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Abstract 

Production efficiency of pasture-based livestock production systems is primarily driven by 

the level of pasture utilisation and, as such, regular monitoring of herbage mass (HM) 

provides essential information to assist on-farm decision making. Unfortunately, this practice 

is seldom carried out on commercial farms, likely due to the time commitment required 

across the entire grass growing season. Recent studies have shown, however, that even 

moderately inaccurate HM data can improve the system-side profitability compared to 

enterprises with no data, warranting further investigations into the trade-off between the 

accuracy and cost associated with HM measurements. Using a weekly multi-paddock dataset 

from the North Wyke Farm Platform research site in Devon, UK, this study evaluated the 

technical validity and labour-saving potential of a simplified ‘pasture walk’ protocol for 

rising plate meters, under which only data along the diagonal transect — rather than the 

industry-standard W-shaped pathways — of the paddock are collected. Across 234 temporal-

paddock combinations, the mean absolute difference in HM estimates between diagonal and 

W-transects was 106 kg DM/ha, a scale far too small to alter sward or animal management. 

The presented statistical analysis, together with a supplementary spatial simulation 

experiment, supported the generality of the findings across the full grass growing season. 

With a 51.2% reduction in labour time (1.2 min/ha rather than 2.5 min/ha) across paddocks of 

various sizes and shapes, the proposed method is likely to facilitate uptake of evidence-based 

grazing management amongst farmers who currently do not quantify HM at all. 

 

Keywords: Herbage mass; labour saving; livestock agriculture; pasture utilisation; sampling 

method 
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Introduction 

Economic and environmental performances of pasture-based livestock enterprises are 

strongly associated with the efficiency of their grazing systems (Borges et al., 2014; Horn & 

Isselstein, 2022). This efficiency is primarily determined by the internal level of pasture 

utilisation, generally more so than decisions on external inputs newly introduced into the 

system (Taube et al., 2014; Hyland et al., 2018). Greater pasture utilisation, in turn, is 

achieved through accurate and timely grazing management (McSweeney et al., 2019), where 

near real-time information on herbage mass (HM) based on precision agriculture techniques 

is essential for estimating the amount of forage available both then and in the future (’t 

Mannetje, 2000). 

The most accurate means to quantify the current herbage mass (HM) is through 

destructive methods (Schellberg et al, 2008; Fricke et al., 2011), of which the most common 

form is the physical clipping of forage within quadrats randomly placed across pastures. 

However, the small size of an individual quadrat necessitates a large number of replicates to 

produce a value representative of the entire management unit and, as such, the labour 

requirement for this exercise is seldom commercially viable (Martin et al., 2005). 

Consequently, the vast majority of farmers resort to non-destructive alternatives, with visual 

assessment (‘eyeball method’) being by far the most popular approach. Unfortunately, the 

resultant estimates are known to frequently suffer from low accuracy and low repeatability, 

especially in the absence of a conscious and continuous effort for calibration (Stockdale, 

1984; O’Donovan et al., 2002). 

To achieve an optimal balance between the cost (initial outlay and labour 

requirement) and return (accuracy) of HM measurements, various rudimentary tools such as 

Robel poles, capacitance meters and sward sticks have been developed to date. Of these, 

rising plate meters (RPMs) are often considered to be one of the most theoretically attractive 

options (Gourley and McGowan, 1991). Invented in the late 1970s (Castle, 1976), a typical 

RPM features a circular plate of a known diameter, through which a vertical shaft freely 

passes. As the shaft is lowered to the ground, the compressed sward beneath causes the plate 

to rise along the shaft, and the vertical distance of this plate movement (compressed sward 

height: CSH) is recorded for each landing event (McSweeney et al., 2019). The measurement 

is subsequently converted to an HM value using an equation pre-calibrated for the relevant 

species composition and growth stage of the sward. HM estimates derived from an RPM are 

generally within 5-10% of the true value under good calibration (Sanderson et al., 2001; 

Murphy et al., 2021) and, owing to the light weight and the long shaft that can be held above 
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the waist level, its use requires little more physical activity than a simple walk across the 

pasture. 

