

1 **Title: Electrostatic facilitation of odorant capture in insects**

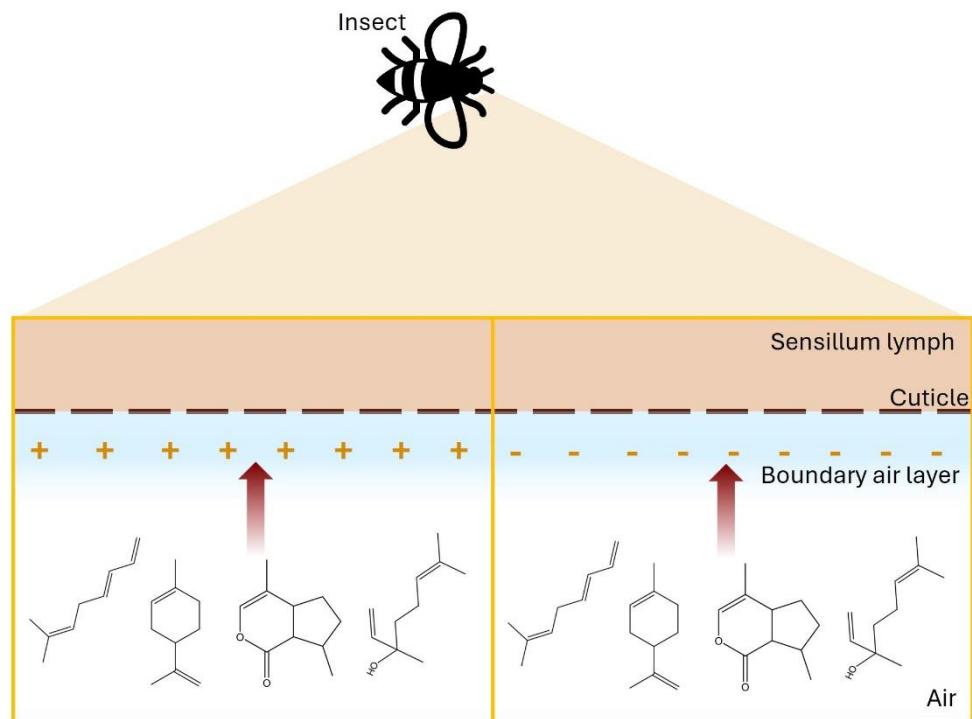
2 **Authors:**

3 Alexander N. Borg¹, Beth H. Harris^{2*}, Liam J. O'Reilly², Fraser A. Woodburn², David M. Withall¹,
4 Ryan A. Palmer³, Daniel Robert² and József Vuts¹

5 **Affiliations:**

6 1: Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK

7 2: School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK


8 3: School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, UK

9 *Current address: School of Biomedical Sciences, Faculty of Biological Sciences, University of
10 Leeds, Leeds, LS2 9JT

11 **Correspondence:** József Vuts - jozsef.vuts@rothamsted.ac.uk, Daniel Robert -
12 D.Robert@bristol.ac.uk

13 **Keywords:** olfaction, insect antenna, electrostatics, biophysics, molecules, electrophysiology,
14 models

15 **Graphical abstract:**

17 **Summary**

18 Olfaction is a sensory modality common to most organisms. In insects, the primary olfactory
19 organ is the antenna, where sensilla house olfactory receptor neurons adapted to detect volatile
20 organic compounds (VOCs). Whilst olfaction is well-understood at molecular and neural levels,
21 questions remain as to how, biophysically, airborne VOCs reach sensilla. Transport through
22 passive diffusion and active antennal motion is empirically supported but cannot entirely explain
23 the remarkably rapid VOC sampling rates. We present evidence that the insect antennae exploits
24 electrostatic forces that amplify VOC transfer from bulk air to sensilla. In effect, charged
25 antennae capture more ambient VOCs than neutral ones, also evoking an enhanced
26 electrophysiological (EAG) response to VOCs. Experimentally altering the charge of isolated
27 antennae modulates EAG responses and olfactory sensitivity. Multiphysics modelling
28 incorporating electrostatic and fluid dynamic mechanisms supports empirical evidence.
29 Altogether, this work reveals the existence of a previously unknown and complementary
30 biophysical mechanism supporting olfaction.

31

32

33 **Introduction**

34 Olfaction underpins many important sensory ecological functions, from the localisation of prey,
35 predators or mates to the deployment of pheromones to alert conspecifics and the identification
36 of suitable oviposition sites. For terrestrial organisms, olfaction relies on the capture and
37 detection of airborne scent molecules, i.e. volatile organic compounds (VOCs). Insects have the
38 particularity of possessing externally facing olfactory systems, an arrangement substantially
39 different from the internalised olfactory epithelia of most vertebrates. Here, olfactory sensory
40 structures take the form of thousands of small porous sensilla, typically located on the insect's
41 antennae, inside which reside specialised olfactory receptor neurons (ORNs). The ORNs'
42 dendritic terminals present cellular membranes rich in odorant receptors (ORs), conferring
43 sensitivity and specificity to VOC detection. The transfer of VOCs through the lymph surrounding
44 dendritic terminals towards ORs is facilitated by odorant-binding proteins (OBPs), enhancing
45 both reliability and speed of olfaction.¹

46 Whilst olfaction is well-understood at the molecular and neural levels, questions remain
47 regarding the coupling between dendritic terminals and VOCs residing in the aerial environment.²
48 Little is known on how fast and by what mechanism VOCs move through the boundary layer
49 surrounding the insect antenna to reach, then enter, superficial pores on olfactory sensilla and
50 subsequent ORs. To explain this very first step in the chain of olfactory events, current empirical
51 and theoretical evidence suggest a combination between transport through passive diffusion and
52 active antennal motion. Aimed at breaking and shedding the air boundary layer, antennal flicking
53 motion enables a greater and faster availability of VOCs at the ORs. This mechanism receives
54 support from empirical and theoretical work, whereby active antennal oscillations in the
55 presence of VOCs serve to increase VOC capture rates in bumblebees.^{3,4} We propose here that
56 this elegant process may not act alone, as it cannot entirely explain the extraordinary efficiency
57 and rapid sampling rate observed in many insect species.⁵⁻⁷ In effect, recent fluid-dynamical
58 evidence reveals that the convoluted antennal microscale morphology in moths enhances VOC
59 capture and detection.⁸

60 Conventional olfactory theory states that reception of VOCs happens by chance via their
61 diffusion towards the antennal surface.⁹ The finely branched comb-like antennae of male moths
62 are estimated to adsorb about a third of molecules in an air stream,¹⁰ albeit such figure depends
63 on many geometrical parameters not always known. In natural atmospheric conditions, this ratio
64 is deemed to be much lower because of the patchy statistics of VOC concentration in
65 heterogenous media.¹¹⁻¹³ A salient limitation comes from the role played by the boundary layer
66 surrounding antennal cuticular surfaces. It is estimated that the typical passive diffusive transit
67 time through a thin 200 μm boundary layer is between 2-20 s for molecules with diffusion
68 coefficients in the range of $1 \times 10^{-7} - 1 \times 10^{-9} \text{ m}^2/\text{s}$,³ introducing both delayed responses and low
69 dynamic range. However, the documented quick response time of the insect olfactory system to
70 onset odorant stimuli, in the range of 3-10 ms,¹⁴ indicates a dynamic range exceeding that
71 putatively dictated by passive buffering effects caused by the boundary layer.

72 We hypothesise that there is an additional and non-exclusive biophysical mechanism present,
73 which enhances the sensitivity and temporal accuracy of olfaction in arthropods. Said
74 mechanism would exploit the electrostatic forces arising between insects and their
75 environment.¹⁵

76 Electric fields (E-fields) arise between electric charges and influence matter across a wide range
77 of length scales: from subatomic particles, like electrons, through molecular and cellular
78 structures to whole organisms, atmospheres, and even astrophysical environments. The
79 electrostatic and electrodynmic interactions between charge-carrying particles largely dictate

80 the chemistry of both the abiotic and biotic world, and thus consequently dictate the structure of
81 life at many physical length scales. Of particular relevance here is that the distribution and
82 mobility of charge within materials can influence biological and ecological processes.¹⁵ Indeed,
83 recent work has highlighted the plethora of electrical interactions between organisms and their
84 physical environment, demonstrating the complexity of their electric ecology.¹⁶⁻¹⁹

85 Arthropods accumulate surface charge on their cuticle as they move through their environment.
86 Whilst the exact mechanisms of cuticle charging are unclear, triboelectrification is likely at work
87 through friction between body parts such as wings, antennae, legs and hairs and any substrate or
88 air. Hence, many animals living in terrestrial and aerial environments carry non-negligible electric
89 charges.^{15,20} Often, but not exclusively, this charge is net-positive across the whole organism,
90 resulting in an attractive force to sources of negative charge, owing to a Coulomb interaction.^{21,22}
91 These charge differences facilitate ecological interactions, as observed with negatively charged
92 pollen ‘jumping’ onto positively charged bees and butterflies prior to flower contact, enhancing
93 pollination efficiency.^{18,19} Remarkably, it was shown in 1982 that the placode sensilla found on
94 the antennae of honeybees hold a quasi-permanent electric charge. The author proposed that
95 this charge attracts VOCs and thus enhances the capture efficiency of the olfactory receptor
96 organ and improve its sensitivity,²³ likely via dipole-dipole interactions. However, this putative
97 mechanism has not been investigated further.

98 Considering the role electrostatics is poised to play in ecological relationships, we developed an
99 alternative theory of olfaction that involves the electrostatic charging of sensory structures. Here,
100 cuticular arthropod hairs endowed with charge interact with VOCs, themselves influenced by
101 their dipole moment, a measure of the uneven distribution of charge held by a molecule. Notably,
102 this interaction is predicted to occur outside the receptor at the sensillum and antennal level,
103 influencing VOC capture, and is distinct from known nanoscale electrostatic attachment of
104 volatile ligands to membrane-bound OBPs and ORs in the liquid phase.

105 Here, we propose that the electrically charged state of both the antennal cuticle and the olfactory
106 sensilla increases VOC capture through attractive electrostatic forces (ex. Coulomb force) that
107 overcome diffusion and advection timescales to aid the fast and efficient transfer of VOCs from
108 air through the boundary layer to the sensory substrate.

109

110 **Results**

111 We first measured the net charge on *Bombus terrestris*, *Aphidius ervi* and *Aphis fabae* antennae
112 by dropping them into a Faraday cup. Measuring charge on *Drosophila melanogaster* antennae
113 was not possible with our setup due to their extremely small size. Freshly amputated antennae,
114 representing baseline measurements, showed a bias towards the negative range, but *A. fabae*
115 antennae also bore positive values and thus had the broadest span of variation in charge (Figure
116 1). The amount of charge on *B. terrestris* antennae (Figure 1A) was estimated to be ca. two orders
117 of magnitude higher than that of *A. ervi* and *A. fabae* antennae (Figures 1B and C). The placement
118 of a neutralising plasma beam near the antenna generally decreased the otherwise large
119 dispersion of charge values and reduced the amount of total charge for *B. terrestris* and *A. fabae*
120 towards a more neutral state. Contact with the tungsten electrode also produced a narrower
121 distribution of surface charge; here, application of 0 V caused clustering of values near zero in the
122 positive range, a shift large enough to generate a statistical difference from the native (baseline)
123 charged state of unbiased *B. terrestris* and *A. ervi* antennae. This effect became even more
124 pronounced at the -8 V bias towards the positive range for all three species, which confirms that
125 varying the electric potential influences the magnitude and polarity of antennal charge.

