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ABSTRACT
Arthropod declines have been reported widely; however, a lack of comprehensive data has hindered our ability to assess their 
large-scale generality and drivers. Here, we used a novel and freely available dataset—atmospheric scans from a network of 
meteorological radars—to quantify aerial abundance of both diurnal and nocturnal arthropods across the United Kingdom, 
spanning different geographic regions and land cover types. Based on observations between 2014 and 2021, and across more 
than 35,000 km2, we estimate numbers of arthropods flying over the UK at heights between 500 and 700 m above ground at 1.12 
(±0.01) × 1013 individuals during the diurnal (0800–1400 UTC) and 5.02 (±0.01) × 1012 during the nocturnal (including dusk, 
1800–2200 UTC) period, showing significant spatial heterogeneity. Although spatial patterns differed, both diurnal and noc-
turnal arthropods increased in the south and declined mainly in the far north; on average, only nocturnal arthropods showed 
an overall decline. Aerial abundance of both diurnal and nocturnal arthropods showed positive relationships with woodland, 
grassland, and urban land cover, and negative relationships with artificial light intensity and arable land cover. Our study high-
lights the importance of spatial variation in temporal biodiversity trends and illustrates the need for comparative studies between 
nocturnal and diurnal arthropods. Notably, by extracting vertical profiles of radar reflectivity and polarization signatures, we 
demonstrate how weather radar datasets can be used to quantify aerial arthropod abundance, detect diurnal and seasonal activ-
ity patterns, and examine their environmental drivers across large spatial and temporal scales.

1   |   Introduction

Arthropods dominate terrestrial, freshwater and aerial environ-
ments, making up 80% of known species (Stork 2018) and almost 
half of global animal biomass (Bar-On et al. 2018). There have 
been increasing reports of declines in arthropod (and specifically 
insect) populations from around the globe, but the generality of 

this phenomenon, including its rate, magnitude, and extent, 
remains poorly understood across large spatial and temporal 
scales (Simmons et al. 2019). Arthropods are a hyper-abundant 
and hyper-diverse group, and current monitoring methods are 
limited by high costs and restricted spatial and taxonomic cov-
erage (Montgomery et al. 2020). Furthermore, the diverse met-
rics used to assess declines, such as species richness, occupancy, 
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biomass, and abundance, are not directly comparable, present-
ing challenges to interpret and respond to the wide variability of 
reported trends (Didham et al. 2020). Notably, alarming trends 
have primarily been reported in total biomass and abundance, 
which are critical as they strongly impact ecosystem services 
(Hallmann et al. 2017). This raises severe concerns among sci-
entists and policymakers because arthropods play crucial roles 
in ecosystems as pollinators, decomposers, and as a vital food 
source for numerous organisms higher up in the trophic web 
(Losey and Vaughan 2006). Enhanced understanding of drivers 
and consequences of arthropod declines at large scales is there-
fore essential for developing effective conservation strategies 
and mitigating potential ecological and societal disruptions

Empirical studies show that arthropods are affected by many 
different and interacting aspects of their environment such as 
climate, land cover change, invasive species, insecticides, and 
light pollution (Kehoe et al. 2021). However, much of our under-
standing about the relative effects of these drivers comes from 
studies either local in scale (e.g., point sampling), or utilizing 
presence-only occupancy records, or by employing space-for-
time substitution (Blüthgen et al. 2022). Few studies have simul-
taneously compared temporal trends in arthropod abundances 
across multiple habitat types and across large spatial extents 
(Bell et al. 2020; Uhler et al. 2021). Nonetheless, understanding 
these relationships is critical for conservation strategies aiming 
to mitigate biodiversity loss (Wagner 2020).

Radar-based monitoring is an established tool for studying ae-
rial animals and may provide a robust methodology for large-
scale, standardized arthropod monitoring (Bauer et  al.  2017). 
Most recent studies have used vertical-looking radars (VLR), 
which have generated considerable insights into aerial arthro-
pod movement and abundance (Hu et al. 2016; Knop et al. 2023), 
but which provide limited spatial coverage. On the other hand, 
weather surveillance radars (WSRs), intended to monitor mete-
orological phenomena, use existing infrastructure without extra 
costs and provide unprecedented spatial coverage over thou-
sands of square kilometers for broad-scale biodiversity moni-
toring (Dokter et  al.  2018). For example, the North American 
NEXRAD WSR network has been used to generate biologically 
meaningful data on bird phenology (Schools et al. 2012), migra-
tion (Schools et  al.  2012; Sivakumar et  al.  2021), demography 
(Nilsson et al. 2021), and epidemiology (McCuen et al. 2021) at 
national scales. With the advent of dual-polarization capabili-
ties, where radars transmit and receive both horizontal and ver-
tical pulses to distinguish the elongated shapes of insects from 
the more spherical signatures of precipitation, WSR networks 
have also been used to map the emergence and migration of ar-
thropods (Boulanger et al. 2017; Stepanian et al. 2020).

Here, we demonstrate how observations from a national network 
of WSRs can be used to provide robust quantitative estimates 
of aerial arthropod abundance across vast spatial scales and at 
high temporal (twice a day) frequencies. We analyzed 8 years 
of data (2014–2021) from 15 WSRs (Figure 1a) spanning more 
than 35,000 km2 and 10° in latitude, which represented a diverse 
variety of habitat types, including woodland, agricultural, and 
urban areas over which insects and other arthropods flew or 
were transported. We derived sub-daily data describing abun-
dance trends across the UK, making it the most comprehensive 

spatial investigation for both diurnal and nocturnal arthropods 
using a common method. The resulting datasets were used to 
answer three primary questions: (i) what is the abundance of 
aerial arthropods across the UK? (ii) have there been significant 
changes in abundances over the studied time period? and (iii) 
what are the likely spatio-temporal drivers of any changes? We 
validate our analysis using long-term, standardized monitoring 
of aerial arthropod abundance from a suction trap situated close 
to a WSR station. Our approach provides a benchmark for di-
recting future research efforts towards the long-term and broad-
scale investigation of overall arthropod abundance patterns 
using standardized, homogeneous, and openly available data-
sets at an unprecedented spatial scale and temporal resolution.

