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ARTICLE INFO ABSTRACT

Handling Editor: Budiman Minasny The concentrations of available phosphorus (P) and potassium (K) in soil can be estimated by soil spectroscopy,
and with sufficient sampling can be mapped to guide farmers to apply fertilizer at variable rates. Mapping
errors arise from both spatial variation and calibration of the spectra against chemically determined concen-
trations. We aimed to develop a loss-function framework to explore how sizes of sample sets and calibration
sets affect the likely profitability of variable-rate applications of P and K fertilizers. We demonstrate the
approach through simulation. Based on our previous observations of variation in P and K from four fields in
Cambridgeshire, England, we generated 100 realizations of P and K in each field using geostatistical simulation.
We did so with various combinations of sizes of total sample and calibration set. For each such sample
we assigned various proportions for calibration on which notionally both soil spectroscopy and chemical
concentrations were determined. Knowing the costs for labour in the field for sampling, the preparation of
soil in the laboratory, the spectroscopy, chemical analysis and amortization of equipment, we estimated the
costs of acquiring data. Set against these were the costs of error, i.e. of uncertainty, in the final predictions by
kriging arising from calibration error and spatial variation. For each combination we computed the fertilizer
required to minimize the expected loss associated with predictions, where the expected loss is the difference
in profit between applying fertilizer for the estimated concentrations of P and K and their true concentrations.
The size of the calibration set outweighed the effect of total sample size on the uncertainty associated with
predictions. Equally, for the same size of calibration set, there were large differences in the kriging variances
between total sample sizes. When the costs of acquiring data were disregarded, the expected loss for available
P was strongly affected by the total sample size. For available K, the effect of the size of the calibration sample
dominated the expected loss. The expected loss showed diminishing returns with increasing sample size. None
of the sample sizes considered would result in a financial gain: spectroscopy needs to become cheaper for it
to be cost-effective for variable-rate applications of P and K fertilizer.
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1. Introduction data, and we know from a great deal of experience that samples of 100

or more are required for reliable models, though this number depends

Modern farmers are keen to vary their application of fertilizer in
accord with the spatial variation of plant nutrients in the soil within
individual fields. They or their advisers cannot measure the nutrient
concentrations everywhere, however: they must rely on measurements
from finite numbers of locations, which may then be used to estimate
the concentrations everywhere else by some form of interpolation.
Kriging is now well-established as best practice for the interpolation;
it provides unbiased predictions with minimal error variances, which
themselves are estimated. A kriged prediction is a weighted average of
observed values for a variable with weights determined from a model
of spatial covariance. That model must also be obtained from sample
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to some extent on the underlying complexity of the soil variation and
its geographical scale (Webster and Oliver, 1992; Lark, 2000). Given
the costs and time expenditure of traditional soil analyses, the number
of samples required for kriging is often impractical.

One way to cut costs is to replace the traditional methods of
soil analysis by cheaper spectroscopy of soil samples, either in the
laboratory or in the field. There have been much research and many
successful applications of spectroscopy to determine chemical, physical
and biological properties of soil (Guerrero et al., 2010; Viscarra Rossel
et al.,, 2022). They are motivated not only by spectroscopy’s being
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cheaper than traditional laboratory methods but also because it is non-
destructive (in the case of in-situ measurements), requires no hazardous
chemicals and can predict multiple soil properties from a single mea-
surement (Viscarra Rossel et al., 2006). Spectroscopy enables one to
predict soil properties in a cost-effective way, to process more samples
than by traditional methods and thereby to obtain more information
about the soil and its variation.

To predict a soil property by spectroscopy the spectra must be
calibrated. The spectra of representative subsets of samples are related
to the measurements obtained by wet chemical analysis on representa-
tive subsets of samples by statistical models (known as the calibration
models and typically some form of regression). The calibration models
are then used to predict the values for all members of the population
of interest. Such a model is subject to uncertainty, however, and it
can be biased. For both accurate and precise predictions, a calibration
set that covers the ranges of the properties concerned is essential
(Viscarra Rossel et al., 2011; Schmidt et al., 2014). Otherwise the
models obtained are likely to be unstable and lead to biased estimates
(Bellon-Maurel and McBratney, 2011). In general, the more samples of
soil used for calibration the less will be the uncertainty of predictions,
though the cost will be greater.

