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ABSTRACT

Arthropod declines have been reported widely; however, a lack of comprehensive data has hindered our ability to assess their
large-scale generality and drivers. Here, we used a novel and freely available dataset—atmospheric scans from a network of
meteorological radars—to quantify aerial abundance of both diurnal and nocturnal arthropods across the United Kingdom,
spanning different geographic regions and land cover types. Based on observations between 2014 and 2021, and across more
than 35,000 km?, we estimate numbers of arthropods flying over the UK at heights between 500 and 700 m above ground at 1.12
(£0.01)x 10" individuals during the diurnal (0800-1400 UTC) and 5.02 (+0.01)x 10'? during the nocturnal (including dusk,
1800-2200 UTC) period, showing significant spatial heterogeneity. Although spatial patterns differed, both diurnal and noc-
turnal arthropods increased in the south and declined mainly in the far north; on average, only nocturnal arthropods showed
an overall decline. Aerial abundance of both diurnal and nocturnal arthropods showed positive relationships with woodland,
grassland, and urban land cover, and negative relationships with artificial light intensity and arable land cover. Our study high-
lights the importance of spatial variation in temporal biodiversity trends and illustrates the need for comparative studies between
nocturnal and diurnal arthropods. Notably, by extracting vertical profiles of radar reflectivity and polarization signatures, we
demonstrate how weather radar datasets can be used to quantify aerial arthropod abundance, detect diurnal and seasonal activ-
ity patterns, and examine their environmental drivers across large spatial and temporal scales.

1 | Introduction

Arthropods dominate terrestrial, freshwater and aerial environ-
ments, making up 80% of known species (Stork 2018) and almost
half of global animal biomass (Bar-On et al. 2018). There have
been increasing reports of declines in arthropod (and specifically
insect) populations from around the globe, but the generality of

this phenomenon, including its rate, magnitude, and extent,
remains poorly understood across large spatial and temporal
scales (Simmons et al. 2019). Arthropods are a hyper-abundant
and hyper-diverse group, and current monitoring methods are
limited by high costs and restricted spatial and taxonomic cov-
erage (Montgomery et al. 2020). Furthermore, the diverse met-
rics used to assess declines, such as species richness, occupancy,
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biomass, and abundance, are not directly comparable, present-
ing challenges to interpret and respond to the wide variability of
reported trends (Didham et al. 2020). Notably, alarming trends
have primarily been reported in total biomass and abundance,
which are critical as they strongly impact ecosystem services
(Hallmann et al. 2017). This raises severe concerns among sci-
entists and policymakers because arthropods play crucial roles
in ecosystems as pollinators, decomposers, and as a vital food
source for numerous organisms higher up in the trophic web
(Losey and Vaughan 2006). Enhanced understanding of drivers
and consequences of arthropod declines at large scales is there-
fore essential for developing effective conservation strategies
and mitigating potential ecological and societal disruptions

Empirical studies show that arthropods are affected by many
different and interacting aspects of their environment such as
climate, land cover change, invasive species, insecticides, and
light pollution (Kehoe et al. 2021). However, much of our under-
standing about the relative effects of these drivers comes from
studies either local in scale (e.g., point sampling), or utilizing
presence-only occupancy records, or by employing space-for-
time substitution (Bliithgen et al. 2022). Few studies have simul-
taneously compared temporal trends in arthropod abundances
across multiple habitat types and across large spatial extents
(Bell et al. 2020; Uhler et al. 2021). Nonetheless, understanding
these relationships is critical for conservation strategies aiming
to mitigate biodiversity loss (Wagner 2020).

Radar-based monitoring is an established tool for studying ae-
rial animals and may provide a robust methodology for large-
scale, standardized arthropod monitoring (Bauer et al. 2017).
Most recent studies have used vertical-looking radars (VLR),
which have generated considerable insights into aerial arthro-
pod movement and abundance (Hu et al. 2016; Knop et al. 2023),
but which provide limited spatial coverage. On the other hand,
weather surveillance radars (WSRs), intended to monitor mete-
orological phenomena, use existing infrastructure without extra
costs and provide unprecedented spatial coverage over thou-
sands of square kilometers for broad-scale biodiversity moni-
toring (Dokter et al. 2018). For example, the North American
NEXRAD WSR network has been used to generate biologically
meaningful data on bird phenology (Schools et al. 2012), migra-
tion (Schools et al. 2012; Sivakumar et al. 2021), demography
(Nilsson et al. 2021), and epidemiology (McCuen et al. 2021) at
national scales. With the advent of dual-polarization capabili-
ties, where radars transmit and receive both horizontal and ver-
tical pulses to distinguish the elongated shapes of insects from
the more spherical signatures of precipitation, WSR networks
have also been used to map the emergence and migration of ar-
thropods (Boulanger et al. 2017; Stepanian et al. 2020).