2   |   Materials and Methods

2.1   |   UKMO Radar Network

The UK Met Office (UKMO) operates a network of 15 weather 
surveillance radars, which provide complete airspace coverage 
over England, Wales, Scotland, and Northern Ireland (Figure 1a) 
(Harrison et al. 2000; Met Office 2003). Each Doppler radar is 
a Doppler, C-Band (wavelength (λ) = 5.3 cm), dual-polarization, 
monostatic radar which provides near-continuous polarimetric 
measurements of differential reflectivity (ZDR), co-polar correla-
tion coefficient (ρHV) and phase differential (ΦDP), along with 
the standard legacy variables of single-polarized radars, that is, 
reflectivity factor (Z) and radial velocity (V). Ecological applica-
tion of weather radar, especially for birds, has been the subject of 
several previous works (Boulanger et al. 2017; Dokter et al. 2018; 
Nilsson et al. 2021; Schools et al. 2012; Sivakumar et al. 2021; 
Stepanian et al. 2020), and, therefore, here we have only aimed 
to describe the unique specifications of the UKMO radars.

The raw data are disseminated in the form of plan position indi-
cator (PPI) scans—that is, a single 360° (azimuthal) scan carried 
out for a fixed elevation angle and repeated over a series of dif-
ferent angles. The PPIs are averaged to 600 m range gates and 1° 
in azimuth, close to the radar beam width of 1.1°. However, for 
our ecological analysis, we were interested in observing the data 
at a fixed azimuth and over multiple elevations, that is, at a fixed 
location in spatial coordinates and across different heights over 
that location. We generated columnar vertical profiles (CVPs; 
described below) of all polarimetric variables using PPI scans 
from different elevation angles (typically between 0.5° and 4.0°) 
sampled on long pulse mode (pulse length = 2.0 μs; range cov-
ered = 250 km) and with a 600 m gate resolution every 5 min.

2.2   |   Columnar Vertical Profiles (CVPs)

CVPs—4D slices of data represented with latitude, longitude, 
time, and height—were generated following the approach of 
Murphy et  al.  (2020). Data from within the 600 m × 1° sectors 
were azimuthally averaged and projected to the CVP center, 
resulting in a vertical profile. The mean values were assigned 
as the profile value for different height bands, each 200 m deep 
(between 100 and 2100 m). Although technically speaking, col-
umns are not circular and not strictly vertical, for simplicity 
and homogeneity of calculations, a circular representation is 
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selected. Cylindrical columns can be considered as the volume 
representing a subset of voxels (i.e., volume pixels). We chose a 
column radius of 2.5 km and a vertical resolution (step-size or 
height) of 200 m as the optimum trade-off between sector size 
and step size, which facilitates uniform data averaging and 
projection (more details on CVP calculation and this selection 
criterion are discussed in Supporting Information: Section S1). 
This approach allows us to examine fine-scale variation in po-
larimetric variables (to within a 2.5 km horizontally and 200 m 
in height) and consequently in arthropod densities. This level of 
detail can be valuable for identifying the environmental drivers 
behind the observed variations.

For each radar, we generated 144 CVPs arranged in a 12 × 12 
grid within a 60 × 60 km bounding box, centered on the radar's 
coordinates (Figure 1b). This spatial extent was chosen because 
radar sensitivity declines beyond 30 km, often requiring ad-hoc 
corrections that are unreliable for detecting sparse populations 
of small insects. Within a 30 km radius, the radar beam's vertical 
resolution is adequate for estimating abundance across discrete 
height bands (Kilambi et al. 2018). Applying this protocol across 

all 15 WSRs in the UKMO network yielded a total of 2160 CVPs 
(144 per radar). One CVP in the upper right corner (Figure 1b) 
could not be processed for any radar due to technical limita-
tions, leaving 2145 CVPs for downstream processing.

As mentioned above, within a CVP, data from multiple eleva-
tion angles are azimuthally averaged and projected to the CVP 
center. However, due to the radar beam angle and beam broad-
ening, the number of voxels at different heights varies with the 
range. We therefore removed 16 central CVPs (4 × 4 grid around 
the radar; Figure 1b), where few or no voxels could be surveyed 
at greater heights. This resulted in a loss of data but did not bias 
our results, as it affected the same locations across all radars, 
and the number of CVPs per radar remained constant. We also 
removed additional CVPs for which an obstruction in the radar 
beam would result in severe ground clutter and shadowing, 
which can lead to issues when extracting comparatively weak 
arthropod echoes. Because obstructions caused by hills are 
typically long-lasting, we used a UK-wide, 90 m Digital Terrain 
Model (DTM) to further remove 84 CVPs across different ra-
dars in which potential sources of obstruction were identified 