The two sources of uncertainty described above (kriging error and
calibration error) can usually be reduced by an increase in sampling.
The kriging error can be reduced by denser sampling. The calibration
error can be reduced by an increase in the size of the calibration
sample. The sampling itself constitutes a large part of the cost of a
survey by soil spectroscopy in addition to the cost of the chemical
analysis of the calibration samples (de Gruijter et al., 2018). According
to Viscarra Rossel et al. (2011), most of the published literature on soil
spectroscopy considers sampling designs of either geographical space
or feature space but not both. Exceptions are the papers by Minasny
et al. (2007), de Gruijter et al. (2010, 2018), Adamchuk et al. (2008,
2011), Shaw et al. (2016) and Behrens et al. (2024). Of these only de
Gruijter et al. (2018) and Shaw et al. (2016) take into account the value
of reducing uncertainty against the costs of sampling.

The notion of setting the cost against the accuracy of survey is
not new: Yates (1981), in the first edition of his book published in
1949, provided an equation relating the expected loss in accuracy to
the sampling effort. This equation allows one to determine the sampling
effort required to minimize the expected financial loss arising from the
sampling. It is referred to as an ‘expectation’ because the estimate itself
has an associated probability distribution. Lark and Knights (2015)
developed concept. They described the expected loss by a function
for the costs incurred from decisions based on an estimated value,
given its deviation from the true value. They noted that in general
the loss function is asymmetric because the consequences of over- and
under-estimation differ in kind and magnitude. Depending on the loss
function’s asymmetry, there might be a slight preference towards either
over- or under-estimation. Consequently, the optimum value might not
be equivalent to the largest expected financial gain.

Our aim is to develop a loss-function framework to explore how
sizes of sample sets and calibration sets affect the likely profitability
of variable-rate applications of P and K fertilizers based on soil spectral
predictions, and to demonstrate this approach. To quantify the expected
losses associated with using uncertain information, we must know the
true underlying variation of the plant nutrients in the fields. This is not
feasible in practice, and so we turn to in-silico experiment. Firstly, we
simulate the underlying variation in the fields, by geostatistical simula-
tion. This method is used to generate multiple, equally probable spatial
representations (or realizations) of a variable based on limited sample
data and statistical models of spatial continuity (e.g. variograms). For
each realization, we then simulate the process of sampling in those
fields and the subsequent decision making about variable-rate fertilizer
application. We consider two possible financial losses in this context:
(1) the loss in crop yield because too little fertilizer is applied and
(2) the unnecessary cost of applying too much fertilizer. We quantify
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the uncertainty in the estimates of available P and K from spectra for
several sizes of calibration samples and total samples for mapping. We
then investigate the effect of this uncertainty on decision-making for
fertilizer application within the framework of the loss function. We
aimed to answer the following questions.

» How does total sample size and total number of calibration sam-
ples affect prediction accuracy?

» How does total sample size and total number of calibration sam-
ples affect expected loss when sampling costs are not accounted
for?

» How does total sample size and total number of calibration sam-
ples affect expected profit when sampling costs are accounted
for?

2. Methods

We aimed to simulate the process of sampling across a field to
predict the soil properties from spectral measurements. In summary,
our procedure was a follows. First, we took data on spectroscopic and
analytical measurements of P and K from several fields in the Fen
district of the UK (Breure et al., 2021, 2022), and estimated covariance
structures (Fig. 1a). Based on these covariance structures, we simulated
random realizations of the variation in nutrients in our in-silico fields
(Fig. 1b). We then selected a subset of size N, from each realization as
if we were sampling an actual field. We then chose a subsample from
the N, of size n, as a calibration set. For each calibration there is an
error which we assume to be normally distributed (Fig. 1c). We sampled
from this distribution and added this error to the P and K values (Fig.
1d). Having simulated the acquisition of the concentrations of P and
K, we predicted the spatial variation in P and K from punctual spectral
measurements to guide fertilizer management (Fig. 1e). We then used
dose-response curves to calculate the amount of fertilizer to apply,
both on the prediction (F,) and the prediction and its variance (Fopt)
(Fig. 1f). We quantified the expected loss due to applying fertilizer
from spectroscopy estimates compared with the theoretical optimum
fertilizer (based on the true P and K concentrations as simulated) (Fig.
1 g). We then subtracted the expected profit associated with precise
fertilizer application from spectroscopy estimates with the costs of the
data acquisition (Fig. 1h).

2.1. Study area, sampling, wet chemistry analysis and spectroscopy

Our study is based on data obtained in sample surveys of three
fields in the Fen district of Cambridgeshire, England, in 2018 and
2019 (Breure et al., 2021). The region was originally dominated by
peat, much of which has oxidized since the land was drained in the
17th century. Now the underlying alluvial and marine deposits have
become exposed revealing complex patterns of soil variation within
fields (Hodge et al., 1984).

