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deposition and fertilizer use, being the main driver (Nabuurs 
et al. 2022) s. Nonetheless, in this same report, is also men-
tioned that the agriculture, forestry and other land use sec-
tor can offer up to 30% of the global mitigation potential 
needed to maintain the earth temperature below 2 °C above 
pre-industrial levels. Various studies indicate substantial 
differences in emission intensity across comparable rumi-
nant production systems, highlighting the sector’s potential 
for enhancement (Gerber et al. 2013; Poore and Nemecek 
2018). It is proposed that adopting the methods of the top 
10% of producers could significantly lower greenhouse gas 
(GHG) emissions from livestock without affecting output 
(Bajželj et al. 2014). Improved management of grasslands 
and livestock, agroforestry and sustainable intensification 
are measures that offer significant near-term mitigation 
potential (Nabuurs et al. 2022).

In livestock management and sustainable intensification, 
utilizing feed alternatives that do not compete with human 
food resources is crucial (Mottet et al. 2017). Ruminants can 
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Abstract
Emissions from ruminant livestock represent an important component of agricultural greenhouse gas output. The sector, 
however, has substantial potential for emission reduction through improved practices. Tithonia diversifolia (TD), a shrub 
that thrives in low-fertility soils, offers promise as a sustainable feed alternative. This study explores whether ruderal TD, 
accessible but with variable nutritional quality, can be used to reduce enteric methane (CH4) emissions and nitrogen (N) 
excretion in sheep, offering a low-input strategy for enhancing ruminant sustainability. Eight adult rams were used to 
evaluate diets with 4 increasing levels of TD hay on carbon dioxide (CO2), CH4, nitrous oxide (N2O) and ammonia (NH3) 
emissions, apparent digestibility, and fermentation parameters. The animals received four increasing levels of TD hay (0, 
90, 270, 450 g kg− 1 DM) in a diet based on Tifton 85 hay, soybean meal, and ground corn. Feeding sheep with ruderal 
TD had no effects on intake and N balance but reduced digestibility of dry matter, organic matter, neutral and acid deter-
gent fiber, while crude protein digestibility remained unaffected. There was also a decrease in acetate and ruminal N-NH3 
concentrations, alongside an increase in iso-acid proportions. CO2, CH4, N2O and NH3 emissions were consistent across 
diets, averaging 98.05 gCO2 kg− 1 DMI, 9.3 gCH4 kg− 1 DMI, 2.62 gN2O kg− 1 excreted N, and 37.8 gNH3 kg− 1 excreted 
N. In conclusion, incorporating ruderal TD into sheep diets reduced nutrient digestibility and ruminal fermentation but 
did not impact feed intake, protein digestibility, or greenhouse gas emissions.
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convert fibrous plant materials into high-quality protein, yet 
a significant amount of human-edible grain is still used in 
ruminant diets (Mottet et al. 2017). Introducing alterna-
tive forage plants, particularly locally available shrubs, is a 
promising strategy to reduce CH₄ emissions (Palangi et al. 
2022) while minimizing reliance on external inputs and sup-
porting low-input production systems (Herrero et al. 2016; 
Distel et al. 2020).

Tithonia diversifolia (Hemsl.) A. Gray (TD), a shrub plant 
belonging to the Asteracea family, holds great potential as a 
feed source for ruminants. It is already being routinely used 
in countries such as Colombia, Cuba, and Mexico (Mahecha 
et al. 2008; Rivera et al. 2016; Ribeiro et al. 2016). Tithonia 
is a forage plant with a global distribution that thrives in 
low-fertility soils and has been reported to possess charac-
teristics such as nutrient accumulation, improved soil phos-
phorus availability, soil extractable aluminium reduction, 
and acidic soil tolerance (Olivares et al. 2002; Cong and 
Merckx 2005; Adesodun et al. 2010; Ojeniyi et al. 2012; 
Ovani et al. 2024).

Tithonia diversifolia’s potential to impact greenhouse gas 
emissions from livestock activities have also been investi-
gated. It has been mentioned that its presence in ruminant 
diets could help mitigate ruminal methane emissions (Rivera 
et al. 2022; Krüger et al. 2024), and although research spe-
cifically pertaining the effects of TD on N2O emissions is 
limited in the existing literature (Rivera et al. 2023); works 
have investigated the N metabolism of ruminants fed with 
TD (Ramírez-Rivera et al. 2010; Durango et al. 2021; Car-
dona et al. 2022) and reported that that its presence in the 
ruminant diet has the potential to enhance N retention. As N 
presence in the excreta is directly correlated with N2O emis-
sions (Rivera and Chará 2021), alterations in dietary protein 
digestibility through the inclusion of TD may influence the 
emission intensity of ruminants.

Tithonia diversifolia is also commonly found in vari-
ous environments through natural regeneration or acci-
dental introduction, including urban areas (Gavilanes and 
D’Angieri Filho 1991; Val Diaz et al. 2017; Balangcod 
and Balangcod 2020; Durán-Puga et al. 2020). This wide-
spread availability presents an opportunity to utilize TD as 
a smart supplement (Eisler et al. 2014; Jia et al. 2019) or 

a low-input, low-maintenance feeding alternative in rumi-
nant diets. However, the nutritional quality of TD is highly 
variable and heavily dependent on its phenological stage 
(Ajao and Moteetee 2017; Uu-Espens et al. 2023; Ovani et 
al. 2025), with the best results obtained when the plant is 
harvested before flowering (Calsavara et al. 2016; Ruíz et 
al. 2024), which may not always be the case when using 
wild-grown or ruderal material.