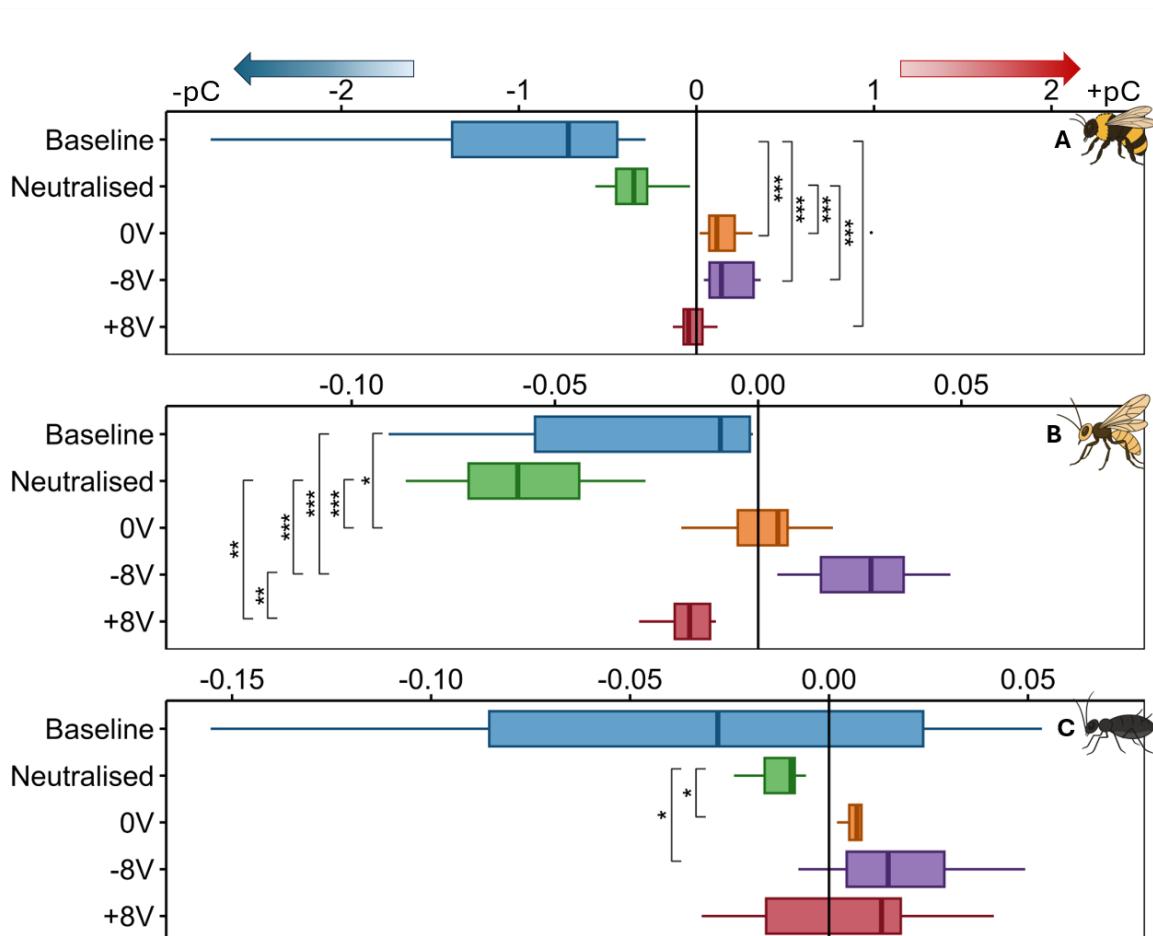
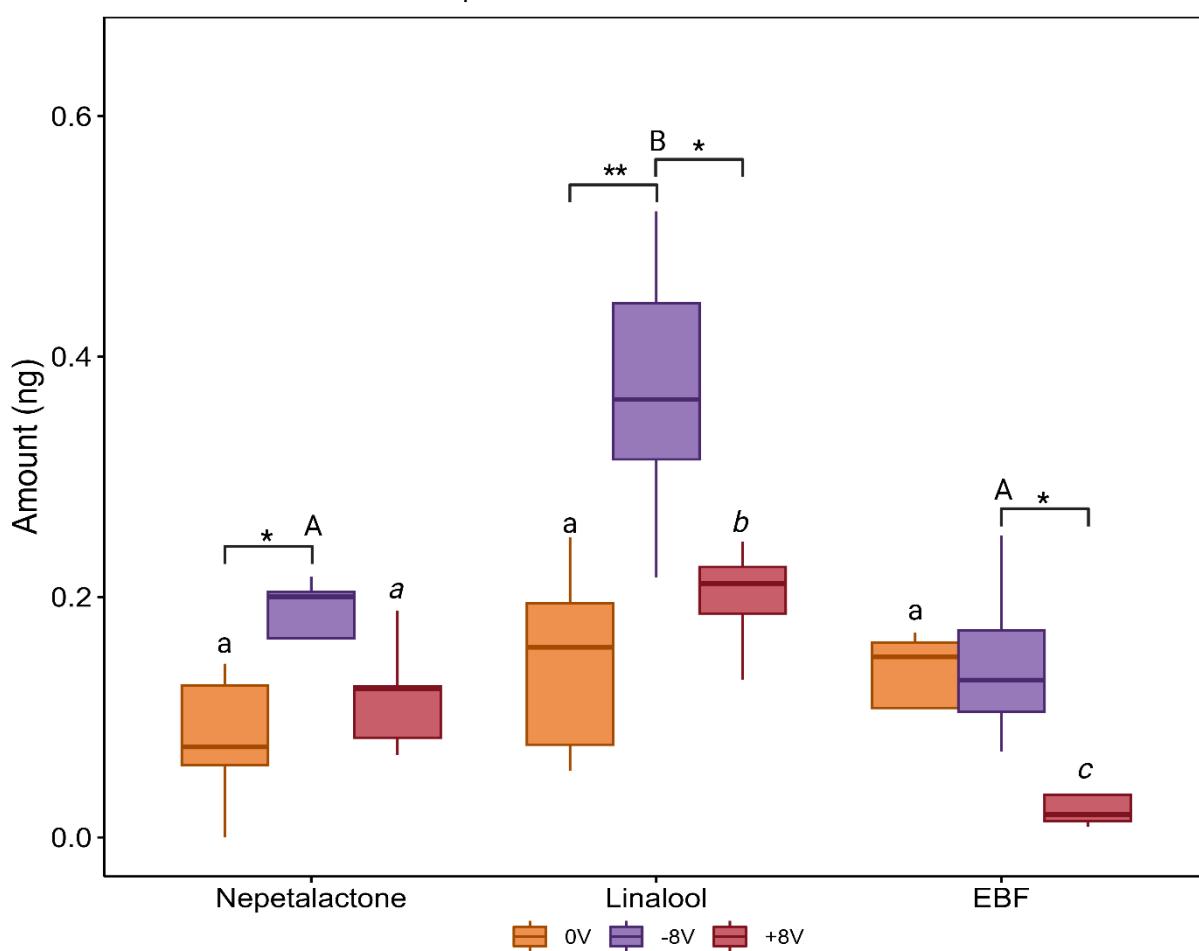



Figure 1 Net charge magnitude (pC) on *Bombus terrestris* (A), *Aphidius ervi* (B) and *Aphis fabae* (C) antennae, which were freshly amputated (Baseline), exposed to a plasma beam to reduce their spatial charge (Neutralised) or conductively treated with 0, -8 or +8 voltage (V) using a tungsten electrode. Measurement of net charge on individual antennae was made with a Faraday cup (n=10 antennae/species). Significance: · =P<0.1, * =P<0.05, ** =P<0.01, *** =P<0.001, A and C: Kruskal-Wallis/Dunn test, B: ANOVA/Tukey.

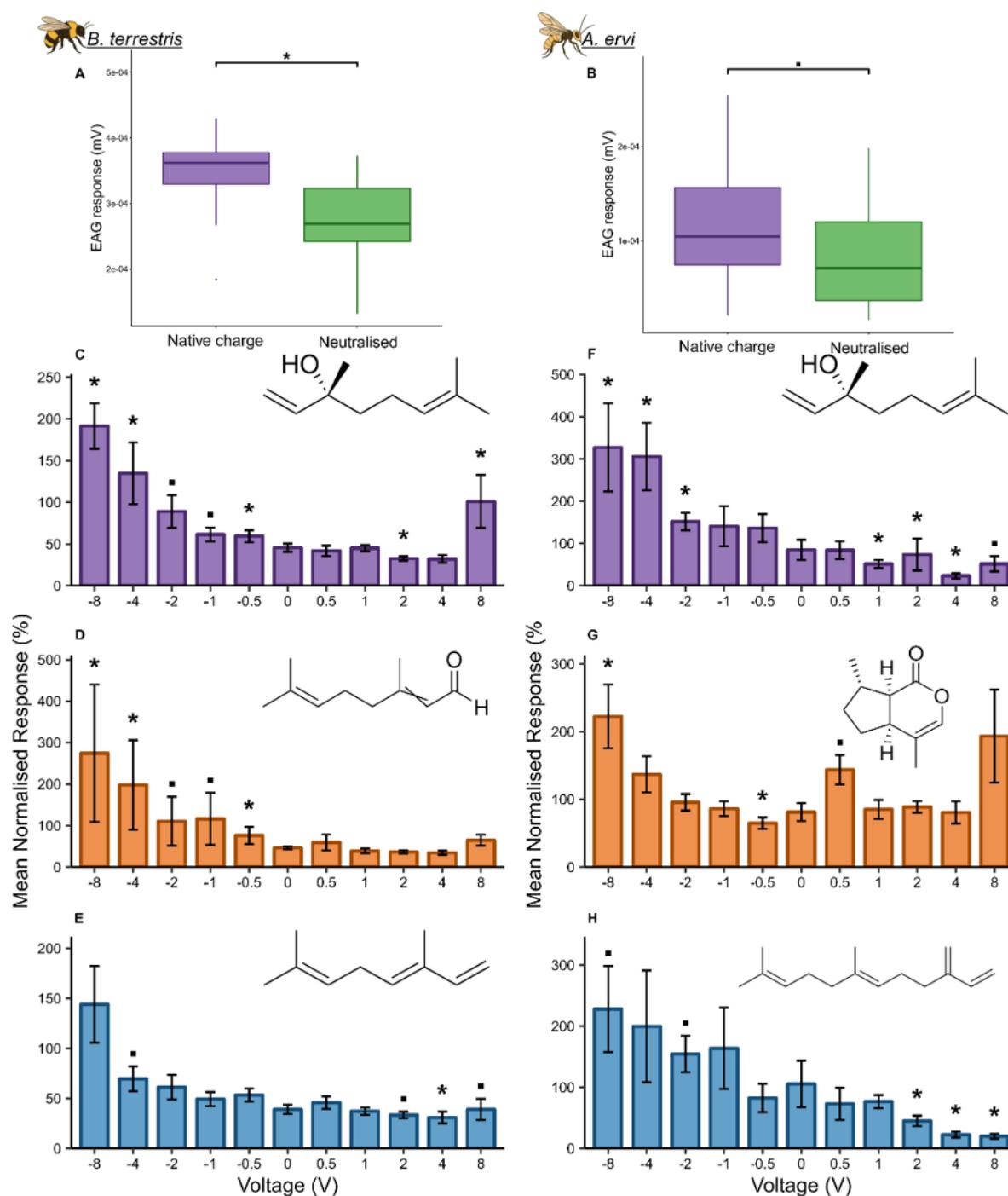

127 A direct test of the role of electrostatics on olfaction was to assess the effect of surface charge
128 on molecular adsorption from the surrounding air onto *A. ervi* antenna. By altering the surface
129 charge of antennae using contact electrification, we found evidence of such effect for
130 (4aS,7S,7aR)-nepetalactone and (R)-linalool, but not (E)- β -farnesene, where the -8 V bias
131 increased the amount of adsorbed compounds as compared to 0 V bias (Figure 2). Under +8 V
132 bias, (E)- β -farnesene showed a reduced, but non-significant, accumulation on the antenna from
133 the airstream enriched with the compound.

Figure 2 Amount of compound (ng) adsorbed onto *Aphidius ervi* antennae whilst exposed to 0, -8 and +8 V for 30 min (n=5 antennae/compound). Synthetic compounds (100 μ g) were delivered to antennae through a constant stream of humidified air. Five antennae were extracted in diethyl ether after 30 min of exposure to make one replicate. EBF=(E)- β -farnesene. Significance within compounds: *= $P<0.05$, **= $P<0.01$ ANOVA/Tukey test per compound across electrical bias treatment. Significance within bias: lowercase, uppercase and italicized lettering, ANOVA/Tukey test per electrical bias treatment respectively across compounds.

134
135 Antennal electrophysiological (EAG) responses constitute clear evidence that test VOCs are
136 detectable by the peripheral olfactory system. Consequently, we used the EAG technique to test
137 the hypothesised link between antennal surface charge and VOC detection. Based on the
138 observation that a plasma beam near the antenna reduces the overall antennal charge compared
139 to its baseline state (Figure 1), we demonstrate that EAG responses to (R)-linalool become
140 significantly smaller on *B. terrestris* antennae carrying reduced charge after plasma
141 neutralisation than on antennae holding their baseline charge (Figure 3 A). The same effect was
142 marginally significant on the *A. ervi* antenna (Figure 3 B).

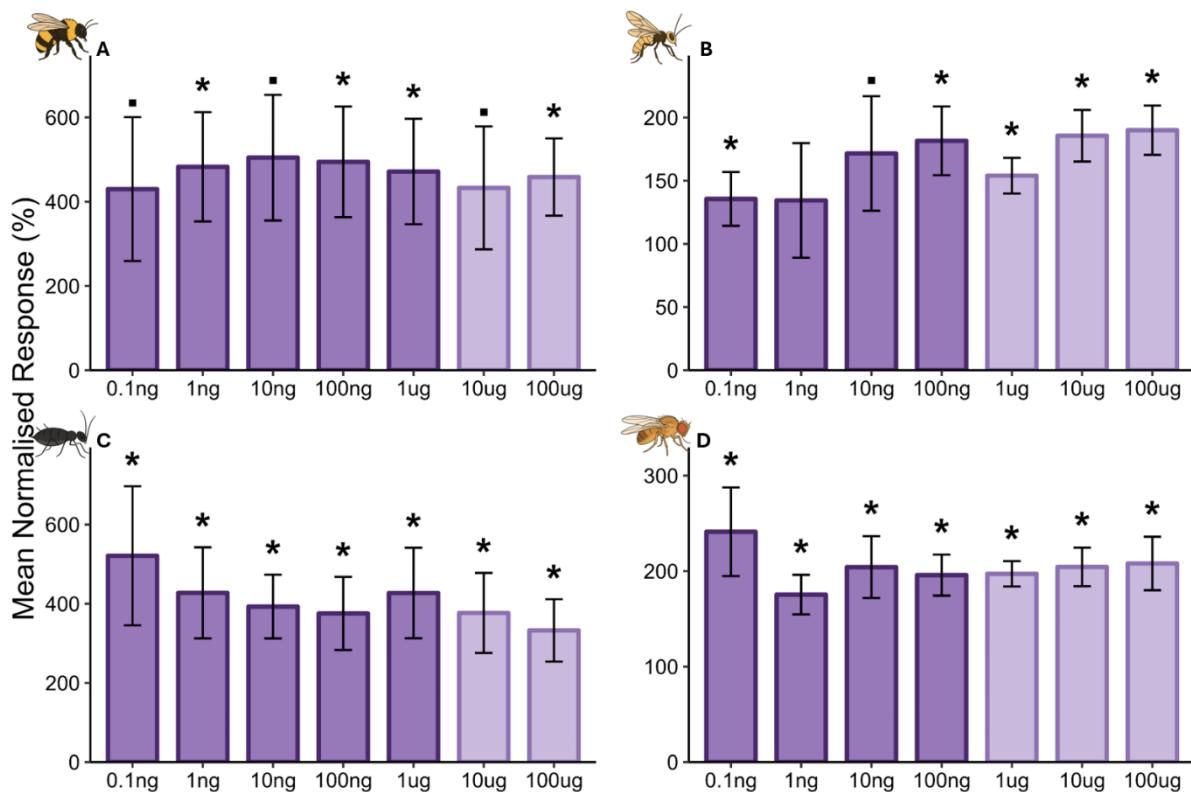

143

Figure 3 Effect of charge neutralisation via plasma beam on *Bombus terrestris* (A; n=11, dose=10 µg; Kruskal-Wallis/Wilcoxon test) and *Aphidius ervi* (B; n=24, dose=1 µg; Kruskal-Wallis/Dunn test) EAG responses to (R)-linalool. Electrophysiological (EAG) responses of *B. terrestris* and *A. ervi* antennae, exposed to a range of voltages, to synthetic compounds at a dose 10-fold lower than a significant EAG-active dose (baseline measurements Figure S1, mean \pm SE). C: (R)-linalool (n=8, dose=1 µg), D: citral (n=7, dose=100 ng), E: (E)-ocimene (n=7, dose=10 ng), F: (R)-linalool (n=8, dose=100 ng), G: (4aS,7S,7aR)-nepetalactone (n=11, dose=100 ng), H: (E)-β-farnesene (n=8, dose=1 µg). EAG responses were normalised to a positive control: *B. terrestris* = benzaldehyde, *A. ervi* = (E)-caryophyllene. Charge was applied on antennae via tungsten electrode. Significance from diethyl ether solvent control: · = p<0.1, * = p<0.05, statistical tests used are described in Table S2. EAG responses from *Aphis fabae* and *Drosophila melanogaster* are shown in Figure S2.

146 Following manipulation of antennal charge with the plasma beam, we wanted to observe the
147 effect of positive and negative electrical bias of the antennae on EAG responses. The EAG
148 response increased across test compounds in a voltage-dependent and asymmetrical manner
149 across a -8 — +8 V range, predominantly biased towards negative values (Figure 3C-H, Table S1,
150 Figure S2). Furthermore, charge delivered with a -8 V bias, or occasionally weaker negative
151 charges, increased antennal sensitivity (Figure 3C-H, Figure S2) when using ten-fold lower doses
152 than the lowest EAG-active dose from baseline measurements (Figure S1). Table S1 show the
153 same trend across the four species. Extending the range of positive electrical bias up to +12 V
154 revealed a similarly increasing response pattern as observed in the negative range and
155 highlighting the overall asymmetry of the effect of applied charge (Figure S3).

