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The aquatic midge Chironomus riparius is an established indicator taxon for the assessment of water quality as of the European Water 
Framework Directive. Here, we present a novel long-read genome assembly generated with PacBio HiFi and Hi-C sequencing, which 
achieves chromosome-scale resolution with an assembly size of 192 Mb, an N50 of 59 Mb, and a BUSCO completeness of 99.0%. 
Four chromosomes with their predicted centromeric regions and 10 unplaced scaffolds were assembled containing 15,439 protein-cod
ing genes. Chromosome-level resolution in nonmodel species is often limited, posing challenges for population genomic studies that 
depend on high-quality reference genomes. Reanalyzing genomic data of natural C. riparius populations, we demonstrate the improved 
accuracy of population genomic estimators based on the high-quality reference genome. The high contiguity and completeness of the 
assembly enhanced demographic inference with Sequential Markovian Coalescent (MSMC2) modeling. Our results suggest that popu
lation divergence began in an ancestral lineage during the late Pleistocene to early Holocene, consistent with paleoclimate records from 
Central Europe.
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Introduction
Understanding the evolutionary history of natural populations is 
essential for uncovering how species respond to environmental 
change over time. Advances in genomic technologies have en
abled increasingly accurate reconstructions of past population 
dynamics, offering new insights into evolutionary and ecological 
processes.

The aquatic midge Chironomus riparius, commonly known as 
the harlequin fly, is widely distributed across the Holarctic 
(Armitage et al. 1995) and is an established indicator taxon of 
the saprobic index to assess water quality as implemented in 
the European Water Framework Directive. Furthermore, the spe
cies is an emerging model system in molecular genetics (Schmidt 
1981, 1984; Hägele 1984; Hankeln and Schmidt 1987; Bovero et al. 
2002) and population genomics research (Oppold et al. 2017; 
Waldvogel et al. 2018). Early studies using polytene chromosomes 
characterized its genome structure, heterochromatic banding 
patterns, and chromosomal integrity in hybridization experi
ments with related Chironomus species (Schmidt 1981; Hägele 
1984; Hankeln and Schmidt 1987; Bovero et al. 2002). These efforts 
laid the foundation for further molecular genetic research, em
ploying various methodologies and sequencing strategies 
(Oppold et al. 2017; Schmidt et al. 2020; Schreiber and 
Pfenninger 2021). The C. riparius genome project highlights 

advancements in sequencing technology and assembly strategies 
(Oppold et al. 2017; Schmidt et al. 2020). However, previous popu
lation genomic studies, like demographic analyses, relied on a 
fragmented genome draft (Waldvogel et al. 2018). Here, we pre
sent a novel high-quality genome assembly for the species, resolv
ing chromosome-scale details, and marking a milestone for future 
research with this potential model organism. Utilizing PacBio HiFi 
sequencing for high-accuracy long reads combined with Hi-C, a 
proximity-ligation scaffolding method, resulted in the final 
assembly.

Genomic data provide key insights into patterns of population 
growth, decline (Li and Durbin 2011; Schiffels and Durbin 2014), 
and admixture (Luikart et al. 2003). Studying the demographic 
evolution of natural populations is facilitated by whole-genome 
resequencing data of multiple individuals (Waldvogel et al. 2020; 
Bourgeois and Warren 2021). Sequential Markovian coalescent 
models (SMC models) (Li and Durbin 2011; Wilton et al. 2015; 
Schiffels and Wang 2020) trace back mutation and recombination 
events to infer population demography, hence interpreting pat
terns along the genomic sequence. The accuracy of the demo
graphic inference might ultimately depend on the resolution of 
these patterns, which can be shaped by various factors such as 
mutational and recombination landscape and transposable ele
ments (TEs), microsatellites, and DNA methylation (Sellinger 
et al. 2023). Comparing our new demographic estimates with 
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those from Waldvogel et al. (2018) offers insights into the signifi
cance of reference genome resolution for SMC studies. We esti
mate population demography using the Multiple Markovian 
Coalescent (MSMC2) model, which applies a hidden Markov model 
to estimate genealogies (Schiffels and Wang 2020). The chromo
some resolution of the assembly improved MSMC2 preconditions, 
i.e. restricting the analysis to scaffolds with a minimum length of 
500 kb (Schiffels and Wang 2020). The inference of the recent past 
is known to reach better resolution when more sequences are in
vestigated (Schiffels and Wang 2020). Under the assumption that 
young haplotype blocks should have larger sizes, the improved 
genome quality additionally contributes to the resolution of the 
more recent population history (Stumpf and McVean 2003). The 
likelihood of unmapped reads is higher in assemblies based on 
short-read sequencing which means that if a fragmented genome 
is not of high resolution in problematic regions, estimates of popu
lation history will be biased (Sellinger et al. 2021). Technical er
rors, like spurious SNP calling or incorrect detection of TEs, 
showed to decrease the accuracy of population history estimates 
(Sellinger et al. 2021). These errors are more likely, and more dif
ficult to control for, in fragmented genomes with low resolution 
of low complexity regions. To explore how the enhanced reso
lution of the genome assembly affects the inference of population 
history, we hypothesize that the increased resolution of popula
tion genomic estimators will significantly improve the accuracy 
of demographic inferences. Furthermore, we integrate our gen
omic estimates with paleoclimate data (Karger et al. 2020, 2023) 
to explore how past environmental changes potentially shaped 
population history.