Given the plant’s ease of growth, it is worth investi-
gating whether TD plants growing in ruderal areas retain 
their beneficial characteristics and can be effectively used 
in animal production. Therefore, the objective of this study 
was to evaluate the effects of feeding sheep with ruderal 
TD, on their digestibility and GHG emissions. Specifically, 
the study aimed to determine whether feeding sheep with 
ruderal TD could be a viable strategy to reduce enteric CH4, 
and N excretion.

Materials and methods

Location

The TD was collected from different areas around the city 
of São João del Rei in the state of Minas Gerais, Brazil 
(21°08′09″S 44°15′36″W, average annual ground tempera-
ture of 19.3 °C, and relative humidity of 73%), during the 
period of June to November 2017. The animal experiment 
and the laboratory analyses were all conducted at the Ani-
mal Nutrition Laboratory of the Nuclear Energy in Agri-
culture Center (CENA) at the University of São Paulo in 
Piracicaba, São Paulo, Brazil.

Experimental diets

The diets used in this study have also been described by 
Pérez-Márquez et al. (2023) in an in vitro approach. A con-
trol diet consisting of 400  g kg− 1 soybean meal and corn 
grain, and 600 g kg− 1 Tifton 85 hay (Cynodon spp) (TD0), 
was compared against three increasing levels of TD hay 
(90, 270, and 450 g kg− 1 on a dry matter [DM] basis) as a 
replacement for Tifton hay (TD9, TD27 and TD45, respec-
tively). The diets were formulated to meet the maintenance 
requirements for sheep (National Research Council 2007) 
with a 25 g kg− 1 DM intake of liveweight per day and were 
balanced to be iso-proteic and iso-fibrous using the values 
for DM, crude protein (CP), neutral detergent fiber (NDF) 
of the components. The ingredients and chemical composi-
tion of the diets are described in Tables 1 and 2.

Tithonia diversifolia at flowered stage (~ 100 days old) 
was collected from different areas around the city of São 
João del Rei in the state of Minas Gerais, Brazil. The entire 

Table 1  Chemical composition of diet’s ingredients (g kg− 1)
Soybean 
Meal

Maize Tifton 85 
hay

T. diversi-
folia hay

Dry matter 897.89 887.00 903.04 887.07
Neutral deter-
gent fiber

150.00 111.48 735.81 677.71

Acid detergent 
fiber

110.96 34.20 360.23 566.62

Crude protein 479.23 127.14 140.45 78.84
Ash 69.19 12.79 98.96 111.35
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plant (leaves and stems) was harvested at about 80 cm from 
the base, chopped, and then sun-dried until it was dry to the 
touch. The dried TD was then transported to the CENA’s 
animal nutrition laboratory where it was further ground to 
pass through a 1 cm sieve to facilitate mixing with the other 
components of the diet. Tifton-85 hay was initially chopped 
into 3 cm particles and then further ground to 1 cm. Corn 
grain was also broken down in a grinder without the use of 
a sieve. Soybean meal was used without prior mechanical 
grinding. The ingredients were mixed using a 500 kg capac-
ity mixer for 15 min to form the complete diets, which were 
then individually stored in 200-liter plastic drums in a dry 
and sun-free location.

After mixing the ingredients for each diet, a sample of 
each one was ground to 1  mm (using a Willey mill) for 
determination of chemical composition. The guidelines of 
AOAC (2011) were followed for determination of DM con-
tent (method 934.01), CP (method 2001.11), EE (method 
2003.5), and ash fraction (method 942.05). Neutral deter-
gent fiber (evaluated using thermostable amylase and sul-
phite and expressed as ash-free residual), ADF (expressed 
as ash-free residual), and lignin were evaluated according 
to Van Soest et al. (1991) adapted by Mertens et al. (2002). 
The Non-structural carbohydrates (NSC) contents were cal-
culated by the equation: NSC = 100 - (CP + NDF + EE + ash) 
(Sniffen et al. 1992). Neutral detergent indigestible nitrogen 
(NIDN) and acid detergent indigestible nitrogen (NIDA) 
were determined according to the methods N-004/1 and 
N-005/1, respectively, of the INCT-CA (Detmann et al. 
2012) and expressed as a percentage of dry matter and total 
N.

Animals and experimental design

Eight castrated male sheep (Santa Ines breed), adults, 
with an average body weight and standard deviation of 
70 ± 13.4 kg, fitted with ruminal cannula from the herd of 
the animal nutrition laboratory of the CENA/USP, were 
used. The sheep were paired by bodyweight and randomly 
allocated to one of the four diets. Each animal underwent 
a 14-day adaptation to the diets before the evaluation. The 
animals’ responses to the diet were evaluated for four peri-
ods in a crossover design with 10-day observation periods, 
and 14 days washout periods. Water and mineral mixture 
were provided ad libitum during whole experimental period.

Digestibility trial

The sheep were housed in metabolic crates (0.8 × 1.2  m) 
equipped with a feeder, water and mineral salt troughs, and 
trays for feces and urine collection. The sheep were evalu-
ated over a period of seven days, including two days for 
animal adaptation to the crates and five days for sample col-
lection. The diet was provided daily in two meals: one at 
8:00 and another at 16:00, both in equal proportions. The 
amount of feed offered was adjusted daily to ensure 10% 
leftovers (fresh matter basis). Diet samples were collected 
from each evaluation period. The leftover and feces samples 
from each animal were collected daily before the first meal, 
weighed on an electronic scale (with a precision of 5  g), 
sampled (10%) (forming a pool of leftovers and a pool of 
feces for each animal per period), and stored in a freezer 
at -20 °C for subsequent bromatological analysis using the 
previously described analysis methodologies.