Yet, despite the seemingly apparent benefit of its use for grazing management, the 

global adoption rate of RPM remains low (DEFRA, 2020; McConnell et al., 2020). While the 

exact mechanism behind this tendency has not been completely elucidated, the regular time 

commitment required for ‘pasture walks’ is plausibly thought to be a primary deterrence 

(Romera et al., 2010, 2013). In particular, most RPM manufacturers and extension specialists 

who support its use recommend that readings are taken in a circuitous path across each 

paddock to account for spatial variability of HM distribution (MacAdam and Hunt, 2015; 

Manjunatha and Rocateli, 2018; Murphy et al., 2021). Nevertheless, studies elsewhere have 

suggested the law of diminishing returns, with an increase in measurement effort not 

guaranteeing a proportional increase in precision (O’ Sullivan et al., 1987; Hutchinson et al., 

2016). When this is indeed the case, extra walks could result in a sub-optimal allocation of 

on-farm labour time (Jones et al., 2021a) and, equally importantly, the prospect of long walks 

could psychologically dissuade farmers from regularly measuring HM (Murphy et al., 2020). 

The objective of the present study, therefore, was to evaluate the technical validity 

and time-saving potential of an alternative RPM sampling technique that requires less labour 

input and, in so doing, to offer practical and immediate insights into day-to-day data 

collection for grassland farmers in temperate regions. Specifically, HM estimates from 

pasture walks of the shortest distance — diagonally linking two corners of the paddock — are 

compared against those from conventional walks along W-shaped transects, with a view to 

identifying conditions under which ‘shortcutting’ is permissible without a large loss in 

accuracy. A statistical analysis of extensive primary datasets that encapsulate the seasonal 

variability in the swards was carried out to evaluate the generality of the findings. Further 

supplementary support was also provided via spatial statistical analysis of the data. 

 

Materials and methods 

Study site and farming system 

The study was conducted at the North Wyke Farm Platform (NWFP: Orr et al., 2016), an 

instrumented cattle and sheep grazing trial in the UK (50º46’10”N, 3º54’05”W). The NWFP 

is located in a lowland region (126-180m AMSL) of South West England, with the land 

sloping away to the west and east towards the River Taw and one of its tributaries, 

respectively. The soil on the site predominantly belongs to two similar series, Hallsworth and 

Halstow (Avery, 1980) (Figure 1), with a moderately stony clay loam top layer (~36% clay) 
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overlying a mottled stony clay sub-layer (~60% clay). The site receives a large and consistent 

amount of rainfall, characteristic of grassland regions in the country, with a mean annual 

precipitation of 1030mm over a 35-year period between 1984 to 2019. Across the 

same period, the interquartile ranges for minimum and maximum daily temperatures were 

3.6–10.4°C and 9.8–17.4°C, respectively. 

The NWFP is designed for farming system-scale research and implements pasture-

based grazing systems typical of those found in temperate grasslands (McAuliffe et al., 

2020). Since its foundation in 2010, the platform has comprised three hydrologically isolated 

enterprises (21 ha each) locally known as ‘farmlets’, with the over-arching objective of 

investigating the economic-environmental trade-offs inherent in contrasting systems. At the 

time of the study, two of the three farmlets operated as grazing livestock enterprises (the third 

was an arable enterprise), under contrasting sward management strategies of reseeded 

grass/legume mix and non-reseeded (permanent) pasture (McAuliffe et al., 2018). Of these, 

data for the present study were collected from the non-reseeded farmlet (21.6 ha) to allow the 

widest possible applicability of findings to commercial farms in the UK (Figure 1). This 

farmlet is in turn split into seven paddocks (1.3 ha to 6.4 ha), none of which had been 

reseeded for at least 30 years prior to the commencement of this study (Table 1). The 

paddocks are fixed in size and fences/hedges are permanent. Species composition was largely 

homogenous across the entire farmlet, dominated (>60%) by perennial ryegrass (Lolium 

perenne) but with creeping bent (Agrostis stolonifera), Yorkshire fog (Holcus lanatus) and 

marsh foxtail (Alopecurus geniculatus) also contributing a smaller biomass (Takahashi et al., 

2018). 

The non-reseeded farmlet supported its own herd of 30 Stabiliser
®
 finishing cattle 

(Orr et al., 2019) as well as a flock of 75 Suffolk x Mule ewes and their lambs, sired by 

Charollais rams (Jones et al., 2021b). Cattle were housed from October to April to avoid 

degradation of soil structure through livestock poaching, while sheep were housed between 

January to April over the lambing period. For the remainder of the year, livestock was 

grazed under continuously variable stocking to represent the most common grazing strategy 

in the UK (Genever and Buckingham, 2016; Allen et al., 2018) and rotated between seven 

paddocks based on HM measurements. The target coverage was 1500-2000 kg DM/ha for the 

majority of the grazing season but 1800-2500 kg DM/ha prior to ewe tupping in the autumn. 

Once HM fell below the target range, stocking density is reduced by allowing animals access 

to additional grazing area or by moving animals to another paddock if available. When HM 
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became too high, on the other hand, stocking density was increased by fencing off a portion 

of the grazing area, which was then cut for silage. 