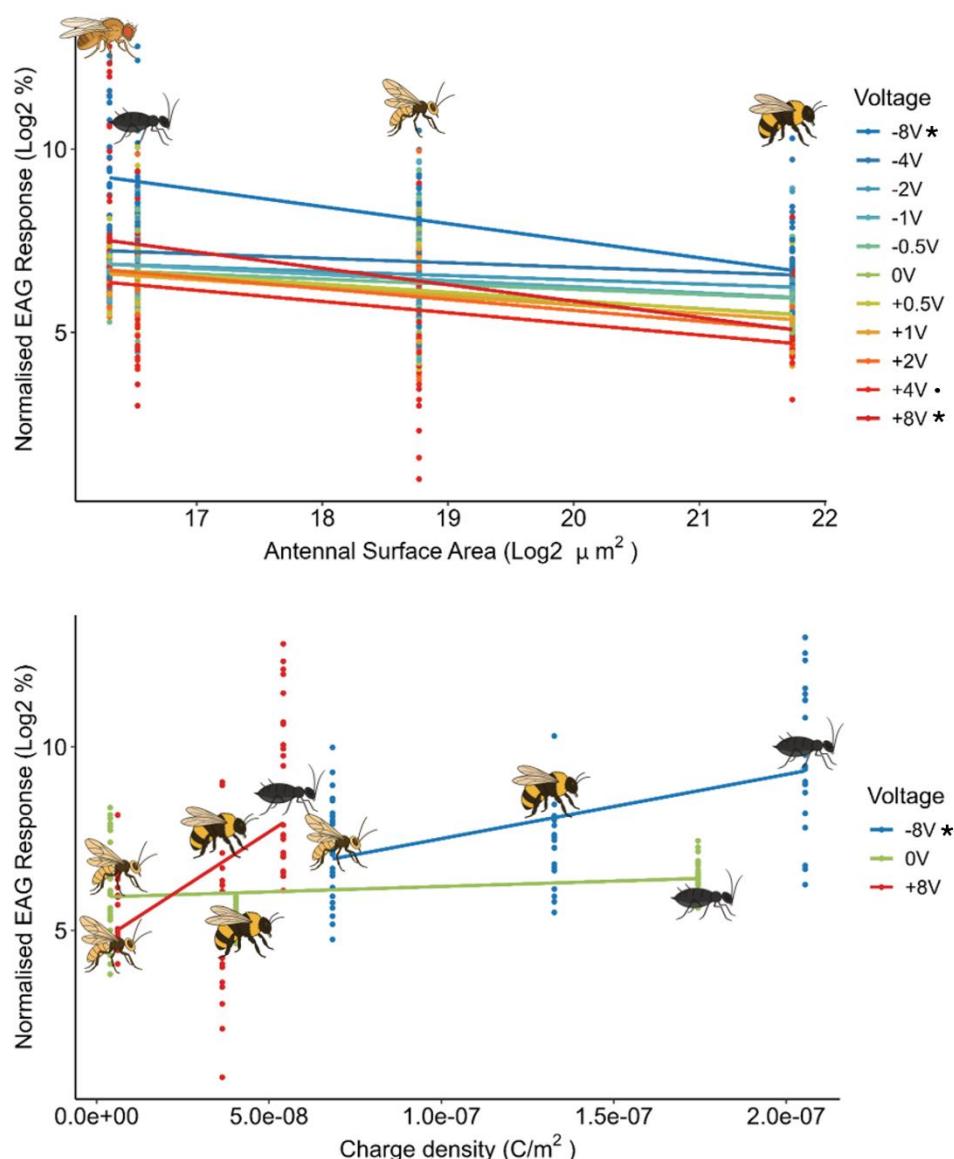

156 A consequence of facilitating availability of VOCs to the neural substrate would be to lower the
157 sensitivity threshold to the concentration of volatile in the airflow. This was tested by presenting
158 concentration series under a biased electrical regime. In effect, the -8 V bias lowered antennal
159 detection thresholds across all model species and compounds down to doses on average four
160 orders of magnitude below the lowest EAG-active dose on uncharged antennae (Figures 4 and
161 S4, Table S1).

Figure 4 Electrophysiological (EAG) responses of *Bombus terrestris* (A, n=5), *Aphelinus ervi* (B, n=5), *Aphis fabae* (C, n=7) and *Drosophila melanogaster* (D, n=5) antennae to a range of (R)-linalool doses whilst biased with -8 V (mean \pm SE). Significance from diethyl ether solvent control: \cdot = $p < 0.1$, $*$ = $p < 0.05$ (Student's t-test, except for *B. terrestris* 100 μ g: Wilcoxon test). Light purple bars represent the doses which induce a significant EAG response on uncharged antennae (baseline measurements, Figure S1).

162
163
164

165 To explore possible size and geometrical effects, we investigated the relationship between EAG
 166 response, antennal surface area and charge magnitude (as a function of voltage bias). There was
 167 a statistically significant interaction between EAG response, surface area and applied charge.
 168 EAG responses were higher on antennae with smaller surface area, in a descending order of *D.*
 169 *melanogaster*, *A. fabae*, *A. ervi* and *B. terrestris* (Figure 5A). This interaction was voltage-
 170 dependent, -8 V and +8 V biases showing the strongest influence. In correlation analysis between
 171 antennal charge density, applied charge and EAG response, a positive correlation between
 172 charge density and EAG response was observed (Figure 5B). Here, the -8 V treatment showed a
 173 significant difference compared to 0 V. Molecular dipole moment, on the other hand, showed no
 174 interaction with EAG responses under electrical bias, except for *D. melanogaster* (Figure S5).

Figure 5 Relationship between electrophysiological (EAG) response and antennal surface area (μm^2) (A), or EAG response and charge density (C/m^2) (B) from antennae exposed to a range of voltages (V). Antennal surface area was calculated from stereomicroscopy images ($n=3$ antennae/species) and charge density calculated from charge measurement from figure 2. EAG responses were taken from *Bombus terrestris* exposed to 1 μg (*R*)-linalool, 100 ng citral and 10 ng (*E*)-ocimene (total $n=21$), *Aphidius ervi* exposed to 100 ng (*R*)-linalool, 100 ng (*4aS,7S,7aR*)-nepetalactone and 1 μg (*E*)- β -farnesene (total $n=24$), *Aphis fabae* exposed to 1 μg (*R*)-linalool, 100 ng (*E*)-2-heptenal and 100 ng (*E*)- β -farnesene (total $n=24$) and *Drosophila melanogaster* exposed to 100 ng (*R*)-linalool, 100 μg (*R*)-limonene and 1 μg (*E*)-2-hexenal (total $n=22$). Significance compared to normalised EAG response interaction at 0 V: * $=P<0.05$, $\cdot =P<0.1$, GLM.

175

176 To investigate the possible electrostatic enhancement of the transport and capture of VOCs, a
177 multi-physics mechanistic model was analysed. A dilute concentration of charged VOC particles
178 is transported to the antenna via diffusion, convection and electrostatic migration. The
179 considered charge values are several orders of magnitudes smaller than the fundamental charge
180 to show the relative effect of antennal electrical fields, comparative to the order of magnitude
181 effects polarised molecules experience in an electrical field.

182 For a hairless antenna in longitudinal flow, a boundary layer forms with the fluid velocity
183 increasing from zero close to the antennal surface to the freestream value further away from it.
184 For crossflow, a larger wake is seen past the antenna (Figure 6A and B, for $U_\infty = 0.1 \text{ ms}^{-1}$). More
185 biologically realistic models reveal that when hair sensilla are present, flow is further reduced
186 near the surface, introducing mild fluid mixing between the hairs. Considering the capture rates
187 given by (4) (Method details, Fluid-antenna interaction modelling) and only due to fluid dynamic
188 effects, we find a higher capture rate over the hairless antenna in general (for longitudinal flow
189 and crossflow) (Table 1). This partly results from local fluid flows replenishing the depleted
190 concentration around the antenna and further confirmed by the general increase in capture with
191 the oncoming flow rate. Overall, higher capture rates are seen in the longitudinal flow case. This
192 is expected since the fluid flow, and thus concentration of VOCs, passes over a larger surface
193 area and thus remain close to the antenna for a longer time, increasing the likelihood of capture.
194

195 **Table 1:** Capture rates, C_a , mol/s/m², for molecules of zero charge and relative capture rates of non-zero
196 charge molecules on an antenna with a dense hair coverage and no hairs for different flow speeds and
197 morphology. There is a monotonic trend in capture rate with the effective charge of the VOCs, which is
198 consistent across flow speeds. However, when the charge number is at least 0.1, the capture rate becomes
199 invariant to flow speed, indicating that the electrostatic contribution to olfactory capture dominates
200 transport forces due to fluid flow.

Longitudinal flow

Charge Number	$U = 0.001 \text{ m/s}$		$U = 0.01 \text{ m/s}$		$U = 0.1 \text{ m/s}$	
	Capture rates, C_a , mol/s/m ²					
	Dense	None	Dense	None	Dense	None
0	0.0193	0.0276	0.0241	0.0344	0.0393	0.0558
Capture relative to zero charge						
0.00001	1.0014	1.0015	1.0012	1.0012	1.0007	1.0008
0.0001	1.0145	1.0150	1.0117	1.0123	1.0073	1.0078
0.001	1.1505	1.1571	1.1209	1.1271	1.0745	1.0794
0.01	3.0185	3.1391	2.5502	2.6507	1.8810	1.9474
0.1	27.9813	29.6529	22.4226	23.7847	13.7939	14.6927

201
202
203

Crossflow

Charge Number	U = 0.001 m/s		U = 0.01 m/s		U = 0.1 m/s	
	Capture rates, C_a, mol/s/m²					
	Dense	None	Dense	None	Dense	None
0	0.0068	0.0110	0.0111	0.0177	0.0217	0.0347
Capture relative to zero charge						
0.00001	1.0019	1.0019	1.0014	1.0014	1.0006	1.0007
0.0001	1.0187	1.0190	1.0132	1.0135	1.0066	1.0068
0.001	1.1991	1.2033	1.1371	1.1403	1.0674	1.0691
0.01	4.1316	4.2002	2.8323	2.8816	1.8050	1.8279
0.1	42.1521	43.0508	26.2428	26.7818	13.4376	13.7185

204

205 Electrostatic forces and an effective charge on the VOC increase the overall capture rate of the
 206 antenna for both hairless and densely haired antenna and for all flow speeds (Table 1). The
 207 resulting electric field over the densely haired antenna is the same across test cases (Figure 6B-
 208 G). In Figures 6C and D, the electric potential varies from -8V on the surface to 0 in the far field. It
 209 must, however, be noted that the electric field is locally enhanced at the sharp hair tips and at
 210 antennal locations with high curvature following (2) (Figure 6E and F). In effect, high local
 211 electrical field strength associated with thin, sharp, high-curvature morphologies is an important
 212 element contributing to the presence, geometry and effectiveness of electrostatic forces.

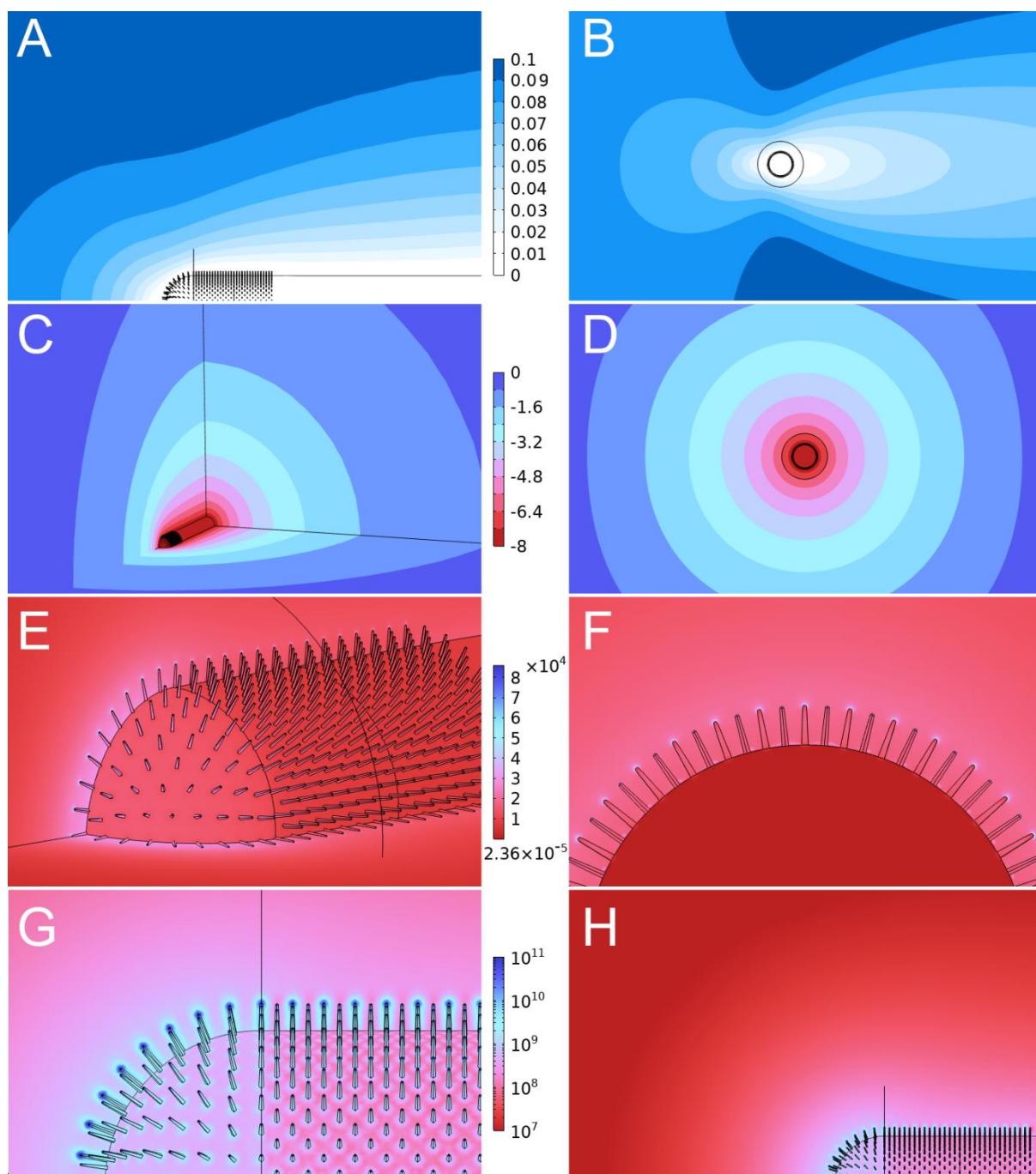
213 The VOC capture rates are calculated in the presence or absence of charge on the antenna (Table
 214 1). Remarkably, capture rates are independent from the presence of hairs. Also, we observe that
 215 effective charges as small as 0.01 q result in doubling or tripling or quadrupling of the overall
 216 capture rate, depending on flow speed. This result is in range of the experimental results for a -8
 217 V biased antenna and represents the expected magnitude of electrostatic forces on polarised
 218 molecules close to the antenna (see below). Comparing to the influence of fluid flow, for an
 219 effective charge of at least 0.1 q, there is little variation in the capture results across flow speeds
 220 for both hairy and hairless geometries. Thus, the modelled regime shows the physical possibility
 221 for electrostatic forces to act independently, dominating fluidic transport and attracting more
 222 VOCs from the background dispersion to the antenna, at a faster rate than the fluid flow alone
 223 delivers. The action of electrostatic forces also results in an increased air volume from which
 224 VOCs can be captured, hence enhancing the sensing range.