Nutrient’s apparent digestibility was determined accord-
ing to the equation described by McDonald et al. (2011).

AD of X = Xintake − Xexcreted

Xintake

Where: AD = Apparent digestibility (g/g); X = evaluated 
nutrient.

At the end of the four experimental periods, the offered, 
leftover, and faecal samples were thawed (at room tempera-
ture), weighed and dried in a forced-air circulation oven at 
55  °C to a constant weight and then ground for determi-
nation of DM, organic matter (OM), CP, NDF, ADF, and 
lignin.

Urine collection

Before providing the first daily meal, urine was collected 
from plastic sampling trays containing 100 mL of 10% sul-
furic acid to prevent ammonia volatilization (Knowlton et 

Table 2  Ingredient proportion (g kg− 1) and chemical composition (g 
kg− 1 DM) of diets containing increasing levels of Tithonia diversifolia
Ingredient (g kg− 1) TD0 TD9 TD27 TD45
Tithonia diversifolia 0 90 270 450
Tifton 85 600 510 330 150
Maize 263 254.7 246.2 234.9
Soybean meal 137.0 142.6 153.8 165.1
Chemical Component (g kg− 1 DM)
Dry matter (g kg− 1) 910.6 906.9 906.4 905.7
Neutral detergent fiber ab 409.0 396.6 393.3 392.7
Non-structural carbohydrates 342.7 366.1 367.0 353.8
Acid detergent fiber b 299.2 300.3 312.7 345.8
Crude protein 163.0 158.6 156.5 156.3
Lignin b 75.6 83.92 98.48 129.0
Ash 61.5 71.9 78.6 89.2
Ether extract 23.7 18.0 17.67 17.5
Crude energy (kcal gDM− 1) 3748 3713 3715 3697
aassayed using thermostable amylase and b expressed as exclusive of 
residual ash
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three uninterrupted minutes in each chamber. Every period, 
gas measurements were taken sequentially from chamber 1 
to chamber 11, in cycles of 33 min (3 min x 11 chambers), 
starting at 8 a.m. and ending at approximately 6 a.m. the 
following day (22 h approx.). Before providing the morning 
feed on the second day, the feces and urine in the cham-
bers were removed, and feed leftovers were removed and 
weighed. After cleaning the chambers, measurements were 
resumed in the same manner as on the first day.

Calculations for emission determination

The raw data obtained from the gas analyser during the four 
measurement periods were evaluated using R Studio soft-
ware (R Core Team 2021) using R packages ‘dplyr’ (Wick-
ham et al. 2023), ‘lubridate’ (Grolemund and Wickham 
2011) and ‘tidyr’ (Wickham et al. 2024). For each cham-
ber, the first 60  s of each 3-minute measurement period 
were excluded to avoid contamination from residual gases 
originating from the previous chamber measurement. Then, 
using the values of the remaining 2 min, a median of the gas 
was calculated to avoid the influence of any extreme values 
or aberrations in the data collection. This median was con-
sidered a concentration point. For each chamber, an average 
(per gas) of all the concentration points after 22 h of mea-
suring was obtained. This was considered the average daily 
concentration.

Daily gas emission rates

Based on the average daily concentration of emitted gas 
and using the data obtained from the digestibility assay for 
each animal and the ideal gas law at standard conditions, the 
emissions were expressed in grams of gas per day (g d− 1), 
grams of gas per kilogram of live weight (g kg− 1 LW), and 
grams of gas per kilogram of DM intake (g kg − 1 DMI). The 
emissions of N2O and NH3 were also expressed as grams of 
gas per kilogram of excreted N (g kg − 1 N excreted), using 
the N balance values.

Ruminal fermentation parameters

On the final day of the gas emission quantification assay, 
two hours after the morning feed, a sample of ruminal fluid 
from the sheep was collected via rumen canula. Each sam-
ple was divided into three aliquots for the determination 
of short-chain fatty acids (SCFAs), ammonia N (N-NH3), 
and protozoa populations. The determination of SCFAs was 
conducted using gas chromatography following the meth-
odology and equipment described by Lima et al. (2018). 
The concentration of N-NH3 was determined using the 
micro-Kjeldahl method, involving steam distillation with 

al. 2010). The total volume of urine was measured every 
day, and a 10% aliquot was sampled to form a urine pool per 
animal per evaluation period. Urine samples were stored in 
a freezer at -20 °C for subsequent total N analysis.

N balance

The calculation of N balance was performed after determin-
ing the total N present in the offered and excreta samples 
using the AOAC (2011) method 954.01 for N determination 
and following the equation described below:

Nretained (g day−1) = Ningested − (Nexcreted in feces + Nexcreted in urine)

Where: Nretained = average amount of N retained by the 
animal; Ningested = average amount of N ingested by the 
animal; Nexcreted = average amount of N excreted in 
urine + average amount of N excreted in feces.

