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 A B S T R A C T

The concentrations of available phosphorus (P) and potassium (K) in soil can be estimated by soil spectroscopy, 
and with sufficient sampling can be mapped to guide farmers to apply fertilizer at variable rates. Mapping 
errors arise from both spatial variation and calibration of the spectra against chemically determined concen-
trations. We aimed to develop a loss-function framework to explore how sizes of sample sets and calibration 
sets affect the likely profitability of variable-rate applications of P and K fertilizers. We demonstrate the 
approach through simulation. Based on our previous observations of variation in P and K from four fields in 
Cambridgeshire, England, we generated 100 realizations of P and K in each field using geostatistical simulation. 
We did so with various combinations of sizes of total sample and calibration set. For each such sample 
we assigned various proportions for calibration on which notionally both soil spectroscopy and chemical 
concentrations were determined. Knowing the costs for labour in the field for sampling, the preparation of 
soil in the laboratory, the spectroscopy, chemical analysis and amortization of equipment, we estimated the 
costs of acquiring data. Set against these were the costs of error, i.e. of uncertainty, in the final predictions by 
kriging arising from calibration error and spatial variation. For each combination we computed the fertilizer 
required to minimize the expected loss associated with predictions, where the expected loss is the difference 
in profit between applying fertilizer for the estimated concentrations of P and K and their true concentrations. 
The size of the calibration set outweighed the effect of total sample size on the uncertainty associated with 
predictions. Equally, for the same size of calibration set, there were large differences in the kriging variances 
between total sample sizes. When the costs of acquiring data were disregarded, the expected loss for available 
P was strongly affected by the total sample size. For available K, the effect of the size of the calibration sample 
dominated the expected loss. The expected loss showed diminishing returns with increasing sample size. None 
of the sample sizes considered would result in a financial gain: spectroscopy needs to become cheaper for it 
to be cost-effective for variable-rate applications of P and K fertilizer.
1. Introduction

Modern farmers are keen to vary their application of fertilizer in 
accord with the spatial variation of plant nutrients in the soil within 
individual fields. They or their advisers cannot measure the nutrient 
concentrations everywhere, however: they must rely on measurements 
from finite numbers of locations, which may then be used to estimate 
the concentrations everywhere else by some form of interpolation. 
Kriging is now well-established as best practice for the interpolation; 
it provides unbiased predictions with minimal error variances, which 
themselves are estimated. A kriged prediction is a weighted average of 
observed values for a variable with weights determined from a model 
of spatial covariance. That model must also be obtained from sample 
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data, and we know from a great deal of experience that samples of 100 
or more are required for reliable models, though this number depends 
to some extent on the underlying complexity of the soil variation and 
its geographical scale (Webster and Oliver, 1992; Lark, 2000). Given 
the costs and time expenditure of traditional soil analyses, the number 
of samples required for kriging is often impractical.

One way to cut costs is to replace the traditional methods of 
soil analysis by cheaper spectroscopy of soil samples, either in the 
laboratory or in the field. There have been much research and many 
successful applications of spectroscopy to determine chemical, physical 
and biological properties of soil (Guerrero et al., 2010; Viscarra Rossel 
et al., 2022). They are motivated not only by spectroscopy’s being 
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cheaper than traditional laboratory methods but also because it is non-
destructive (in the case of in-situ measurements), requires no hazardous 
chemicals and can predict multiple soil properties from a single mea-
surement (Viscarra Rossel et al., 2006). Spectroscopy enables one to 
predict soil properties in a cost-effective way, to process more samples 
than by traditional methods and thereby to obtain more information 
about the soil and its variation.

To predict a soil property by spectroscopy the spectra must be 
calibrated. The spectra of representative subsets of samples are related 
to the measurements obtained by wet chemical analysis on representa-
tive subsets of samples by statistical models (known as the calibration 
models and typically some form of regression). The calibration models 
are then used to predict the values for all members of the population 
of interest. Such a model is subject to uncertainty, however, and it 
can be biased. For both accurate and precise predictions, a calibration 
set that covers the ranges of the properties concerned is essential 
(Viscarra Rossel et al., 2011; Schmidt et al., 2014). Otherwise the 
models obtained are likely to be unstable and lead to biased estimates 
(Bellon-Maurel and McBratney, 2011). In general, the more samples of 
soil used for calibration the less will be the uncertainty of predictions, 
though the cost will be greater.

The two sources of uncertainty described above (kriging error and 
calibration error) can usually be reduced by an increase in sampling. 
The kriging error can be reduced by denser sampling. The calibration 
error can be reduced by an increase in the size of the calibration 
sample. The sampling itself constitutes a large part of the cost of a 
survey by soil spectroscopy in addition to the cost of the chemical 
analysis of the calibration samples (de Gruijter et al., 2018). According 
to Viscarra Rossel et al. (2011), most of the published literature on soil 
spectroscopy considers sampling designs of either geographical space 
or feature space but not both. Exceptions are the papers by Minasny 
et al. (2007), de Gruijter et al. (2010, 2018), Adamchuk et al. (2008, 
2011), Shaw et al. (2016) and Behrens et al. (2024). Of these only de 
Gruijter et al. (2018) and Shaw et al. (2016) take into account the value 
of reducing uncertainty against the costs of sampling.