Decisions on silage production were dictated by pasture requirements for grazing, and 

as such the area and frequency of harvest were back-calculated from the balance between 

herbage growth rates and expected animal intake before housing. Depending on weather and 

soil conditions, grazed swards received a maximum of five applications of synthetic N 

fertiliser, at a rate of 40 kg N/ha per application in the form of ammonium nitrate, in monthly 

intervals from March to July. Fields designated for silage received compound fertiliser (N, P, 

K, S) in March at a rate of 80kg N/ha, 14kg of P/ha, 46kg of K/ha and 24kg of S/ha, plus an 

additional 40 kg N/ha of ammonium nitrate in April. Following silage cut and removal, 

farmyard manure (FYM) collected from the previous winter housing period was applied, at a 

typical rate of 19 t/ha (157 kg N/ha), to all fields subsequently to be grazed later in the season 

 

Data collection and experimental design 

Forage data for this study were collected over a seven-month period of March–October 2019, 

covering the entire grass growing period at the study site (Table 2). On each measurement 

day (details below), CSH was measured weekly using a Jenquip EC20 Bluetooth Electronic 

Platemeter (NZ Agriworks Ltd, Feilding, New Zealand) and subsequently converted to HM 

using an equation of HM (kg DM/ha) = CSH (cm) x 140 + 500, using existing calibrations 

from a comparable climate and sward type (Klootwijk et al., 2019). As this equation 

represents a linear transformation between CSH and HM, the results of statistical tests 

reported below (including p-values) are neutral from the selection of the slope and intercept. 

Following each pasture walk, the readings were exported to the Agrinet 

(https://www.agrinet.ie) cloud-based farm management software via the Pastureprobe 

(https://www.pasturemeters.co.uk/pasture-app) smartphone app for data storage. 

The sampling was repeated twice on each day on each paddock, with a straight-line 

diagonal transect (treatment: Figure 2a) and the manufacture-recommended W-shaped 

transect (control: Figure 2b) walked successively using the same equipment and operator. 

Following the manufacturer’s recommended protocol (Sanderson et al., 2001), approximately 

30 RPM readings per paddock were taken under each sampling, with precalculated pacing 

(number of footsteps) used to estimate recording intervals. To mirror the most common and 

the most acceptable practice on commercial farms, these individual readings (informally 

referred to as ‘plonks’) were recorded without the operator pausing at each sampling point. 

Prior to the trial, substantial time was taken to train the operator so that this protocol would 
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not lead to any additional error from non-perpendicular measurement (informally referred to 

as ‘rocking’). As diagonal-transects represented the shortest straight-line path across the 

relevant paddock, the recording intervals (distance between measurements) were always 

longer under W-transects. The actual mean sample sizes were 41 and 39 readings for the 

diagonal- and W-transects, respectively (with the ranges of 22–58 and 30–56 readings, 

respectively). 

The final dataset thus compiled, contained 34 weekly sampling events across seven 

paddocks. Observations from four paddocks were unavailable in September due to FYM 

application immediately before the designated sampling date on the relevant paddock, 

resulting in a total of 234 date-paddock combinations (34 x 7 minus 4 missing sampling 

events: Table 2).  

 

Statistical analysis 

The mean and variance of HM under each date-paddock combination was estimated 

separately for diagonal- and W-transects, with the latter designated as ground truth for the 

entire pasture. Inter-transect differences in mean and variance were primarily assessed using 

Bonferroni-corrected t-tests and F-tests (Shaffer, 1995), respectively, on the assumption that 

the pacing-based protocol (discussed above) provides sufficient randomness for sampling 

locations on each date. However, as this assumption cannot be verified, corresponding 

nonparametric tests (Wilcox test for location; Ansari-Bradley test for scale) and linear mixed-

effects model regressions (with a fixed model structure of measurement protocol × paddock 

and a random model structure of time) were also conducted to appraise the robustness of 

findings. For the diagonal-transect to be representative of the W-transect, no significant 

difference should be observed between the two measures. 

The difference between the two sampling methods was further examined in two forms 

of distributions across 234 date-paddock combinations, namely the absolute difference in HM 

means (to identify the scale of discrepancy) and the relative difference in HM means (to 

identify the tendency of over-estimation or under-estimation), again taking the W-transect 

value as ground truth. This evaluation was carried out using boxplots, histograms and 

associated tests for normality. 