225 Due to the small size of charges considered, the results are indicative of the order of magnitude
 226 effects expected for the action of an electrical field on polarized molecules. The force, \mathbf{F} ,
 227 experienced by an ionically charged molecule is proportional to the local electrical field, \mathbf{E} , and
 228 the magnitude of the particle's charge, $q_i = \alpha e$, where e is the fundamental charge and α a
 229 scaling constant, such that:

230

$$\mathbf{F} = q_i \mathbf{E}, \quad |\mathbf{F}| = q_i |\mathbf{E}|.$$

231 Here, \mathbf{F} is a vector associated with the direction and strength of the force on the particle.
232 However, since a polarized molecule has no net charge, a force is generated by the gradient of the
233 electrical field (i.e. how the electrical field varies in space) acting upon the molecule's dipole
234 moment, $\mathbf{p} = q_p \mathbf{d}$. Here, $q_p = \beta e$ with β varying with the number of polarized charges in the
235 molecule and $\mathbf{d} = 10^{-10} \hat{\mathbf{d}}$ is a displacement vector defined by the spacing and alignment of
236 opposite charges in the molecule, in the order of Angstroms $\sim 10^{-10}$ m. Thus, the force on a dipole
237 in an electrical field is given by:


238
$$\mathbf{F} = (\mathbf{p} \cdot \nabla) \mathbf{E}, \quad |\mathbf{F}| = q_p 10^{-10} |\nabla \mathbf{E}| \cos(\theta),$$

239 where θ is the angle of the displacement vector to the local electrical field gradient.

240 Considering the maximum force on a dipolar molecule (i.e. when the displacement vector aligns
241 with the field gradient, $\cos(\theta) = 1$), the magnitudes of the above forces are comparable if
242 $|\nabla \mathbf{E}|/|\mathbf{E}| \sim (\alpha/\beta) 10^{10}$.

243 In Figures 6G and H, it is shown that the maximum value of $|\mathbf{E}|$ is up to $1e^5$, whilst the maximum
244 of $|\nabla \mathbf{E}|$ is several orders of magnitude larger at around 10^{11} , hence $|\nabla \mathbf{E}|/|\mathbf{E}| \sim 10^6$ at its largest.
245 Thus, since we consider $\alpha = 1e^{-5}, 1e^{-4}, 1e^{-3}, 1e^{-2}, 1e^{-1}$, our results cover the range of forces
246 and interactions expected in the migration of polarized molecules in an electrical field for
247 unknown β . Also, the field lines associated with gradient of the electrical field are similar in
248 trajectory to those of the electrical field, towards the antennal surface. Finally, within one radius
249 of the antennal surface (here, 0.1 mm away), the magnitude of the electrical field gradient
250 remains up to 10000 larger than the electrical field magnitude, indicating the potential for
251 equivalently large forces, as modelled here, on dipolar molecules within a region where we
252 anticipate the electrostatic action to be most significant and effective.

253

Figure 6 Fluid flow profile over an antenna for an incoming flow of $U_0 = 0.1$ m/s. A boundary layer forms with slower flow speeds close to the antenna surface (tending to 0 at the surface) and increasing to the freestream velocity further from the antenna (A, B). Images of the modelled electric field generated by a biased antenna showing the electric potential decay from -8 V to 0 over several antennal lengths/radii (C, D) and the resulting electric field, showing enhancement at the hair tips and over the curved tip of the antenna, where two dimensions of curvature are present, up to $O(1e5)$ in magnitude (E, F). The gradient of the electrical field around the antenna which acts on dipolar molecules, showing up to six orders of magnitude larger than the electrical field values (G, H).

254

255

256 **Discussion**

257 In this study, we investigated whether electrostatics play a role in insect olfaction, thereby
258 facilitating the capture of VOCs from the atmosphere through the boundary layer onto the
259 sensillum cuticle. Across the species tested, our results reveal the variable ability of insect
260 antennae to acquire and retain net electric charge. Application of charge onto the antennal
261 surface increases adsorption of VOCs along with antennal EAG response. Altogether, our results
262 demonstrate that electrostatics constitutes a functional element of olfaction, working at the
263 interface between environment and sensor, enhancing sensitivity.

264 In the parasitoid wasp *A. ervi*, application of the -8 V bias increased the adsorption of both
265 (4aS,7S,7aR)-nepetalactone and (R)-linalool, compared to the 0 V bias. This trend was also
266 observed upon +8 V bias for (R)-linalool, however to a weaker and non-significant extent. This is
267 opposed to (E)- β -farnesene, for which there was no significant difference in VOC adsorption
268 across both a positive and negative 8 V bias, compared to 0 V, although at +8 V, a reduction was
269 observed. It is known that VOCs with higher dipole moments are more strongly influenced by an
270 electrostatically charged surface,²² offering an explanation for the increased adsorption of
271 (4aS,7S,7aR)-nepetalactone and (R)-linalool on electrically biased *A. ervi* antennae, compared
272 to (E)- β -farnesene, given their larger dipole moments. Also, the -8 V bias for (4aS,7S,7aR)-
273 nepetalactone, and for (R)-linalool the +8 V bias, endows a higher magnitude of net charge than
274 0 V, which are likely to have a stronger polarising effect and hence induce stronger adsorption.
275 Furthermore, the increased antennal accumulation of (4aS,7S,7aR)-nepetalactone and (R)-
276 linalool at -8 V bias correlates with the increased EAG responses elicited for both compounds in
277 *A. ervi*. The -8 V bias also somewhat increases the EAG response to (E)- β -farnesene, indicating
278 that either even minor changes in its level of accumulation induce stronger EAG responses, or
279 that other mechanisms are also involved. Under +8 V bias, the three compounds showed no
280 significant change in accumulation compared to 0 V; (E)- β -farnesene levels, however,
281 experienced a noticeable drop. These results corroborate EAG data, where a significant reduction
282 in EAG response to (E)- β -farnesene is observed under the +8 V bias as compared to 0 V, but not
283 for (4aS,7S,7aR)-nepetalactone and (R)-linalool, highlighting an electrophysiological asymmetry
284 between negative and positive biases. Interestingly, (R)-linalool shows higher adsorption on *A.*
285 *ervi* antennae than (4aS,7S,7aR)-nepetalactone at -8 V. Out of the three tested VOCs,
286 (4aS,7S,7aR)-nepetalactone has the highest dipole moment and therefore, following our initial
287 hypothesis and previous literature,²⁴ it would be expected to be influenced to a greater extent by
288 electric fields. This indicates the possible presence of a threshold from which the dipole moment
289 of a compound is influenced by an electrically charged surface, increasing adsorption.
290 Considering the humidified air stream within the experimental setup, the polar water molecules
291 may antagonistically interfere with the test compounds in it, potentially influencing the
292 electrostatic impact of the charged antennal surface. As (4aS,7S,7aR)-nepetalactone has the
293 highest dipole moment of the three compounds, its interaction with water molecules is expected
294 to be greater than that of (R)-linalool. Whilst these results highlight the role of electrostatic charge
295 on antennal surface in attracting VOCs, they also point to different attraction between them,
296 likely linked to their dipole moments interacting with local electric fields.

297 The propensity of insect antennae to exhibit surface charge is pivotal to the proposed mechanism
298 of electrostatic attraction. Our results show that insect antennae readily hold electrostatic
299 charge and that this charge can be manipulated using both contact electrification as well as
300 through non-contact exposure to plasma. Testing functional relevance, we observe a general
301 asymmetry in EAG responses towards negative electrical biases, with a higher positive bias (+10-
302 12 V) required to induce a significant EAG response. This indicates that the insect antennal
303 surface is more easily polarised positively in response to a negative electrical bias, which is
304 consistent with the reduced VOC adsorption and lower antennal charge magnitudes recorded at
305 +8 V bias compared to -8 V. Neutralisation via plasma beam decreases EAG responses; however,

306 the difference in net charge elicited by electrostatic bias across the insect species highlights that
307 the interaction between VOC, permanent/induced dipole moment and antennal surface charge
308 is more complex than anticipated, with other factors, such as antennal morphology and local
309 humidity, likely influencing interactions.

310 Charging behaviour varies between species, potentially reflecting intrinsic species-specific
311 differences in electrical properties of their antennae. There are several potential mechanisms by
312 which the electrode may generate or modify the antennal charge. These include: 1) dielectric
313 polarisation, where internal and/or surface charges redistribute in line with an applied electric
314 field; 2) triboelectrification through contact and/or friction, inducing electron transfer between
315 cuticle and electrode; 3) adsorption of ions, particularly following surface potential changes; and
316 4) direct conductive charge transfer between the dielectric cuticle and/or haemolymph and its
317 electrolytes and the electrode. While distinguishing between these mechanisms experimentally
318 was beyond the scope of this study, the species-specific differences in charging behaviour
319 provide insight into the electrical characteristics of insect antennae. It may be worth noting here
320 that, as a general statement, it is phenomenologically very rare to find objects that do not present
321 surface electric charges, a realisation of course also valid for all biological materials.

322 Both *B. terrestris* and *A. ervi* antennae were exclusively negatively charged, while *A. fabae*
323 antennae presented a positive charge. Throughout all treatments, *B. terrestris* antennal charge
324 was around an order of magnitude higher than the other two species, likely due to their larger size.
325 These results suggest that variation in size and material properties of antennae between species
326 may contribute to species-specific electrostatic properties, possibly underpinning different
327 behavioural prerogatives.

328 The charging behaviour of antennae in response to plasma and voltage treatments further
329 supports the notion of differing electrical properties between species. For instance, when
330 exposed to plasma, the negative charge on both *B. terrestris* and *A. fabae* antennae was reduced
331 compared to baseline measurements. Conversely, the magnitude of negative charge on *A. ervi*
332 antennae increased on average. Exposure to plasma can neutralize the bulk charge of materials
333 by producing large quantities of both positive and negative charge carriers, which adsorb to the
334 material combining to result in a bulk charge approaching zero.²⁵ This suggests that *A. ervi*
335 antennae show a different and possibly polarity-specific ion affinity or adsorption behavior.
336 Interestingly, contact electrification with 0 V brought the charge of all species closer to zero. In
337 fact, the antennal charge polarity of all three species switched to positive on average, with only
338 *A. ervi* antennae measuring negatively. This strongly suggests that there is a conductive pathway
339 between the cuticle and the electrode, through which charge in the form of electrons is
340 redistributed; however, other mechanisms such as surface interaction effects, like triboelectric
341 charging, may also play roles in antennal charging behavior. Irrespective of the mechanism, it
342 seems that there are clear species-specific charging behaviors in response to both contact and
343 non-contact electrification, likely to be the result of inherent differences in antennal electric
344 properties.

345 The most striking difference in antennal charging is seen in response to the ± 8 VDC treatments.
346 Both *B. terrestris* and *A. ervi* antennae mirror the polarity of the treatment potential. A positive
347 electrode potential results in a negatively charged antenna and vice versa. Such a response
348 suggests that the antennae of these species electrostatically polarize with respect to the
349 potential of the electrode and its incident electric field. External and/or internal polar molecules
350 or charge carriers orient or move in relation to the electric field produced by the electrode.
351 Removing the source of the electric field will cause the displaced charges to reorient; however, in
352 non-conductive dielectric materials this is not an instant process, resulting in the apparent
353 charge of the material persisting in time.^{26,27} Following removal of the electrode, we measured the

354 charge quickly enough to capture these polarization effects within a few seconds, suggesting the
355 antennae possess distinct dielectric properties.

356 *Aphis fabae* antennae behaved differently, charging positively on average in response to both
357 positive and negative DC potentials, likely indicating fundamentally different electric properties
358 and thus modes of charging. It is apparent that *A. fabae* antennae are more conductive than those
359 of *B. terrestris* and *A. ervi*, resulting in the antenna equalizing to the electrode's potential upon
360 contact. If the antenna were a perfect conductor, it would be expected to have a charge close to
361 zero once the electrode is removed, as charge almost instantly redistributes.²⁷ However, the
362 measured residual positive charge, regardless of electrode polarity, suggests that the antenna
363 loses electrons following contact with the electrode. Such results may hint at a combination of
364 conductive and triboelectric charging. Furthermore, in *A. fabae*, *A. ervi* and *B. terrestris*, baseline
365 antennal charge density did not directly scale with antennal surface area (Figure S6). Specifically,
366 the average baseline antennal charge density of *B. terrestris* was not found to be lowest in
367 magnitude, as would be predicted if charge density scaled with antennal surface area alone,
368 suggesting that across these three species, antennal charge regimes are likely influenced by
369 additional properties of the antenna and may reflect adaptive variation. It is important to note
370 that studying the electrical properties of insect cuticle is challenging. The cuticle acts like a
371 dielectric in some species, a semi-conductor in others and may seemingly show conductive
372 properties,²⁸ as observed in *A. fabae*. In effect, it can be suggested here that cuticle is a
373 heterogenous polymer exhibiting dielectric characteristics such as polarization. The
374 mechanisms of charging discussed here are speculative and non-exhaustive. This study did not
375 set out to elucidate these phenomena; nevertheless, it would certainly be a useful and fruitful
376 area of future research.

377 Insect antennae are morphologically very diverse,²⁹ housing a range of different sensillum types
378 with different densities and distributions. This is evident across the four species investigated,³⁰⁻³²
379 with marked differences arising even between species of the same order (Hymenoptera: *B.*
380 *terrestris*, *A. ervi*).^{30,31} Such microanatomical differences likely influence the local electric field
381 distribution of the antenna; for example, in male honeybees, antennal placode sensilla have been
382 found to hold a different electrostatic charge from the surrounding cuticle.³³ Other studies have
383 also suggested that insect sensilla and cuticle carry electrostatic charges.^{23,34} Whilst, crucially,
384 the local electrostatic properties of the antennal sensilla of the four species investigated herein
385 are not known, it is possible to speculate that antennal surface morphological factors, such as
386 sensillum density and aspect ratios, may influence the bulk charge of the antenna under natural
387 conditions, upon charge neutralization or voltage bias application. Additionally, ultrastructural
388 differences, such as cuticular thickness, may play a role in the capacity of the antenna to acquire,
389 maintain or dissipate charge. Chitin is a major component of the exoskeleton of insects, present
390 also in the antennal cuticle.^{35,36} The triboelectric chargeability of chitin and its varied forms are
391 documented^{37,38} and for this reason, forms of chitin are utilized as a dielectric material for
392 triboelectric nanogenerators, which convert mechanical energy into electrical energy via
393 triboelectrification.³⁷⁻³⁹ Whilst in this study, antennal charges were manipulated by the
394 application of DC voltage biases, variation in the electrical response of the antennae both
395 between species and treatments (Figure 3) may be partially attributable to ultrastructural factors,
396 such as the form and content of chitin present in the cuticle, its thickness and antennal aspect
397 ratio. Since our results show that manipulation of the antennal charge state affects olfactory
398 sensitivity, morphology and ultrastructure may in turn modulate the charge properties of the
399 antenna. Exploring this interplay represents a valuable direction for research.