Materials and methods
Sample origin and sequencing
The reference genome of C. riparius provided by Rothamsted 
Research (West Common, Harpenden, United Kingdom) was as
sembled from a single female individual of a long-term laboratory 
strain (German origin, live material received from Syngenta, pro
cured by the Innovative Environmental services [IES] Ltd, 
Switzerland, no aniso-female line). DNA was extracted using the 
MagAttract HMW DNA Kit (Cat. no. 67563, QIAGEN, Hilden, 
Germany). For PacBio HiFi sequencing, 450 ng of high molecular 
weight DNA was sequenced using 1 SMRT Cell 8 M on the PacBio 
Sequel II system, generating ∼30 Gb of HiFi data. Hi-C libraries 
were prepared using the Arima-HiC Kit (Arima Genomics, San 
Diego, CA, United States) by Arima Genomics following the man
ufacturer’s 6-h protocol and sequenced on an Illumina platform 
using 150 bp paired-end reads yielding ∼926 million ready and 
723X coverage. Whole-genome resequencing data of 5 natural C. 
riparius populations, previously investigated in Waldvogel et al. 
(2018), were used to assess the improved accuracy of population 
genomic estimators on the novel assembly. The origin of the 
different populations was from Rhône-Alpes (MF) and Lorraine 
(NMF) in France, Hesse in Germany (MG), Piedmont in Italy 
(SI), and Andalusia in Spain (SS). The data, trimmed resequencing 
datasets of 4 individuals per 5 populations respectively, were 
downloaded from the European Nucleotide Archive (ENA: 
150-bp paired-end, Illumina sequencing data; Project number 
PRJEB24868).

Genome assembly and annotation
The genome contains 4 chromosomes and 10 scaffolds with a size 
of 192 Mb (NCBI accession number: PRJEB47883). The initial as
sembly was performed using Hifiasm (Cheng et al. 2021, 2022) to 

assemble the PacBio HiFi data into primary contigs. For 
chromosome-level scaffolding, the Hi-C data were processed 
with Juicer (Durand et al. 2016) to generate contact matrices, fol
lowed by 3D-DNA (Dudchenko et al. 2017) to perform automated 
scaffolding and identify potential misassemblies. Manual cur
ation was performed using Juicebox (Durand et al. 2016) to inspect 
Hi-C contact maps, correct misassemblies, and optimize scaffold 
ordering and orientation. Following manual curation, Juicer was 
rerun to validate the final assembly quality and confirm proper 
chromosome-scale scaffolding. Haplotigs were identified and re
moved using purge_haplotigs (Roach et al. 2018). Unmapped reads 
were mapped back to the original assembly to check for missing 
sequences and incorporated into the final assembly. The Hi-C 
contact maps confirmed proper chromosome-scale assembly 
with clear diagonal signals and absence of misassembly artifacts, 
validating the quality of the final genome assembly. To assess the 
general quality of the genome assembly, the software 
Blobtoolskits (v2.6.5, Challis et al. 2020) was utilized and an ana
lysis for BUSCO (v5.3.2) completeness was performed using the in
secta_odb10 dataset together with the Augustus gene predictor 
(v3.5.0) in a long run (Simão et al. 2015; Manni et al. 2021a, 
2021b). The web application D-GENIES (Cabanettes and Klopp 
2018) was utilized (aligner: Minimap2 v2.28, options: Many re
peats) to compare the new assembly to the previous version 
(Schmidt et al. 2020) which resulted in a dot plot of the alignment 
(Fig. 1) and a summary plot (Supplementary Fig. 3).

An RNA-seq transcriptome was assembled from public data 
(BUSCO Insecta: C: 94.7% [S: 53.7%, D: 41.0%], F: 0.4%, M: 4.9%) 
and used in the Maker2 (Holt and Yandell 2011) annotation pipe
line with trained Augustus (Stanke et al. 2008) and Genemark 
(Borodovsky and McIninch 1993) gene predictors. Data used in
cluded: PRJEB15223 (Larvae), PRJNA166085 (egg ropes, all 4 larval 
stages, pupae and male and female adults, larvae exposed to dif
ferent concentrations of several model toxicants), PRJNA229141 
(anterior and posterior early embryo), and PRJNA675286 (larvae— 
transition metal oxide exposure). PASA (Haas et al. 2003) was 
used to update the gene models to add UTR, correct existing mod
els, and add isoforms. Non-coding RNA was annotated using 
Infernal (v1.1.4, Nawrocki and Eddy 2013).

A Pfam genomic track was created by converting to 6 reading 
frames and applying hmmer (Finn et al. 2015) to identify the loci 
of interest. Using this information, UDP, P450, ABC, and IRAC 
gene models were found and curated using mapped RNA-seq 
and a Maker gene annotation.

Two endosymbionts were assembled which included an un
known Enterobacter sp. (1,661,850 bp) and Wolbachia sp. (559,667 bp).

To identify the repeat content of the genome, sensitive soft 
masking of repeats on the genome was performed with 
RepeatMasker (v4.1.1, Smit et al. 2015) using a custom TE library 
by Vladimir Kapitanov which was modified by adding TE entries 
of Oppold et al. (2017). A cutoff score of masking repeats of 
250 bp and the engine rmblast (-s -xsmall -cutoff 250 -u -gff -pa 
10 -lib $LIB -dir $DIR -enginermblast $GENOME) was chosen for 
the RepeatMasker analysis.