FIGURE 1    |    (a) Map showing locations of 15 weather radars across the UK, and (b) a 12 × 12 lattice of the different Columnar Vertical Profiles 
(CVPs) around the radar used for estimating aerial arthropod abundance in the present study. (a) Dual polarized data from 15 UKMO-Radars (pur-
ple triangles) was processed from a fixed region around the radar (purple squares overlaid on the triangle, each corresponding to the region covered 
by a 12 × 12 CVP lattice as shown in b). (b) Around each radar, 144 Columnar Vertical Profiles (CVPs) of 5 km diameter were generated. The spatial 
coordinates for each CVP were obtained by creating a regular grid with the coordinates of each radar as the centroid (golden dot in the centre). The 
outer black circle represents the 30 km buffer where the radar beam retains sufficient resolution for stratified height analysis. The height of the bars 
within each CVP corresponds to the number of voxels available across different heights (see legend for heights in meters). The number of voxels vary 
with the range due to the beam height and broadening, hence both the height as well as the number of bars is variable across CVPs. The innermost 
CVPs closest to the radar (within a 5 km radius; solid red circle) were removed from all downstream analysis due to the highest likelihood of echoes 
from ground clutter. A further 12 CVPs falling within the 7.5 km radius (marked by the dashed red circle) were excluded from all radars due to in-
sufficient vertical coverage of the radar beam. One CVP in the upper-right corner (highlighted in red) could not be processed for any radar due to 
technical issues.
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(Zrnic and Ryzhkov 1998; Supporting Information: Section S1). 
The final dataset thus consisted of (127 × 15) − 84 = 1821 CVPs in 
total. With the spatial area under each CVP = 19.62 km2 (π × 2.52), 
this resulted in a complete spatial coverage of 35,728 km2 across 
the UK (~15% of the country's area) above which aerial arthro-
pod abundances were estimated.

2.3   |   CVP Processing

We removed all meteorological signals that could be attributed 
to precipitation using the ‘DR-Filtering’ method developed by 
Kilambi et al. (2018). A depolarization ratio (DR) was calculated 
using polarimetric variables ZDR and ρHV, and all data below a 
DR threshold of −12.5 dB were identified as precipitation and 
removed (Kilambi et  al.  2018; Stepanian et  al.  2020). We also 
removed all data with extremely high reflectivity factors (> 45 
dBZ), which are often associated with heavy rainfall but may 
not be efficiently captured by the depolarization ratio (Kilambi 
et al. 2018; Figure S1). We used differential reflectivity (ZDR) to 
remove all birds from the resulting data. High positive values of 
ZDR can be generally attributed to arthropods due to their some-
what more elongated body plans, with values ranging between 
2 and 10 dB commonly observed (Dokter et al. 2011; Mäkinen 
et  al.  2022; Melnikov et  al.  2015; Stepanian et  al.  2020; Zrnic 
and Ryzhkov  1998). For example, Dokter et  al.  (2011) used a 
threshold of 3 dB to filter out arthropods for studying bird mi-
grations; for the decidedly more elongate mayflies, Stepanian 
et al. (2020) used a ZDR threshold of 5 dB. For UK arthropods, 
we used a conservative threshold of 3 dB to reduce co-occurring 
bird signatures.

We used seasonal and diurnal truncations to restrict our data 
to periods of known high arthropod activity across the coun-
try, which would further increase the signal-to-noise ratio for 
arthropods against birds. Arthropods, especially insects, are 
common in weather radar scans across the UK from late April 
to early October when warm and dry weather prevails. During 
this extended period, their aerial abundance generally peaks 
twice per day: a diurnal peak around midday and a dusk/noc-
turnal peak in the evening, typically shortly after sunset (Hu 
et al. 2016). To identify more specific start and end periods for 
these peaks within a year and within a day, we used annual and 
diurnal time series profiles of ZDR. Data from all 15 WSRs were 
used to generate two distinct categories of time series profiles: 
annual time series with a daily resolution and a daily time series 
with hourly resolution. Using non-linear Generalized Additive 
Models (GAMs), we selected a seasonal time window between 
15th April to 30th October with peaks in ZDR (corresponding to 
higher density of horizontally elongated targets, that is, arthro-
pods; Supporting Information Section  S6) and truncated the 
data to only this period for estimating arthropod abundances 
(Figure  S2). Using a similar approach, we identified two dif-
ferent time windows within each day: 0800 to 1400 h and 1800 
to 2200 h GMT, corresponding to the maximum in daily ZDR 
(Figure S2). To avoid repeatedly counting the same insects, we 
restricted our analysis to a single scan (with maximum ZDR) per 
time window, resulting in two abundance estimates—referred 
to as diurnal and nocturnal, respectively—per day between 15th 
April and 30th October. Selecting only one scan per time window 
also ensures that the unequal temporal coverage of 6 h during 

diurnal and 4 h during nocturnal does not bias the downstream 
modeling. The nocturnal scan window may overlap with civil 
twilight or daylight hours, potentially capturing dusk take-offs 
in addition to nocturnal flights. This overlap was accepted to 
maintain a standardized approach and to capture aerial arthro-
pod abundance in a consistent and comparable manner across 
latitudes and months.

2.4   |   Estimating Aerial Arthropod Abundance

Columns are approximated as cylinders for the calculation of 
all mean polarimetric variables at different height bands within 
a CVP. Therefore, arthropod abundance estimates discussed 
throughout the text correspond to the volume density within a 
single “CVP band”, that is, estimated abundance per km3 of at-
mosphere between specific height intervals of 200 m depth and 
referred to by the lower limit (e.g., abundance density at 500 m 
corresponds to the mean estimated abundance/km3 of atmo-
sphere between 500 and 700 m, and so on).