400 Insect cuticles also contain superficial cuticular hydrocarbons and proteins within the chitin
401 matrix, whose composition are typically unique across genera and between species,^{40,41} with
402 specific ecological functions such as contact sex pheromones in the case of cuticular
403 hydrocarbons in parasitic wasps.^{42,43} In fact, chemical analysis of insect cuticular hydrocarbons

404 have shown that composition across bumble bee (*B. terrestris*),^{44,45} parasitic wasps within the
405 Braconidae family,^{42,43,46} and aphids (*Aphis gossypii* Glover)⁴⁷ differ between each other. This may
406 act as another factor influencing the electrostatic characteristics of the cuticle across insects.
407 Composition differences likely affect the polarizability of the cuticle due to the different
408 functional groups present across surface hydrocarbons and proteins, creating dipole moments
409 across the molecule and on a wider scale across the insect cuticle. This characteristic may be
410 analogous to the ordering of inorganic materials across a triboelectric series.⁴⁸

411 The modelling analysis revealed how antennal capture rates of minimally charged VOCs increase
412 with antennal charge, representing the order of magnitude effects expected for dipolar
413 molecules. Capture rates were predicted to at least double for lower charge numbers
414 commensurate with the experimental results (e.g. charge numbers of 0.01 q). Additionally, higher
415 VOC capture on the antenna occurred with higher flow speeds for both uncharged and charged
416 VOCs. Increased capture from a faster fluid flow occurs due to more VOCs being brought closer
417 to the antennal surface acting to replenish the depleted concentration around the antenna.
418 Interestingly, at charge numbers higher than 0.01 q, the VOC capture rate did not vary between
419 low and high flow speeds. Similarly, when the flow speed is at its lowest (0.001 m/s), the antenna
420 has a mildly higher VOC capture rate. In each case, it is deemed here to be due to electrostatics
421 augmenting the delivery of VOCs by the fluid flow, increasing capture. This computational result
422 thus established the physical possibility of an electrostatic enhancement of olfactory capture,
423 whereby VOCs are charged significantly to a threshold at which the electrostatic forces dominate
424 the capture process. Here, in effect, the electrostatics attract VOCs faster than the fluid delivers,
425 showing no variation in capture rate with flow speed. Notably, these values are closer to those of
426 ionic charging than those associated with the molecular dipole moment regime. In theory, the
427 magnitude of electrostatic force acting on a polarised molecule will increase with its proximity to
428 the gradient of the electrical field increasing by several order of magnitude in comparison to the
429 electric field itself.

430 For a biased antenna modelled at a fixed surface potential of -8 V, the electric field, and thus its
431 gradient, on and local to the antenna is shown to concentrate on the sensilla and at the curvature
432 of the antennal tip, with the electric field gradually dissipating outwards across several antennal
433 lengths. In studying both dense arrays of sensilla and no sensilla, we found that the overall VOC
434 capture rate was marginally higher in the hairless case. This, in part, is shown to be due to the
435 hairs slowing the fluid flow around the antenna, thereby reducing the local replenishment of
436 VOCs. Our data collectively suggest that electrostatics can significantly enhance olfactory
437 capture for polarisable molecules and even dominate potential fluid flow forces for ionically
438 charged particles by attracting more from the background dispersion to the antenna and at a
439 faster rate.

440 In effect, electrostatic bias on an antenna increases VOC capture and induces stronger EAG
441 responses. Our empirical and theoretical analyses together provide evidence that biologically
442 relevant electrostatic forces have the capacity to determine VOC capture rates by antennae in
443 conjunction with fluid flow. This electrostatic effect can also be partially influenced by the dipole
444 moment of the VOC. We show that the proposed electrostatic mechanism is likely to be common
445 across insect genera; however, its prevalence may be dependent on the sensory biology and
446 ecology of the insect, opening up enticing avenues in the biophysical studies of olfaction and its
447 diversity.

448 **Limitations of the study**

449 To better understand olfaction in natural settings, the effect of electrostatic forces in turbulent air
450 flows need to be characterised, which was not part of this study. VOCs carried by turbulence are
451 poised to encounter the antenna in packets with their own spatial and temporal statistics,^{11,49,50}

452 whereby electrostatic forces compete with air turbulence to capture various volatile
453 semiochemicals, enabling appropriate behavioural decisions. Furthermore, measuring the
454 antennal charge magnitude of *D. melanogaster* antennae was not possible due to their small size,
455 which will require a modified version of the Faraday cup. In our model, we can only prescribe a
456 fixed charge on the VOCs. If their effective charge is the result of polarisation and hence a dipole
457 moment, their polarity and effective charge magnitude can be expected to vary during their
458 trajectory. In this instance, we anticipate that VOCs would take the opposite sign to the
459 background field and hence only attractive forces will be at work. The precise physics of such a
460 dynamic process require further experimental validation to qualify this hypothesis. In real terms,
461 effective charge is likely to be context-dependent, resulting in the interplay between atmospheric
462 ionic composition and varied dielectrics moving at speed through it. Presently, the complexity of
463 electrostatic phenomena needs highlighting, along with their increasingly apparent roles in the
464 life of arthropods, other animals, plants and possibly all life. Thus, a further point of discussion is
465 the assumption of independence between the fluid regime and electrical field generation. Whilst
466 valid for disperse and diffuse VOCs, the possible role of ions in the charging of an antenna *in vivo*
467 and the possible triboelectric charging of an antenna in an air flow require investigation. Both
468 mechanisms may serve to enhance or weaken the strength of its electrical field within different
469 modes of transfer.

470 **Resource availability**

471 Lead contact

472 Requests for further information or access to resources not already publicly available should be
473 directed to the lead contact, Dr. József Vuts (jozsef.vuts@rothamsted.ac.uk) and Daniel Robert -
474 D.Robert@bristol.ac.uk

475 Materials availability

476 No unique materials or reagents were generated in this study

477 Data availability

478 All generated data are available from the Rothamsted Research repository (DOI:
479 <https://doi.org/10.23637/ocxemf97>)

480 **Acknowledgments**

481 We would like to thank Kirsty Halsey and the Rothamsted Research Bioimaging team for carrying
482 out the sectioning and imaging of insect antennae in this study. This work was funded through a
483 BBSRC Pioneer award (BB/Y512886/1) to J.V. and D.R. F.A.W was funded by a BBSCRC SWBio
484 studentship grant. J.V. and A.N.B. acknowledge support from the Rothamsted Research Growing
485 Health Institute Strategic Programme [BB/X010953/1; BBS/E/RH/230003A]. B.H.H., L.J.O, R.A.P
486 and D.R. were supported by an advanced grant from the European Research Council (ERC-
487 ELECTROBEE 743093) to D.R.

488 **Author contributions**

489 J.V. and D.R. were responsible for funding acquisition and conceptualisation. J.V., D.R., L.J.O.,
490 B.H.H. and F.A.W were involved in acquisition of preliminary data and initial method
491 development. J.V., D.R., L.J.O., B.H.H. and A.N.B participated in experimental design and method
492 development. J.V., L.J.O. and B.H.H. supported A.N.B. in the execution of some experiments.
493 A.N.B. carried out data analysis and visualisation. R.A.P developed and carried out multiphysics

494 and molecular modelling and analysis. D.M.W synthesized (*E*)- β -farnesene and (4aS,7S,7aR)-
495 nepetalactone. J.V., D.R., L.J.O., B.H.H., A.N.B. and R.A.P drafted the manuscript. All authors
496 drafted the manuscript, reviewed it, and agreed on its contents towards submission.

497 **Declaration of interests**

498 The authors declare no conflict of interests.

499 **STAR Methods**

500 Key resource table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Chemicals, peptides, and recombinant proteins		
Diethyl ether	Fisher Scientific	10368182
(4aS,7S,7aR)-Nepetalactone	Synthesized in-house	CAS: 21651-62-7
(<i>E</i>)- β -farnesene	Synthesized in-house	CAS: 18794-84-8
(<i>R</i>)-linalool	Botanix Ltd.	CAS: 126-91-0
(<i>E</i>)-2-heptenal	Fluka Ltd.	CAS: 18829-55-5
(<i>E</i>)- β -caryophyllene	SAFC	CAS: 87-44-5
(<i>E</i>)-ocimene	Synthesized in-house	CAS: 3779-61-1
citral	Fluka Ltd.	CAS: 5392-40-5
benzaldehyde	Sigma-Aldrich	CAS: 100-52-7
(<i>R</i>)-limonene	Fluka Ltd.	CAS: 5989-27-5
(<i>E</i>)-2-hexenal	SAFC	CAS: 6728-26-3
(+)-fenchone	Fluka Ltd.	CAS: 4695-62-9
Experimental models: Organisms/strains		
<i>Aphis fabae</i>	Rothamsted Farm (co-ordinates: 51°48'36.8"N 0°22'34.4"W)	N/A
<i>Aphidius ervi</i>	Koppert Uk Ltd.	02720
<i>Bombus terrestris</i>	Biobest Uk Ltd.	006219
<i>Drosophila melanogaster</i>	Blades Biological Ltd.	LZJ 398
Software and algorithms		
MATLAB R2022a	MathWorks Inc.	https://uk.mathworks.com/products/matlab.html
National Institute of Standards and Technology (NIST) mass spectral library 2020	National Institute of Standards and Technology	https://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:start#libraries
Syntech EAG software package EAG v1.0 (6/1993)	Syntech	N/A
COMSOL Multiphysics software V 6.2	COMSOL inc.	https://www.comsol.com/comsol-multiphysics
RStudio V2023.12.1+402	Posit PBC	https://posit.co/download/rstudio-desktop/
R V4.3.3	The R Foundation ⁵⁸	https://cran.r-project.org/bin/windows/base/old/
Other		

USB-6009 NI DAQ	National Instruments Crop.	779026-01
Plasma Lighter	VEHHE™ Luoyang Hengshu shangmao Co. Ltd.	B0DN61MSMF
FG100 Function generator	Walfront	B08FYM7D4R
Agilent 8890 series GC	Agilent Technologies	https://www.agilent.com/en/product/gas-chromatography/gc-systems/8890-gc-system?srsltid=AfmBOorst-COCyUqa7stR1d7755u6zmjfFEIhFcndqSeUz2NxAbvQajy
HP1 column GC column	Agilent Technologies	19091Z-115E
Agilent 5977B GC-MSD	Agilent Technologies	https://www.agilent.com/en/product/gas-chromatography-mass-spectrometry-gc-ms/gc-ms-instruments/5977c-gc-msd
Electroantennography (EAG) system	Syntech	N/A
Faraday Cup	(Harrison & Robert, ⁵¹)	N/A
Zeis Axioimager Z2 with Zeis Axiocam 512 colour camera	Carl Zeiss AG	https://www.zeiss.com/microscopy/en/products/light-microscopes/widefield-microscopes/axio-imager-2-for-life-science-research.html

501

502 **Experimental model and study participant details**

503 *Aphis fabae* Scopoli, originating from Rothamsted farm (Hertfordshire, UK, co-ordinates: 504 51°48'36.8"N 0°22'34.4"W), were reared on *Vicia faba* L. cv. "The Sutton" in ventilated Perspex 505 cages at 20°C, 60-70% humidity and 16:8h light:dark regime. *Aphidius ervi* Haliday were 506 purchased from Koppert UK Ltd. (Suffolk, UK) and stored at 5°C until use. *Bombus terrestris* L. 507 were purchased as hives from Biobest UK Ltd. (Kent, UK) and kept at 20°C. Wild-type *Drosophila* 508 *melanogaster* Meigen were purchased from Blades Biological Ltd. (Kent, UK) and stored at 20°C.

509 **Method details**

510 **Faraday cup charge measurements**

511 Antennal charge measurements across different treatments were recorded using a recently 512 developed and described Faraday cup setup⁵¹. The Faraday cup was placed within a larger 513 Faraday cage for electrical isolation and connected to a computer via a data acquisition module 514 (NI USB-6009, National Instruments Corporation, Austin, TX) to retrieve charge readings via 515 MATLAB R2022a (MathWorks Inc., Natick, MA), scripts provided in supplementary 516 (Supplementary text 1). Insect antennae were excised using a scalpel under a stereomicroscope 517 (model M7A Wild Heerbrugg, Switzerland) and placed on a wooden stick, which was fastened to 518 a micromanipulator using non-conductive adhesive putty and manoeuvred so that the antenna

519 was directly over the Faraday cup opening. For the “Baseline” treatments, antennae were directly
520 pushed into the Faraday cup using another wooden stick, recording the antennal charge. Wood
521 was used as the material due to its electrically insulating properties and its near-neutral position
522 on the triboelectric series, thus minimising its influence on antennal charge properties. For the
523 “Neutralised” treatment, the antennae were treated with pulses from a plasma lighter (VEHHE™
524 DHQHS, Luoyang Hengshu shangmao Co. Ltd., China) by pressing the “on” button of the lighter
525 at a 5 mm distance from the mounted antenna to provide a 2 s plasma discharge, eight times at
526 1 s intervals, prior to being dropped into the Faraday cup. A tungsten wire attached to an FG-100
527 DDS function generator (Walfront, China) and fixed on a micromanipulator was manoeuvred to
528 touch the antennae and impart 0 V, +8 VDC and -8 VDC treatments, prior to being dropped into
529 the Faraday cup. This was carried out for *A. fabae*, *A. ervi* and *B. terrestris* antennae, collecting
530 ten replicates per treatment and species.