The notion of setting the cost against the accuracy of survey is 
not new: Yates (1981), in the first edition of his book published in 
1949, provided an equation relating the expected loss in accuracy to 
the sampling effort. This equation allows one to determine the sampling 
effort required to minimize the expected financial loss arising from the 
sampling. It is referred to as an ‘expectation’ because the estimate itself 
has an associated probability distribution. Lark and Knights (2015) 
developed concept. They described the expected loss by a function 
for the costs incurred from decisions based on an estimated value, 
given its deviation from the true value. They noted that in general 
the loss function is asymmetric because the consequences of over- and 
under-estimation differ in kind and magnitude. Depending on the loss 
function’s asymmetry, there might be a slight preference towards either 
over- or under-estimation. Consequently, the optimum value might not 
be equivalent to the largest expected financial gain.

Our aim is to develop a loss-function framework to explore how 
sizes of sample sets and calibration sets affect the likely profitability 
of variable-rate applications of P and K fertilizers based on soil spectral 
predictions, and to demonstrate this approach. To quantify the expected 
losses associated with using uncertain information, we must know the 
true underlying variation of the plant nutrients in the fields. This is not 
feasible in practice, and so we turn to in-silico experiment. Firstly, we 
simulate the underlying variation in the fields, by geostatistical simula-
tion. This method is used to generate multiple, equally probable spatial 
representations (or realizations) of a variable based on limited sample 
data and statistical models of spatial continuity (e.g. variograms). For 
each realization, we then simulate the process of sampling in those 
fields and the subsequent decision making about variable-rate fertilizer 
application. We consider two possible financial losses in this context: 
(1) the loss in crop yield because too little fertilizer is applied and 
(2) the unnecessary cost of applying too much fertilizer. We quantify 
2 
the uncertainty in the estimates of available P and K from spectra for 
several sizes of calibration samples and total samples for mapping. We 
then investigate the effect of this uncertainty on decision-making for 
fertilizer application within the framework of the loss function. We 
aimed to answer the following questions.

• How does total sample size and total number of calibration sam-
ples affect prediction accuracy?

• How does total sample size and total number of calibration sam-
ples affect expected loss when sampling costs are not accounted 
for?

• How does total sample size and total number of calibration sam-
ples affect expected profit when sampling costs are accounted 
for?

2. Methods

We aimed to simulate the process of sampling across a field to 
predict the soil properties from spectral measurements. In summary, 
our procedure was a follows. First, we took data on spectroscopic and 
analytical measurements of P and K from several fields in the Fen 
district of the UK (Breure et al., 2021, 2022), and estimated covariance 
structures (Fig.  1a). Based on these covariance structures, we simulated 
random realizations of the variation in nutrients in our in-silico fields 
(Fig.  1b). We then selected a subset of size 𝑁t from each realization as 
if we were sampling an actual field. We then chose a subsample from 
the 𝑁t of size 𝑛c as a calibration set. For each calibration there is an 
error which we assume to be normally distributed (Fig.  1c). We sampled 
from this distribution and added this error to the P and K values (Fig. 
1d). Having simulated the acquisition of the concentrations of P and 
K, we predicted the spatial variation in P and K from punctual spectral 
measurements to guide fertilizer management (Fig.  1e). We then used 
dose–response curves to calculate the amount of fertilizer to apply, 
both on the prediction (𝐹0) and the prediction and its variance (𝐹opt) 
(Fig.  1f). We quantified the expected loss due to applying fertilizer 
from spectroscopy estimates compared with the theoretical optimum 
fertilizer (based on the true P and K concentrations as simulated) (Fig. 
1 g). We then subtracted the expected profit associated with precise 
fertilizer application from spectroscopy estimates with the costs of the 
data acquisition (Fig.  1h).

2.1. Study area, sampling, wet chemistry analysis and spectroscopy

Our study is based on data obtained in sample surveys of three 
fields in the Fen district of Cambridgeshire, England, in 2018 and 
2019 (Breure et al., 2021). The region was originally dominated by 
peat, much of which has oxidized since the land was drained in the 
17th century. Now the underlying alluvial and marine deposits have 
become exposed revealing complex patterns of soil variation within 
fields (Hodge et al., 1984).