To characterize the variation in P and K we took soil samples
from across each field. Breure et al. (2021) describe in detail the
sampling designs, the wet chemical analysis, the spectroscopy and the
calibration. Here we summarize them briefly. The sampling design of
Field 1 (8.2 ha) was based around a 30-m square grid, with three
transects (on alternate rows of the grid) more intensely sampled at 6-m
intervals. The designs for Field 2 (16.9 ha), Field 3 (5.1 ha) and Field 4
(8.9 ha) were computed by spatial coverage sampling (Walvoort et al.,
2010). From these initial points we selected a subset with balanced
sampling (Grafstrom and Lisic, 2019) on the spatial coordinates and
elevation (measured by LiDAR). The number of samples in this subset
was 36 for Field 2 and 32 for Field 3. At each location of these sub-
samples, we added another sampling point 6 m away at a random
orientation to estimate the short-range spatial variance.
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Fig. 1. Flow chart that specifies the data source and various methodological steps.

Spectra were taken on each of the soil samples. They comprised
near-infrared (NIR) and mid-infrared (MIR) measurements with a Ten-
sor II spectrometer (Bruker, Ettlingen, Germany), and X-ray fluores-
cence (XRF) spectra, measured by a DP-6000 Delta Premium portable
X-ray fluorescence (pXRF) spectrometer (Olympus Ltd, Center Val-
ley, USA). Available P and K do not have direct absorption features
in the NIR region. In the MIR region, phosphates show distinct ab-
sorption bands related to the phosphate group, specifically around
1100-1000 cm~! (P-O stretching) and 600-500 cm~! (bending modes).
However, available P and K can be predicted to some extent due to
their relationship to other soil components that have distinct absorption
features in the NIR and MIR region, such as clay minerals (Soriano-Disla
et al.,, 2013). In the XRF region, potassium exhibits emission lines at
3.31 keV and 3.59 keV, and phosphorus at approximately 2.01 keV and
2.14 keV. These emission lines refer to the total element concentrations
but can be calibrated to available nutrient content (Breure et al.,
2022). The pXRF samples where measured in three replicates of each
soil sample, near- and mid-infrared spectra were measured on three
replicate subsamples of each soil sample. Further analysis was done
on the mean spectra of the three measurements. The raw spectra were
pre-processed with a Savitzky-Golay filter (Savitzky and Golay, 1964)
and then transformed to their first derivatives. To predict a variable
from soil spectra, we developed a calibration model by regression of
the spectra (using partial least squares regression) on wet chemistry
measurements made on a subset of the soil cores (for details see Breure
et al., 2021). In each field we selected 30 locations to be measured by
wet chemistry using a balanced sampling approach on the coordinates
and elevation (from LiDAR). These samples measured by wet chemistry
comprised our calibration set (n = 120).

2.2. Geostatistics of available P and K

The nutrient predictions from spectroscopy were then used to inter-
polate available P and K across the fields, see Breure et al. (2021) for a
detailed description. Briefly, we fitted a linear mixed model to the data
with the trend factors as fixed effects and the spatial autocorrelation
captured in the random term (see Lark and Cullis, 2004). The autocor-
relation in the random term seemed to be well described by either an
exponential or spherical variogram, one of which had to be selected a
priori. We compared the two by log-likelihood ratio testing.

Table 1

Fixed effects and parameters estimated by remL of the exponential variograms,
L stands for LiDAR (elevation), and x; and x, are the spatial coordinates. The
variogram parameters are the nugget variance (c,) the sill (¢;) and the range
(a) respectively.

Field  Soil property Fixed effects Variogram parameters
[ ¢ a
1 P/mg kg™t Xy, X, xf, xé, XX, 17 67 50
K/mg kg™! Xy, X, x%, xé, XX, 2930 1942 40
) P/mg kg! L, X, X, 13 57 39
K/mg kg! L, x|, x, 3337 4917 32
3 P/mg kg~! L, Xp, X35 X1, X35 X1 X, 22 40 30
log(K/mg kg™1) L, x|, x,, xf, x;, XX, 0.023 0.097 6.62
4 P/mg kg™! L 30 125 14
K/mg kg! X1y X, X2, 32, Xy 260 2473 12

To test the significance of the coordinates (eastings, northings and
an interaction term) and elevation as trend parameters, we added
each in turn and did a log-likelihood ratio-test. We fitted models for
the variograms by Maximum Likelihood to allow for the comparison
between models with a different number of fixed effect parameters. A
chi-squared p-value of 0.05 from the log-likelihood ratio was taken as
significant evidence that the trend parameters should be included. Once
we had chosen a final set of fixed effects, both the fixed and random
effects (variogram parameters) were estimated by residual maximum
likelihood (remr). Statisticians generally prefer remL because it reduces
bias in the random effect parameters caused by uncertainty in the fixed
effect parameters Lark et al., 2006. The estimates of the random- and
fixed-effect parameters are listed in Table 1.