Respiration chambers

After the digestibility trial, the eight animals were placed in 
individual respiration chambers adapted with a ventilation 
system for gas measurement. A total of 10 metal chambers 
(157 × 71 × 167 cm - volume 1.9 m3) described by Abdalla 
et al. (2012) were used for the experiment. The chambers 
were connected through pipelines to a 16-port distribution 
manifold (A0311, 16-Port distribution manifold, Picarro, 
INC., Santa Clara, CA - USA) that allowed the selection of 
emissions from each chamber (one at a time) and sent them 
in real-time to a gas concentration analyser (G2508 Picarro 
Inc, Santa Clara, California - USA) using cavity ring-down 
spectroscopy (CRDS) technology for simultaneous determi-
nation of CO2, CH4, N2O (ppm - µmol/mol (v/v), and NH3 
(ppb - nmol / mol (v/v) concentrations at a frequency of 
approximately one hertz. Two of the respiration chambers 
were left empty (blanks), and an extra pipeline measured 
the gas concentrations of the room where the chambers were 
allocated for subsequent emission corrections in relation to 
the blank and ambient air. Thus, a total of eight chambers 
with sheep, two blanks, and one ambient air (eleven units) 
were measured. Each chamber was assigned to an individ-
ual sheep for the whole experiment, the diet treatments were 
randomly assigned to each sheep every period.

The gas emission evaluation was carried out over a period 
of three days, with one day for adaptation and two for col-
lection. Feed was provided to the animals at 8:00 and 16:00, 
and the temperature, internal humidity, and air flow rate 
(m/s) of each chamber were measured during the day at 8, 
11, 14, 17, and 20 h. During the two days of emission evalu-
ation, measurements were autonomously taken one chamber 
at a time, where the gas concentrations were measured for 
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Yijkl = µ + sm+ti + rj + ck + eijkl

Where: Yijklm = Observation of square m of ith treatment 
in row j column k from repetition l; µ = baseline mean; sm

= effect of latin square m; ti = effect of treatment I; rj  = 
effect of period j; ck = effect of animal k; eijkl = experi-
mental error for ijkl.

Results

Intake and apparent digestibility

The level of TD inclusion in the diet did not have any signif-
icant effects on the sheep’s intake of DM, OM, CP, or NDF 
(p = 0.822) (Table 3). However, a linear effect was observed 
(R²=0.19; p = 0.006) in ADF intake as the TD inclusion in 
the diet increased. Compared to the animals on the TD0 
diet, the ADF intake was 31.5% higher in the diet with the 
highest TD inclusion (p = 0.007).

The apparent digestibility of the diet decreased with 
the increasing inclusion of TD. Except from CP, a linear 
decreasing effect was observed on the DM (R²=0.42), OM 
(R²=0.47), NDF (R²=0.51), and ADF (R²=0.27) apparent 
digestibility coefficients (Table 3). When compared against 
TD0, the TD9 inclusion did not significantly affect nutri-
ent apparent digestibility, however at TD27, the digestibility 
of DM, OM, NDF and ADF reduced by 7, 7, 21 and 24% 
respectively. Similarly, at TD45 the digestibility coefficients 
were 11, 12, 23 and 22% lower than in TD0, for DM, OM, 
NDF and ADF, respectively (Table 3).

Nitrogen balance

The TD inclusion had no effects on the N balance of the 
evaluated sheep. No changes were observed in N intake, N 

a 5% sodium tetraborate solution for the reaction and con-
densation of N-NH3, boric acid as the receiving solution, 
and 0.01 N sulfuric acid for titration. Protozoa populations 
were determined by visual examination under a light micro-
scope using a Neubauer chamber; 2 mL of rumen fluid were 
fixated in 4 mL of a methyl formaline solution following 
the methodologies of Ogimoto and Imai (1981); Dehority 
(1993) and Göçmen et al. (2001).

Statistical analysis

For most of the responses, the data were analysed as cross-
over design, using 4 treatments (TD inclusion level) being 
evaluated over 4 periods (rows) and 8 animals (columns) 
with a 14 -day washout period. For daily gas emission rates, 
the average daily emission values from each 22  h period 
were considered a replicate for that observation within that 
treatment.

Shapiro-Wilk normality test and Bartlett’s homosce-
dasticity test were conducted. Data were transformed, if 
necessary, using exponential, logistic, or square root trans-
formations. Pearson correlation tests and regression analy-
sis were performed to evaluate the effect of the increasing 
level of TD in the assessed variables. The treatment means 
were also compared using orthogonal contrasts, comparing 
the TD inclusion treatments against the TD-free diet; TD0 
vs. TD9 (1,-1,0,0), TD0 vs. TD27 (1,0,-1,0), TD0 vs. TD45 
(1,0,0,-1). Results were considered significant when the p 
value was inferior to 0.05.

The statistical analyses were conducted using the R soft-
ware (R Core Team 2021) and the packages ‘stats’, ‘lmerT-
est’, ‘emmeans’, ‘multcomp’, and ‘ggplot2’ (Hothorn et al. 
2008; Wickham et al. 2016; Kuznetsova et al. 2017; Lenth 
2021).