While the NWFP replicates land use and farm management strategies commonly 

adopted across a wide range of temperate grassland regions, HM data observed therein are 

necessarily influenced by weather and paddock allocation (fence lines) intrinsic to the study 

site. Furthermore, the soil, topography and seasonal livestock usage unique to each paddock 
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are likely to affect the HM value on that particular paddock on that particular day. To 

investigate factors affecting these discrepancies, linear regression models were estimated for 

both absolute and relative HM differences using paddock-specific and time-specific 

covariates summarised in Table 3. In order to account for the potential effect of unobservable 

paddock-specific variables, fixed effect specifications were also tested for both absolute and 

relative differences. 

 

Results 

Pasture growth during the study period 

The weather observed during the study period largely followed a typical annual cycle at the 

study site, characterised by a high temperature/solar radiation and a low rainfall in mid-

summer, and the opposite in the spring and autumn (Figure 3a). A notable exception was a 

week in mid-June with a high level of rainfall and a period in early July that saw an 

extremely low level of rainfall alongside a high level of solar radiation (and thus 

evaporation), likely contributing to the generally low HM throughout the month of July 

(Figures 3b-3h). 

Pasture cover ranged between 1350-5500 kg DM/ha during the study period. 

Following the typical pattern of a UK grazing season, pasture growth peaked at mid-spring 

(Figures 3d & 3g) and then gradually declined throughout the year until late autumn. Despite 

regular application of inorganic nitrogen and FYM, pasture cover remained relatively 

constant on grazed paddocks as a consequence of the continuous variable stocking strategy. 

Paddocks primarily used for grazing sheep (Figures 3b & 3c) had a lower HM than those 

used for grazing cattle (Figures 3f & 3g) due to target sward heights to accommodate the 

distinct grazing behaviours of the two species. Based on the graphical representation of 

weekly pasture cover, there appeared little difference in HM estimates between the diagonal- 

and W-transect sampling patterns throughout the grazing season (Figures 3b-3h). 

 

Effect of sampling method: statistical analysis of observed HM data 

Across 234 date-paddock combinations, the parametric tests showed a statistically significant 

(p < 0.05) difference in HM mean between the two sampling methods on 29 occasions 

(12.4%, t-test) without a Bonferroni correction; however, none of these differences remained 

significant post-correction. A significant difference in HM variance was observed on 18 

occasions (7.7%, F-test) without a Bonferroni correction, which reduced to a single occasion 

with the correction. 

a 
a 
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Similarly, the non-parametric tests showed a statistically significant (p < 0.05) 

difference in HM median between the two sampling methods on 30 occasions (12.8%, 

Wilcox test) without a Bonferroni correction; however, none of these differences remained 

significant post-correction. A significant difference in HM variance was observed on 9 

occasions (3.8%, Ansari-Bradley test) without a Bonferroni correction; however, none of 

these differences remained significant post-correction. The liner mixed-effects model 

regressions also corroborated this finding. Neither the direct effect of measurement protocol 

nor any of the interaction terms between measurement protocol × paddock were identified as 

a statistically significant predictor, of either HM mean (p = 0.896 for direct effect, all p > 0.6 

for interactions) or HM variance (p = 0.939 for direct effect, all p > 0.3 for interactions). 

Overall, the mean differences in HM values recorded under diagonal- and W-transects 

were 106 kg DM/ha (absolute difference) and 11 kg DM/ha (relative difference), respectively 

(Figure 4). The frequency distribution of the relative difference across 234 date-paddock 

combinations suggested that the direction of discrepancy is largely balanced, with 5% and 

95% quantiles of –244.7 kg DM/ha and 252.0 kg DM/ha, respectively. This distribution 

however was non-normal (p < 0.001 based on Shapiro-Wilk test) due to shallow and long 

tails on both sides. 

A paddock-by-paddock analysis revealed a small but systematic overestimation under 

diagonal-transects on a single paddock (paddock 7, Figure 5). When the relative difference 

data from all paddocks were split into three groups of an equal size based on the absolute 

level of HM, the distributions for high cover (> 2694 kg DM/ha) and medium cover (2215–

2694 kg DM/ha) groups were not statistically different from being normal (p = 0.226 and 

0.473, respectively). The low cover group (< 2215 kg DM/ha), however, demonstrated a mild 

skewness to the left (p < 0.001), with 5% and 95% quantiles of –86 kg and 171 kg, 

respectively (Figure 6). Causes and implications of these findings will be considered in the 

Discussion section. 