To characterize the variation in P and K we took soil samples 
from across each field. Breure et al. (2021) describe in detail the 
sampling designs, the wet chemical analysis, the spectroscopy and the 
calibration. Here we summarize them briefly. The sampling design of 
Field 1 (8.2 ha) was based around a 30-m square grid, with three 
transects (on alternate rows of the grid) more intensely sampled at 6-m 
intervals. The designs for Field 2 (16.9 ha), Field 3 (5.1 ha) and Field 4 
(8.9 ha) were computed by spatial coverage sampling (Walvoort et al., 
2010). From these initial points we selected a subset with balanced 
sampling (Grafström and Lisic, 2019) on the spatial coordinates and 
elevation (measured by LiDAR). The number of samples in this subset 
was 36 for Field 2 and 32 for Field 3. At each location of these sub-
samples, we added another sampling point 6 m away at a random 
orientation to estimate the short-range spatial variance.
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Fig. 1. Flow chart that specifies the data source and various methodological steps.
Spectra were taken on each of the soil samples. They comprised 
near-infrared (NIR) and mid-infrared (MIR) measurements with a Ten-
sor II spectrometer (Bruker, Ettlingen, Germany), and X-ray fluores-
cence (XRF) spectra, measured by a DP-6000 Delta Premium portable 
X-ray fluorescence (pXRF) spectrometer (Olympus Ltd, Center Val-
ley, USA). Available P and K do not have direct absorption features 
in the NIR region. In the MIR region, phosphates show distinct ab-
sorption bands related to the phosphate group, specifically around 
1100–1000 cm−1 (P–O stretching) and 600–500 cm−1 (bending modes). 
However, available P and K can be predicted to some extent due to 
their relationship to other soil components that have distinct absorption 
features in the NIR and MIR region, such as clay minerals (Soriano-Disla 
et al., 2013). In the XRF region, potassium exhibits emission lines at 
3.31 keV and 3.59 keV, and phosphorus at approximately 2.01 keV and 
2.14 keV. These emission lines refer to the total element concentrations 
but can be calibrated to available nutrient content (Breure et al., 
2022). The pXRF samples where measured in three replicates of each 
soil sample, near- and mid-infrared spectra were measured on three 
replicate subsamples of each soil sample. Further analysis was done 
on the mean spectra of the three measurements. The raw spectra were 
pre-processed with a Savitzky–Golay filter (Savitzky and Golay, 1964) 
and then transformed to their first derivatives. To predict a variable 
from soil spectra, we developed a calibration model by regression of 
the spectra (using partial least squares regression) on wet chemistry 
measurements made on a subset of the soil cores (for details see Breure 
et al., 2021). In each field we selected 30 locations to be measured by 
wet chemistry using a balanced sampling approach on the coordinates 
and elevation (from LiDAR). These samples measured by wet chemistry 
comprised our calibration set (𝑛 = 120).

2.2. Geostatistics of available P and K

The nutrient predictions from spectroscopy were then used to inter-
polate available P and K across the fields, see Breure et al. (2021) for a 
detailed description. Briefly, we fitted a linear mixed model to the data 
with the trend factors as fixed effects and the spatial autocorrelation 
captured in the random term (see Lark and Cullis, 2004). The autocor-
relation in the random term seemed to be well described by either an 
exponential or spherical variogram, one of which had to be selected a 
priori. We compared the two by log-likelihood ratio testing.
3 
Table 1
Fixed effects and parameters estimated by reml of the exponential variograms, 
L stands for LiDAR (elevation), and 𝑥1 and 𝑥2 are the spatial coordinates. The 
variogram parameters are the nugget variance (𝑐0) the sill (𝑐1) and the range 
(𝑎) respectively.
 Field Soil property Fixed effects Variogram parameters
 𝑐0 𝑐1 𝑎  
 1 P/mg kg−1 𝑥1, 𝑥2, 𝑥21, 𝑥22, 𝑥1𝑥2 17 67 50  
 K/mg kg−1 𝑥1, 𝑥2, 𝑥21, 𝑥22, 𝑥1𝑥2 2930 1942 40  
 2 P/mg kg−1 L, 𝑥1, 𝑥2 13 57 39  
 K/mg kg−1 L, 𝑥1, 𝑥2 3337 4917 32  
 3 P/mg kg−1 L, 𝑥1, 𝑥2, 𝑥21, 𝑥22, 𝑥1𝑥2 22 40 30  
 log(K/mg kg−1) L, 𝑥1, 𝑥2, 𝑥21, 𝑥22, 𝑥1𝑥2 0.023 0.097 6.62 
 4 P/mg kg−1 L 30 125 14  
 K/mg kg−1 𝑥1, 𝑥2, 𝑥21, 𝑥22, 𝑥1𝑥2 260 2473 12  

To test the significance of the coordinates (eastings, northings and 
an interaction term) and elevation as trend parameters, we added 
each in turn and did a log-likelihood ratio-test. We fitted models for 
the variograms by Maximum Likelihood to allow for the comparison 
between models with a different number of fixed effect parameters. A 
chi-squared 𝑝-value of 0.05 from the log-likelihood ratio was taken as 
significant evidence that the trend parameters should be included. Once 
we had chosen a final set of fixed effects, both the fixed and random 
effects (variogram parameters) were estimated by residual maximum 
likelihood (reml). Statisticians generally prefer reml because it reduces 
bias in the random effect parameters caused by uncertainty in the fixed 
effect parameters Lark et al., 2006. The estimates of the random- and 
fixed-effect parameters are listed in Table  1.