531 **VOC antennal adsorption**

532 Freshly excised *A. ervi* antennae were suspended at their bases on a glass electrode filled with
533 Ringer solution (without glucose) and attached to a micromanipulator, as described in fig. S1. A
534 tungsten electrode, fixed to a micromanipulator and connected to an FG-100 DDS function
535 generator, was positioned to be touching the centre of the antenna from behind to not obstruct
536 the flow of VOCs toward the antennae. Using the function generator, 0 V, +8 VDC or -8 VDC
537 treatments were applied to the antennae. 100 µg of either (4aS,7S,7aR)-nepetalactone, (*R*)-
538 linalool or (*E*)-β-farnesene was added to a piece of filter paper (10 µL applied from a 10 µg/µL
539 diethyl ether solution) and placed for 30 min within a stream of charcoal-purified, humidified air
540 flowing towards the antenna at 10 mL/min. Antennae were then dipped in 50 µL of re-distilled
541 diethyl ether for 1 min to extract adsorbed compounds. Due to the low adsorption rates observed
542 in preliminary tests, five antennae were extracted individually to create one replicate. Five
543 replicates were collected per compound and voltage treatment. (4aS,7S,7aR)-Nepetalactone
544 and (*E*)-β-farnesene were synthesised in house, assessing purity via NMR^{52,53}, whilst (*R*)-linalool
545 was purchased from Botanix Ltd. (Kent, England) and was 95% pure.

546 **Gas-chromatography**

547 Antennal extracts, injected in 4 µL aliquots, were analysed on an Agilent 8890 GC fitted with a
548 non-polar HP1 column (50 m length × 0.32 mm inner diameter × 0.52 µm film thickness; J&W
549 Scientific), using the following temperature programme: 30°C for 5 min, rising at 5°C/min to
550 150°C, followed by a 10°C/min rise to 230°C for a total run time of 60 min. Peak IDs were
551 confirmed by GC peak enhancement via co-injection with authentic standards for (*R*)-linalool,
552 (4aS,7S,7aR)-nepetalactone and (*E*)-β-farnesene⁵⁴. Peak ID was further confirmed by
553 comparison of mass spectra of extract peaks with authentic standards on an Agilent 5977B GC-
554 MSD, using the same GC conditions as above, with ionisation by electron impact (70 eV, 220°C).
555 Tentative identification of compounds was achieved by comparison of spectra with the National
556 Institute of Standards and Technology (NIST) mass spectral library (2020, NIST, Gaithersburg, MD,
557 USA). (*R*)-Linalool, (4aS,7S,7aR)-nepetalactone and (*E*)-β-farnesene amounts (ng) in antennal
558 extracts were estimated using peak areas from a calibration curve of the respective authentic
559 standard at 0.1, 1, 5 and 10 ng and generating a line of best fit equation (polynomial) in Microsoft
560 Excel.

561 **Antennal electrophysiology (electroantennography/EAG)**

562 *Baseline EAG recordings*

563 Electrophysiological responses were recorded for test compounds on *A. fabae*, female *A. ervi*, *B.*
564 *terrestris* and *D. melanogaster* antennae at doses of 0.1 ng, 1 ng, 10 ng, 100 ng, 1 µg, 10 µg and
565 100 µg (delivered in 10 µL solutions), using 10 µL redistilled diethyl ether as solvent control. EAG

566 was performed as described previously⁵⁵, with amendments. An antenna was carefully excised
567 from a live insect and suspended between two electrodes made from Ag-AgCl borosilicate glass
568 filled with Ringer solution (without glucose) and connected to silver wire (Ø 0.37 mm, Biochrom
569 Ltd., Cambridge, UK). The base of the antenna was connected to a grounded electrode. A glass
570 tube positioned approximately 5 mm away from the antennal preparation was connected to a
571 stimulus controller (CS-02; Ockenfels Syntech GmbH, Kirchzarten, Germany) and facilitated a
572 continuous flow of charcoal-purified humidified air towards the antenna at a rate of 1 L/min. The
573 signal was passed through a high-impedance amplifier (UN-06, Syntech) and recorded using the
574 Syntech EAG software package EAG v1.0 (6/1993). The absolute negative amplitude changes in
575 response to the stimuli were recorded in mV and normalized against the positive controls
576 (=100%), resulting in test stimuli being expressed as percentages⁵⁶. Test compounds included (*E*)-
577 β-farnesene, (*R*)-linalool, (*E*)-2-heptenal (Fluka, Germany, 98%), with (*E*)-β-caryophyllene (SAFC,
578 St. Louis, MO, USA, ≥80%) as positive control for *A. fabae*; (*E*)-β-farnesene, (*R*)-linalool,
579 (4aS,7S,7a*R*)-nepetalactone, with (*E*)-β-caryophyllene as positive control for *A. ervi*; (*E*)-ocimene
580 (synthesized in house and assessed for purity via NMR)⁵⁷, (*R*)-linalool, citral (Fluka, Germany,
581 95%), with benzaldehyde (Sigma-Aldrich, St. Louis, MO, USA, >99%) as positive control for *B.*
582 *terrestris*; and (*R*)-limonene (Fluka, Germany, 98%), (*R*)-linalool, (*E*)-2-hexenal (SAFC, St. Louis,
583 MO, USA, >95%), with (+)-fenchone (Fluka, Germany, 97%) as positive control for *D.*
584 *melanogaster*. Ten replicates per test compound/species were recorded.

585 *EAG recordings from antennae with a reduced state of charge ('neutralisation')*

586 A modified setup was used to assess the effect of reducing the amount of antennal charge on
587 EAG responses for *A. ervi* and *B. terrestris*, using 1 µg and 10 µg of (*R*)-linalool, respectively.
588 Antennae were set up as described for baseline EAG recordings. On a single antenna, EAG
589 responses were measured to i) 10 µL diethyl ether, ii) (*R*)-linalool and iii) (*R*)-linalool after the
590 application of plasma bursts 5 mm from the antenna eight times. Recordings were repeated 24
591 times for *A. ervi* and 11 times for *B. terrestris*, leaving a 40-60 s lapse between stimulations. EAG
592 responses were not normalised to a positive control due to the unknown effect of exposure to
593 plasma on subsequent EAG responses.

594 *EAG recordings from externally charged antennae*

595 A modified EAG setup was used to assess the effect of applied charge on EAG responses across
596 *A. fabae*, *A. ervi*, *B. terrestris* and *D. melanogaster*. Following the suspension of an insect antenna
597 between two glass electrodes, a tungsten electrode (treatment electrode) connected to a
598 function generator was brought into contact with the surface of the antenna from behind without
599 obstructing the flow of VOCs toward the antennae. The treatment electrode was used to deliver
600 a voltage bias onto the antennae at 0 V and ± 0.5, 1, 2, 4 and 8 VDC, using MATLAB R2022a to
601 control for and visualise the applied voltage. EAG responses were recorded for the above-
602 mentioned test compounds against their respective insect species, at a single dose, across
603 increasing charges. The charge treatment was applied in random order. All charges were tested
604 on a single antenna leaving a 40-60 s lapse between stimulations, with a minimum of seven
605 replicates/compound/species. At the start and end of each replicate, EAG responses were
606 recorded for the positive control and diethyl ether at 0 V and normalised to the positive control.
607 The dose and replicate number for each compound/species tested are shown in table S4. Doses
608 were chosen as the lowest dose required to induce a significant EAG response in baseline EAG
609 recordings, and their respective ten-fold lower dose.

610 An extended version of the above experiment was done on *A. ervi* antennae against 100 ng (*R*)-
611 linalool under 0 V and +4, 6, 8, 10 and 12 VDC stimulations to assess the effect of increased
612 positive charge on EAG responses (n=12).

613 *EAG dose-response recordings from externally charged antennae*

614 The charged EAG experimental setup was used as described above, with some modifications. A
615 -8 VDC potential was applied to a single antenna using a tungsten electrode as above. EAG
616 responses to increasing doses of test compounds were sequentially recorded at 0.1 ng, 1 ng, 10
617 ng, 100 ng, 1 μ g, 10 μ g and 100 μ g. Positive control and 10 μ L diethyl ether at 0 V were run at the
618 start and end of each replicate as described previously, with all data normalised to the positive
619 control. Replication number varied depending on compound and species as follows: *A. fabae* –
620 (*E*)- β -farnesene (n=11), (*R*)-linalool (n=8), (*E*)-2-heptenal (n=8); *A. ervi* - (*E*)- β -farnesene (n=7), (*R*)-
621 linalool (n=5), (4aS,7S,7aR)-nepetalactone (n=7); *B. terrestris* - (*E*)-ocimene (n=6), (*R*)-linalool
622 (n=6), citral (n=5) and *D. melanogaster* – (*R*)-limonene (n=5), (*R*)-linalool (n=5), (*E*)-2-hexenal
623 (n=5).

624 **Finite element modelling**

625

626 A finite element model (FEM) was produced to-explore the biophysics-underlying antennal
627 boundary layer behaviour and electrostatics. We modelled the capture of minimally charged
628 VOCs along an electrically biased antenna to assess the comparative influence of advection-
629 diffusion and electrostatic forces. As measurables, product concentration and final deposition
630 were evaluated. COMSOL Multiphysics software V 6.2 (COMSOL inc., Stockholm, Sweden) was
631 used for this analysis. Due to the independence of the fluid and electrical processes, each were
632 solved individually. Upon solving, the resulting fluid and electrical fields were used to solve the
633 advection-diffusion-charge migration of a dilute suspension of VOC.

634

635 *Antennal geometries*

636 Two bio-inspired antenna morphologies were modelled based on SEMs and empirical data to
637 ensure biologically relevant insight. One was formed with a dense canopy of hairs, like the
638 honeybee and parasitic wasp antennae, and the other without such hairs, like the antenna of the
639 black bean aphid. Together these models enable the assessment of how different morphological
640 features affect olfactory capture and whether different forms show increased capture due to
641 either fluid flow or electrostatics.

642

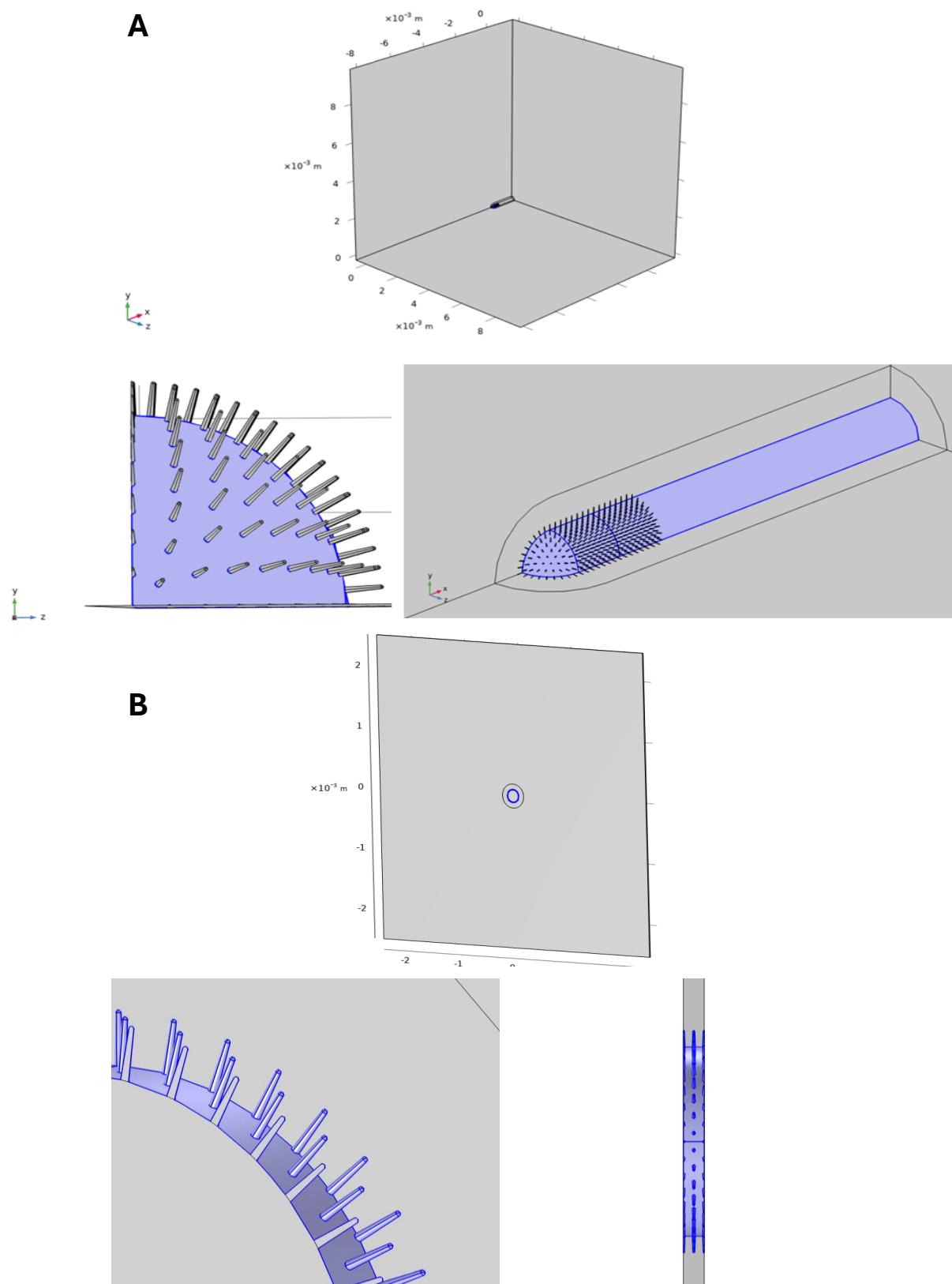
643 We studied both longitudinal fluid flows, parallel to the antenna, and crossflows, perpendicular
644 to the antenna. For longitudinal sensing, the modelled geometry consisted of a 1.35 mm long
645 cylindrical section of 0.1 mm radius with a spherical cap in a large surrounding domain (Figure
646 7A). Due to rotational symmetry, only one quarter of the structure was modelled using symmetry
647 conditions in the x-y and x-z planes. The enclosing boundaries were placed at 10 mm, 10 mm and
648 10 mm distances from the antenna in x, y, z directions, respectively, and were thus 100 times the
649 radius or 10 times the antennal length from the structure. Hairs of length 19 μ m and radius 1.5
650 μ m were placed in dense canopy with an offset configuration. The first row had an angular
651 spacing of 10° over the 90° section of antenna, followed by a row with hairs offset by 5° and rows
652 spaced by 0.01 mm. For longitudinal flow, hairs were placed over the spherical cap and in 30 rows
653 along the first 0.3 mm section of the cylindrical form (Figure 7a). The domain was discretised
654 using a tetrahedral mesh consisting of 3,261,274 boundary elements in the dense array case and
655 172,731 boundary elements for the hairless case. The large difference in mesh elements reflects
656 the multi-scale nature of the dense hair problem, where the hair tips presented small thin regions
657 that required a finer discretisation.

658

659 For crossflow, we modelled a 0.2 mm short cross-section of the antenna aligned with the x-axis,
660 using symmetry conditions at two parallel y-z planes 0.02 mm apart. Only two-rows of hairs were
661 required to obtain results for an effectively infinite antenna. The same antennal geometry was
662 otherwise considered (Figure 7B). The enclosing boundaries were placed at 5 mm, 5 mm and 0.02
663 mm in x, y, z directions, respectively. The domain was discretised using a tetrahedral mesh to

664 solve the equations consisting of 3,033,113 boundary elements in the dense array case and
665 295,254 boundary elements for the hairless case.