The results of linear regressions were consistent with the above findings, with a lower 

pasture cover associated with a slight over-estimation from diagonal-transect sampling 

(Table 4). As previously identified, diagonal-transect readings in paddock 7 were shown to 

be over-estimated by ~110 kg DM/ha on average. Stocking densities also showed a weak 

effect on the relative difference, with an additional 1 LU/ha linked to a 24–33 kg/ha of over-

estimation. All in all, however, relatively little effect was detected from either paddock-

specific or time-specific covariates regardless of the model specification selected. 
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Discussion 

Viability of the diagonal sampling method 

The mean absolute difference in HM between sampling methods was 106 kg DM/ha across 

all date-paddock combinations. The generally high level of agreement between the two 

methods was strongly supported by the statistical analyses, which were designed to account 

for the seasonal and probabilistic nature of the observed HM distributions and draw the best 

possible practical insights for grassland farmers. 

Inaccurate estimation of HM necessarily results in poor allocation of forage resources 

both amongst animals and across time (McSweeney et al., 2019). While small errors arising 

from miscalibration are likely to be harmless for practical purposes (Rayburn and Rayburn, 

1998), it has been suggested that, for the labour cost to be justified, the error in yield 

estimation must be less than 10% (Sanderson et al., 2001). In the present study, the average 

discrepancy in yield estimation between sampling methods was 4.0%, with 91.6% of date-

paddock combinations recording a discrepancy of 10% or below. Thus, most of the time, 

information gained from diagonal-transect sampling was largely comparable to that gained 

from W-transect sampling. 

A multitude of factors are known to be limiting the uptake of precision agriculture 

technologies — the most noteworthy of these barriers include; a lack of confidence in 

measurement accuracy (Eastwood, Dela Rue, & Kerslake, 2020), a low perceived value 

associated with data (Eastwood & Dela Rue, 2020; Kasemi, Lammer, & Vincze, 2022; 

Palma-Molina et al., 2023) and broader social factors such as peer recommendations, practice 

awareness and existing skills and knowledge (Kuehne et al., 2017; van den Pol-van 

Dasselaar, Hennessy, & Isselstein, 2020). Alongside these factors, the perceived time and 

cost requirements of accurate pasture measurements are considered to be the greatest barrier 

specifically relating to HM measurement technology (Murphy et al., 2021). Thus, further 

improvements in labour efficiency are one of the foremost reasons that can reduce these 

barriers and influence uptake (Olaizola et al., 2008; Barnes et al., 2019a, 2019b). In the 

current study, Global Navigation Satellite System (GNSS) timestamps from RPM provided a 

reasonably accurate estimate of the time saved by walking a diagonal-transect rather than a 

W-transect. On average, the diagonal walk resulted in a 51.2% reduction in time, requiring 

1.2 min/ha rather than 2.5 min/ha across seven paddocks of different sizes and shapes. If a 

100-ha grazing platform is sampled weekly with a paid labour cost of £10/hr, this would 

result in an estimated annual saving of £1,128. 
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Even in the improbable event that diagonal-transect sampling reduces the estimation 

accuracy, imperfect information on HM often results in a substantially greater resource use 

efficiency when compared to no information at all. For example, a recent study demonstrated 

that the possession of HM estimates with an average measurement error of 15% would 

increase the farm profitability by £197/ha (Beukes et al., 2019). Elsewhere, studies have also 

established a strong causal link between the measurement of pasture cover and dry matter 

production and pasture utilisation (Hanrahan et al., 2017; Murphy et al., 2020) and, 

separately, between pasture utilisation and farm profit per hectare (Dillon, 2011; Mayne and 

Bailey, 2016). 

Notwithstanding, care should be taken before extending the study results to a general 

recommendation across temperate grasslands, as the spatial structure that governs the HM 

distribution is influenced by many and often unobservable factors. As a case in point, RPM 

readings from diagonal-transects on paddock 7 consistently overestimated HM by ~110kg 

DM/ha and the reason for this tendency remained unidentified following the regression 

analysis. Here, a closer look at the field shape revealed that a large proportion of the ‘natural’ 

W-transect on paddock 7 is drawn parallel to a fence line, in a region where pasture cover is 

generally lower due to livestock frequently gathering near the boundary (Figure 7). The 

observed ‘over-estimation’ in this instance, therefore, is likely to be a consequence of an 

underestimated HM under the W-transect. At the practical level, however, such an error may 

only have a negligible overall impact in many instances. This is because many decisions 

made by grassland managers are targeted at the whole-farm or grazing platform scale (Gibon, 

2005; Shalloo et al., 2018) and, as a result, the relative impact of a discrepancy occurring on a 

single paddock would often be diluted when all readings are considered collectively. As 

measuring HM at the whole-farm scale is a particularly labour-intensive task, this further 

supports the use of more time-efficient methods to reduce labour requirements.   