To produce simulated fields we approximated more realistic varia-
tions of available P and K by simulating unconditional Gaussian random 
fields (uGRFs). As we were concerned with simulating variations of P 
and K that could be feasibly found in agricultural fields, but not specif-
ically the ones we had physically sampled, we did not condition the 
simulations on the measured data (see Webster and Oliver, 2007). Thus, 
for simulating uGRFs, we had to characterize the covariance structure 
in each field, which were based on the variogram parameters listed in 
Table  1. To comply with computational limitations we resampled the 
rasters from Breure et al. (2022) to a raster cell resolution of 4 m ×
4 m. We used Cholesky decomposition to define the square root of the 
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covariance matrix. We restricted the uGRFs to positive values by re-
simulating grid cells if the values were less than or equal to 0. We 
simulated 100 uGRFs for each field. We considered these simulated 
data the underlying true available P and K values, denoted 𝑆, at given 
locations.

2.3. Estimating the error from the calibration regression for different num-
bers of calibration samples

To quantify the uncertainties related to the calibration we formu-
lated an equation that described the prediction error variance as a 
function of the number of calibration samples (𝑛c). We followed the 
same methodology as in Breure et al. (2022) for calibration. Given that 
we had rather few samples within each field with wet chemistry data, 
we pooled samples for all four fields for calibration. The pooled set 
(𝑛 = 120) was used to select calibration samples by the conventional 
method for the Kennard–Stone algorithm on a matrix of combined 
NIR, MIR and XRF soil spectra. This method allows one to select 
samples with a uniform distribution over the predictor space based 
on their Euclidean distances (Kennard and Stone, 1969). The number 
of calibration samples varied from 15 to 75% of the samples. The 
minimum calibration set size considered was 18 samples, given that 
we evaluated a maximum of 15 components in the partial least squares 
regression; see Breure et al. (2022) for further details. We used the 
calibration dataset for predicting the remaining validation set. For each 
bootstrap simulation we computed the mean-squared error (MSE), and 
the average MSE was used as an accuracy metric to describe the error 
variance, denoted by 𝜎2𝑛c , where 𝑛c stands for the number of samples in 
the calibration set.

2.4. Procedure to compute kriging predictions for different sample sizes from 
in-silico fields

We selected sampling points for spectral measurements of P and K 
in the field. For this we computed a spatial coverage sampling design 
for 𝑁t samples. A spatial coverage design allows sample locations 
to be evenly spread across the domain of interest to minimize the 
maximum interpolation error (Webster and Oliver, 2007). To obtain 
robust estimates of the variation at shorter distances one should sample 
at locations closer apart than the maximum range at which the variable 
is spatially correlated. We therefore selected a subset of 20 locations 
by balanced sampling on the eastings, northings and LiDAR and an 
additional sample point added 6 m away from each in a random 
direction. At each in-silico sample location we assumed that the variable 
is predicted from spectroscopy. To account for the associated calibra-
tion error, we sampled from the normal distribution Norm(0, 𝜎𝑛c ) and 
added that to the simulated true value of the soil to give our observed 
predicted value. These observed values were then kriged as follows.

Visual inspection is unsuitable for the number of variograms to 
be estimated within our analysis (𝑛 = 800). We therefore took the 
following approach to obtain initial estimates of the parameters for an 
exponential variogram. First, we took the outermost locations of the 
spatial coverage sampling design as the bounding box (i.e. approxi-
mating the boundaries of the agricultural field). The initial estimate 
of the distance parameter (a) was one tenth of the diagonal of the 
bounding box. We used half the diagonal as the maximum distance for 
the experimental variogram. Second, we computed the omnidirectional 
sample variogram using the method of moments (Webster and Oliver, 
2007). The minimum of the experimental variogram’s semivariance was 
taken as the initial estimate for the nugget parameter (𝑐0). The mean 
value of the median and maximum semivariance was used as the initial 
estimate of the sill parameter (𝑐1). The variogram parameters were 
then estimated by reml. Where the estimated nugget parameter was less 
than the known error from calibration, 𝜎2𝑛c  the model was refitted with 
𝑐0 = 𝜎2𝑛c ; similarly 𝑐0 was restricted so as not to be less than zero. The 
variogram model was then used for ordinary punctual kriging. Once 
we obtained the kriging predictions and their error variances at each 
location, we added back the trend to the predictions.
4 
2.5. The loss function and variable costs of the data acquisition

We quantified the effect of error in the estimates of P and K by a 
loss function, 𝐿(𝐹 , 𝑆), for a given application of fertilizer, 𝐹 , which is 
defined as the difference in profit that results from applying a given 
amount of fertilizer 𝐹  compared with an economically optimal amount 
of fertilizer 𝐹0: 

𝐿(𝐹 , 𝑆) = 𝛷(𝐹0) −𝛷(𝐹 ) , (1)

where the profit 𝛷(𝐹 ) is the difference between the income from the 
crop (price of the crop × yield) and the cost of the fertilizer: 
𝛷(𝐹 ) = 𝑀 × Yield − 𝑉 × 𝐹 , (2)

where 𝑀 is the price of the crop (in £ t−1) and 𝑉  is the cost of the 
fertilizer (in £ kg−1).