The statistical model used was as follows:

Table 3  Intake and digestibility of sheep fed with increasing levels of Tithonia diversifolia
TD0 TD9 TD27 TD45 SEM p-value L Q R²

Intake
Dry matter (g d− 1) 1668 1744 1677 1805 116.6 0.822 0.49 0.75
Dry matter (%LW) 2.42 2.59 2.56 2.65 0.225 0.908 0.63 0.88
Organic matter (g d− 1) 1567 1607 1544 1638 105.4 0.922 0.73 0.88
Crude protein (g d− 1) 322.2 307.6 300.9 332.3 23.24 0.774 0.72 0.55
Neutral detergent fiber (g d− 1) 857.5 845.2 765.6 877.8 57.17 0.539 0.99 0.37
Acid detergent fiber (g d− 1) 602.7 633.4 627.5 792.7* 24.59 0.028 0.007 0.17 0.19
Apparent digestibility coefficients
Dry matter 0.68 0.69 0.64* 0.61* 0.011 < 0.001 < 0.001 0.65 0.42
Organic matter 0.71 0.71 0.66* 0.63* 0.011 < 0.001 < 0.001 0.74 0.47
Crude protein 0.74 0.73 0.70 0.71 0.014 0.260 0.279 0.44
Neutral detergent fiber 0.62 0.60 0.49* 0.48* 0.018 < 0.001 < 0.001 0.17 0.51
Acid detergent fiber 0.50 0.52 0.38* 0.39* 0.026 0.002 < 0.001 0.38 0.27
*Within the same line indicates a significant difference from TD0; SEM = Standard error of the mean; p-value = Type I error rate of ANOVA; L, 
Q = p-value for linear and quadratic regression, respectively; R²=determination coefficient, showed only for significant regressions
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Ruminal fermentation parameters

No effects were observed on the ruminal protozoa popula-
tions of the animals fed with TD (p > 0.05). The inclusion 
of TD in the diet, did not show any effects on the concen-
tration of total SCFAs, propionate, butyrate nor A: P ratio 
from the animals (Table 6). However, a linear decrease was 
observed in the acetate molar proportions as the TD inclu-
sion increased in the diet. When compared against the diet 
without TD the ruminal content of the animals fed with 
the TD45 inclusion had a 4.4% lower molar proportion of 
acetate (p = 0.008). Contrastingly, the molar proportions of 
all three iso-acids (valerate, iso-valerate and iso-butyrate) in 
the ruminal content of the animals increased linearly with 
the TD inclusion in the diet (p < 0.003); R2 = 0.28, 0.22 and 
0.26, for the three iso-acids, respectively). When compared 
against the control, the ruminal content of the animals fed 

excreted, or N retained among the diets (p > 0.05). In aver-
age, 46% of the N intake was retained, 28% was excreted 
in feces and 25% in the urine without significant differences 
among treatments (Table 4).

No significant differences were observed in the NIDN 
content between the offered diets (Table 5) when expressed 
as a percentage of DM. However, the NIDN increased with 
the TD inclusion when expressed as a proportion of the total 
N of the diet (P = 0.045), although with a very low determi-
nation coefficient. On the other hand, the increasing level 
of TD in the diet did show a linear effect on the ADIN con-
tent when expressed both as proportion of DM and total N 
(P < 0.05). In both cases, the ADIN content in the TD45 diet 
was significantly higher than the diet without TD.

Table 4  Nitrogen balance of sheep fed with increasing levels of Tithonia diversifolia
TD0 TD9 TD27 TD45 SEM p-value L Q

N intake (g d− 1) 51.5 49.2 48.1 53.1 3.71 0.774 0.731 0.958
N excreted (g d− 1) 26.4 25.8 27.0 26.8 1.66 0.954 0.735 0.717
N faeces (g d− 1) 13.3 13.6 14.4 15.3 1.51 0.806 0.323 0.977
N urine (g d− 1) 13.0 12.2 12.6 11.6 0.86 0.730 0.553 0.652
N retained (g d− 1) 25.1 23.3 21.0 26.3 2.93 0.622 0.847 0.781
N retained / N intake (%) 47.5 47.2 43.0 48.1 3.03 0.621 0.912 0.566
N feces / N intake (%) 26.1 27.1 30.0 28.8 1.90 0.487 0.279 0.702
N urine / N intake (%) 26.3 25.6 26.9 23.1 2.70 0.759 0.576 0.708
*Within the same line indicates a significant difference from TD0; SEM = Standard error of the mean; p-value = Type I error rate of ANOVA; L, 
Q = p-value for linear and quadratic regression, respectively

Table 5  Neutral and acid detergent insoluble nitrogen (NDIN, ADIN) content of diets with increasing levels of Tithonia diversifolia
TD0 TD9 TD27 TD45 SEM p-value L Q R2

NDIN (g kgDM− 1) 13.2 13.3 13.8 14.0 0.53 0.704 0.320 0.879
NDIN (g kgN− 1) 473 452 486 524 17.9 0.056 0.045 0.357 0.09
ADIN (g kgDM− 1) 7.9 8.6 9.3 10.0* 0.46 0.029 0.008 0.771 0.18
ADIN (g kgN− 1) 286 290 328 373* 16.4 0.003 0.001 0.604 0.27
*Within the same line indicates a significant difference from TD0; SEM = Standard error of the mean; p-value = Type I error rate of ANOVA; L, 
Q = p-value for linear and quadratic regression, respectively; R²=determination coefficient, showed only for significant regressions

Table 6  Ruminal fermentation parameters of sheep fed with increasing levels of Tithonia diversifolia
TD0 TD9 TD27 TD45 SE p-value L Q R²