To produce simulated fields we approximated more realistic varia-
tions of available P and K by simulating unconditional Gaussian random
fields (uGRFs). As we were concerned with simulating variations of P
and K that could be feasibly found in agricultural fields, but not specif-
ically the ones we had physically sampled, we did not condition the
simulations on the measured data (see Webster and Oliver, 2007). Thus,
for simulating uGRFs, we had to characterize the covariance structure
in each field, which were based on the variogram parameters listed in
Table 1. To comply with computational limitations we resampled the
rasters from Breure et al. (2022) to a raster cell resolution of 4 m x
4 m. We used Cholesky decomposition to define the square root of the
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covariance matrix. We restricted the uGRFs to positive values by re-
simulating grid cells if the values were less than or equal to 0. We
simulated 100 uGRFs for each field. We considered these simulated
data the underlying true available P and K values, denoted .S, at given
locations.

2.3. Estimating the error from the calibration regression for different num-
bers of calibration samples

To quantify the uncertainties related to the calibration we formu-
lated an equation that described the prediction error variance as a
function of the number of calibration samples (n.). We followed the
same methodology as in Breure et al. (2022) for calibration. Given that
we had rather few samples within each field with wet chemistry data,
we pooled samples for all four fields for calibration. The pooled set
(n = 120) was used to select calibration samples by the conventional
method for the Kennard-Stone algorithm on a matrix of combined
NIR, MIR and XRF soil spectra. This method allows one to select
samples with a uniform distribution over the predictor space based
on their Euclidean distances (Kennard and Stone, 1969). The number
of calibration samples varied from 15 to 75% of the samples. The
minimum calibration set size considered was 18 samples, given that
we evaluated a maximum of 15 components in the partial least squares
regression; see Breure et al. (2022) for further details. We used the
calibration dataset for predicting the remaining validation set. For each
bootstrap simulation we computed the mean-squared error (MSE), and
the average MSE was used as an accuracy metric to describe the error
variance, denoted by ch’ where n, stands for the number of samples in
the calibration set.

2.4. Procedure to compute kriging predictions for different sample sizes from
in-silico fields

We selected sampling points for spectral measurements of P and K
in the field. For this we computed a spatial coverage sampling design
for N, samples. A spatial coverage design allows sample locations
to be evenly spread across the domain of interest to minimize the
maximum interpolation error (Webster and Oliver, 2007). To obtain
robust estimates of the variation at shorter distances one should sample
at locations closer apart than the maximum range at which the variable
is spatially correlated. We therefore selected a subset of 20 locations
by balanced sampling on the eastings, northings and LiDAR and an
additional sample point added 6 m away from each in a random
direction. At each in-silico sample location we assumed that the variable
is predicted from spectroscopy. To account for the associated calibra-
tion error, we sampled from the normal distribution Norm(0, "nc) and
added that to the simulated true value of the soil to give our observed
predicted value. These observed values were then kriged as follows.

Visual inspection is unsuitable for the number of variograms to
be estimated within our analysis (n = 800). We therefore took the
following approach to obtain initial estimates of the parameters for an
exponential variogram. First, we took the outermost locations of the
spatial coverage sampling design as the bounding box (i.e. approxi-
mating the boundaries of the agricultural field). The initial estimate
of the distance parameter (a) was one tenth of the diagonal of the
bounding box. We used half the diagonal as the maximum distance for
the experimental variogram. Second, we computed the omnidirectional
sample variogram using the method of moments (Webster and Oliver,
2007). The minimum of the experimental variogram’s semivariance was
taken as the initial estimate for the nugget parameter (c,). The mean
value of the median and maximum semivariance was used as the initial
estimate of the sill parameter (c;). The variogram parameters were
then estimated by remr. Where the estimated nugget parameter was less
than the known error from calibration, afl the model was refitted with
co = oﬁc; similarly ¢, was restricted so as not to be less than zero. The
variogram model was then used for ordinary punctual kriging. Once
we obtained the kriging predictions and their error variances at each
location, we added back the trend to the predictions.
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2.5. The loss function and variable costs of the data acquisition

We quantified the effect of error in the estimates of P and K by a
loss function, L(F,.S), for a given application of fertilizer, F, which is
defined as the difference in profit that results from applying a given
amount of fertilizer F compared with an economically optimal amount
of fertilizer F:

L(F,S) = &(F) -o(F) , @

where the profit @(F) is the difference between the income from the
crop (price of the crop X yield) and the cost of the fertilizer:

@(F) = M xYield—V X F, 2)

where M is the price of the crop (in £ t~!) and V is the cost of the
fertilizer (in £ kg‘l).