To estimate abundances at different heights, we adopted the 
methods developed by Chilson et al.  (2012). We converted the 
radar reflectivity factor (Z) to the more biologically meaning-
ful radar reflectivity (η) using the equation: η (dB) = Z (dBZ) + β, 
where β = 26.58 for the UKMO C-Band wavelengths (Chilson 
et  al.  2012). The total (mean) reflectivity (in units of decibels) 
from each height band within a CVP, was then converted to lin-
ear units (cm2/km3), and multiplied by the total volume of a CVP 
band (km3; Vh = Π × r2 × h, where r = 2.5 km and h = 0.2 km) to 
obtain the total back-scattering area (cm2) (i.e., the total reflec-
tive surface from all arthropods within a CVP band). By divid-
ing the total back-scattering area by the estimated mean radar 
cross section (σ) of a single arthropod, we derived the total num-
ber of arthropods across different heights (Chilson et al. 2012; 
Stepanian et al. 2020) (see Supporting Information: Section S2 
for more information on how σ was estimated). Dividing this 
number again by Vh, we obtained the volume density within a 
single CVP band. All estimates correspond to the reflectivity 
from a single radar scan per diurnal and nocturnal time period 
(the scan with a maximum value of ZDR within each period). 
This approach avoided double-counting of individuals that take 
flights more than once or that remain airborne in the same vol-
ume of air over an extended period of time per diurnal or noc-
turnal time window.

2.5   |   Validation Using Long-Term Arthropod 
Monitoring Data

For validation of the estimated abundances, we used concur-
rent samples from a suction trap maintained by the Rothamsted 
Insect Survey (Bell et al. 2020), which is within the scan radius 
of Chenies weather radar (~17.6 km from the suction trap). Using 
the approach discussed above, we estimated aerial arthropod 
abundances for different heights above the location of the suc-
tion trap. We used Ordinary Least Squares (OLS) regression to 
assess the relationship between the observed daily arthropod 
abundances near the ground (from the suction trap data) and 
the abundance estimates obtained from the CVPs at different 
heights above the trap.
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2.6   |   Statistical Analysis

To model spatio-temporal variation in aerial arthropod abun-
dance, we focused on estimates from a single band at 500 m, 
which was represented in the maximum number of CVPs 
per radar. Lower bands at 100 and 300 m were not available 
for all CVPs due to radar beam angle (also see Supporting 
Information: Section  S4; results for other heights are dis-
cussed in Section S5).

We assessed variation in the aerial arthropod abundance along 
spatial, temporal, and environmental variables, using a gen-
eralized additive modeling (GAM) framework (Wood  2011, 
2017). GAM is an additive modeling technique where the im-
pact of the different predictor variables is captured through 
non-linear, additive smoothing functions using the general 
form: g(�) = � + Σn

(j=1)
fj
(

xj
)

, where the mean response (μ) is re-
lated to the predictor variables (x1, …, xn) by the identity link 
function g(μ) which defines the relationship between the re-
sponse and ‘n’ additive predictors. β represents the intercept 
term, and ƒj is a smoothing function for the predictor xj. Since 
our estimates of abundance were not derived from individual 
counts but total reflectivity on a continuous scale, we used 
Gaussian error distributions to model the estimated abun-
dances instead of the commonly used Poisson for abundance 
counts. All GAMs were fitted using the R package ‘mgcv’ 
(Wood  2011), and the function “bam” with discrete = TRUE 
option for the large dataset.

Using the estimated arthropod abundance densities between 
500 and 700 m as the response variable (μ), a total of 7 hier-
archical spatio-temporal GAMs were fitted to the diurnal and 
nocturnal datasets independently (Table  S1). The covariates 
maximum daily temperature (Tmax), Rain, Wind, Artificial 
Light at Night (ALAN), Elevation, percentage land cover 
under Arable, Woodland, Grassland, and Urban (built-up 
areas + gardens) categories, Year, and the Latitude (y) and 
Longitude (x) of each CVP centroid, were fitted with thin-
plate regression splines (Supporting Information: Section S3). 
As GAMs use shrinkage to reduce overfitting, the predictor 
“Year” only contributes to the effect not represented by cli-
mate and land cover data. This minimizes the probability of 
wrongly detecting a trend over time that could be attributed to 
variation in these environmental variables. We included CVP 
Grid location within the 12 × 12 lattice (Figure  1b), Month, 
and Radar as random effects. Overall temporal trends in 
abundance were assessed by using the modelled predictions 
averaged across all CVPs for each year, while complete spatio-
temporal predictions are based on all significant covariate 
relationships.

Given the large parameter space, we performed an automated 
variable selection using the ‘double penalty approach’, imple-
mented via the argument select = TRUE in mgcv. This approach 
adds an additional, second penalty that allows shrinkage of 
the model linear terms, and therefore, when added to the first 
‘wiggliness’ penalty, the two can result in an insignificant co-
variate being entirely removed from the model. The best model 
was selected using a combination of model diagnostics (normal-
ity and spread of the residuals, k-index (Wood 2011), deviance 
explained, ΔAIC and adj-R2), and AIC scores. We accounted 

for spatial autocorrelation by including smooth functions of 
the individual CVP coordinates, that is, f(x,y), and for temporal 
autocorrelation using AR (1) autoregressive function with the 
value of the temporal autocorrelation parameter ‘rho’ estimated 
using the function start_value_rho() from the package itsadug 
(van Rij et al. 2022). Residual spatial autocorrelation (patterns 
in residuals correlated to spatial proximity) was evaluated using 
correlograms based on Moran's I (Wood 2003), using CVP cen-
troids as the spatial coordinates. Model fit was evaluated using 
the gam.check() function in mgcv.

We used the function predict.gam(), which enables a fitted GAM 
model object to be used for prediction at different values of the 
model covariates. We also used predict.gam() to estimate the (ap-
proximate) uncertainty (standard errors) of those predictions ob-
tained by the Taylor expansion approach. These spatio-temporal 
predictions were used to generate yearly spatial maps of aerial 
arthropod abundances per km3 of atmosphere. All statistical 
analyses were performed in the R programming environment 
(version 4.3.0; R Core Team 2023) on Platform:x86_64-pc-linux-
gun (64-bit). Raw weather data retrieval, storage, and CVP 
analyses were facilitated using JASMIN, the UK's collabora-
tive data analysis environment (https://​jasmin.​ac.​uk; Lawrence 
et al. 2013).