Protozoa (× 105 mL− 1) 4.29 4.65 4.68 5.07 0.598 0.8371 0.612 0.996
N-NH3 (mg dL− 1) 23.8 24.3 21.3 18.9* 1.29 0.0333 0.011 0.659 0.17
Total SCFA (umol mL− 1) 142.9 142.2 145.8 139.1 4.37 0.7562 0.780 0.603
Acetate (mol 100 mol− 1) 65.7 65.7 64.0 62.8* 0.61 0.0083 0.003 0.811 0.22
Propionate (mol 100 mol− 1) 16.6 16.6 16.8 16.5 0.53 0.9778 0.993 0.703
Butyrate (mol 100 mol− 1) 13.1 12.6 13.6 14.2 0.43 0.0888 0.099 0.651
A: P ratio 3.99 4.00 3.84 3.81 0.142 0.6977 0.306 0.916
Valerate (mol 100 mol− 1) 1.03 1.04 1.17 1.30* 0.048 0.0029 0.001 0.669 0.28
Iso-valerate (mol 100 mol− 1) 2.65 2.71 3.00 3.42* 0.198 0.0486 0.003 0.589 0.22
Iso-butyrate (mol 100 mol− 1) 0.94 1.24 1.34 1.69* 0.132 0.0078 0.001 0.937 0.26
*Within the same line indicates a significant difference from TD0; A: P = acetate to propionate ratio; SEM = Standard error of the mean; 
p-value = Type I error rate of ANOVA; L, Q = p-value for linear and quadratic regression, respectively; R²=determination coefficient, showed 
only for significant regressions. A: P = Acetate to propionate ratio
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Discussion

Intake and digestibility

Normally, diets with higher content of ADF disappear more 
slowly from the rumen, which increases the retention time 
of the feed in it (lower passage rate), effectively reducing 
the DM intake of the animal as the feeling of physical sati-
ety is prolonged (Silva 2006; Nikkhah 2014). In the present 
experiment, although animals on diets with TD45 showed 
higher ADF intake due to the higher proportion in the 
offered material, no significant differences were observed 
in DM or OM intake compared to animals fed with less TD. 
It is possible that despite having a higher ADF content, the 
particle size of the offered feed (~ 1 cm) was not a hindrance 
to the retention of the material in the rumen. Particle size 
and density are known determinants of passage rate (Clauss 
et al. 2011; Dufreneix et al. 2019). Valadares-Filho and Pina 
(2006) described that gas production from bacteria attached 
to food particles keeps them floating in the ruminal fluid, 
but once fermentation decreases due to particle degradation, 
their specific density increases, causing the material to settle 
in the ventral parts of the rumen, where it is susceptible to 
ruminal movements and escapes from the rumen. Thus, it is 
possible that the material with small particle size, fraction-
ated during chewing, less fermentable due to the high ADF 
content and therefore with higher specific density, would 
precipitate in the rumen near the reticulo-omasal orifice and 
escape from the rumen more easily, increasing its quantity 

with TD45 inclusion had a 26.2, 29.1 and 79.8% higher 
molar proportions of valerate, iso-valerate and iso-butyrate, 
respectively (p < 0.05).

There was a negative linear relationship in the ruminal 
N-NH3 concentration due to the increase of TD in the diet 
(p = 0.011, R²=0.17). Animals fed with the highest level of 
TD (TD45) had a lower concentration (p < 0.05) of ruminal 
N-NH3 (18.9 mg dL− 1) compared to animals fed the TD-
free diet (23.8 mg dL− 1).

Greenhouse gas emissions

No differences were observed in the emission rates of any 
of the evaluated gases among animals fed with different 
levels of TD (Table 7). Methane emissions for animals fed 
with TD ranged around 9.3 gCH4 kgDMI − 1. Carbon diox-
ide emissions were close to 101 gCO2 kgDMI − 1. Regard-
ing N2O and NH3 emissions per kilogram of excreted N 
(feces + urine), animals fed with TD emitted an average of 
2.62 gN2O and 37.4 gNH3. Considering the global warm-
ing potential for CO2, CH4, and N2O (Krey et al. 2014), the 
average emissions for animals fed with ruderal TD were 
around 153 kg of CO2 equivalents per animal per year.

Table 7  Mean emission rates of CH4, CO2, N2O and NH3 from sheep fed with increasing levels of Tithonia diversifolia
TD0 TD9 TD27 TD45 SE p-value L Q

Methane
g CH4 d− 1 12.41 12.55 13.17 12.25 0.449 0.5086 0.995 0.592
g CH4 kgLW− 1 0.51 0.53 0.56 0.51 0.033 0.330 0.937 0.537
g CH4 kgDMI− 1 8.52 8.76 10.28 9.05 0.958 0.421 0.460 0.250
Carbon Dioxide
g CO2 d− 1 128.59 126.21 138.14 140.10 7.00 0.4141 0.365 0.967
g CO2 kgLW− 1 5.40 5.39 5.92 5.90 0.284 0.3824 0.449 0.846
g CO2 kgDMI− 1 87.86 89.83 109.22 105.30 7.737 0.1906 0.141 0.515
Nitrous Oxide
mg N2O d− 1 64.87 65.08 70.12 63.50 2.034 0.1442 0.995 0.294
mg N2O kgLW− 1 2.77 2.78 3.08 2.65 0.126 0.1290 0.929 0.378
mg N2O kgDMI− 1 4.44 4.81 5.70 4.93 3.625 0.1293 0.456 0.252
g N2O kg excreted N− 1 2.55 2.62 2.58 2.47 0.1284 0.8491 0.706 0.722
Ammonia
g NH3 d− 1 1.00 0.98 1.05 0.91 0.095 0.7985 0.790 0.699
mg NH3 kgLW− 1 44.3 42.8 48.5 38.1 4.65 0.4790 0.733 0.565
g NH3 kgDMI− 1 0.67 0.75 0.90 0.68 0.081 0.2052 0.876 0.305
g NH3 kg excreted N− 1 39.0 39.1 37.3 35.8 4.04 0.9304 0.693 0.962
Total emissions
(kg CO2e year− 1)a