Given our focus on precise fertilizer application, we assume that the
yield is given by the dose-response equation:

Yield = a +7RF™S + v(EF +.5) , 3)

where S is the concentration of the nutrient in the soil, F is the applied
fertilizer (kg ha™1), & is the increase in nutrient concentration (mg kg~1)
in the soil for every 1 kg ha™! fertilizer applied, and @, 5, v and
R are parameters. Eq. (3) describes the generic dose-response curve
function. The fields from our study were used to grow lettuce, and so
we derived relevant dose-response curves from the literature for both
P and K for this crop (Greenwood et al., 1980; Prasad et al., 1988).
See Supplementary Fig. 1 for the fitted models, as used in Breure et al.
(2022). We assumed that for every 1 kg of P added in fertilizer 0.18 kg
becomes available to the crop (Muhammed et al., 2017), for every 1 kg
of K added in fertilizer, 0.62 kg becomes available to the crop (Blake
et al., 1999). Furthermore, we assumed that the added nutrients are
contained in the top 25 cm of the soil (the sampling depth). We took
from Milne et al. (2006) the value of 480 kg m~2 for bulk density of this
peat soil. Given the support of our kriged predictions (4 m x 4 m), it
follows that an addition of 1 kg fertilizer per ha leads to an increase
in the concentration of this layer of 0.15 mg available P kg~! and
0.52 mg available K kg1, equal to ¢ in the dose-response Eq. (3).
Greenwood et al. (1980) listed a mean base nutrient concentration of
69 mg available K kg~! for the unfertilized soil in their study, which
was used as an additive component. We assumed a profit margin (M)
of £90 per tonne of lettuce. The prices of fertilizer (V) were taken as
£0.36 per kg P fertilizer and £0.29 per kg K fertilizer.

We then calculated, from Eq. (2), the economically optimum
amount of fertilizer, which is given by:

Fy = 1"(%72)/5 IR, @
where B = V /M, known as the break-even ratio. By definition, the
loss given by Eq. (1) is zero when the optimum amount of fertilizer
is applied. However, computing the optimum amount of fertilizer to
apply relies on an exact estimate S, whereas predictions from kriging
have an associated error distribution, described by g(S,s,), where o,
equals the kriging variance. Given the error distribution, we computed
the optimum fertilizer rate that maximizes the expected profit:

B/é—v
Fo =1 InR . 5
opt n<;11nR/£)°°RSg(S,O'S)dS>/5 n %)

The application of F,, minimizes the expected loss function,
E[L(F, S)], which we define here as the difference between the profit
where S is known without error and the profit under the fertilizer

application based on the kriged soil nutrient value, S.

E[L(F,5)] = ®(Fy) - ®(F,S). 6

We computed E[L(F, §)] for two scenarios. One where the fertilizer
regime, F given S equals the application of Fy, Eq. (4) and the second
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Table 2
The costs associated with soil sampling in the field, spectroscopy and chemical
analysis.
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Table 3
Parameters for the exponential equation that describes the error variance o2
as a function of the number of calibration samples (n.) used in regression.

Activity Cost per sample/£ Soil property A b ®
Field sampling 5.70 Available P 3 1893 0.765
Sample processing and spectrometry 5.50 Available K 63 192211 0.768
Sample preprocessing for wet chemistry 3.38
Wet chemical analysis for available K 14.70
Wet chemical analysis for available P 16.30

4. Results

where we account for the uncertainty in our estimate of $, and F equals
the application of F,,, Eg. (5).