Prediction of centromere ranges
To predict centromere ranges, we used RepeatOBserver 
(Elphinstone et al. 2025), an R package that describes repeat pat
terns and predicts centromere location based on the repeat diver
sity. We used the standard settings for the analysis. In 2 separate 
runs, we created a AT DNAwalk (-g FALSE) and CG DNAwalk (-g 
TRUE). This tool estimates in which regions on each chromosome, 
the different repeat lengths have minimum abundance and 
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outputs histograms summarizing the minimum abundance in 
2 Mb windows. Additionally, a genomic form of the Shannon di
versity index (H ) is estimated in 500 kb windows. We plotted the 
Shannon diversity index with rolling mean over 100 windows 
using tidyverse (Wickham et al. 2019) and it was visualized with 
the addition of the R packages scales (Wickham and Seidel 
2022), cowplot (Wilke 2024), patchwork (v1.1.3 Pedersen 2024), 
and zoo (v1.8–12, Zeileis and Grothendieck 2005).

Processing of resequencing data
We mapped the Illumina reads of 5 European populations of C. ri
parius, from Hesse in Germany (MG), Rhône-Alpes (MF), and 

Lorraine (NMF) in France, Piemont in Italy (SI), and Andalusia in 
Spain (SS), to the novel high-quality reference genome assembly. 
Read quality was checked with FastQC (v0.11.9, Andrews 2010) 
and MultiQC (v1.12, Ewels et al. 2016). All preprocessing steps 
were performed according to Waldvogel et al. (2018). The trimmed 
reads were mapped separately to our reference genome using the 
tool bwa mem (-M -R’@RG\tID:$Population\tSM:$Individual\tPL: 
ILLUMINA’, v0.7.17, Li 2013). Low-quality alignments were re
moved using samtools (-q 30 -f 0 × 0002 -F 0 × 0004 -F0 × 0008, 
v1.13, Li et al. 2009) and to remove duplicates PicardTools 
(VALIDATIONSTRINGENCY SILENT -REMOVEDUPLICATES true, 
v2.26.10, Broad Institute 2018) was utilized. Mapping statistics 

Fig. 1. Dot plot comparing old genome assembly (752 scaffolds) (Schmidt et al. 2020) to new assembly (4 chromosomes and 10 unplaced scaffolds) created 
using D-GENIES (Cabanettes and Klopp 2018). Black dots show an identity of >75%, blue indicates <75% identity, orange <50% identity, and light orange 
<25% identity.
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were obtained using Qualimap (v2.2.2d, Okonechnikov et al. 2016) 
(Supplementary Table 3). Further details on all analysis steps can 
be found on GitHub: https://github.com/lpettrich/Crip_Population 
History_Centromere_2025.

Variant calling
Variant calling and phasing were performed as suggested in the 
MSMC2 workflow (Schiffels 2016) for the 4 chromosomes 
(99.28% of the assembly). The unmasked reference genome was 
split by chromosome and mappability masks were created using 
SNPable (Li 2009), indicating mappable regions of the genome as
sembly. Following the standard workflow, variant calling was per
formed on the filtered bam files of the samples using bcftools 
(v1.13, Li 2011) and the script bamCaller.py supplied by msmc 
tools (Schiffels 2021) disregarding indels. This workflow generated 
VCF and mask files for each individual and chromosome which 
were necessary for generating the input files for MSMC2. 
Phasing was performed per chromosome utilizing SHAPEIT4 
(v4.2, Delaneau et al. 2019). Since no reference panel for C. riparius 
was available, we merged all VCF files (bcftools merge) for phasing 
and separated them once again. To account for any missing infor
mation that is still contained in the unphased data, the phased 
and unphased VCF files were merged while keeping the unphased 
data and replacing it with phased data where it was available. All 
multiallelic SNPs were discarded and only biallelic sites were kept. 
Using the obtained masking files and variant calls, multihetsep 
files were generated using the script generatemultihetsep.py of 
the msmc tools. SNP densities were visualized in R (v4.2.1, R 
Core Team 2025) using R-Studio (v2022.02.0 + 433, RStudio Team 
2025) together with several R packages, like tidyverse (v2.0.0, 
Wickham et al. 2019), scales (v1.2.1, Wickham and Seidel 2022), 
or cowplot (v1.1.1, Wilke 2024).

Population genomic inference of demography
The Multiple Sequentially Markovian Coalescent (MSMC2) model 
was used to infer the population history of the 5 European popula
tions (details on the input files in Supplementary Table 4). The 
generated multihetsep files were used for MSMC2 (v2.1.3, 
Schiffels and Wang 2020). Two populations were paired, resulting 
in a total of 16 haplotypes (4 diploid individuals per population) 
per dataset and a total of 10 different population pairs that were 
later analyzed in a cross-population analysis. The procedure of 
the cross-population analysis was to allow the first 2 MSMC2 
runs that estimated the coalescence rate function within the 
population. Afterwards, an analysis across the populations was 
performed, selecting the population pairs. For the analysis, the 
used time segment pattern was 1*3 + 1*2 + 22*1 + 1*2 + 1*3 and am
biguous sites were skipped. In the end, the results were combined 
using the combineCrossCoal.py script from the msmc tools. 
Overall, the obtained output per population included time and 
population size estimates, as well as the relative cross- 
coalescence rate (rCCR) which is a measure indicating the diver
gence of populations. The rCCR ranges between 0 and 1 and every 
value above 1 is considered an artefact caused by the model. Time 
and population size estimates were averaged per population and 
then scaled to real time and effective population size. Time esti
mates were converted into generations by dividing it through 
the mutation rate of 4.27 × 10−9 (Waldvogel and Pfenninger 
2021). By multiplying it with the generation time (Oppold et al. 
2016; Waldvogel et al. 2018), these converted coalescence times 
were converted into years. The effective population size was ob
tained by inverting the coalescence rate and dividing it by 2 times 
the mutation rate. To only consider robust estimates, the first 5 