666


667 In both cases, a mesh independence study was carried out to ensure accuracy of the computed
668 results. Considering the most sensitive case, a dense hair array and $U_{\infty} = 0.1 \text{ ms}^{-1}$, the following
669 results were obtained for finer meshes:

670

671 **Table 2** Mesh independence study showing relative error in capture rates for VOC capture with a finer mesh. Overall,
672 all errors are less than 1%. The number of mesh elements depends on the number of hairs, hence the large number of
673 boundary elements for the refine mesh in the longitudinal case.

Relative error in capture rates	Boundary elements	$z_c = 0$	$z_c = 10^{-5}$	$z_c = 10^{-4}$	$z_c = 10^{-3}$	$z_c = 10^{-2}$	$z_c = 10^{-1}$	$z_c = 1$
Longitudinal	26,215,931	0.3%	0.3%	0.29%	0.25%	0.05%	0.65%	0.67%
Crossflow	5,809,087	0.17%	0.17%	0.18%	0.2%	0.4%	0.8%	0.67%

674

Figure 7 Geometry of modelled antenna and the computational domain. (A) Parallel flow: The far-field walls are placed at distances of 100 times the radius from the antenna to remove boundary effects. The antenna consists of a 1.35 mm long section with 0.1 mm radius, with hairs placed over the spherical cap and along the first 0.3 mm section of the cylindrical form. The hair lengths are 0.01 mm. (B) Perpendicular flow: The far-field walls are placed at distances of 50 times the radius from the antenna to remove boundary effects. The antenna consists of a 0.02 mm long section with 0.1 mm radius. The hair lengths are 0.01 mm.

676

677 *Fluid-antenna interaction modelling*

678 The steady interaction between a uniform flow of air with a constant fluid density and a fixed
679 antenna within the described computational domain is computed by the incompressible Navier-
680 Stokes equations:

681
$$\nabla \cdot \mathbf{u} = 0,$$

682
$$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot [p\mathbf{I} + \mu(\nabla\mathbf{u} + (\nabla\mathbf{u})^T)]. \quad (1)$$

683 These equations are solved on a fixed mesh subject to boundary conditions (given below),
684 denoting the three-dimensional fluid velocity by \mathbf{u} (m/s), the dynamic viscosity by μ (Ns/m²), the
685 pressure field by p (kg/m s²) and the fluid density by ρ (kg/m³). Since the background fluid is air,
686 we set the dynamic viscosity to be 1.81x10⁻⁵ Ns/m² and fluid density to be 1 kg/m³ at 293K.

687 Boundaries occur at the edge of the domain and on the antenna. Conditions were prescribed
688 therein to ensure physically accurate and consistent results. At the inlet, the direction from which
689 the flow comes upstream of the antenna, the far-field flow was prescribed as $u = U_\infty, v =$
690 $0, w = 0$, where u, v, w denote the velocity of the fluid in Cartesian directions x, y, z , and U_∞
691 denotes the magnitude of the freestream flow speed far from the antenna. To simulate a range of
692 appropriate flight speeds for an insect, we evaluated three scenarios with $U_\infty = 0.001, 0.01$ and
693 0.1 m/s. The outlet boundary condition, downstream of the antenna in the x-direction, was
694 prescribed to be $p = 0$. Along the antenna, a no-slip wall condition was applied $u = 0, v = 0,$
695 $w = 0$, leading to a boundary layer along the antenna. A slip wall condition was applied to the
696 upper x-z boundary of the domain to constrain the flow with: $u = U_\infty, v = 0, w = 0$. Symmetry
697 conditions were applied, as previously stated, in the bounding x-y and x-z planes of the geometry
698 due to the rotationally symmetric nature of the geometry.

699 *Computing the electrostatic field*

700 The electrostatic field throughout the domain was governed by the equations:

701
$$\mathbf{E} = -\nabla V,$$

702
$$\nabla^2 V = 0. \quad (2)$$

703 Here, V denotes the surface electric potential and \mathbf{E} the electric field. A -8 V potential was applied
704 to the antenna surface based on the bias applied during the experiments. Within the bounding
705 domain, symmetric conditions were applied as above, and all other boundaries were set to 0 V
706 far from the antenna. Regarding the hairs, their individual charge or potential were not
707 experimentally measured and thus not prescribed here. The hairs are treated as a dielectric with
708 a relative permittivity of 14 that polarize in the presence of the biased cuticle.

709 *Modelling the transport of VOCs in the domain*

710 The transport of the dilute substance in the domain was calculated by the following equation:

711
$$\mathbf{u} \cdot \nabla c = D\nabla^2 c + z_c u_m F c \nabla^2 V, \quad (3)$$

712

713 where u is given by (1) and V by (2) to determine the comparative effect of electrostatic forces
 714 and fluid dynamic influences in the transport and capture of VOCs. In (3), c indicates the
 715 concentration of the substance in air (mol/m³), D is the diffusion coefficient, which was defined
 716 as 6.7×10^{-7} m²/s and z_c is the charge number of the substance (dimensionless) given in the units
 717 of elementary charge to quantify the charge of ions or single molecules. We consider this to
 718 represent an “effective charge”, since the dipole moment of VOCs produce forces several orders
 719 of magnitude below that related to an elementary charge. Hence, we considered values of $z_c =$
 720 0.00001, 0.0001, 0.001, 0.1, 1 to show the broad range and influence of VOC charge from weakly
 721 polarized dipoles to an ionic molecule of one elementary charge. The ionic mobility, $u_m = D/RT$, is
 722 also calculated from input parameters, whereby R is the molar gas constant (J/mol·K) and $T = 293$
 723 is temperature (K). Finally, F denotes Faraday’s constant (A·s/mol). The diffusion coefficient of
 724 5×10^{-6} m²/s was chosen as a representative value across molecules which may underestimate
 725 VOC catch results for molecules with a large diffusion coefficient. However, this model aims to
 726 show the relative effects of electrostatics on VOC olfactory capture and therefore the use of exact
 727 diffusion coefficients for each molecule is not required.

728 For the boundary condition along the antennal surface and hairs, we set $c = 0$ to simulate
 729 absorption of VOCs. The inflow concentration was $c_0 = 1$ mol/m³ at the inlet boundary to model
 730 a uniform well-mixed distribution of VOCs in the oncoming flow. Symmetry conditions were again
 731 applied to the relevant boundaries. Outlet conditions are applied to all other boundaries with $\mathbf{n} \cdot$
 732 $D\nabla c = 0$, \mathbf{n} the local normal of the surface. Our metric of interest here is a modified version of
 733 that presented in Claverie et al. (2022)⁴, and is denoted as the capture rate of the antenna given
 734 by:

$$735 \quad C_a = -\iint_s D \frac{\partial c}{\partial \mathbf{n}} dA/S, \quad \text{mol/s/m}^2, \quad (4)$$

736 where S is the surface area of the modelled antennal section (including the hairs when present).
 737 From (4), the local gradient of the concentration over the antennal surface gives the capture rate.
 738 We divide the integrated value by the modelled surface area to enable comparisons between
 739 scenarios, since the antennal surface is much larger in the longitudinal case and when hairs are
 740 present (Table 3).

741 **Table 3:** Capture rates, C_a , mol/s/m², of an antenna with a dense hair coverage and no hairs for different
 742 flow speeds and morphology. There is a monotonic trend in capture rate with the effective charge of the
 743 VOCs, which is consistent across flow speeds. However, when the charge number is at least 0.1, the
 744 capture rate becomes invariant to the flow speed, indicating that the electrostatic contribution to olfactory
 745 capture dominates transport forces due to the fluid flow.

Longitudinal flow

Charge Number (q)	U = 0.001 m/s		U = 0.01 m/s		U = 0.1 m/s	
0	Dense	None	Dense	None	Dense	None
	0.0193	0.0276	0.0241	0.0344	0.0393	0.0558
0.00001	0.0194	0.0277	0.0242	0.0345	0.0393	0.0558
0.0001	0.0196	0.0280	0.0244	0.0349	0.0395	0.0562

0.001	0.0223	0.0320	0.0271	0.0388	0.0422	0.0602
0.01	0.0584	0.0867	0.0616	0.0913	0.0739	0.1087
0.1	0.5413	0.8192	0.5414	0.8193	0.5416	0.8198
1	5.3954	8.1641	5.4115	8.1889	5.4109	8.1878

Crossflow

Charge Number (q)	U = 0.001 m/s		U = 0.01 m/s		U = 0.1 m/s	
0	Dense	None	Dense	None	Dense	None
	0.0068	0.0110	0.0111	0.0177	0.0217	0.0347
	0.0068	0.0110	0.0111	0.0178	0.0217	0.0347
	0.0069	0.0112	0.0112	0.0180	0.0218	0.0349
	0.0081	0.0132	0.0126	0.0202	0.0231	0.0371
	0.0281	0.0461	0.0314	0.0511	0.0391	0.0634
	0.2863	0.4729	0.2906	0.4752	0.2913	0.4758
1	2.2795	4.0892	2.7642	4.5853	2.8880	4.7412

746

747 Quantification and statistical analysis

748 For the statistical analysis of faraday cup measurements, raw charge recordings were converted
 749 to picocoulomb (pC) measurements using MATLAB. All statistical analyses were carried out in
 750 RStudio V2023.12.1+402 running R V4.3.3⁵⁸. All data within species were tested for normality and
 751 outliers removed using the “stats” V4.3.3 package. Kruskal-Wallis and Dunn post-hoc tests,
 752 packages “stats” V4.3.3 and “dunn.test” V1.3.6 respectively, were carried out to compare charge
 753 measurements between all treatments within both *B. terrestris* and *A. fabae*. For *A. ervi*, this was
 754 carried out using Anova and Tukey post-hoc tests, package “stats” V4.3.3. Data were visualised
 755 in R.

756 Within each compound treatment, the amount of compound in antennal extracts was compared
 757 across charge treatments (0 V, +8 VDC and -8 VDC). The data were tested for normality via
 758 Shapiro-Wilk test. ANOVA and Tukey post-hoc tests were used for (4aS,7S,7aR)-nepetalactone
 759 and (R)-linalool, whilst Kruskal-Wallis and Dunn post-hoc tests were used for (E)- β -farnesene.

760 For baseline EAG experiments and charged dose-response recordings, normalised EAG
 761 responses were tested for normality by Shapiro-wilk test and either a Student’s t-test or Wilcoxon
 762 test (depending on normality, “Stats” package V4.3.3) was used to compare responses between
 763 each compound dose and diethyl ether.

764 For neutralised EAG recordings, within-species data were tested for normality using Shapiro-wilk
 765 test. For *A. ervi*, EAG responses for diethyl ether and (R)-linalool before and after neutralisation
 766 were statistically compared by Kruskal Wallis (“Stats” package V4.3.3) and Dunn post-hoc tests

767 (“dunn.test” V1.3.6). For *B. terrestris*, Kruskal Wallis and Wilcoxon post-hoc test (“rstatix”
768 package V 0.7.2) were used.

769 For charged EAG experiments, EAG recordings from within species and per compound were
770 statistically compared between each charge treatment and its respective diethyl ether control.
771 Data were tested for normality via Shapiro-wilk test. Depending on data distribution, either
772 Student’s t-tests or Wilcoxon test (“Stats” package V4.3.3) was carried out between EAG
773 responses at each charge treatment and the diethyl ether control. The statistical test used and
774 respective P-values are described in Table S2.

775 Correlation analysis was carried out between normalised EAG response, voltage treatment and
776 antennal dimensions. Excised antennae across all four species were imaged under light
777 microscopy (Zeis Axioimager Z2 with Zeis Axiocam 512 colour camera, Supplementary 2) and
778 antennal length, antennal inner and outer diameter and cuticle thickness measurements were
779 taken. Antennal surface area was calculated for each species under the assumption that the
780 antenna is cylindrical. Since data were not normally distributed, a Q-Q plot (“car” package
781 V.3.1.2) was made to assess the most appropriate generalised linear model (GLM) distribution
782 that fits the data. An Akaike information criterion (AIC) test was used to assess which GLM
783 distribution between gamma, inverse gaussian or Tweedie distribution best fits the data (“Stats”
784 package V4.3.3). A GLM with inversion Gaussian distribution was used to compare the interaction
785 between normalised EAG response, charge treatment and antennal surface area (“Stats”
786 package V4.3.3). Bootstrap analysis was carried out to assess accuracy for GLM outputs (“boot”
787 package V1.3.30). Datapoints were visualised via scatterplot. Correlation analysis was carried
788 out as above within each species to compare the relationship/interaction between normalised
789 EAG response, voltage treatment and compound dipole moment.

790 All statistical analyses and visualization were carried out in R V4.3.3.

791 **Supplemental Information**

792 Supplementary 1 - Supplementary figures and tables. (.doc)

793 Supplementary 2 – Bioimaging methods (.doc)

794 **References**

- 795 1. Leal, W.S. (2013). Odorant reception in insects: Roles of receptors, binding proteins, and
796 degrading enzymes. Annual Review of Entomology. 58, 373–391.
797 <https://doi.org/10.1146/annurev-ento-120811-153635>.
- 798 2. Ha, T.S., and Smith, D.P. (2022). Recent Insights into Insect Olfactory Receptors and Odorant-
799 Binding Proteins. Insects 13, 1–13. <https://doi.org/10.3390/insects13100926>.
- 800 3. Claverie, N., Steinmann, T., Bandjee, M.J., Buvat, P., and Casas, J. (2022). Oscillations for active
801 sensing in olfaction: bioinspiration from insect antennal movements. Bioinspiration &
802 Biomimetics. 17, 055004. <https://doi.org/10.1088/1748-3190/ac877a>.
- 803 4. Claverie, N., Buvat, P., and Casas, J. (2023). Active Sensing in Bees Through Antennal
804 Movements Is Independent of Odor Molecule. Integrative and Comparative Biology 63, 315–
805 331. <https://doi.org/10.1093/icb/icad010>.
- 806 5. Carey, A.F., and Carlson, J.R. (2011). Insect olfaction from model systems to disease control.
807 Proceedings of the National Academy of Sciences 108, 12987–12995.
808 <https://doi.org/10.1073/pnas.1103472108>.

809 6. Schmidt, H.R., and Benton, R. (2020). Molecular mechanisms of olfactory detection in insects:
810 beyond receptors. *Open Biology* 10, 200252. <https://doi.org/10.1098/rsob.200252>.

811 7. Cardé, R.T. (2021). Navigation along Windborne Plumes of Pheromone and Resource-Linked
812 Odors. *Annual Review of Entomology* 66, 317–336. <https://doi.org/10.1146/annurev-ento-011019-024932>.

813 8. Jaffar-Bandjee, M., Steinmann, T., Krijnen, G., and Casas, J. (2020). Insect pectinate antennae
814 maximize odor capture efficiency at intermediate flight speeds. *Proceedings of the National
815 Academy of Sciences* 117, 28126–28133. <https://doi.org/10.1073/pnas.2007871117>.