Given our focus on precise fertilizer application, we assume that the 
yield is given by the dose–response equation: 
Yield = 𝛼 + 𝜂𝑅𝜉𝐹+𝑆 + 𝜈(𝜉𝐹 + 𝑆) , (3)

where 𝑆 is the concentration of the nutrient in the soil, 𝐹  is the applied 
fertilizer (kg ha−1), 𝜉 is the increase in nutrient concentration (mg kg−1) 
in the soil for every 1 kg ha−1 fertilizer applied, and 𝛼, 𝜂, 𝜈 and 
𝑅 are parameters. Eq.  (3) describes the generic dose–response curve 
function. The fields from our study were used to grow lettuce, and so 
we derived relevant dose–response curves from the literature for both 
P and K for this crop (Greenwood et al., 1980; Prasad et al., 1988). 
See Supplementary Fig. 1 for the fitted models, as used in Breure et al. 
(2022). We assumed that for every 1 kg of P added in fertilizer 0.18 kg 
becomes available to the crop (Muhammed et al., 2017), for every 1 kg 
of K added in fertilizer, 0.62 kg becomes available to the crop (Blake 
et al., 1999). Furthermore, we assumed that the added nutrients are 
contained in the top 25 cm of the soil (the sampling depth). We took 
from Milne et al. (2006) the value of 480 kg m−3 for bulk density of this 
peat soil. Given the support of our kriged predictions (4 m × 4 m), it 
follows that an addition of 1 kg fertilizer per ha leads to an increase 
in the concentration of this layer of 0.15 mg available P kg−1 and 
0.52 mg available K kg−1, equal to 𝜉 in the dose–response Eq. (3). 
Greenwood et al. (1980) listed a mean base nutrient concentration of 
69 mg available K kg−1 for the unfertilized soil in their study, which 
was used as an additive component. We assumed a profit margin (𝑀) 
of £90 per tonne of lettuce. The prices of fertilizer (𝑉 ) were taken as 
£0.36 per kg P fertilizer and £0.29 per kg K fertilizer.

We then calculated, from Eq.  (2), the economically optimum
amount of fertilizer, which is given by: 

𝐹0 = ln
(

𝐵∕𝜉 − 𝜈
𝜂𝑅𝑆 ln𝑅

)

∕𝜉 ln𝑅 , (4)

where 𝐵 = 𝑉 ∕𝑀 , known as the break-even ratio. By definition, the 
loss given by Eq.  (1) is zero when the optimum amount of fertilizer 
is applied. However, computing the optimum amount of fertilizer to 
apply relies on an exact estimate 𝑆̂, whereas predictions from kriging 
have an associated error distribution, described by 𝑔(𝑆, 𝜎s), where 𝜎s
equals the kriging variance. Given the error distribution, we computed 
the optimum fertilizer rate that maximizes the expected profit: 

𝐹opt = ln

(

𝐵∕𝜉 − 𝜈
𝜂 ln𝑅 ∫ ∞

0 𝑅𝑆𝑔(𝑆, 𝜎s)d𝑆

)

∕𝜉 ln𝑅 . (5)

The application of 𝐹opt minimizes the expected loss function,
E[𝐿(𝐹 , 𝑆̂)], which we define here as the difference between the profit 
where 𝑆 is known without error and the profit under the fertilizer 
application based on the kriged soil nutrient value, 𝑆̂. 
E[𝐿(𝐹 , 𝑆)] = 𝛷(𝐹0) −𝛷(𝐹 , 𝑆) . (6)

We computed E[𝐿(𝐹 , 𝑆)] for two scenarios. One where the fertilizer 
regime, 𝐹  given 𝑆̂ equals the application of 𝐹 , Eq. (4) and the second 
0
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Table 2
The costs associated with soil sampling in the field, spectroscopy and chemical 
analysis.
 Activity Cost per sample/£ 
 Field sampling 5.70  
 Sample processing and spectrometry 5.50  
 Sample preprocessing for wet chemistry 3.38  
 Wet chemical analysis for available K 14.70  
 Wet chemical analysis for available P 16.30  

where we account for the uncertainty in our estimate of 𝑆̂, and 𝐹  equals 
the application of 𝐹opt , Eq. (5).

The major constraints to accurate predictions are the costs of spec-
troscopy at the field scale. These include the costs of sieving, milling, 
weighing, wet chemistry for calibration and spectroscopy of the soil 
samples plus the sampling campaign itself. The costs of the total num-
ber of samples, 𝑁t , and the number of samples used in calibration, 𝑛c, 
were approximated as a simple linear function formulated by the costs 
of field sampling, spectroscopy, sample processing, sample handling 
and analytical measurements: 
𝐶(𝑁t , 𝑛c) = 𝛺𝑁t + 𝛿𝑛c . (7)

Table  2 summarizes the costs associated with the five main steps 
of data acquisition. They include sampling in the field at £5.70 per 
sample. The costs of spectroscopy consist of both milling and loading 
sample plates for the bench-top spectrometer at a rate of 60 samples 
for one full working day of a technician, and are included in the costs 
for the total number of samples (𝛺). Based on a salary of £135 per 
day this would be equivalent to £2.25 per sample. Given that the XRF 
spectrometry is a separate procedure, we doubled this value to £5.50. 
The costs associated with 𝑛c were approximated as a function of the 
sample handling (sieving and weighing) and the wet chemistry costs, 
denoted as 𝛿. Based on our experience of laboratory procedure, we 
assumed that sieving and weighing would take 20 min per sample (one 
working day for 40 samples to sieve and weigh), equivalent to £3.38 
per sample. The costs, again based on those in our laboratory at the 
time, of analysing available K by ammonium-nitrate extraction and ICP-
OES was estimated at £14.70 per sample. The analysis for available 
P by the Olsen method was estimated at £16.30 per sample. These 
prices were based on those of the analytical laboratory at Rothamsted 
Research at the time of analysis (2018–2019).