The major constraints to accurate predictions are the costs of spec-
troscopy at the field scale. These include the costs of sieving, milling,
weighing, wet chemistry for calibration and spectroscopy of the soil
samples plus the sampling campaign itself. The costs of the total num-
ber of samples, N, and the number of samples used in calibration, n,,
were approximated as a simple linear function formulated by the costs
of field sampling, spectroscopy, sample processing, sample handling
and analytical measurements:

C(N,n) = 2N, +én, . @)

Table 2 summarizes the costs associated with the five main steps
of data acquisition. They include sampling in the field at £5.70 per
sample. The costs of spectroscopy consist of both milling and loading
sample plates for the bench-top spectrometer at a rate of 60 samples
for one full working day of a technician, and are included in the costs
for the total number of samples (£2). Based on a salary of £135 per
day this would be equivalent to £2.25 per sample. Given that the XRF
spectrometry is a separate procedure, we doubled this value to £5.50.
The costs associated with n, were approximated as a function of the
sample handling (sieving and weighing) and the wet chemistry costs,
denoted as 6. Based on our experience of laboratory procedure, we
assumed that sieving and weighing would take 20 min per sample (one
working day for 40 samples to sieve and weigh), equivalent to £3.38
per sample. The costs, again based on those in our laboratory at the
time, of analysing available K by ammonium-nitrate extraction and ICP-
OES was estimated at £14.70 per sample. The analysis for available
P by the Olsen method was estimated at £16.30 per sample. These
prices were based on those of the analytical laboratory at Rothamsted
Research at the time of analysis (2018-2019).

We expected that the sampling costs would exert a strong influence
on the expected profit. We therefore applied a scaling factor to the
costs of data acquisition, C(N,n.), to explore the degree to which
sampling costs would need to diminish to make variable-rate fertilizer
supported by spectroscopy financially viable. We iteratively applied a
scaling factor to assess its effect on the expected profit. Based on this,
we applied a scaling factor of 5%, 1% and 0.5% of the original costs of
data acquisition.

3. Software

Analysis was done with base R commands and the following R
packages as implemented in RStudio: data handling with the sf and
tidyverse packages (Pebesma, 2018; Wickham et al., 2019), com-
putation of the sampling designs using the spcosa (Walvoort et al.,
2010), BalancedSampling (Grafstrom and Lisic, 2019) and SpatialEco
(Evans, 2019) packages, spectral processing using prospectr (Stevens
and Ramirez-Lopez, 2013), partial least squares regression using pls
(Bjorn-Helge et al., 2019), Granger-Ramanathan averaging with Geom-
Comb (Weiss and Roetzer, 2016), model-based geostatistics with the
geoR and georob packages (Ribeiro and Diggle, 2018; (Papritz, 2025))
and handling of spatial objects with the raster (Hijmans, 2020) and
rgdal (Bivand et al., 2020) packages. Graphics were created with base
R and the package ggplot2 (Wickham, 2016).

4.1. Error variance as a function of the number of calibration samples

Based on the partial-least squares regression and its bootstrapped
estimates, the relationship between the number of calibration samples
and the associated error variance was described by a simple exponential
function:

o'lzlC = A+ b , (8)

where n, is the number of calibration samples used for the regression,
and A, b and w are model parameters.

For both available P and K the function reaches its asymptote after
around 40 calibration samples. This function indicates a limit on the
accuracy with which available P and K can be predicted (Fig. 2). Based
on these results, we decided to test for the range in n_, of 20 to 40 in
steps of 5 in further steps in the analysis.

The estimated parameters for the exponential equations are given
in Table 3.

4.2. Prediction uncertainty under several sample sizes

The kriging variance depends on sampling configuration and den-
sity, and it follows that increasing the density (and number) of samples
should reduce the kriging variance. As expected for both available
P and K, an increase in the number of calibration samples (n,) was
accompanied by a decrease in the median kriging variance (Fig. 3). For
the total sample size (V,) there was a similar trend in the kriging vari-
ance. For a given value of n,, the kriging variance is more accurately
estimated once N, increases (there is less spread in the box-plots). The
exception is available P for Field 4, where more often a pure nugget
variogram was fitted.

Like the kriging variance, the estimated nugget parameter decreases
as n, increases. The nugget variance as a function of N, exhibits
different behaviour, however. For both P and K and across all fields,
the variance of the estimated nugget parameter diminishes as the total
sample size increases (N,). That is, the distance between the 1st and
3rd quantile in the box-plots narrows (see Fig. 4).

4.3. Expected loss without accounting for data acquisition costs

The mean expected loss (E[L(Fop)] / £ ha=1) decreased with in-
crease in sample size for Fields 1, 2 and 3, but the difference was
significant only for P in Field 2. Even then, the relative changes in
expected loss are small. There was no clear effect of the size of the
calibration set, n, (Fig. 5).