entries as well as the last entry were excluded to account for 
uncertainties in the analysis caused by overfitting of the model. 
We estimated the time to the most recent common ancestor 
(tMRCA) of 1 population to validate the estimates of MSMC2. The 
mean haplotype length (MHL) was determined through the mean 
genome-wide heterozygosity and with regard to the switch error 
rate (SER). The SER of 2% in Drosophila melanogaster (Bukowicki 
et al. 2016) was used, the same as in the previous study of 
Waldvogel et al. (2018). The mean heterozygosity was determined 
from the ratio of diallelic SNPs per number of records. These va
lues were needed to approximate the tMRCA of 1 population 
with the following formula: tMRCA = 1/(2 × r × MHL). The popula
tion recombination rate (ρ) (based on Schmidt et al. 2020) was ap
proximated to the recombination rate in units of meiosis per 
generation (r) using this formula from Peñalba and Wolf (2020): 
r = ρ/(2×c×Ne). In this context, c and Ne represented the organism’s 
diploidy and effective population size, respectively. The effective 
population size (Oppold and Pfenninger 2017) was used for the cal
culation. To get an approximation of r in cM/Mb, the gene map 
length of D. melanogaster of 287.3 cM (Comeron et al. 2012) was 
used and compared with the gene map length of female Clunios 
marinus of 167.2 cM (Kaiser and Heckel 2012) because it is not 
yet available for C. riparius. The mean value of r of 1.36 cM/Mb 
was then used to calculate tMRCA (Supplementary Table 5). 
This value was compared with the one using the recombination 
rate of D. melanogaster of 2.1 cM/Mb (Mackay et al. 2012) which is 
the same value as used in Waldvogel et al. (2018). All plots were 
generated in R using tidyverse (Wickham et al. 2019) and the R 
packages egg (v0.4.5, Auguie 2019), RColorBewer (v1.1–3, 
Neuwirth 2022), and grid (v4.2.1, R Core Team 2025) (detailed list 
of all R packages in Supplementary Table 1). Plots were finalized 
using Inkscape (v1.3.2).

Analysis of paleoclimate data
Results of the MSMC2 model of C. riparius were further compared 
with paleoclimate temperature data. Therefore, 22 bio1-datasets 
of the CHELSA-TraCE21k climate time-series were downloaded 
from CHELSA (Karger et al. 2020, 2023). Thus, the 
CHELSA-TraCE21k climate data provide information for the last 
22,000 years before present (years BP) which referred to the Last 
Glacial Maximum (LGM). As such, contained the bio1-datsets an
nual mean temperatures and the here used 22 datasets 
(Supplementary Table 2) included timepoints from 1,000 years 
BP up to 22,000 years BP and were retrieved in steps of 1,000 years 
(i.e. millennial time-series).

Climate maps of Europe were created, and temperature data 
were extracted in R using the packages raster (v3.5–15, Hijmans 
and van Etten 2012) and maptools (v1.1–8, Bivand and 
Lewin-Koh 2023). A generalized linear model (GLMM) was gener
ated using the R packages glmmTMB (Brooks et al. 2017), 
DHARMa (Hartig 2022), and broom.mixed (Bolker and Robinson 
2024). Missing data points were interpolated which means more 
frequent values (rCCR) were interpolated to fit the less frequent 
(temperature) in 1,000-year intervals in the time range from 
1,000 to 22,000 years ago. The rCCR was tested as response vari
able against temperature, time, and their interaction as the pre
dictor variables and the populations as random effect with an 
added time-varying dispersion, using beta distribution and the 
BFGS algorithm for model optimization (glmmTMB(rel.cc ∼ tem
perature * time + (1 | Population), data = data, family = beta_fam
ily(), control = glmmTMBControl(optimizer = optim, optArgs =  
list(method = “BFGS”)), dispformula = ∼time). The model was fit
ted using 440 observations across 5 population groups. If the 
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P-value was smaller than 0.05, it was considered significant. 
ChatGPT (OpenAI 2024) was utilized to improve scripts in R for 
statistical analysis and data visualization by either simplifying 
scripts with the creation of loops or for troubleshooting if the 
code was not working as intended. Suggestions from ChatGPT 
were reviewed and validated to ensure accuracy.

Results and discussion
Genome assembly at chromosome-scale 
resolution
The novel assembly of C. riparius resolves all 4 chromosomes with 
10 remaining unplaced scaffolds. Genomes of 2 endosymbionts, 
Enterobacter sp. and Wolbachia sp., were additionally assembled 
from the metafraction of the data. We can show that the new as
sembly has a largely improved contiguity compared with the pre
vious assembly from Schmidt et al. (2020). This is also shown by a 
dot plot comparing an alignment of these 2 assemblies using 
D-GENIES (Cabanettes and Klopp 2018) (Fig. 1). The D-GENIES 
summary showed that 74.90% shared an identity between 50 
and 75%. The 13.33% had an identity higher than 75%. No match 
was found for 10.37% of the reference. Most of the sequences are 
matching, shown in a diagonal line, but the information in the 
new assembly is condensed. The new assembly consists of 14 
scaffolds, with 4 representing chromosomes, compared with 752 
scaffolds in the old assembly. Approximately 53 old scaffolds 
are merged into a single scaffold in the new assembly.