We expected that the sampling costs would exert a strong influence 
on the expected profit. We therefore applied a scaling factor to the 
costs of data acquisition, 𝐶(𝑁t , 𝑛c), to explore the degree to which 
sampling costs would need to diminish to make variable-rate fertilizer 
supported by spectroscopy financially viable. We iteratively applied a 
scaling factor to assess its effect on the expected profit. Based on this, 
we applied a scaling factor of 5%, 1% and 0.5% of the original costs of 
data acquisition.

3. Software

Analysis was done with base R commands and the following R 
packages as implemented in RStudio: data handling with the sf and 
tidyverse packages (Pebesma, 2018; Wickham et al., 2019), com-
putation of the sampling designs using the spcosa (Walvoort et al., 
2010), BalancedSampling (Grafström and Lisic, 2019) and SpatialEco 
(Evans, 2019) packages, spectral processing using prospectr (Stevens 
and Ramirez-Lopez, 2013), partial least squares regression using pls 
(Bjørn-Helge et al., 2019), Granger–Ramanathan averaging with Geom-
Comb (Weiss and Roetzer, 2016), model-based geostatistics with the 
geoR and georob packages (Ribeiro and Diggle, 2018; (Papritz, 2025)) 
and handling of spatial objects with the raster (Hijmans, 2020) and 
rgdal (Bivand et al., 2020) packages. Graphics were created with base 
R and the package ggplot2 (Wickham, 2016).
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Table 3
Parameters for the exponential equation that describes the error variance 𝜎2

𝑛c
as a function of the number of calibration samples (𝑛c) used in regression.
 Soil property 𝐴 𝑏 𝜔  
 Available P 3 1893 0.765 
 Available K 63 192211 0.768 

4. Results

4.1. Error variance as a function of the number of calibration samples

Based on the partial-least squares regression and its bootstrapped 
estimates, the relationship between the number of calibration samples 
and the associated error variance was described by a simple exponential 
function: 
𝜎2𝑛c = 𝐴 + 𝑏𝜔𝑛c , (8)

where 𝑛c is the number of calibration samples used for the regression, 
and 𝐴, 𝑏 and 𝜔 are model parameters.

For both available P and K the function reaches its asymptote after 
around 40 calibration samples. This function indicates a limit on the 
accuracy with which available P and K can be predicted (Fig.  2). Based 
on these results, we decided to test for the range in 𝑛c of 20 to 40 in 
steps of 5 in further steps in the analysis.

The estimated parameters for the exponential equations are given 
in Table  3.

4.2. Prediction uncertainty under several sample sizes

The kriging variance depends on sampling configuration and den-
sity, and it follows that increasing the density (and number) of samples 
should reduce the kriging variance. As expected for both available 
P and K, an increase in the number of calibration samples (𝑛c) was 
accompanied by a decrease in the median kriging variance (Fig.  3). For 
the total sample size (𝑁t) there was a similar trend in the kriging vari-
ance. For a given value of 𝑛c, the kriging variance is more accurately 
estimated once 𝑁t increases (there is less spread in the box-plots). The 
exception is available P for Field 4, where more often a pure nugget 
variogram was fitted.

Like the kriging variance, the estimated nugget parameter decreases 
as 𝑛c increases. The nugget variance as a function of 𝑁t exhibits 
different behaviour, however. For both P and K and across all fields, 
the variance of the estimated nugget parameter diminishes as the total 
sample size increases (𝑁t). That is, the distance between the 1st and 
3rd quantile in the box-plots narrows (see Fig.  4).

4.3. Expected loss without accounting for data acquisition costs

The mean expected loss (E[𝐿(𝐹opt )] / £ ha−1) decreased with in-
crease in sample size for Fields 1, 2 and 3, but the difference was 
significant only for P in Field 2. Even then, the relative changes in 
expected loss are small. There was no clear effect of the size of the 
calibration set, 𝑛c (Fig.  5).

