass partitioning in the different organs. Furthermore, RGB com-
bined with thermal imagery can be used to assess abiotic stresses [94].
Breeders could focus on targeted breeding for specific organs and select
new genotypes with increased water use efficiency, to exemplify a few
cases where RGB organ segmentation can be made the most of.

4.4. Baseline model to guide the size of the training data

The main contribution of this work relates to the creation of a large
open-access database of images capturing diverse field-grown wheat
plots. However, without a basic model it was difficult to judge how large
the training data should be. According to the trained baseline model, the
1096 labelled images are sufficient for a segmentation of leaves and
heads. For any organ, including stems, the increase in model perfor-
mance levelled out when more than 60 % (ca. 600 images) of the totally
available data were used for training. This indicates that either a
massively larger amount of data or a different labelling or training
strategy might be needed for substantial further improvement. Model
performance was reduced when performing a region-specific data split.

Among the two evaluated models, we chose Segformer. It achieved
good segmentation for leaves, heads and background (IoU 80 %), but the
segmentation of the stems underperformed (IoU = 44.92 %). The low
performance of the stem segmentation may be attributed to various
reasons: stems are thin, partially occluded by leaves, and a limited
proportion of total pixels compared to the other organs. During booting
and spike emergence (i.e. the expansion of the growing spike within leaf
sheaths), the cylindrical structure of the stem is lost and the foil-like
structure of the sheaths becomes obvious. This may lead to low model
performance during this stage, particularly for stems. Furthermore,
annotation difficulties related to distinguishing stems from some soil
residues and senescent or rolled leaves may produce label noise.
Improving stem segmentation may require exploring loss functions
associated with class imbalance or incorporating massively more images
with annotated stem masks.

These findings highlight a critical requirement: current models for
segmenting organs in plants are highly dependent on extensive, high-
quality annotations to achieve strong performance. To address this,
research should prioritise the development of annotation-efficient so-
lutions that maintain high performance with fewer labelled samples.
Promising directions include leveraging self-supervised learning, which
utilises unlabelled data and semi-supervised or active learning, which
strategically selects a minimal number of samples for annotation while
maximising model learning.

Without being quantitative, visual observation of the segmented
image confirmed that wheat plants were segmented independently of
their colour while weeds or plant residues were classified as back-
ground. This is a great step forward. Earlier models segmented plant
tissue to a large degree based on colour. For example, in the case of
Eschikon wheat segmentation training (EWS) [18], necrotic leaves were
no longer detected as part of the canopy. This led to a decrease in canopy
cover after winter due to necrotic leaves that suffered freezing damage
[18]. Although the VegAnn model [9] included necrotic parts of plants
in its segmentation while excluding crop residues, it was trained on a
large number of different species and did not exclude weeds [34].
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4.5. Value of the full GWFSS dataset without labels

Self-supervised learning (SSL) methods can leverage a large amount
of unlabelled image data as a pre-training procedure to better initialize
or condition a deep learning model for a subsequent downstream anal-
ysis task. Ogidi et al. [34] found that a diverse source dataset in the same
domain or similar as the target dataset combined with SSL can maximize
performance in downstream plant phenotyping tasks. Our large, unla-
belled dataset of 52,078 RGB images is meant as a training set for SSL
methods. The idea of this dataset is to provide it as set for SSL while
using the labelled data for validation and testing. The dataset can be also
used for further labelling without the need to collect the data. It may be
used for further segmentation tasks such as spikelet segmentations or
other canopy features.

Beyond organ segmentation, the extensive dataset documented here
provides a dynamic platform to develop predictive models that can
capture temporal and spatial variability across multiple years and en-
vironments. By integrating environmental data with image-derived
traits and machine learning methods, such as random forest regression
or XGBoost, which can handle a vast array of predictor variables,
breeders can target more complex traits such as radiation use efficiency,
harvest index and yield. More fundamental underlying traits can be
capable of better account for genotype-by-environment interactions and
permit breeding programs to optimise their pipelines on a global scale.

4.6. Conclusion and outlook

Segmentation models will reduce the subjectivity of field observa-
tions by leveraging the generation of large and consistent datasets.
Organ segmentation will enable the extraction of a range of additional
traits from complex canopies. Such information is needed to advance our
understanding of the interaction of Genotypes with the Environment they
grow in and the Management practices they receive (often abbreviated as
GxExM). To achieve robustness, the training data for the segmentation
models needs to be large and diverse. Models derived from the GWFSS
dataset will likely outperform many models derived from labelling in
single experiments. As a further step, datasets from other small-grain
cereals, such as barley, could be considered to enhance the training data.

While organ proportions will be directly available from the GWFSS-
derived segmentation models, other traits will need to be developed and
calibrated through secondary processing. For example, sensor fusion
may allow one to integrate organ information derived from point sensors
or sensors with lower resolution. Moreover, organ information may
complement canopy-level traits derived from remote sensing.