3   |   Results

3.1   |   Arthropod Abundance From Weather 
Surveillance Radars

Median arthropod density within the 500 m CVP band (i.e., 
abundance/km3 between 500 and 700 m height) was 4.61 × 107 
(interquartile range = 3.77 × 108) and 2.06 × 107 (interquartile 
range = 2.91 × 108) diurnal and nocturnal arthropods, respec-
tively. Extrapolating this to the entire UK indicates that an 
average of 1.12 (±0.01) × 1013 diurnal and 5.02 (±0.01) × 1012 
nocturnal arthropods were present over the UK between 500 
and 700 m height, between 15th April and 30th October, and 
at any given instance between 0800–1400 and 1800–2200 
GMT, respectively, although with high inter-annual variabil-
ity (Figure S3).

On average, arthropod abundances decreased monotonically 
at the rate of 8.74 (±0.01) × 105 individuals per 200 m of height 
gained in the air column (Diurnal: slope = −7.77 (±0.01) × 105, 
Adj. R2 = 0.11, p < 0.001; Nocturnal: slope = −9.71 (±0.21) × 105, 
Adj. R2 = 0.12, p < 0.001; Figure S4).

3.2   |   Validation Using Long-Term Arthropod 
Monitoring Data

Based on the dual-polarization coverage of the Chenies WSR 
and the number of operational days at the Rothamsted suc-
tion trap, we obtained n = 127 days that overlapped across 
the two datasets. We further removed days (n = 9; entire day, 
i.e., 24-h removed) where heavy rainfall occurred, resulting 
in a total of 116 days for comparison. We found strong and 
significant correlations between estimated abundances and 
at different heights in the CVP with the observed arthropod 
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abundances at 12.2 m suction traps (Adj. R2 = 0.32 to 0.47; 
p < 0.001; Figure  2a). As expected, the slope of this relation-
ship decreased with height, with the strongest relationship at 
the lowest height (Figure 2a).

3.3   |   Spatio-Temporal Variation

Of the 7 hierarchical GAMs tested (Table  S1), the best fitting 
model included the following terms:

along with the following 9 covariates:

This model explained 80.2% and 76.4% of the total deviance in 
diurnal and nocturnal arthropods respectively and revealed 
significant spatio-temporal heterogeneity across the WSR 
network (Tables  S2 and S4). Average cumulative predictions 
per year revealed significant declines in nocturnal arthro-
pod abundances over time; however, diurnal abundances did 
not exhibit a consistent negative trend with year (Figure 3a). 
Nearly all the tested variables had similar patterns of asso-
ciations with both diurnal and nocturnal arthropod popula-
tions, indicating a broad- scale generality of the relationships 
(Figure 3b–g). The only variable showing different effects on 
diurnal and nocturnal arthropods was ALAN, which had a 
weak negative effect on nocturnal species, and a strong neg-
ative effect on diurnal ones, but only at higher ALAN lev-
els. Woodland and grassland cover had positive associations 
(Figures  3g and 3f), while arable cover revealed a negative 

relationship with aerial arthropod abundances but only for 
high arable land cover (Figure  3d). Across the individual, 
height-stratified GAMs, the estimated effect sizes (and signif-
icance) of land cover covariates declined progressively with 
increasing height (Supporting Information: Section S5).

Arthropod abundances showed a strong spatial depen-
dence, with a significant effect of the smoothed terms for the 
CVP's × and y coordinates [ f7(x,y)]; the temporal trends exhib-
ited a higher net decline towards the higher latitudes for both 
diurnal and nocturnal arthropods (Figure 4). We also observed 
an increase (positive change) in arthropod abundances at the 
lower latitudes (Figure  4). The modelled relationship between 
abundance and all covariates was used to generate national-
scale spatio-temporal predictions for new, unsampled locations 
(Figure 5).

4   |   Discussion

By employing an extensive and standardized dataset on a na-
tional scale, our study has revealed important broad-scale 
spatio-temporal patterns in the abundance of aerial arthropods 
across the UK between 2014 and 2021. On average, nocturnal 
arthropods showed a decline in abundance, while diurnal ar-
thropods showed substantial inter-annual variation, but no 
overall increasing or decreasing trend (Figure  3a). However, 
these trends were not consistent across all regions; both groups 
exhibited significant increases in abundance over the southern 
latitudes, with declines primarily confined to the northernmost 
regions (Figure 4). Our study emphasizes the significance of spa-
tial variation in obscuring temporal trends (Wagner et al. 2021), 
which is likely important when analyzing the impact of spatially 
structured drivers. Furthermore, we have demonstrated that 

g(�)= f 1(year)+ f 2
(

yearf ,R
)

+ f 3(radar,R)+ f 4(Year, by=Radar)

+ f 5(month,R)+ f 6
(

CVPlocation,R
)

+ f 7(x, y)

f 8
(

Tmax
)

+ f 9(Rain)+ f 10(Wind)+ f 11(Arable)+ f 12(Urban)

+ f 13(Woodland)+ f 14(Grassland)+ f 15(ALAN)+ f 16(Elevation)

FIGURE 2    |    Validation of radar-derived estimates of arthropod abundance using a ground-based suction trap. We obtained daily total arthropod 
counts from a 12.2 m suction trap maintained by the Rothamsted Insect Survey, which is 17.6 km from the Chenies weather radar, and therefore with-
in the radar's scanning range. We estimated aerial arthropod abundances for different heights in the air column, at the location of the suction trap 
using the methods developed in this study. We used Ordinary Least Squares (OLS) regression to assess the correlation between the observed daily 
arthropod abundances near the ground (from the suction trap data), and the abundance estimates obtained from the CVPs at different heights. We 
found strong and significant correlations between the observed arthropod abundance recorded at the suction trap, and (a) abundance estimated from 
the Chenies weather radar, and (b) ZDR or differential reflectivity. We measured the correlations at different heights within the CVP and observed 
that the slope of both relationships decreased with height, with the strongest relationship at the lowest height. We used scaled variables for regression 
models since the two datasets are obtained at different spatial scales.