Within our computation of (E[𝐿(𝐹opt )]) we accounted for the un-
certainty in the soil estimates. The probability distribution described 
by the kriging variance is integrated within the denominator of Eq. 
(5) to compute the optimum amount of fertilizer under uncertainty. 
Generally, accounting for uncertainty reduced the expected loss (com-
pared with E[𝐿(𝐹0)]), although the effect was small (Supplementary Fig. 
1). Furthermore, it shows that there is substantial variation between 
the simulations. For a given combination of 𝑁t and 𝑛c the box-plot 
values can be either positive or negative. This seems to depend on how 
well the spatial variation is characterized and thus how informative the 
uncertainty is. For example, for available P in Field 4 the uncertainty 
is unhelpful and leads to a larger expected loss (Supplementary Fig. 2).
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Fig. 2. Parameters for the exponential equation that describes the error variance 𝜎2
𝑛c
 as a function of the number of calibration samples (𝑛c) used in regression.
Fig. 3. Kriging variance (𝜎2
𝑘) distributions for the in-silico simulation results as a function of total sample size (𝑁t) and calibration sample size (𝑛c).
4.4. Expected profit when data acquisition costs are taken into account

For each field, the expected profit (𝛷(𝐹opt )/£ ha−1) from P and K 
fertilizer declines linearly as the size of sample increases (Fig.  6). The 
linear relation shows that the sampling costs predominate, Eq. (7), over 
the potential increases in profit based on the non-linear dose–response 
curve, Eq. (3). The slopes differ between fields because the overall 
sampling costs are spread over different areas (Field 2 is larger than 
Field 3). There is no variation in the expected profit as a function of 
different calibration set sizes, indicating that these make up a relatively 
small amount of the costs.

The last step in our analysis was to apply a scaling factor to the 
costs of data acquisition of both total and calibration sample size, 
6 
Eq. (7), to discover the cost at which implementation of spectroscopy 
would become financially viable. Fig.  7 shows the result in which the 
distribution of 𝛷(𝐹opt ) over the range of 𝑛c is plotted against total 
sample size (𝑁t). The results showed that for available P and K across 
all fields the cost of data acquisition would have to be less than 5% 
of their assumed value (Table  2) to eliminate the decline in, 𝛷(𝐹opt ), 
as function of 𝑁t . However, in the scenario of 0.5% of the current 
data acquisition costs, 𝐶(𝑁t , 𝑛c), sampling by spectroscopy leads to an 
increase in expected profit in only two cases, namely for available P 
in Field 2 and Field 4 (Fig.  7). In all other cases, the expected profit 
stabilized as a function of 𝑁t but did not lead to an increase. Last, we 
note that the ordinate in Fig.  7 does not start at 0, and indeed the effect 
of sampling on the expected profit is marginal.
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Fig. 4. Nugget variance (𝑐0) distributions for the in-silico simulation results as a function of total sample size (𝑁t) and calibration sample size (𝑛c).
Fig. 5. Expected loss, E[𝐿(𝐹opt )], distributions for the in-silico simulation results as a function of total sample size (𝑁t) and calibration sample size (𝑛c).
5. Discussion

5.1. Uncertainty in soil properties predicted from spectroscopy at the field-
scale

Our analysis showed that the number of calibration samples has a 
large effect on the kriging variance. In some cases, the kriging variance 
was less sensitive to total sample size for the range of sample sizes we 
selected. These findings contrast with those of Brodský et al. (2013) and 
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Viscarra Rossel et al. (2016) who found the contribution of the errors 
from the spectroscopic modelling to be smaller than those from the 
spatial variation. Those results were for the prediction of soil organic 
carbon, which has distinct spectral features in the infrared region of the 
spectrum (Kuang et al., 2012) unlike those for available P and K (except 
for the total P and K content measured by XRF). Ramirez-Lopez et al. 
(2019) propagated the calibration error through in their mapping of 
particle-size fractions and exchangeable calcium content and showed 
that the contribution of the calibration error variance was relatively 
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Fig. 6. Expected profit, 𝛷(𝐹opt ), distributions for the in-silico simulation results as a function of total sample size (𝑁t) and calibration sample size (𝑛c).
Fig. 7. Expected profit, 𝛷(𝐹opt ), distributions for the in-silico simulation results as a function of total sample size (𝑁t) over the range of calibration sample size 
(𝑛c). Colours indicate the scaling factor applied to the costs of data acquisition, 𝐶(𝑁t , 𝑛c), given in % of the original data acquisition costs.
large, leading to enhanced smoothing of the kriging predictions as a 
result of the large nugget variance.

The relation between uncertainty introduced by the calibration 
error and the spatial uncertainty is likely to depend on the underlying 
soil variation and the number of samples considered. We considered a 
range in total sample size from 100 (and more) because this number is 
generally considered the minimum required for reliable estimation of 
the variogram. Across varying numbers 𝑁t , sampling designs included 
a fixed number of close points (𝑛 = 20). These ensure that the spatial 
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covariance parameters are well estimated (Lark and Marchant, 2018; 
Wadoux et al., 2019). Depending on the nugget variance of the original 
variogram (Table  1), the effect of total sample-size on the nugget 
variance was smaller for larger values of 𝑁t . We attribute this to the 
estimated nugget variance’s being close to the true underlying short-
scale variance. These results accord with expectations: larger sample 
sizes generally lead to more accurate estimates of short-range variation.

Another consideration regarding the total sample size is its effect on 
estimating the underlying trend. The total sample size was computed 
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by a spatial coverage design that leads to accurate estimation of the 
trend parameters (Brus et al., 2019). Since we removed the trend 
surface prior to ‘sampling’, the effect of the total sample size on the 
trend estimation has been ignored. In an actual soil survey, however, 
differences in estimation of the trend have a large effect on subsequent 
kriging predictions and the representation of associated uncertainty 
(Lark, 2009). Consequently, we should expect the effect of different 
total sample sizes on the expected loss to be larger as the trend surface 
is approximated with increasing accuracy.