Many of our images were derived from fully automated platforms,
and these installations are often prototypes. With the advancement of
agricultural robots, such platforms will become affordable for a greater
community in the near future. But also smartphones or specifically
designed hand-held devices, will bring image-based phenotyping to a
greater community. This will leverage new possibilities for common
research projects in science and citizen science communities.

Author contributions

The GWFSS consortium consisted of different working groups that
focused on conceptualisation and steering, data collection and data
supply, labelling, data curation, training the base model, and writing
(Table 7). The display of the author's contribution was inspired by.'*
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Table 7

Author contribution.
First Name Last Name Steering Data supply Data curation Labeling Base model Writing Funding
Benoit De Solan hi mid hi mid hi
Lucas Bernigaud Samatan mid mid lo
Safaa Ouahid mid hi hi lo lo
Andrea Visioni mid hi hi mid mid
Carlos A. Robles-Zazueta mid mid hi
Matthew P. Reynolds mid lo lo
Francisco Pinto mid mid mid
Ivan Perez-Olivera mid lo
Shouyang Liu lo mid lo lo
Chen Zhu mid mid
Marie-Pia D'argaignon mid lo
Raul Lopez-Lozano lo mid lo
Marie Weiss lo mid
Radek Zenkl hi hi hi hi
Andreas Hund hi mid hi hi
Norbert Kirchgessner lo lo
Afef Marzougui mid lo
Lukas Roth lo mid
Alexis Carlier lo lo
Sebastien Dandrifosse hi hi
Benjamin Dumont mid lo lo
Benoit Mercatoris mid lo lo
Zijian Wang hi hi hi hi hi
Scott Chapman hi hi lo mid hi
Javier Fernandez mid lo
Zhi Chen mid lo
Ian Stavness hi hi hi lo
Keyhan Najafian mid low
Wei Guo hi mid hi mid mid lo
Haozhou Wang mid lo
Latifa Greche hi hi
Malcolm Hawkesford hi lo lo
Nicolas Virlet hi hi
Etienne David mid mid
Alexis Comar hi hi lo
Joss Gillet mid hi mid
Kamran Irfan mid lo

Funding throughput feature extraction from imagery to map spatial variability.

Global wheat was directly supported by Analytics for the Australian
Grains Industry (AAGI). AAGI (UOQ2301-0100PX) is a Strategic Part-
nership between the Grains Research and Development Corporation
(GRDC), Curtin University, The University of Queensland and the Uni-
versity of Adelaide. Other project and associate partners also support the
initiative; Arvalis, France; Phenet (European Commission [95]);
EMPHASIS-GO (European Commission [96]); Delley Seeds and Plants
Ltd, Switzerland; Deutsche Saatveredelung AG, Germany; ASUR plant
breeding, France; Plant Phenomics journal, China.

Funding of individual projects of partners

CIMMYT: The International Wheat Yield Partnership (IWYP); the
Heat and Drought Wheat Improvement Consortium (HeDWIC); the
Accelerating Genetic Gains in Maize and Wheat (AGG); Modernizacion
Sustentable de la Agricultura Tradicional (MasAgro) an initiative from
the Secretaria de Agricultura y Desarrollo Rural (SADER), Mexico;
Foundation for Food and Agricultural Research (FFAR). ETHZ: Swiss
National Science Foundation (SNSF) INRAe: FFAST (French National
Research Agency, ANR project number ANR-21-CE45-0037). RRes:
Biotechnology and Biological Sciences Research Council (BBSRC) of the
UK as part of the project Delivering Sustainable Wheat (BB/X011003/
1). Uliege: National Fund of Belgium F.R.S-FNRS (FRIA grant), Agri-
culture, Natural Resources and Environment Research Direction of the
Public Service of Wallonia (project D31-1385 PHENWHEAT). UQ:
INVITA - A technology and analytics platform for improving variety
selection, GRDC UOQ2003-011RTX and GRDC UOQ2002-08RTX High-
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USask: the Natural Sciences and Engineering Research Council of Can-
ada (NSERC) and the Canada First Research Excellence Fund (CFREF).
UTokyo: the Japan Science and Technology Agency AIP Acceleration
Research (JPMJCR21U3), the Sarabetsu Village “Endowed Chair for
Field Phenomics” project in Hokkaido, Japan.

Data availability

The full dataset (GWFSS_v1.0_full) including the 1096 ground-truth
labelled images (GWFSS_v1.0 labelled), the descriptions of the data-
sets (GWFSS_v1.0_subsets.csv) and imaging setups (GWFSS_v1.0_ima-
ging_setups.csv) is available in the ETH research collection (https://doi.
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