Within our computation of (E[L(Fop)D) we accounted for the un-
certainty in the soil estimates. The probability distribution described
by the kriging variance is integrated within the denominator of Eq.
(5) to compute the optimum amount of fertilizer under uncertainty.
Generally, accounting for uncertainty reduced the expected loss (com-
pared with E[L(F,)]), although the effect was small (Supplementary Fig.
1). Furthermore, it shows that there is substantial variation between
the simulations. For a given combination of N, and n, the box-plot
values can be either positive or negative. This seems to depend on how
well the spatial variation is characterized and thus how informative the
uncertainty is. For example, for available P in Field 4 the uncertainty
is unhelpful and leads to a larger expected loss (Supplementary Fig. 2).
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Fig. 2. Parameters for the exponential equation that describes the error variance o2
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Fig. 3. Kriging variance (a,f) distributions for the in-silico simulation results as a function of total sample size (N,) and calibration sample size (n).

4.4. Expected profit when data acquisition costs are taken into account

For each field, the expected profit (@(F,y)/£ ha™!) from P and K
fertilizer declines linearly as the size of sample increases (Fig. 6). The
linear relation shows that the sampling costs predominate, Eq. (7), over
the potential increases in profit based on the non-linear dose-response
curve, Eq. (3). The slopes differ between fields because the overall
sampling costs are spread over different areas (Field 2 is larger than
Field 3). There is no variation in the expected profit as a function of
different calibration set sizes, indicating that these make up a relatively
small amount of the costs.

The last step in our analysis was to apply a scaling factor to the
costs of data acquisition of both total and calibration sample size,

Eq. (7), to discover the cost at which implementation of spectroscopy
would become financially viable. Fig. 7 shows the result in which the
distribution of @(F,,) over the range of n. is plotted against total
sample size (N;). The results showed that for available P and K across
all fields the cost of data acquisition would have to be less than 5%
of their assumed value (Table 2) to eliminate the decline in, D(Fopy),
as function of N,. However, in the scenario of 0.5% of the current
data acquisition costs, C(N, n.), sampling by spectroscopy leads to an
increase in expected profit in only two cases, namely for available P
in Field 2 and Field 4 (Fig. 7). In all other cases, the expected profit
stabilized as a function of N, but did not lead to an increase. Last, we
note that the ordinate in Fig. 7 does not start at 0, and indeed the effect
of sampling on the expected profit is marginal.
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5. Discussion

5.1. Uncertainty in soil properties predicted from spectroscopy at the field-
scale

Our analysis showed that the number of calibration samples has a
large effect on the kriging variance. In some cases, the kriging variance
was less sensitive to total sample size for the range of sample sizes we
selected. These findings contrast with those of Brodsky et al. (2013) and

Viscarra Rossel et al. (2016) who found the contribution of the errors
from the spectroscopic modelling to be smaller than those from the
spatial variation. Those results were for the prediction of soil organic
carbon, which has distinct spectral features in the infrared region of the
spectrum (Kuang et al., 2012) unlike those for available P and K (except
for the total P and K content measured by XRF). Ramirez-Lopez et al.
(2019) propagated the calibration error through in their mapping of
particle-size fractions and exchangeable calcium content and showed
that the contribution of the calibration error variance was relatively
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large, leading to enhanced smoothing of the kriging predictions as a
result of the large nugget variance.

The relation between uncertainty introduced by the calibration
error and the spatial uncertainty is likely to depend on the underlying
soil variation and the number of samples considered. We considered a
range in total sample size from 100 (and more) because this number is
generally considered the minimum required for reliable estimation of
the variogram. Across varying numbers N,, sampling designs included
a fixed number of close points (n = 20). These ensure that the spatial

covariance parameters are well estimated (Lark and Marchant, 2018;
Wadoux et al., 2019). Depending on the nugget variance of the original
variogram (Table 1), the effect of total sample-size on the nugget
variance was smaller for larger values of N,. We attribute this to the
estimated nugget variance’s being close to the true underlying short-
scale variance. These results accord with expectations: larger sample
sizes generally lead to more accurate estimates of short-range variation.

Another consideration regarding the total sample size is its effect on
estimating the underlying trend. The total sample size was computed
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by a spatial coverage design that leads to accurate estimation of the
trend parameters (Brus et al., 2019). Since we removed the trend
surface prior to ‘sampling’, the effect of the total sample size on the
trend estimation has been ignored. In an actual soil survey, however,
differences in estimation of the trend have a large effect on subsequent
kriging predictions and the representation of associated uncertainty
(Lark, 2009). Consequently, we should expect the effect of different
total sample sizes on the expected loss to be larger as the trend surface
is approximated with increasing accuracy.