For our study, we simulated unconditional Gaussian random fields 
(uGRFs) to obtain variations of available P and K for our target fields. 
The uGRFs were used as a technique to simulate the underlying spatial 
variation of the nutrients so that we could explore losses compared 
with having perfect information. While we demonstrate our approach 
through simulation it has immediate practical relevance. Data from 
reconnaissance surveys or (more likely) the literature can be used to 
estimate calibration and kriging errors thereby allowing analysts to 
estimate the likely profitability of variable rate management under 
various sampling strategies and so make informed decisions about 
sampling and application of fertilizer at variable rates.

5.2. Expected losses from informing fertilizer application on spectroscopic 
estimates

Overall, the results of the expected loss show that soil spectroscopy 
could provide sufficiently accurate estimates of available P and K for 
predicting fertilizer requirement. The expected losses, compared with 
the theoretical optimum, ranged from £4.2 to 30 ha−1 for P and £0.4 
to 17.9 ha−1 for K. These values are negligible compared with the 
average profit per hectare and pose little risk to the grower. Further-
more, for both P and K there were diminishing returns on investment 
for increased sample sizes, indicating that there will be an optimum 
number for both total and calibration samples. Note, however, that 
the magnitude of the expected loss and resulting calculated optimum 
are determined by the formulation of the loss function. For example, 
the true values for available K in fields 1 and 2 were generally above 
the asymptote of the dose–response curve (Supplementary Fig. 1). 
Consequently, omitting fertilizer application for large parts of the field 
resulted in the largest financial gain. Equally, the asymmetry in the 
loss function might explain the contrast in the expected loss between 
𝐹0 and 𝐹opt (Supplementary Fig. 1). Given the asymptote in the dose–
response curve for K fertilizer, risk-averse over-application of fertilizer 
under uncertainty leads to a greater expected loss.

5.3. How cost-effective is spectroscopy at the field-scale?

Our results show that under current costs of data acquisition includ-
ing the sampling procedure, the implementation of spectroscopy was 
not cost-effective. These findings were supported by a linear decrease 
in expected profit for large total sample sizes (𝑁t). For soil spectroscopy 
to become cost-effective, the current costs need to diminish by at least 
95%. One could pursue this kind of investigation within the framework 
of a loss function for different configurations of sensors (e.g. only MIR 
and XRF) or take in-situ spectral measurements to reduce the costs of 
data acquisition. In the situations we investigated, however, for the 
fields we sampled with their particular variation in P and K and our 
configuration of sensors costs would have to be reduced to make the 
whole procedure worthwhile for farmers.

Breure et al. (2022) explored the expected loss associated with 
variable-rate precise and uniform blanket fertilizer application of P and 
K for the same fields as those in this study. They concluded that the 
difference in the expected loss between these two fertilizer regimes 
could indicate the allowable expense for a field survey. The differences 
in expected loss between these two regimes lay in the range £15–47 
ha−1 for available P. The differences in the expected loss for available 
K lay in the range £0–15 ha−1. Given Eq.  (7), the least sampling costs 
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in this study are £49 ha−1 for P and £47 ha−1 for K. These values 
are approximately equal to the differences in expected loss between 
variable-rate and uniform applications of P. However, the smallest 
sampling cost (£49) is based on Field 2, which is almost twice the size 
of Field 4, which showed a difference of £47 ha−1 between the two 
fertilizer regimes.

Our findings hold true under the current assumptions of prices, 
data acquisition costs and the formulation of the loss function. Further 
studies are required to elaborate on these assumptions. For example, 
we did not consider a scaling effect of the sampling costs per sample 
relative to the total sample size. Within a larger geographical area, the 
variable costs per sample will scale with an increase in total sample 
size due to reduced travel-time between locations (Lark and Knights, 
2015). Equally, the economy of scale might be applicable to the number 
of samples analysed by wet chemistry. That is, for a larger number of 
samples a laboratory might charge a lower price per sample. Our results 
showed a marked decrease in the sampling costs due to the field size.

6. Conclusions

Our results show that the uncertainty in predicting the concentra-
tions of available phosphorus and potassium in the soil was determined 
mainly by the number of samples used for calibration. No combination 
of total and calibration sample sizes that we considered would make 
soil spectroscopy cost-effective for determining the amounts of fertilizer 
to apply. Estimates from spectroscopy led to small expected losses, but 
the costs of data acquisition dominated the expected financial profit 
and loss under the ranges of sample sizes considered. However, the 
expected loss from for estimates of available P and K from spectroscopy 
for variable-rate applications of fertilizer showed a diminishing return 
on investment when the costs of data collection were ignored. This 
suggests that an optimum sample size exists provided that the cost 
of data acquisition could be diminished sufficiently. These findings 
refer to the particular situations of our study. Nevertheless, they show 
how the approach with the loss function can be used successfully to 
investigate the value of soil spectroscopy for precision agriculture.
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