 13652486, 2025, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.70425 by R

otham
sted R

esearch, W
iley O

nline L
ibrary on [27/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



7 of 13Global Change Biology, 2025

WSR networks can deliver systematic, non-invasive biodiversity 
monitoring, which provides large-scale and continuous cover-
age at high temporal resolutions.

Spatio-temporal variation indicated declines in arthropod 
abundance at higher latitudes across the UK, compared to the 
south (Figure 4b). The decline in the north reflects the observed 
negative association between maximum daily air temperature 
(Tmax) and arthropod abundances, which were most prom-
inent at lower values of Tmax typical of northern latitudes in 
the UK (Figure 3b). Temperature has increased in the UK over 
the study period (Christidis et  al.  2023), and the positive cor-
relation between arthropod abundance and Tmax at higher val-
ues of the latter would also explain the increase in the southern 
latitudes. Recent warming has been highly uneven across the 
globe, with higher latitudes warming faster than the tropics 
(Intergovernmental Panel on Climate Change (IPCC) 2021). 
However, the UK Climate Projections 2018(UKCP18) projec-
tions reveal the opposite latitudinal gradient for the UK: max-
imum temperatures have risen (and are projected to rise) more 
sharply in southern England than in northern Scotland (Lowe 
et al. 2018; Murphy et al. 2020). This north–south asymmetry 
in warming, together with the positive correlation between ar-
thropod abundance and higher Tmax, would offer some expla-
nation for why increases were concentrated in southern CVPs, 
whereas declines were largely confined to the northernmost 
regions. These findings underscore how spatial variation in cli-
mate change can drive contrasting temporal biodiversity trends 
within a relatively small geographic area. Previous research has 
shown that distinct atmospheric layers in aerial arthropods are 
associated with local maxima in the vertical air temperature pro-
file (Drake 1984; Wood et al. 2006), suggesting that the inclusion 
of finer-scale variables (vertical profiles of local climate) is likely 

to improve the prediction of aerial arthropod variability in radar 
datasets in future (e.g., UK Met Office's numerical weather pre-
diction model, the “Unified Model”) (Brown et al. 2008).

Habitat type and land cover changes have been identified 
in the past as the main drivers of arthropod declines, a fac-
tor implicated equally in global bird and mammal declines 
(Chamberlain and Fuller  2000). While our samples are con-
strained to arthropods suspended in the atmosphere above 
the habitat matrix below, we did find associations with the 
different habitat types. We observed a negative relationship 
of aerial arthropod abundances with arable cover, and a posi-
tive relationship with woodland, grassland, and, surprisingly, 
urban land cover. The negative effects of increasing arable 
cover are often mediated by loss of native plants, increased use 
of pesticides and fertilizers, increased frequency of harvest in 
recent years, and others, which are deemed to be key drivers 
of arthropod declines (Fox 2013). The strong positive effect of 
urban cover (Figure  3e) may be due to urban heat island ef-
fects (Youngsteadt et  al.  2017); arthropod aerial movements, 
particularly at higher heights, are triggered by steadily rising 
isothermal currents associated with warmer temperatures of 
urbanized regions (Reynolds et al. 2008). A similar observation 
was noted recently for birds (Van Doren et al. 2017). Although 
the pattern is contrary to expectation, it should be noted that 
‘urban cover’ represents a broad, heterogeneous category span-
ning all built-up areas, gardens, and suburban areas. Thus, a 
more detailed investigation into the relative abundances across 
these categories may provide a deeper understanding of the role 
of urban cover on aerial arthropod abundances. This positive 
association likely causes predictive modeling to show urban re-
gions as the most prominent hotspots of aerial arthropod abun-
dance across the UK (Figure 5).

FIGURE 3    |    Temporal trends and drivers of variation for aerial diurnal and nocturnal arthropod abundances estimated over 35,000 sq. km in the 
UK, using UK-Met Office weather radar stations across an 8-year period. Within each plot, the values on the y-axis correspond to arthropod abun-
dance per km3 between 500 and 700 m in the atmosphere (a) Cumulative abundances for diurnal (between 0800 and 1400 GMT; shown in green) 
and nocturnal (between 1800 and 2200 GMT; shown in purple) aerial arthropods were predicted using generalized additive models for each year be-
tween 2014 and 2021 (for raw temporal series see Figure S3) (b–g) Each plot shows a covariate on the x-axis and aerial arthropod abundance on the 
y-axis. Variables shown are (b) TMax: Maximum daily air temperature; (c) ALAN: Artificial Light at Night measured using DN Values that is, Digital 
Number, which ranges from 0 to 63, where 63 represents maximum night-time illuminated sky; (d–g) Percentage land cover under arable, urban, 
woodland and grassland. The relationships are shown for both diurnal (green) and nocturnal (purple) arthropods.
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The predicted patterns of urban insect abundance differed 
markedly between nocturnal and diurnal arthropods, with noc-
turnal densities elevated throughout urban areas, while diurnal 
taxa showed depressed abundance in urban centers. This sug-
gests that the concentration of nocturnal arthropods in cities 
could at least partly be due to the attraction to ALAN, as shown 
previously for birds (Van Doren et al. 2017) and insects (Tielens 
et al. 2021). For example, urban areas of Las Vegas (USA) were 
previously characterized as a large-scale attractive sink on noc-
turnal flights of arthropod populations, indicating the attractive 
or disorienting effect of artificial light (Tielens et al. 2021). ALAN 
impacts the vital biological functions of nocturnal and diurnal 
arthropods alike; it alters the circadian patterns of activity and 
rest in diurnal arthropods, which results in impaired immune 
function, reduced fecundity, and a shorter lifespan (Durrant 
et al. 2015; Kouser et al. 2014). It also causes diurnal and crepus-
cular arthropods to move their foraging activity into the night, 
which subjects them to increased predation (Garber 1978), and 