816 9. Kaissling, K.E. (2009). Olfactory perireceptor and receptor events in moths: A kinetic model
817 revised. *Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral
818 Physiology* 195, 895–922. <https://doi.org/10.1007/s00359-009-0461-4>.

819 10. Kanaujia, S., and KE, K. (1985). Interactions of pheromone with moth antennae: adsorption,
820 desorption and transport. *Journal of Insect Physiology* 31, 71–81.
821 [https://doi.org/10.1016/0022-1910\(85\)90044-7](https://doi.org/10.1016/0022-1910(85)90044-7).

822 11. Murlis, J., Willis, M.A., and Cardé, R.T. (2000). Spatial and temporal structures of pheromone
823 plumes in fields and forests. *Physiological Entomology* 25, 211–222.
824 <https://doi.org/10.1046/j.1365-3032.2000.00176.x>.

825 12. Riffell, J.A., Abrell, L., and Hildebrand, J.G. (2008). Physical Processes and Real-Time Chemical
826 Measurement of the Insect Olfactory Environment. *Journal of Chemical Ecology* 34, 837–853.
827 <https://doi.org/10.1007/s10886-008-9490-7>.

828 13. Celani, A., Villermaux, E., and Vergassola, M. (2014). Odor Landscapes in Turbulent
829 Environments. *Physical Review X* 4, 041015. <https://doi.org/10.1103/PhysRevX.4.041015>.

830 14. Kaissling, K.-E. (2014). Pheromone reception in insects: the example of silk moths. In
831 *Neurobiology of Chemical Communication*, C. Mucignat-Caretta, ed. (CRC Press, Taylor &
832 Francis Group), pp. 99–146.

833 15. England, S.J., and Robert, D. (2022). The ecology of electricity and electroreception. *Biological
834 Reviews* 97, 383–413. <https://doi.org/10.1111/brv.12804>.

835 16. Morley, E.L., and Robert, D. (2018). Electric Fields Elicit Ballooning in Spiders. *Current Biology*
836 28, 2324-2330. <https://doi.org/10.1016/j.cub.2018.05.057>.

837 17. Hunting, E.R., O'Reilly, L.J., Harrison, R.G., Manser, K., England, S.J., Harris, B.H., and Robert, D.
838 (2022). Observed electric charge of insect swarms and their contribution to atmospheric
839 electricity. *iScience* 25, 105241. <https://doi.org/10.1016/j.isci.2022.105241>.

840 18. Clarke, D., Morley, E., and Robert, D. (2017). The bee, the flower, and the electric field: electric
841 ecology and aerial electroreception. *Journal of Comparative Physiology A* 203, 737–748.
842 <https://doi.org/10.1007/s00359-017-1176-6>.

843 19. England, S.J., and Robert, D. (2024). Electrostatic pollination by butterflies and moths. *Journal
844 of the Royal Society Interface* 21, 20240156 . <https://doi.org/10.1098/rsif.2024.0156>.

845 20. Izadi, H., Stewart, K.M.E., and Penlidis, A. Role of contact electrification and electrostatic
846 interactions in gecko adhesion. *Journal of the Royal Society Interface* 11, 20140371.
847 <https://doi.org/https://doi.org/10.1098/rsif.2014.0371>.

848

849 21. Montgomery, C., Vuts, J., Woodcock, C.M., Withall, D.M., Birkett, M.A., Pickett, J.A., and Robert, D. (2021). Bumblebee electric charge stimulates floral volatile emissions in *Petunia integrifolia* but not in *Antirrhinum majus*. *Science of Nature* 108. <https://doi.org/10.1007/s00114-021-01740-2>.

853 22. Clarke, D., Whitney, H., Sutton, G., and Robert, D. (2013). Detection and Learning of Floral Electric Fields by Bumblebees. *Science* 340, 66–69. <https://doi.org/10.1126/science.1230883>.

855 23. Erickson Jr, E.H. (1982). Evidence for electrostatic enhancement of odor receptor function by worker honeybee antennae. *Bioelectromagnetics* 3, 413–420. <https://doi.org/10.1002/bem.2250030404>

858 24. Shimanovich, K., Greenspan, H., and Rosenwaks, Y. (2018). Electrostatic Selectivity of Volatile Organic Compounds Using Electrostatically Formed Nanowire Sensor. *ACS Sens.* 3, 709–715. <https://doi.org/10.1021/acssensors.8b00044>.

861 25. Ikehata, T. (2019). Static elimination in vacuum using plasma jet. *Vacuum* 166, 184–190. <https://doi.org/10.1016/j.vacuum.2019.04.008>.

863 26. Jonscher, A.K. (1999). Dielectric relaxation in solids. *Journal of Physics D: Applied Physics* 32, 57–70. <https://doi.org/10.1088/0022-3727/32/14/201>.

865 27. Griffiths, D.J. (1999). *Introduction to electrodynamics* 3rd ed. A. Reeves and K. Dellas, eds. (Prentice Hall, Upper Saddle River, NJ).

867 28. Ishay, J.S., Abes, A.H., Chernobrov, H.L., Ishay, I., and Ben-Shalom, A. (1991). Electrical properties of the oriental hornet (*Vespa orientalis*) cuticle. *Comparative Biochemistry and Physiology Part A: Physiology* 100, 233–271. [https://doi.org/10.1016/0300-9629\(91\)90469-S](https://doi.org/10.1016/0300-9629(91)90469-S).

870 29. Elgar, M.A., Zhang, D., Wang, Q., Wittwer, B., Thi, H., and Tamara, L. (2018). Insect Antennal Morphology: The Evolution of Diverse Solutions to Odorant Perception. *Yale Journal of Biology and Medicine* 91, 457–469.

873 30. Battaglia, D., Isidoro, N., Romani, R., Bin, F., and Pennachio, F. (2002). Mating behaviour of *Aphidius ervi* (Hymenoptera: Braconidae): The role of antennae. *European Journal of Entomology* 39, 451–456. <https://doi.org/10.14411/eje.2002.057>.

876 31. Huang, X., Xu, X., Li, R., Wang, S., and Tian, L. (2023). Ultrastructure and distribution of antennal sensilla of *Bombus terrestris* (Hymenoptera : Apidae). *Zoologischer Anzeiger* 302, 239–247. <https://doi.org/10.1016/j.jcz.2022.12.006>.

879 32. Jürgens, K.J., Drechsler, M., and Paululat, A. (2024). An anatomical atlas of *Drosophila melanogaster* — the wild-type. *Genetics* 228, iyae129. <https://doi.org/10.1093/genetics/iyae129>.

882 33. Harris, B.H. (2025). Investigating the structural and electrostatic properties of antennal placode sensilla in bees and their functional significance for olfaction and electroreception. PhD Thesis, University of Bristol, Bristol, UK.

885 34. Callahan, P.S. (1975). Insect antennae with special reference to the mechanism of scent detection and the evolution of the sensilla. *International Journal of Insect Morphology and Embryology* 4, 381–430. [https://doi.org/10.1016/0020-7322\(75\)90038-0](https://doi.org/10.1016/0020-7322(75)90038-0).

888 35. Wigglesworth, V. (1948). The Insect cuticle. *Biological Reviews* 23, 408–451.
889 <https://doi.org/10.1111/j.1469-185X.1948.tb00566.x>.

890 36. Steinbrecht, R.A., and Stankiewicz, B.A. (1999). Molecular composition of the wall of insect
891 olfactory sensilla — the chitin question. *Journal of Insect Physiology* 45, 785–790.
892 10.1016/s0022-1910(99)00066-9.

893 37. Ma, C., He, Y., Zeng, L., and Liu, M. (2025). Nano Energy Surface modification of chitin
894 nanocrystals using conducting polymer for triboelectric nanogenerator. *Nano Energy* 135,
895 110660. <https://doi.org/10.1016/j.nanoen.2025.110660>.

896 38. Zhang, J., Hu, Y., Lin, X., Qian, X., Zhang, L., Zhou, J., and Lu, A. (2022). High-performance
897 triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-
898 powered sensing. *Carbohydrate Polymers* 291, 119586.
899 <https://doi.org/10.1016/j.carbpol.2022.119586>.

900 39. Petchnui, K., Uwanno, T., Reilly, M.P., Pinning, C., Treetong, A., Yordsri, V., Moolsradoo, N.,
901 Klamcheun, A., and Wongwiriyapan, W. (2024). Preparation of Chitin Nanofibers and Natural
902 Rubber Composites and Their Triboelectric Nanogenerator Applications. *Materials* 17, 738.
903 <https://doi.org/10.3390/ma17030738>.

904 40. Blomquist, G.J., and Ginzel, M.D. (2021). Chemical Ecology, Biochemistry, and Molecular Biology
905 of Insect Hydrocarbons. *Annual Review of Entomology* 66, 45-60.
906 <https://doi.org/10.1146/annurev-ento-031620-071754>.

907 41. Willis, J.H. (2010). Structural cuticular proteins from arthropods: annotation, nomenclature,
908 and sequence characteristics in the genomics era. *Insect Biochemistry and Molecular Biology*
909 40, 189–204. <https://doi.org/10.1016/j.ibmb.2010.02.001>.

910 42. Kühbandner, S., Sperling, S., Mori, K., and Ruther, J. (2012). Deciphering the signature of
911 cuticular lipids with contact sex pheromone function in a parasitic wasp. *Journal of
912 Experimental Biology* 215, 2471–2478. <https://doi.org/10.1242/jeb.071217>.

913 43. Mair, M.M., Kmezic, V., Huber, S., Pannebakker, B.A., and Ruther, J. (2017). The chemical basis
914 of mate recognition in two parasitoid wasp species of the genus *Nasonia*. *Entomologia
915 Experimentalis et Applicata* 164, 1–15. <https://doi.org/10.1111/eea.12589>.

916 44. Jansen, J., Pokorný, T., and Schmitt, T. (2016). Disentangling the effect of insemination and ovary
917 development on the cuticular hydrocarbon profile in the bumblebee *Bombus terrestris*
918 (Hymenoptera: Apidae). *Apidologie* 47, 101–113. <https://doi.org/10.1007/s13592-015-0379-5>.

919 45. Majtán, J., Bíliková, K., Markovič, O., Gróf, J., Kogan, G., and Šimúth, J. (2007). Isolation and
920 characterization of chitin from bumblebee (*Bombus terrestris*). *International Journal of
921 Biological Macromolecules* 40, 237–241. <https://doi.org/10.1016/j.ijbiomac.2006.07.010>.

922 46. Liepert, C., and Dettner, K. (1993). Recognition of aphid parasitoids by honeydew-collecting
923 ants: The role of cuticular lipids in a chemical mimicry system. *Journal of Chemical Ecology* 19,
924 2143–2153. <https://doi.org/10.1007/BF00979653>.

925 47. Foronda, J., Berville, L., Rodríguez, E., Peña, A., Perdereau, E., Montoro, M., Lucas, C., and
926 Ruano, F. (2025). Chemical Recognition Cues in Ant-Aphid Mutualism: Differentiating, Sharing,
927 and Modifying Cuticular Components. *Journal of Chemical Ecology* 51, 52.
928 <https://doi.org/10.1007/s10886-025-01562-w>.

929 48. Sobarzo, J.C., Pertl, F., Balazs, D.M., Costanzo, T., Sauer, M., Foelske, A., Ostermann, M., Pichler,
930 C.M., Wang, Y., Nagata, Y., et al. (2025). Spontaneous ordering of identical materials into a
931 triboelectric series. *Nature* *638*, 664–669. <https://doi.org/10.1038/s41586-024-08530-6>.

932 49. Mafra-Neto, A., and Cardé, R.T. (1994). Fine-scale structure of pheromone plumes modulates
933 upwind orientation of flying moths. *Nature* *369*, 142–144. <https://doi.org/10.1038/369142a0>.

934 50. Balkovsky, E., and Shraiman, B.I. (2002). Olfactory search at high Reynolds number. *Proceedings
935 of the National Academy of Sciences* *99*, 12589–12593.
936 <https://doi.org/10.1073/pnas.192393499>.

937 51. Harrison, R.G., and Robert, D. (2025). A Faraday cup for charge measurements in biophysical
938 and environmental fieldwork. *Journal of Electrostatics* *135*, 104062.
939 <https://doi.org/10.1016/j.elstat.2025.104062>.

940 52. Arkoudis, E., and Stratakis, M. (2008). Synthesis of cordiaquinones B, C, J, and K on the basis of
941 a bioinspired approach and the revision of the relative stereochemistry of cordiaquinone C.
942 *Journal of Organic Chemistry* *73*, 4484–4490. [10.1021/jo800355y](https://doi.org/10.1021/jo800355y).

943 53. Koczor, S., Szentkirályi, F., Vuts, J., Caulfield, J.C., Withall, D.M., Pickett, J.A., Birkett, M.A., and
944 Tóth, M. (2025). Species- and context-dependent responses of green lacewings suggest a
945 complex ecological role for methyl salicylate (Neuroptera: Chrysopidae). *Scientific Reports* *15*,
946 12777. <https://doi.org/10.1038/s41598-025-96730-z>.

947 54. Pickett, J.A. (1990). Gas Chromatography-Mass Spectrometry in Insect Pheromone
948 Identification: Three Extreme Case Histories. In: McCaffery, A.R., Wilson, I.D. (eds)
949 Chromatography and Isolation of Insect Hormones and Pheromones. Chromatographic Society
950 Symposium Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-8062-7_29

951 55. Wadhams, L.J. (1990). The Use of Coupled Gas Chromatography: Electrophysiological
952 Techniques in the Identification of Insect Pheromones. In: McCaffery, A.R., Wilson, I.D. (eds)
953 Chromatography and Isolation of Insect Hormones and Pheromones. Chromatographic Society
954 Symposium Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-8062-7_28

955 56. Birkett, M.A., Chamberlain, K., Khan, Z.R., Pickett, J.A., Toshova, T., Wadhams, L.J., and
956 Woodcock, C.M. (2006). Electrophysiological responses of the lepidopterous stemborers *Chilo
957 partellus* and *Busseola fusca* to volatiles from wild and cultivated host plants. *Journal of
958 Chemical Ecology* *32*, 2475–2487. <https://doi.org/10.1007/s10886-006-9165-1>.

959 57. Hassemer, M.J., Sant'Ana, J., Borges, M., Withall, D., Pickett, J.A., De Oliveira, M.W.M., Laumann,
960 R.A., Birkett, M.A., and Bassioli-Moraes, M.C. (2016). Revisiting the male-produced aggregation
961 pheromone of the lesser mealworm, *Alphitobius diaperinus* (Coleoptera, Tenebrionidae):
962 identification of a six-Component pheromone from a Brazilian population. *Journal of
963 Agricultural and Food Chemistry* *64*, 6809–6818. <https://doi.org/10.1021/acs.jafc.6b02235>.

964 58. R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation
965 for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>

966