149.4 149.6 159.3 152.2 13.77 0.478

aCalculated using IPCC (2019b) equation 10.21 A and 100-year global warming potential for CO2 (1), CH4 (21), e N2O (310) (Krey et al. 2014); 
d⁻¹ = per day; kgLW⁻¹ = per kilogram of live weight; kgDMI⁻¹ = per kilogram of dry matter intake; CO₂e = CO₂ equivalents
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One plausible explanation for this is the potential protec-
tion of CP from rumen fermentation. This protection might 
be due to the high passage rate through the rumen (due to 
the small particle size) and to the protein being linked to 
indigestible fiber, as evidenced by the increase in ADIN as 
the TD inclusion increased. It is known that feed protein 
can escape rumen fermentation by both being associated to 
the cell structure and by reducing the feed retention time in 
the rumen (Church 1979; Sniffen et al. 1992; Owens et al. 
2014).

We hypothesize that, partially degraded feed escapes 
from the rumen into the abomasum due to a rapid pas-
sage rate, the partially degraded fiber, permits the mostly 
undegraded protein to become exposed to digestive acids, 
allowing for enzymatic hydrolysis and subsequent duodenal 
absorption (Sniffen et al. 1992; Redfearn and Jenkins 2015). 
Consequently, the amount of protein in the feces remains 
low, maintaining overall protein digestibility, as observed. 
Different from protein, this rapid passage rate would have 
no noticeable effects on fiber digestibility as practically no 
fiber gets degraded in the abomasum (Church 1979), thus 
maintaining a high proportion in feces and consequently 
resulting in the observed low fiber digestibility.

The reduced levels of ruminal N-NH3 could potentially 
support this hypothesis, suggesting an overall decrease in 
ruminal protein degradation with the increase in TD inclu-
sion. However, the increase in branched-chained volatile 
fatty acids (BCVFA) could suggest that at least some of the 
protein was degraded in the rumen, but also it could be a 
consequence of a reduction in fibrolytic microorganisms. 
These microorganisms, which typically use BCVFA as 
growth factors or carbon skeletons (An et al. 2024), could 
have been reduced due to insufficient ruminal N-NH3, this 
reduction in fibrolytic microorganisms would leave more 
BCVFA unconsumed, leading to the observed increase. 
Regardless of the specific mechanisms behind the BCVFA 
increase, it is likely that TD’s presence in the diet could have 
been responsible for it, as TD is reported to contain high 
amounts of branched-chained aminoacids (BCAA) (Fasuyi 
and Ibitayo 2011; Oluwasola and Dairo 2016), known pre-
cursors of BCVFA in the rumen (Slyter et al. 1979; Andries 
et al. 1987; An et al. 2024).

Overall, these findings suggest that the protein in TD is 
not less digestible, despite its high fiber content. Instead, the 
protein seems to escape ruminal degradation and becomes 
available for enzymatic digestion in the abomasum, thus sup-
porting the N balance without altering protein digestibility.

Greenhouse gas emissions

It is not possible to state that GHG emissions from sheep 
are dependent on the level of TD included in the diet since 

in the feces. This would be consistent with the lower appar-
ent digestibilities observed in all the nutrients, except for 
CP.

Similar to the findings of the present experiment, Mahe-
cha et al. (2008), Ribeiro et al. (2016) and Pazla et al. (2021) 
did not report differences in DM intake of cows fed increas-
ing levels of TD, and Odedire and Olodi (2014) did not 
report differences in DM intake resulting from the inclusion 
of TD in goat diets. However, Fajemisin et al. (2013) and 
Castañeda-Serrano et al. (2018) reported increases in DM 
intake in diets with TD compared to control diets without 
it. The NDF content in the diet is a factor that determines 
the influence of the forage on dry matter intake. The inclu-
sion of TD in the diets used by Fajemisin et al. (2013) and 
Castañeda-Serrano et al. (2018) significantly decreased the 
fiber content of the diet compared to the control without TD 
(559 vs. 707 g/kg of NDF (Castañeda-Serrano et al. 2018), 
and 12.96 vs. 25.98% of crude fiber (Fajemisin et al. 2013). 
In contrast, no changes in the NDF content were reported in 
the diets of Mahecha et al. (2008), Pazla et al. (2021), and 
Ribeiro et al. (2016) when compared against their respective 
controls.