cold stress (Owens and Lewis 2018). Despite a potentially nega-
tive effect on both nocturnal and diurnal arthropod populations, 
the impact on nocturnal arthropods may be masked by positive 
density effects due to behavioral attraction; nocturnal arthro-
pods are drawn to light sources across larger distances (Owens 
and Lewis 2018). On the other hand, the negative fitness effects 
on demography should accumulate over time via effects on ar-
thropod circadian rhythms, navigation, and foraging behavior 
(Manfrin et al. 2017). The stronger negative effect of very high 
ALAN values on diurnal arthropods in our findings is counter-
intuitive (Figure 3c) and may be due to some other driving vari-
able not considered in the present analyses. Specifically, the very 
high ALAN intensities associated with reduced diurnal arthro-
pod abundances may be associated with core cities, and/or with 
industrial or transport infrastructure, distinguishing them from 
suburban environments characterized by only moderate ALAN 
levels. With temporal niche partitioning between diurnal and 
nocturnal species becoming less extreme in response to human 

FIGURE 4    |    Spatio-temporal surfaces for diurnal (top) and nocturnal (bottom) aerial arthropod abundance estimated from UK-Met Office weath-
er radar stations across an 8-year period in the UK. The shaded circles overlap the 15 UK weather radars for which dual-polarized data was available. 
Aerial arthropod abundances were estimated for approximately 127 Columnar Vertical Profiles (a cylindrical volume of atmosphere, 2.5 km in radius 
and roughly spanning 1.8 km in height between 100 and 2100 m) around each radar (the shaded circles shown above are slightly enlarged for clarity). 
Generalized Additive Model (GAM) was used to model the spatio-temporal relationships between abundances (only between 500 and 700 m) and 
latitude, longitude and year. (a) Shown here are the model outputs for only 2014 and 2021 for diurnal (top) and nocturnal (bottom) aerial arthropod 
abundances. (b) Corresponds to the relative change from 2014 to 2021, with negative values indicating a decline in log (abundance/km3) of aerial 
arthropods. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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activity (Levy et al. 2019; Owens et al. 2020), more research is 
needed to document the role of ALAN in arthropod declines, 
including diurnal groups/species. We ensured that the diurnal 
effect of ALAN was independent of urban cover by re-running 
our models after accounting for the correlation between ALAN 
and urban cover (Supporting Information Section S4).

As previously mentioned, all spatio-temporal patterns and pre-
dictions discussed here correspond to the arthropods within 
a specific height band in the atmosphere (between 500 and 
700 m). Previous work has shown that the median flight layer 
has remained altitudinally stable over the past decade (Gao 
et al. 2020), and that there is strong temporal coupling among 
neighboring (vertically adjacent) layers (Reynolds et  al.  2005). 
These observations suggest that a single, broad altitudinal band 
provides a reliable index of (relative) spatio-temporal changes in 
aerial abundances of arthropods. Although the vertical layer-
ing is strongly governed by temperature inversions, boundary-
layer depth, and wind shear (Drake 1984; Reynolds et al. 2005), 
these phenomena have so far reported weak or non-monotonic 
long-term trends in previous studies (Shahi et  al.  2020; Yue 
et al. 2021; Zhang et al. 2013). Nevertheless, future work link-
ing height-resolved arthropod abundances with detailed, local 
temperature profiles and atmospheric processes will be essen-
tial to detect climate- and habitat-driven redistribution of flight 
heights. We analyzed the land-cover relationship for estimated 
arthropod abundances at different heights and observed a di-
minishing influence of land cover variables with increasing 
height (Supporting Information: Section  S5). Notably, aerial 

arthropods at heights greater than 900 m were not significantly 
correlated to a single land cover variable. This indicates that 
arthropods undertaking flights at higher heights are decoupled 
from the underlying habitat type, most likely because they are 
engaged in a long distance flight, covering distances greater 
than our CVP spatial resolution. This is further supported by 
the large number of recent studies showing that even the tini-
est aerial arthropods (e.g., aphids and micro-hymenopterans) 
are not entirely passive in their dispersal processes (Bell and 
Shephard  2024; Ortega-Jiménez and Combes  2018; Reynolds 
and Reynolds  2009; Wainwright et  al.  2017), and exhibit at-
traction to light sources (Döring and Chittka  2007; Kirchner 
et al. 2005). Future studies are needed to delve deeper into the 
size and taxonomic classifications of radar observations, provid-
ing clearer insights into how spatio-temporal trends translate to 
different ecological groups (Lukach et al. 2022).