 

Limitations of the inter-transect comparison 

A limitation of this study revolves around the capture of spatial effects and the utilisation of 

these effects into the statistical analyses (e.g., Goovaerts, 2001). Given resource constraints, 

this study focused on sampling over time (with diagonal- and W-transects) rather than over 

space (say, with grid sampling), meaning that spatial effects would not be adequately 

captured at each weekly time point. Sampling over finer spatial resolutions, ideally on some 

regular grid, would have led to not only fewer observations over time but also to fewer 

paddocks covered by the study. This, in turn, would have inhibited generalisation of results 

 

 

 

https://doi.org/10.1017/S0021859625100282 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859625100282


 

due to the individual characteristics of each paddock (e.g. size, soil, topography and historic 

management) and the temporal changes in weather and pasture management, likely leading to 

the findings being less compelling — and thus the proposed technology less attractive — to 

farmers. 

As a study designed to assist a large proportion of livestock farms where no HM data 

are currently recorded, the more ‘approachable’ strategy employed in this study is thought to 

have provided the best attainable balance between the cost and benefit of information from 

the study. That said, a complementary spatial statistical analysis to test the robustness of the 

results reported above, with caveats due to the temporal focus of this study’s sample design, 

is presented in the Supplementary Material. Caveats aside, the results from the spatial 

analysis corroborate the study’s main findings. Future work should investigate this spatial 

limitation in more detail, possibly combined with remote sensing technologies described 

below. 

 

Alternative technologies 

Advances in technology have driven the emergence of new techniques which complement, 

and could eventually replace, the RPM as a means of measuring HM (Furnitto, Ramírez-

Cuesta, Intrigliolo, Todde, & Failla, 2025). Satellite remote sensing, both visible/infrared- 

and radar-based, can provide timely and accurate data for informing management decisions in 

a semi-automated fashion (Atzberger, 2013) and is of particularly high economic value when 

large areas are studied (Reinermann et al., 2020). While poor spatial resolution limits its use 

for accurate monitoring of forage utilisation short-term, this issue is progressively being 

addressed in the industry (Gillan et al., 2019). This, in turn, is making the technique 

particularly attractive in marginal and upland areas (FAO, 2011) where physically measuring 

HM is practically challenging, excessively time consuming and ultimately inaccurate 

(Hutchinson et al., 2016). 

Alternatively, the use of unmanned aerial vehicles (UAVs or ‘drones’) has also 

increased in popularity over recent years (Alvarez-Hess et al., 2021; Théau et al., 2021). 

UAVs provide a number of advantages over satellites (and piloted aircrafts), as they are 

relatively low-cost and safe, can be deployed quickly and repeatedly and can provide data at a 

higher resolution (Rango et al., 2009). UAVs also provide some advantages over on-field 

approaches, as they are less time consuming (Michez et al., 2019) and, once initial model 

training is complete, often provide more accurate results than the RPM (Michez et al., 2020). 

However, due to the requirements of stable weather and environmental conditions (Von 
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Bueren et al., 2015), high initial costs (Poley and McDermid, 2020), a lack of awareness and 

technical knowledge (Chouhan, Patel, Singh, & Tejani, 2025), strict aviation regulations and 

unintuitive calibration processes, interest from farmers in this technology has been 

surprisingly underwhelming. Ultimately, an understanding of the spatial structure of HM for 

a given paddock can help determine when a simple ground method via an RPM diagonal 

transect is sufficient (i.e., when spatial structure is weak), and when higher-resolution sensing 

tools are warranted (i.e., when spatial structure is strong). 

Alongside the above limitations, the pasture walk required for use of the RPM 

technique allows producers to conduct further visual assessments to support more nuanced 

management decisions – assessments which are not currently feasible through the use of 

UAVs. These contextual cues can include visual soil assessments (VSAs) to identify 

poaching or soil structure degradation (Davies & Armstrong, 1986), observations of weed 

species prevalence to support decisions on the use of weed control (Andújar, Ribeiro, 

Carmona, Fernández-Quintanilla, & Dorado, 2010), and identification of grazing behaviours 

to identify areas of preferential grazing, such as those observed within the current study on 

paddock 7 (Howery, Cibils, & Anderson, 2013).   

Combined together, rudimentary approaches more accessible to farmers are likely to 

stay as a primary method of HM estimation on the majority of small-to-medium scale 

commercial farms, at least for the foreseeable future. 

 

Conclusions 

The presented study has found that the diagonal-transect RPM sampling does not 

compromise the accuracy of HM estimation while saving labour input by ~50% compared to 

the W-transect RPM sampling in the majority of cases, offering an immediate practical 

insight for pasture management and associated knowledge dissemination programmes. 