The assembly spans 192 Mb with N50 of 59 Mb (Table 1, Fig. 2a). 
The assembly’s completeness when compared with the single 
ortholog database of Insecta (insecta_odb10, n = 1367) scores 
99.0% complete (97.1% single-copy and 1.9% duplicated), 0.2% 
fragmented, and 0.8% missing BUSCO genes. Overall, the assem
bly shows excellent continuity and completeness. Chromosome 
numbers were ranked with the descending length, with chromo
some 1 being the longest scaffold of 61 Mb. The genome-wide 
GC content was estimated to be 30.7%. The assembly reveals a re
peat content of 15.85%. In total, 15,439 protein-coding genes were 
annotated.

We applied RepeatOBserver to predict centromeric regions, fol
lowing 2 approaches: Shannon diversity (H ) of repeat lengths and 
histograms showing the abundance sum minima across 2 Mb win
dows. The histogram method estimates centromere positions at 
33 Mb for chromosome 1, at 29 Mb for chromosome 2, at 25 Mb 
for chromosome 3, and at 9 Mb for chromosome 4. We assumed 
that low H values (<4.8) represent centromere-flanking regions, 
resulting in centromere ranges of 24–36 Mb for chromosome 1, 
27–36 Mb for chromosome 2, 21–28 Mb for chromosome 3, and 
7.7–9.5 Mb for chromosome 4 (Fig. 2b, Supplementary Table 7). 
The predicted centromere region of chromosome 4 differs as it is 
suggested to be located at the chromosome’s end (Ilkova et al. 

2007). The prediction of centromere regions on chromosome 4 
may be influenced by the presence of Balbiani Rings (BR) or the nu
cleolar organizer regions (NOR), as both regions are known to con
tain extensive arrays of tandem repeats (Bäumlein et al. 1982; 
Wieslander 1994; Kutsenko et al. 2014; Gunderina et al. 2015), 
which could further contribute to this effect considering that cen
tromeres are predicted based on repeat pattern.

Population history compared with past climate 
history
SNP density was investigated for the direct input files of MSMC2 
(i.e. multihetsep files) which include filtered biallelic SNPs 
(Fig. 3). There are certain regions with a decrease in SNP density 
which align with predicted centromere regions.

In the previous study, Waldvogel et al. (2018) used a fragmen
ted genome assembly for an initial inference of population history 
in C. riparius, applying multiple sequential Markovian coalescence 
(MSMC2). Many short scaffolds and the lack of information about 
their placement hindered the inference of recombination sites 
and thus only 17.34% (30 scaffolds ≥ 100 kb) of the assembly 
were suitable for the analysis. With the new genome assembly, 
we were able to input 99.28% of the genome to the analysis— 
only excluding 10 unplaced scaffolds. The new assembly has a 
99.0% BUSCO completeness (insecta_odb10), surpassing the 
93.7% completeness of the old assembly (arthropod_odb).

We assessed admixture between populations (Fig. 4a) and the 
history of effective population size (Fig. 4b) using the MSMC2 mod
el. Separately from the MSMC2 run, we intended to validate the 
estimation robustness of the recent time horizon, by determining 
the tMRCA of the individuals per population by integrating a mean 
heterozygosity of 0.0083 and an informative MHL of 6,023 bases. 
The tMRCA was determined to be 10,468 generations when apply
ing the mean recombination rate of 0.79 cM/Mb calculated from 
the genetic map length of Clunio marinus (Kaiser and Heckel 
2012) or, alternatively, 6,092 generations for the mean recombin
ation rate of C. riparius (1.36 cM/Mb; Schmidt et al. 2020) based on 
the genetic map length of D. melanogaster (Comeron et al. 2012). If 
we use the same recombination rate of D. melanogaster (2.1 cM/Mb, 
Mackay et al. 2012) as applied in the previous study of Waldvogel 
et al. (2018), we estimate a tMRCA of 3,953 generations. Despite 
the absence of a genetic map length for C. riparius, we get a good 
approximation for the time of the most recent common ancestor 
of the individuals per population. The true estimates will most 
likely lay closer to the first 2 estimates as the larger phylogenetic 
distance of Chironomidae to Drosophilidae (∼220 million years; 
Wiegmann et al. (2011)) could indicate substantial differences in 
genetic map length. Considering the species-specific recombin
ation rate of the previous study of Schmidt et al. (2020), inform
ative time intervals of the population history estimates of C. 
riparius range from ∼6,100 to 7,400,000 generations 
(Supplementary Fig. 1). Our findings highlight the significance of 
accurate genome assemblies, as the time ranges of demographic 
events were substantially shifted in the new analysis (Fig. 4ab). 
Waldvogel et al. (2018) estimated an informative time horizon be
tween 150,000 and 351,000 generations in the past. To translate 
these values in years, the tMRCA in generations was multiplied 
with the mean generation time of the respective population (refer
ring to estimates reported in Oppold et al. 2016) which resulted in 
a tMRCA of 609 to 1,046 years (Supplementary Table 5).

MSMC2 enables the analysis of admixture between populations 
by calculating the rCCR. We could observe a high relative rCCR in 
the ancient past (Fig. 4a) which is indicative for an ancient super
population. This admixture persisted until a peak 20,000 years ago 

Table 1. Assembly statistics of the genome.