For our study, we simulated unconditional Gaussian random fields
(uGRFs) to obtain variations of available P and K for our target fields.
The uGRFs were used as a technique to simulate the underlying spatial
variation of the nutrients so that we could explore losses compared
with having perfect information. While we demonstrate our approach
through simulation it has immediate practical relevance. Data from
reconnaissance surveys or (more likely) the literature can be used to
estimate calibration and kriging errors thereby allowing analysts to
estimate the likely profitability of variable rate management under
various sampling strategies and so make informed decisions about
sampling and application of fertilizer at variable rates.

5.2. Expected losses from informing fertilizer application on spectroscopic
estimates

Overall, the results of the expected loss show that soil spectroscopy
could provide sufficiently accurate estimates of available P and K for
predicting fertilizer requirement. The expected losses, compared with
the theoretical optimum, ranged from £4.2 to 30 ha~! for P and £0.4
to 17.9 ha™! for K. These values are negligible compared with the
average profit per hectare and pose little risk to the grower. Further-
more, for both P and K there were diminishing returns on investment
for increased sample sizes, indicating that there will be an optimum
number for both total and calibration samples. Note, however, that
the magnitude of the expected loss and resulting calculated optimum
are determined by the formulation of the loss function. For example,
the true values for available K in fields 1 and 2 were generally above
the asymptote of the dose-response curve (Supplementary Fig. 1).
Consequently, omitting fertilizer application for large parts of the field
resulted in the largest financial gain. Equally, the asymmetry in the
loss function might explain the contrast in the expected loss between
Fy and F,, (Supplementary Fig. 1). Given the asymptote in the dose~
response curve for K fertilizer, risk-averse over-application of fertilizer
under uncertainty leads to a greater expected loss.

5.3. How cost-effective is spectroscopy at the field-scale?

Our results show that under current costs of data acquisition includ-
ing the sampling procedure, the implementation of spectroscopy was
not cost-effective. These findings were supported by a linear decrease
in expected profit for large total sample sizes (V,). For soil spectroscopy
to become cost-effective, the current costs need to diminish by at least
95%. One could pursue this kind of investigation within the framework
of a loss function for different configurations of sensors (e.g. only MIR
and XRF) or take in-situ spectral measurements to reduce the costs of
data acquisition. In the situations we investigated, however, for the
fields we sampled with their particular variation in P and K and our
configuration of sensors costs would have to be reduced to make the
whole procedure worthwhile for farmers.

Breure et al. (2022) explored the expected loss associated with
variable-rate precise and uniform blanket fertilizer application of P and
K for the same fields as those in this study. They concluded that the
difference in the expected loss between these two fertilizer regimes
could indicate the allowable expense for a field survey. The differences
in expected loss between these two regimes lay in the range £15-47
ha~! for available P. The differences in the expected loss for available
K lay in the range £0-15 ha~!. Given Eq. (7), the least sampling costs
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in this study are £49 ha~! for P and £47 ha~! for K. These values
are approximately equal to the differences in expected loss between
variable-rate and uniform applications of P. However, the smallest
sampling cost (£49) is based on Field 2, which is almost twice the size
of Field 4, which showed a difference of £47 ha~! between the two
fertilizer regimes.

Our findings hold true under the current assumptions of prices,
data acquisition costs and the formulation of the loss function. Further
studies are required to elaborate on these assumptions. For example,
we did not consider a scaling effect of the sampling costs per sample
relative to the total sample size. Within a larger geographical area, the
variable costs per sample will scale with an increase in total sample
size due to reduced travel-time between locations (Lark and Knights,
2015). Equally, the economy of scale might be applicable to the number
of samples analysed by wet chemistry. That is, for a larger number of
samples a laboratory might charge a lower price per sample. Our results
showed a marked decrease in the sampling costs due to the field size.

6. Conclusions

Our results show that the uncertainty in predicting the concentra-
tions of available phosphorus and potassium in the soil was determined
mainly by the number of samples used for calibration. No combination
of total and calibration sample sizes that we considered would make
soil spectroscopy cost-effective for determining the amounts of fertilizer
to apply. Estimates from spectroscopy led to small expected losses, but
the costs of data acquisition dominated the expected financial profit
and loss under the ranges of sample sizes considered. However, the
expected loss from for estimates of available P and K from spectroscopy
for variable-rate applications of fertilizer showed a diminishing return
on investment when the costs of data collection were ignored. This
suggests that an optimum sample size exists provided that the cost
of data acquisition could be diminished sufficiently. These findings
refer to the particular situations of our study. Nevertheless, they show
how the approach with the loss function can be used successfully to
investigate the value of soil spectroscopy for precision agriculture.
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