Here, we demonstrate how observations from a national network
of WSRs can be used to provide robust quantitative estimates
of aerial arthropod abundance across vast spatial scales and at
high temporal (twice a day) frequencies. We analyzed 8 years
of data (2014-2021) from 15 WSRs (Figure 1a) spanning more
than 35,000km? and 10° in latitude, which represented a diverse
variety of habitat types, including woodland, agricultural, and
urban areas over which insects and other arthropods flew or
were transported. We derived sub-daily data describing abun-
dance trends across the UK, making it the most comprehensive

spatial investigation for both diurnal and nocturnal arthropods
using a common method. The resulting datasets were used to
answer three primary questions: (i) what is the abundance of
aerial arthropods across the UK? (ii) have there been significant
changes in abundances over the studied time period? and (iii)
what are the likely spatio-temporal drivers of any changes? We
validate our analysis using long-term, standardized monitoring
of aerial arthropod abundance from a suction trap situated close
to a WSR station. Our approach provides a benchmark for di-
recting future research efforts towards the long-term and broad-
scale investigation of overall arthropod abundance patterns
using standardized, homogeneous, and openly available data-
sets at an unprecedented spatial scale and temporal resolution.

2 | Materials and Methods
2.1 | UKMO Radar Network

The UK Met Office (UKMO) operates a network of 15 weather
surveillance radars, which provide complete airspace coverage
over England, Wales, Scotland, and Northern Ireland (Figure 1a)
(Harrison et al. 2000; Met Office 2003). Each Doppler radar is
a Doppler, C-Band (wavelength (1) =5.3cm), dual-polarization,
monostatic radar which provides near-continuous polarimetric
measurements of differential reflectivity (Z,), co-polar correla-
tion coefficient (py;,,) and phase differential (®;),), along with
the standard legacy variables of single-polarized radars, that is,
reflectivity factor (Z) and radial velocity (V). Ecological applica-
tion of weather radar, especially for birds, has been the subject of
several previous works (Boulanger et al. 2017; Dokter et al. 2018;
Nilsson et al. 2021; Schools et al. 2012; Sivakumar et al. 2021;
Stepanian et al. 2020), and, therefore, here we have only aimed
to describe the unique specifications of the UKMO radars.

The raw data are disseminated in the form of plan position indi-
cator (PPI) scans—that is, a single 360° (azimuthal) scan carried
out for a fixed elevation angle and repeated over a series of dif-
ferent angles. The PPIs are averaged to 600 m range gates and 1°
in azimuth, close to the radar beam width of 1.1°. However, for
our ecological analysis, we were interested in observing the data
at a fixed azimuth and over multiple elevations, that is, at a fixed
location in spatial coordinates and across different heights over
that location. We generated columnar vertical profiles (CVPs;
described below) of all polarimetric variables using PPI scans
from different elevation angles (typically between 0.5° and 4.0°)
sampled on long pulse mode (pulse length=2.0us; range cov-
ered =250km) and with a 600 m gate resolution every 5min.

2.2 | Columnar Vertical Profiles (CVPs)

CVPs—4D slices of data represented with latitude, longitude,
time, and height—were generated following the approach of
Murphy et al. (2020). Data from within the 600m X 1° sectors
were azimuthally averaged and projected to the CVP center,
resulting in a vertical profile. The mean values were assigned
as the profile value for different height bands, each 200m deep
(between 100 and 2100 m). Although technically speaking, col-
umns are not circular and not strictly vertical, for simplicity
and homogeneity of calculations, a circular representation is
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FIGURE1 | (a) Map showing locations of 15 weather radars across the UK, and (b) a 12X 12 lattice of the different Columnar Vertical Profiles
(CVPs) around the radar used for estimating aerial arthropod abundance in the present study. (a) Dual polarized data from 15 UKMO-Radars (pur-
ple triangles) was processed from a fixed region around the radar (purple squares overlaid on the triangle, each corresponding to the region covered
by a 12x12 CVP lattice as shown in b). (b) Around each radar, 144 Columnar Vertical Profiles (CVPs) of 5km diameter were generated. The spatial
coordinates for each CVP were obtained by creating a regular grid with the coordinates of each radar as the centroid (golden dot in the centre). The
outer black circle represents the 30 km buffer where the radar beam retains sufficient resolution for stratified height analysis. The height of the bars
within each CVP corresponds to the number of voxels available across different heights (see legend for heights in meters). The number of voxels vary
with the range due to the beam height and broadening, hence both the height as well as the number of bars is variable across CVPs. The innermost
CVPs closest to the radar (within a 5km radius; solid red circle) were removed from all downstream analysis due to the highest likelihood of echoes
from ground clutter. A further 12 CVPs falling within the 7.5km radius (marked by the dashed red circle) were excluded from all radars due to in-
sufficient vertical coverage of the radar beam. One CVP in the upper-right corner (highlighted in red) could not be processed for any radar due to

technical issues.