Furthermore, as many grazing management decisions are made at the farm-scale, any minor 

discrepancies caused through use of the diagonal method are likely to be offset when all 

paddock readings are aggregated. Although the findings of the current study cannot yet be 

extrapolated to more varied types of pasture swards (such as tropical grasses), the simplified 

diagonal-transect is likely to encourage uptake of the RPM technique, particularly by 

grassland managers who do not formally measure HM, and instead currently rely on visual 

assessment. As a next step, future studies could convert UAV and satellite imageries into 

indicators of HM, complemented by ground-truth grid-based RPM sampling, to develop 

universally optimal space-time RPM sampling strategies and thereby further improve the 
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cost-accuracy ratio under different weather patterns, field configurations and management 

conditions. 
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Table 1. Description of paddock data for 2019 grazing season 

 Paddock name 

 Longlands 

South 

Dairy 

North 

Golden 

Rove 

Orchard Dean 

South 

Orchard Dean 

North 

Burrows Bottom 

Burrows 

Description        

Paddock code 1 2 3 4 5 6 7 

Area (ha) 1.7 1.8 3.9 3.9 2.5 6.4 1.3 

Elevation (m) 161.88 160.04 172.26 160.02 160.02 157.91 143.53 

Average slope 

(deg.) 

4.17 6.23 5.65 6.99 6.99 6.92 3.49 

Usage        

Sheep        

Cattle        

Silage        

Soil Parameters*        

Total C (%w/w) 4.65 5.93 5.78 6.1 6.35 5.78 5.36 

Total N (%w/w) 0.48 0.63 0.58 0.6 0.64 0.51 0.57 

Total P (mg/kg) 1475 1633 1547 1482 1552 1383 1425 

Average stocking rate (LU/ha)       

Sheep 1.16 1.78 0.49 0.09 0.1 0.03 0.8 

Cattle 0 0 0.15 0.64 0.25 0.89 0.3 

Combined 1.16 1.78 0.64 0.73 0.35 0.92 1.1 

Silaged area (ha)        

First cut 0 0 3.77 3.84 2.47 0 0 

Second cut 0 0 1.93 0 0 6.4 1.3 

Season total 0 0 5.7 3.84 2.47 6.4 1.3 

C, carbon; N, nitrogen; P, phosphorus; LU, livestock unit 

*Values are an average of four samples per paddock, taken at 3-monthly intervals during 2019 
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Table 2. Paddocks and dates used for analysis shown with seasonal pasture cover 

 

a – GNSS data unavailable 

b – GNSS data available, used for analysis within supplementary material 

*Data unavailable due to farmyard manure application 

 

Paddock name

(1) Longlands  South a a a a a a ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab

(2) Dairy North a a a a a a ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab

(3) Golden Rove a a a a a a ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab

(4) Orchard Dean Southa a a a a a ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab * ab ab ab ab

(5) Orchard Dean North a a a a a a ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab

(6) Burrows a a a a a a ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab

(7) Bottom Burrows a a a a a a ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab

Table 2. Paddocks and dates used for analysis shown with seasonal pasture cover

* Data unavai lable due to FYM appl ication

a - GNSS data unavai lable

b - GNSS data avai lable, used for analys is  within supplementary materia l

March April May June July August September October

Low pasture cover High pasture cover
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Table 3. Description of covariates used for linear modelling 

Description Unit Time-specific Paddock specific 

Average pasture cover of paddock
*
 kg DM/ha   

Sheep stocking rate
†
 LU/ha   

Cattle stocking rate
†
 LU/ha   

Nitrogen application
†
 kg/ha   

DTM (elevation) m   

Slope °   

Soil C %w/w   

Soil N %w/w   

Soil P mg/kg   

Herbage C %w/w   

Herbage N %w/w   

Precipitation
‡ 

mm   

Air temperature
†
 °C   

Relative humidity
†
 %   

Wind speed
†
 km/h   

Solar radiation
†
 W/m

2 
  

DM, dry matter; LU, livestock units; DTM, digital terrain model; C, carbon; N, nitrogen; P, 

phosphorus 

*
according to W-transect sampling 

†
mean of two weeks prior to individual pasture measurement 

‡
total of two weeks prior to individual pasture measurement 
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Table 4. Coefficients of regression models investigating differences in pasture cover between technologies 

 Absolute difference Relative difference 

Covariates (1)
†
 (2) (3) (4) 

Paddock Code 2
‡
  15.137 (24.55)  59.375 (36.56) 

Paddock Code 3  -4.5 (24.88)  32.954 (37.06) 

Paddock Code 4  4.473 (26.6)  61.828 (39.62) 