Much of our macroscale understanding of arthropod diversity 
trends so far has been derived from studies on ground-dwelling 
and/or low-flying diurnal insects. Consequently, it is not unex-
pected that some of the emerging results—especially the posi-
tive association between urban land cover and aerial arthropod 
density, and the negative effect of ALAN on diurnal arthro-
pods—are novel and counterintuitive. These observations show 
that aerial arthropods may not be temporally and/or spatially 
synchronized with arthropod activity at ground level and hence 
may not accord with the monitoring of field-caught species or 
the perceptions of those who collect them. It is also the case that 
these arthropods are almost entirely monitored during one life 

FIGURE 5    |    Predicted abundance densities of diurnal (shown in green; top row) and nocturnal (shown in purple; bottom row) aerial arthropods 
between 500 and 700 m height in the atmosphere, across the UK between 2014 and 2021. The model predictions across the entire country are derived 
by combining the stacked rasters of underlying covariates such as weather, land cover, elevation, and artificial light at night (ALAN), and using the 
modelled relationships between these covariates and arthropod abundance (as shown in Figures 3 and 4). Map lines delineate study areas and do not 
necessarily depict accepted national boundaries.
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stage—the adult winged phase, part of a much more complex 
life cycle that cannot be measured using radar. The importance 
of this study is to open a window to a huge and important new 
source of biodiversity monitoring data. Our findings here are 
just a tantalizing glimpse of what such data can reveal, and fur-
ther, long-term analyses should be conducted as these datasets 
grow longer, especially to confirm the continuity of the temporal 
trends we detect.

Our work has provided significant insights into aerial arthropod 
activity, confirming and extending findings initially observed 
with Vertical Looking Radars (VLRs; Supporting Information 
Section  S6). For instance, the positive correlation between 
differential reflectivity (ZDR) and aerial arthropod density 
(Figure 2b) is consistent with VLR observations of horizontally 
aligned targets at similar heights. Peaks in ZDR between April 
and October, and during mid-day and evening, also validate ear-
lier observations of high insect activity during these windows 
(Hu et al. 2016). The extensive scale of our results reveals the 
broad-scale generality of these mechanisms across a range of 
biomes.

A series of interesting research gaps emerge from our work. 
First, the taxonomic and/or morphological resolution that can 
be derived from WSR observations requires further analysis. 
Although current radar-based estimates of arthropod abun-
dance are not species-specific (Bauer et  al.  2024; Chapman 
et al.  2011; Gauthreaux and Diehl 2020; Hüppop et al.  2019), 
recent studies suggest that WSR data—especially when coupled 
with ground-based monitoring—have the potential to discrim-
inate among different biological taxa, at least at higher taxo-
nomic levels (e.g., Orders) (Hu et al. 2024; Lukach et al. 2022). 
There is a need for extensive work in electromagnetic modeling 
and simulation to explore radar cross sections of a diverse array 
of arthropod taxa to classify the radar data by broad taxonomic 
groups (Matthews et al. (in press); Addison et al. 2022; Mirkovic 
et al. 2016, 2019). Our analyses here have assessed only overall 
arthropod numbers, but a degree of morphological information 
concerning sizes and shapes is provided in dual-polarization 
radar reflectance data. Future studies could be explicitly de-
signed to bridge the gap between ground-based long-term mon-
itoring and weather radar observations; high-throughput tools 
such as metabarcoding from suction trap samples, along with 
strategic new sampling approaches (e.g., drone-based aerial 
surveys), could help build the crucial taxonomic link between 
radar signals and biological identity. Second, much of the re-
search using radar has focused on migratory organisms rather 
than resident populations. The relative contribution of mi-
grants to local arthropod communities, and, hence, the value of 
migration to the ecosystem services that are provided by those 
communities remains poorly understood. Incorporating data 
from citizen and community scientists, who increasingly con-
tribute to species-level occurrence data and can measure near-
ground abundances that are invisible to the WSR, particularly 
for moths and freshwater insects migrating along watercourses 
in the UK, could enhance our understanding of local arthropod 
communities and their ecological contributions. Addressing 
these issues will require collaborations between scientists, en-
gineers, conservation practitioners, policymakers, and citizen 
scientists to advance the use of radar-derived measures in bio-
diversity conservation.

Our research is one of the first studies to empirically assess 
changes in abundance, and their potential drivers, across a broad 
spectrum of aerial arthropod taxa at a national scale. Spatial het-
erogeneity has posed a significant challenge in reconciling tempo-
ral trends in arthropod declines, even within a single taxonomic 
group (Didham et al. 2020). Until now, it has remained uncertain 
whether observed heterogeneity stemmed from methodological 
disparities between studies or was an inherent characteristic of 
arthropod communities (Wagner 2020). The methods developed 
herein provide insights into both diurnal and nocturnal arthro-
pod trends using a single monitoring method, something that is 
missing from contemporary monitoring methods. This analytical 
framework can be used to investigate how future changes in major 
environmental conditions may influence aerial arthropod den-
sities. This is the first critical step for better understanding their 
roles in ecosystem functions and services.

The benefits of WSR observations come at relatively little marginal 
cost because the underlying infrastructure—comprising radar 
installations, data acquisition systems, and archival platforms—
is already established and maintained through national mete-
orological services for operational weather forecasting. Unlike 
traditional arthropod monitoring methods, which often involve 
resource-intensive collection tools and incur significant field costs 
for data collection, weather radar data are continuously and pas-
sively collected at high spatio-temporal resolution. The primary 
costs associated with the ecological use of radar data arise not 
from data acquisition but from data processing. These include 
maintenance of processing scripts and pipelines (1 person-month 
per year; ~£10,000 with full economic costing), storage and com-
pute capacity (estimated at £10,000 to £30,000 annually depending 
on data volume and archival depth, though currently subsidized 
for NERC projects via platforms such as JASMIN), and updates 
to classification algorithms in response to changes in radar hard-
ware or improvements in methodology (additional personnel; at 
approximately £10,000 per year). These are best viewed as fixed 
service-level costs, akin to community-wide resources like GBIF 
or GenBank, rather than project-specific expenses. Given the 
ubiquity of existing national WSR networks across Eurasia, the 
Americas, and Australasia (as well as the current expansion of 
networks globally), there are exciting prospects for continental or 
even global-scale biodiversity monitoring in the future.
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