Assembly size 191,837,449 bp

N50 58,906,861 bp
GC content 30.7%
Repeat content 15.85%
No. of protein-coding genes 15,439
BUSCO (insecta_odb10) C: 99.0% [S: 97.1%, D: 1.9%], 

F: 0.2%, M: 0.8%, n: 1367
Longest chromosome 61,357,614 bp
No. of chromosomes 4
No. of unplaced scaffolds 10
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(Fig. 4b). Toward the more recent past, the effective population 
size declined, leading to a dispersal of the population-specific es
timates. A high admixture between populations can be found for 
our populations earlier than 10,000 years ago. Over time, the ad
mixture decreased, and it is expected that the populations split 
into subpopulations once the rCCR fell below 0.5, ∼10,000 years 
ago. We compared the inferred population demography to paleo
climate models from the CHELSA database, to assess whether cor
relating temperature events could indicate a potential reason for 
the formation of different subpopulations (Fig. 4c–f). By reviewing 
the annual mean temperature of the population’s habitat over 
time (Fig. 4c), a gradient can be found. Hesse and Lorraine are 
the coldest regions, followed by Rhône-Alpes and Piemont and 

Andalusia is the warmest region. Shifting the focus from only 
the population’s habitat to the European region (Fig. 4d–f), a 
warming of all of Europe can be observed. The Last Glacial 
Maximum (LGM) happened 22,000 years before present (22k-BP) 
with mean temperatures dropping below 0 °C in many regions 
of Europe (Fig. 4f). In the latest period, around 1k-BP (Fig. 4d), 
most of the regions were warmer with only mountain ranges 
and the far North showing mean temperatures below 0 °C. The 
historical temperature estimates north of the alps indicate a shift 
from relatively cold temperatures (−15 °C to 5 °C) to moderate 
temperatures (0 °C to 15 °C). According to the model, southern 
Europe exhibited a consistently moderate climate (5 °C to 20 °C) 
starting from the earliest time point. The zenith of population 

a

b

Fig. 2. Summary on genome assembly and centromere regions. a) Snail plot summarizing the assembly statistics created with BlobToolKit. Scaffold 
statistics can be found on the top left. The longest scaffold (i.e. chromosome 1) is marked with a red line. The N50 value is marked with an orange line and 
the N90 value as a pale orange pie chart. Total genome length (Mb) is given, and each chromosome has been labeled at the end position using Inkscape 
(v1.3.2). The GC and AT composition are given in the outer circle in dark and light blue and the filling is proportionate to the percentage. The BUSCO 
analysis was performed against the insecta_odb10 database and values on completeness, fragmentation, duplication, and missing genes can be found on 
the top right. b) Plots of each chromosome show the rolling mean of Shannon diversity (H ) for repeat length in 500 kb windows. If repeat content is less 
diverse H will decrease, the area with the lowest H is predicted to be centromere and centromere-flanking regions. Cumulative position (Mb) is given, but 
the end of each chromosome is marked by a dotted line.

6 | Pettrich et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkaf189/8290406 by IG

ER
 user on 23 O

ctober 2025



sizes occurred prior to a temperature decline about 16,000 years 
ago. The lowest temperature, with an annual mean temperature 
of −4.6 °C, was registered 17,000 years ago at the site where the 
MG population is located today (Fig. 4c). Subsequently, tempera
tures increased, interrupted only by a minor decrease in tempera
ture 12,000 years ago. The temperature increment slowed down 
from 7,000 to 1,000 years ago.

For the time range from 1,000 to 22,000 years ago, we tested 
whether there is a significant relationship between temperature, 
time, and rCCR in a GLMM using the beta family and BFGS opti
mization setting. We used the rCCR as response variable and 
tested the effects of temperature, time, as well as their interaction 
and the populations as random effect while allowing the disper
sion to vary over time. The model revealed a significant effect (sig
nificant if P < 0.05) of time on the rCCR (P < 2e−16), while the 
interaction between temperature and time was also statistically 
significant (P = 0.00581). Temperature alone did not have a signifi
cant effect (P = 0.985). The model showed a significant increase in 
dispersion over time (P = 9.32e−7), indicating that variability in 
rCCR is not constant but grows as the analysis extends further 
into the past. The random intercept variance associated with 
population is relatively small, suggesting modest variability 
across populations (Supplementary Table 6 and Supplementary 
Fig. 2). As conclusion it appears that time had a bigger impact 
on the loss of admixture between populations.

Biogeography supports population demography
Accurate population demography models allow us to interpret 
and correlate a population’s history with the biogeographic 

history of its habitat. The temperature developments of the 
CHELSA traCE21k time-series dataset, covering the LGM up to 
1,000 years before present (Karger et al. 2020, 2023), were com
pared with the geographical coordinates of the sampling sites of 
the 5 C. riparius populations (Fig. 4c and d). Correlation of these 
2 very different data types allowed us to investigate whether 
paleoclimate models could have the potential to support 
sequence-based demographic estimations.

For our MSMC2 analysis, we adapted the time segment pattern, 
approximated the tMRCA of 1 population, and trimmed outer va
lues to account for overestimations of the most recent and most 
ancient time interval, resulting from false positive or negative sig
natures of recombination (Schiffels and Wang 2020). We used the 
gene map length (Comeron et al. 2012) and SER (Bukowicki et al. 
2016) of D. melanogaster to approximate the tMRCA, but it might 
be that results for tMRCA change once there is a gene map for C. 
riparius as we do not know the extent of the differences.