Protein digestibility and nitrogen balance

Despite the inclusion of TD in the diet, CP digestibility 
remained unchanged, consistent with the lack of significant 
difference in CP intake and CP apparent digestibility across 
the treatments. Protein was the only nutrient that did not 
show changes in its apparent digestibility with increasing 
TD inclusion and ADF intake. This outcome contrasts with 
other studies, which reported reduced fecal N excretion 
with increasing TD in diets and attributed this to increased 
intestinal digestibility of amino acids and greater ruminal 
CP solubility of diets with TD inclusion (Ramírez-Rivera et 
al. 2010; Yousuf et al. 2014; Castañeda-Serrano et al. 2018; 
Chacón-Góngora 2018; Durango et al. 2021). However, it is 
crucial to note that these studies utilized TD with different 
qualities from ours. Specifically, the NDF and ADF contents 
in these studies ranged from 350 to 440  g kg− 1 DM and 
290 to 407 g kg− 1 DM, respectively. In contrast, our study’s 
ruderal wild growing TD had considerably higher NDF and 
ADF contents (670 and 560 g kg− 1 DM, respectively), likely 
due to the advanced vegetative stage of the material used 
(post-flowering). The high fiber content of our TD suggests 
a lower rumen degradability, which theoretically should 
result in higher CP output in the feces and a reduced digest-
ibility coefficient. Surprisingly, this was not observed in 
our results; the N quantity in the feces remained unchanged 
with TD inclusion, indicating that CP digestibility was not 
impaired.
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found in this study are lower (0.039  kg of NH3), but the 
uncertainty reported by this organization includes a range 
from 0 to 0.295 kg of NH3 per kg of N applied to the soil.

The findings suggest that the inclusion of ruderal TD in 
sheep diets does not significantly affect GHG emissions, 
including CH4, N2O, and NH3. The lack of changes in CH4 
emissions aligns with the stable acetate-to-propionate ratio 
and the low tannin content of the TD used. Additionally, the 
similarity in N excretion between treatments corresponds 
with the comparable N2O and NH3 emissions observed. 
These results indicate that while ruderal TD inclusion influ-
ences certain ruminal fermentation parameters, it does not 
lead to a noticeable reduction in overall GHG emissions 
from sheep.

Conclusion

The inclusion of ruderal T. diversifolia in sheep diets dem-
onstrated that while it does not significantly alter DM or 
OM intake, its high fiber content may limit nutrient absorp-
tion, particularly in terms of fiber digestibility. Interestingly, 
CP digestibility remained stable across all inclusion levels, 
suggesting that the protein in TD may escape ruminal deg-
radation. Despite these effects on digestibility, ruderal TD as 
a forage source does not effectively mitigate GHG but nei-
ther does contribute to exacerbating CO2, CH4, N2O, or NH3 
emissions. Under our conditions, replacing up to 27% of the 
Tifton hay with ruderal TD is recommended as it strikes a 
balance between nutrient intake and digestibility, maintain-
ing effective protein utilization while avoiding the more 
pronounced reductions in fiber digestibility seen at higher 
inclusion levels. Future research should corroborate the 
observed stability in protein digestibility by investigating 
how Tithonia diversifolia protein behaves in the rumen, its 
degradation, binding to fiber, and potential bypass. Studies 
using higher-quality TD (e.g., pre-flowering harvest) should 
also assess whether it influences N2O emissions differently, 
to better define its role as a low-input mitigation option.
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no significant relationship was found between the inclusion 
level and the gases measured in this study. It was hypoth-
esized that the indirect effect of TD on ruminal mechanisms 
providing hydrogen as a substrate for enteric CH4 produc-
tion was one of the ways by which the plant could mitigate 
CH4 production by means of reducing protozoa populations. 
But there was no evidence for this in the present experiment. 
It has also been mentioned that the tannin content in TD 
could have a detrimental effect on ruminal protozoa popula-
tions (Galindo et al. 2011, 2012, 2016; Delgado et al. 2012). 
Since the TD use in the present experiment had a low tannin 
content, and that the tannin content of the diet was not sig-
nificantly different between treatments, this could be consis-
tent with the lack of effects on the protozoa populations and 
therefore on the CH4 emissions, assuming that this was the 
only method in which the TD could have impacted methane 
production in the rumen.

Carbohydrate fermentation into acetate is a known route 
for hydrogen production, while fermentation into propio-
nate is considered a ruminal sink for hydrogen (Getachew 
et al. 1998; Danielsson et al. 2017). The similarity of SCFA 
concentrations between diets, particularly in the A: P ratio, 
is consistent with the absence of significant differences in 
CH4 and CO2 emissions found in the present study. Methane 
production is often positively associated with the A: P ratio 
(Greening et al. 2019). The observed results coincide with 
those found by Ribeiro et al. (2016), who, using up to 150 g 
kg− 1 TD inclusion in the diet of dairy cows, also did not find 
differences in CH4 emissions, but emphasized that the A: P 
ratio between treatments was lower with TD inclusion. The 
average CH4 emissions found here for animals on the TD-
free diet (12.59 gCH4 day− 1) are similar to those reported 
by (Lima et al. 2018, 2020) for Santa Inês sheep (14.14 
gCH4 day− 1) and lower than the standard emission factors 
for sheep reported by IPCC methodologies (IPCC 2019a) of 
5 to 9 kg of CH4 per head per year, compared to the 4.60 kg 
CH4 per head per year observed in the present study. It is 
important to note that the IPCC itself mentions that there 
can be high uncertainty in these values (50% variation).

It has been mentioned that excreta deposition increases 
N2O emissions due to intensified processes of nitrogen min-
eralization, nitrification, and denitrification (Cai et al. 2017), 
and that the decomposition of urea and undigested proteins 
present in animal feces and urine are potential sources of 
NH3 (Behera et al. 2013). Thus, it is expected that the lack of 
differences in N2O and NH3 emissions between treatments 
is consistent with the similarity in N excreted by animals 
on different diets (Table  3). The observed N2O emissions 
fall within the ranges reported by the IPCC (IPCC 2019b) 
for sheep (0.4–3.9 gN2O per kg of excreted N). According 
to the IPCC (IPCC 2019b), on average, 0.197 kg of NH3 
are volatilized per kg of N deposited in excreta. The results 
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