Paddock Code 5  -4.898 (27.31)  -14.262 (40.68) 

Paddock Code 6  9.731 (26.66)  -28.689 (39.7) 

Paddock Code 7  10.726 (23.87)  108.337 (35.56) 

** 

Average pasture cover of 

paddock 

0.062 (0.01) *** 0.062 (0.01) 

*** 

-0.039 (0.02) * -0.039 (0.02) * 

Sheep stocking rate -0.667 (9.84) -2.092 (10.09) -24.479 (14.86) -32.831 (15.03) * 

Cattle stocking rate -7.069 (7.05) -6.369 (7.14) -23.985 (10.65) * -19.881 (10.64) . 

Precipitation 0.485 (0.45) 0.487 (0.45) -0.03 (0.68) -0.02 (0.67) 

Air temperature 0.189 (2.79) 0.288 (2.79) 1.841 (4.21) 2.42 (4.16) 

Relative humidity 2.389 (1.74) 2.417 (1.74) 1.028 (2.63) 1.189 (2.6) 

Wind speed -2.507 (3.19) -2.543 (3.19) -2.115 (4.81) -2.325 (4.75) 

Solar radiation 0.395 (0.22) . 0.396 (0.22) . 0.254 (0.33) 0.255 (0.33) 

Nitrogen application -2.813 (5.44) -2.293 (5.51) -0.318 (8.22) 2.732 (8.2) 

DTM -1.313 (1.84)  1.31 (2.78)  

Soil carbon 26.571 (100.38)  -112.477 (151.6)  

Soil phosphorus 0.14 (0.38)  -0.625 (0.57)  

Soil nitrogen -318.157 

(914.49) 

 1814.693 

(1381.11) 

 

Slope -1.395 (19.71)  -4.68 (29.76)  

Significance codes: *** p < 0.001; ** p < 0.01; * p < 0.05; . p < 0.1 

Standard error shown in parentheses. 
†
Four models were tested, two considering paddock-level factors (1 & 3), and two considering paddock itself as a fixed effect (2 & 4). 

Dependent variable was absolute difference (1 & 2) and relative difference (3 & 4) in pasture cover between the two sampling methods. 
‡
Paddock code 1 (Longlands South) was used as the reference factor level. 
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Figure 1. Soil map of the North Wyke Farm Platform (NWFP). Pasture measurements for 

this study were taken from labelled paddocks, all of which belong to the permanent pasture 

treatment. 
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Figure 2. Schematic example of pasture walk patterns from paddock 3 (Golden Rove). 

Weekly pasture readings were taken using diagonal-transect (a) and W-transect (b) sampling 

methods. Background imagery courtesy of Google Earth. 
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Figure 3. Panel A shows environmental conditions affecting pasture growth throughout the season: Total weekly rainfall, average weekly 

temperature and solar radiation. Panels B to H show the impact of field events on changes in pasture cover over the 2019 grazing season across 

the seven study paddocks: B – Longlands South (1), C – Dairy North (2), D – Golden Rove (3), E – Orchard Dean South (4), F – Orchard Dean 

North (5), G – Burrows (6) and H – Bottom Burrows (7). Corresponding pasture cover estimations using both diagonal and W pattern sampling 

methods are also displayed on plots B to H. On paddocks four and five, readings were not taken for two consecutive weeks following application 

of farmyard manure (FYM, brown dotted line). 
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Figure 3.  continued 
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Figure 4. Histograms for difference between diagonal and W pattern sampling methods across all paddocks and sampling events, measured in 

kg DM/ha (DM = dry matter). Relative difference in methods (right) were calculated by subtracting W pattern readings from diagonal readings, 

i.e. positive differences indicate diagonal method overestimation. 
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Figure 5. Absolute and relative difference in pasture cover estimation between W pattern and diagonal walking patterns, within each paddock. 

Paddock codes: Longlands South (1), Dairy North (2), Golden Rove (3), Orchard Dean South (4), Orchard Dean North (5), Burrows (6) and 

Bottom Burrows (7). Paddock characteristics are listed in Table 1. 
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Figure 6. Histograms for relative difference between diagonal and W pattern sampling methods across all paddocks and sampling events, 

measured in kg DM/ha (DM = dry matter). When divided into three groups based on pasture cover, low, mid and high from left to right, mid and 

high pasture covers show a normally distributed difference. Low pasture covers are left-skewed, suggesting a higher probability of diagonal 

method overestimating on low pasture covers. 
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Figure 7. Section of W pattern rising plate meter (RPM) walk running alongside field margin 

in paddock 7 (Bottom Burrows). 
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