Our results suggest the origin of 1 ancestral population for the 5 
investigated populations (Fig. 4a) as proposed (Waldvogel et al. 
2018). Whilst the divergence of ancestral populations was previ
ously proposed to have happened around 10,000 to 1,000 genera
tions ago, our new estimates redefine this time frame. The 
admixture between the population shows a reduction between 
500,000 and 10,000 generations ago and the rCCR reached a value 
of 0.5 at ∼100,000 generations in the past. When multiplying these 
coalescence estimates with the population-specific generation 
time available for this multivoltine insect species (based on 
Oppold et al. 2016), the estimates were converted into years. 
This conversion defines the period of divergence of the 

Fig. 3. SNP density per chromosome and population of C. riparius. Based on combined multihetsep files of each population. Histograms are shown in 50 kb 
bins. Each segregating site divided by the bin size was counted to get SNP density.

C. riparius: genome and population history | 7
D

ow
nloaded from

 https://academ
ic.oup.com

/g3journal/advance-article/doi/10.1093/g3journal/jkaf189/8290406 by IG
ER

 user on 23 O
ctober 2025

http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf189#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf189#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkaf189#supplementary-data


populations between late Pleistocene and early Holocene 
(Stroeven et al. 2016) (Fig. 4). The GLMM showed time as the major 
contributor of the decrease in admixture; however, temperature 
and time showed to have a significant interaction which indicates 
that it is difficult to interpret them independently from each 
other.

Starting from the LGM between 22,000 and 17,000 years ago, 
the ice margins in Europe started to recede which led to an almost 
ice-free central Europe 16,000 years ago (Ehlers 1990; Douda et al. 
2014; Stroeven et al. 2016). Two major climate events can be found 
in the temperature data (Fig. 4c)—the Heinrich event (H1) around 
16,800 years ago (Heinrich 1988; Bond et al. 1992; Hemming 2004) 
and the Younger Dryas around 12,000 years ago (Keigwin and 
Lehman 1994; Carlson 2010). Considering the biogeographic his
tory of central Europe, it seems plausible that these climatic 
changes have contributed to the decreasing effective population 
size in the ancient population of C. riparius.

Interestingly, major extinction events happened globally in the 
late Pleistocene which have been partially linked to sudden cli
mate change alongside major environmental shifts (Barnosky 
et al. 2004; Svenning et al. 2011; Kozyra et al. 2021). For ancient 
megafauna, these extinction events might have been accelerated 
by early influence of humans (Homo sapiens) (Varela et al. 2010; 
Bergman et al. 2023). Based on the size of our study system C. ripar
ius, it seems unlikely that early anthropogenic impact influenced 
population decline. Climate change seems to be the more likely 
cause of a drop in population size for C. riparius. The aquatic larval 
stage is heavily dependent on water temperature. Changes in 
water temperature might have induced stress and diminished 
overall fitness; however, Foucault et al. (2018) demonstrated 
that its larvae can rapidly adapt to elevated temperatures, which 
may have been beneficial. Further, other ancient species also 
showed to tolerate shifts in their habitat as the realized ecological 
niche is not necessarily reflecting their actual fundamental niche 

a

b

c

d e f

Fig. 4. Comparison of the demographic history of C. riparius populations to available paleoclimate models. a) The rCCR of populations over the years 
reaching into the past estimated by the MSMC2 model. The population pairs are indicated by color, as shown in the legend on top. b) Inferred effective 
population size over years reaching into the past estimated by MSMC2. Color indicated by legend at the bottom. c) Annual mean temperature every 
thousand years (1k-BP–22k-BP) for the separate sampling locations. Dotted lines represent the time points of the maps. d–f) Maps of Europe showing the 
spatial temperature pattern across Europe 1k-BP, 10k-BP, and 22k-BP. Temperature (°C) is indicated by the gradient bar on the right. Dots refer to the 
sampling locations of the populations with the corresponding color code.
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(Tallavaara et al. 2015; Rey-Iglesia et al. 2021; Leonardi et al. 2022). 
It has been hypothesized that populations might have split from 
the central population in Rhônes-Alpes (MF) which is also in the 
center of the temperature ranges (Waldvogel et al. 2018). The in
crease in temperature in the late Pleistocene might have led to a 
first dispersal of the midges as more habitats became available 
after initial adaption (Oppold et al. 2016; Foucault et al. 2018). 
These newly dispersed populations showed more variability in 
their effective population sizes, especially the population from 
Spain (SS) and Hesse (MG). To disentangle the reasons for the vari
ability is difficult as it is uncertain if the population always has 
been in this location or if its habitat has slowly migrated over 
time to its current location. There has likely been spatial variabil
ity in environmental conditions that we cannot cover, e.g. the 
temperature data from CHELSA is in 1000-year intervals with a 
1-km resolution (Karger et al. 2023). As such, C. riparius depends 
on local waterbodies, and if drought events occur and waterbodies 
dry up, it could have negative impacts on its effective population 
size. If there was a lot of precipitation in certain areas, this could 
have been beneficial as there would have been many small water
bodies which could serve as breeding sites. In the Iberia region, it 
has been found that the early Holocene started dry but got more 
humid 10,000 to 9,000 years ago (Morellón et al. 2018) with the high
est lake levels found from 8,100 to 5,700 years ago (Ilvonen et al. 
2022), which does well align with what we found for the population 
from Andalusia (SS) as Ne started to increase in the mid of the 
Holocene when water levels were high (Fig. 4). However, they also 
found spatial and seasonal variations in climatic conditions and 
the climate became generally cooler and drier starting from 3,500 
years ago (Fletcher and Zielhofer 2013; Liu et al. 2023). For the 
Hesse population (MG), we could document a peak in Ne for more 
recent times, the drop in Ne after the peak could be explained by 
cold winters (Fig. 4), as suspected for diatoms based on shorter 
lake mixing periods (Dreßler et al. 2011). Furthermore, records 
show that some glaciers in Norway began shrinking in the early 
phase of the mid-Holocene (around 5,000 years ago) (Bakke et al. 
2005). This period was followed by a peak in the Hesse population, 
possibly indicating a more favorable climate for C. riparius. 
Subsequently, glacier growth occurred 2,220 years ago, suggesting 
a shift toward a less favorable climate (Bakke et al. 2005).

Both the potential expansion across an increased habitat space 
and the 2 cooling events are likely to have contributed to the de
crease in the effective population size of the ancestral population. 
The decrease in the effective population size and potential disper
sal (see also in Waldvogel et al. 2018) might have also led to a re
duced admixture, finally leading to a split of 1 ancestral 
population into separate populations around 10,000 years ago. 
When comparing the population history of C. riparius with that 
of other European species, we observe, for example, that the ef
fective population size of the bird species Caprimulgus europaeus 
expanded during warm periods and declined during cooler peri
ods, with a rapid reduction during the LGM (Day et al. 2024). 
This pattern could also occur in other bird species feeding on chir
onomids, which could subsequently have affected the population 
size of C. riparius. The model species D. melanogaster is suspected to 
have dispersed from its sub-Saharan African origin and diverged 
∼13,000 years ago (Kapopoulou et al. 2020). This timing is notably 
similar to the split of C. riparius populations, emphasizing a period 
marked by significant habitat shifts driven by environmental 
change between the Pleistocene and the Holocene (Hofreiter and 
Stewart 2009). As such, climate data could be used as an observa
tional measure to support the demographic history estimation of 
C. riparius in Europe.

More ancient population history estimates could 
be inferred for C. riparius
This increase in resolution on the demographic history of C. ripar
ius in European populations can at least partially be explained by 
the high accuracy of PacBio long-reads leading to more accurate 
assemblies with better coverage and contiguity in low complexity 
and repetitive regions (Pollard et al. 2018), demonstrating the ad
vantage of long-read sequencing coupled with Hi-C scaffolding 
(Guiglielmoni et al. 2022). However, some coalescence estimates 
of the model can also be explained by changes in population struc
ture. We could clearly observe a split of populations over time in 
our MSCM2 analysis. A diverging population has many evolution
ary consequences (Buffalo 2021) which can lead to overlaying sig
nals that are difficult to distinguish by a coalescence model. In the 
investigated populations, we find a reduction in the effective 
population size (Ne) alongside a reduction in the rCCR. However, 
the observed reduction in Ne could also be explained by other pro
cesses happening during the same time periods, for example, a 
change in the migration rates between migrating demes and the 
observed bottleneck could be explained by a shift in population 
structure (Nadachowska-Brzyska et al. 2022). There are also al
ways recombination events that are not detectable, which means 
that the estimated population history is just an approximation 
(McVean and Cardin 2005). Linked selection can produce complex 
patterns along the genome which can concurrently influence esti
mates of Ne, for example, a reduction in Ne in functional regions 
(Nadachowska-Brzyska et al. 2022). It has also been proposed 
that abundant species, like C. riparius, experience higher effects 
of linked selection causing a reduction in genetic diversity and re
combination (Buffalo 2021). The more complete and 
chromosome-level assembly used resulted in more robust infer
ences of population history, spanning a wider period and reaching 
far deeper into the past. Our study also benefitted from the avail
ability of a species-specific mutation rate estimate (Waldvogel 
and Pfenninger 2021) that additionally contributed to the in
creased resolution of population history in C. riparius.

Summary
This study presents a novel genome assembly of chromosome 
resolution for the aquatic midge species C. riparius, an emerging 
model organism in experimental population genomics. We 
achieved improved population history estimates, providing a 
more accurate understanding of the demographic dynamics of 
the species. We could show a shift in the coalescence estimates 
using MSMC2 compared with the previous study and could match 
these new results with paleoclimate events. The increased reso
lution of the genome enabled the inference of a larger and more 
ancient informative time horizon.

Over and above these novel genomic insights into the genomic 
landscape of C. riparius, these genomic resources will be more gen
erally valuable for comparative studies on insect genomics 
(Blackmon et al. 2017), experimental population genomics 
(Foucault et al. 2019), and chromosome evolution (Shaikhutdinov 
and Gusev 2022).

Data availability
The genome assembly can be downloaded at ENA (accession 
PRJEB47883). The Illumina sequences of the 5 populations were 
published under Waldvogel et al. (2018) and trimmed reads can 
be accessed at ENA (accession PRJEB24868). Scripts are available 
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at the GitHub repository https://github.com/lpettrich/Crip_ 
PopulationHistory_Centromere_2025. Input files necessary to 
run the scripts will be made available through Zenodo: https:// 
doi.org/10.5281/zenodo.15177248.

Supplemental material available at G3 online.
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