selected. Cylindrical columns can be considered as the volume
representing a subset of voxels (i.e., volume pixels). We chose a
column radius of 2.5km and a vertical resolution (step-size or
height) of 200m as the optimum trade-off between sector size
and step size, which facilitates uniform data averaging and
projection (more details on CVP calculation and this selection
criterion are discussed in Supporting Information: Section S1).
This approach allows us to examine fine-scale variation in po-
larimetric variables (to within a 2.5km horizontally and 200m
in height) and consequently in arthropod densities. This level of
detail can be valuable for identifying the environmental drivers
behind the observed variations.

For each radar, we generated 144 CVPs arranged in a 12x12
grid within a 60X 60km bounding box, centered on the radar’s
coordinates (Figure 1b). This spatial extent was chosen because
radar sensitivity declines beyond 30km, often requiring ad-hoc
corrections that are unreliable for detecting sparse populations
of small insects. Within a 30km radius, the radar beam's vertical
resolution is adequate for estimating abundance across discrete
height bands (Kilambi et al. 2018). Applying this protocol across

all 15 WSRs in the UKMO network yielded a total of 2160 CVPs
(144 per radar). One CVP in the upper right corner (Figure 1b)
could not be processed for any radar due to technical limita-
tions, leaving 2145 CVPs for downstream processing.

As mentioned above, within a CVP, data from multiple eleva-
tion angles are azimuthally averaged and projected to the CVP
center. However, due to the radar beam angle and beam broad-
ening, the number of voxels at different heights varies with the
range. We therefore removed 16 central CVPs (4 x4 grid around
the radar; Figure 1b), where few or no voxels could be surveyed
at greater heights. This resulted in a loss of data but did not bias
our results, as it affected the same locations across all radars,
and the number of CVPs per radar remained constant. We also
removed additional CVPs for which an obstruction in the radar
beam would result in severe ground clutter and shadowing,
which can lead to issues when extracting comparatively weak
arthropod echoes. Because obstructions caused by hills are
typically long-lasting, we used a UK-wide, 90m Digital Terrain
Model (DTM) to further remove 84 CVPs across different ra-
dars in which potential sources of obstruction were identified
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(Zrnic and Ryzhkov 1998; Supporting Information: Section S1).
The final dataset thus consisted of (127 x15) — 84 =1821 CVPs in
total. With the spatial area under each CVP =19.62 km? (7 X 2.5%),
this resulted in a complete spatial coverage of 35,728 km? across
the UK (~15% of the country's area) above which aerial arthro-
pod abundances were estimated.

2.3 | CVP Processing

We removed all meteorological signals that could be attributed
to precipitation using the ‘DR-Filtering’ method developed by
Kilambi et al. (2018). A depolarization ratio (DR) was calculated
using polarimetric variables Z, and py;, and all data below a
DR threshold of —12.5dB were identified as precipitation and
removed (Kilambi et al. 2018; Stepanian et al. 2020). We also
removed all data with extremely high reflectivity factors (>45
dBZ), which are often associated with heavy rainfall but may
not be efficiently captured by the depolarization ratio (Kilambi
et al. 2018; Figure S1). We used differential reflectivity (Z;) to
remove all birds from the resulting data. High positive values of
Z & can be generally attributed to arthropods due to their some-
what more elongated body plans, with values ranging between
2 and 10dB commonly observed (Dokter et al. 2011; Mikinen
et al. 2022; Melnikov et al. 2015; Stepanian et al. 2020; Zrnic
and Ryzhkov 1998). For example, Dokter et al. (2011) used a
threshold of 3dB to filter out arthropods for studying bird mi-
grations; for the decidedly more elongate mayflies, Stepanian
et al. (2020) used a Z, threshold of 5dB. For UK arthropods,
we used a conservative threshold of 3dB to reduce co-occurring
bird signatures.

We used seasonal and diurnal truncations to restrict our data
to periods of known high arthropod activity across the coun-
try, which would further increase the signal-to-noise ratio for
arthropods against birds. Arthropods, especially insects, are
common in weather radar scans across the UK from late April
to early October when warm and dry weather prevails. During
this extended period, their aerial abundance generally peaks
twice per day: a diurnal peak around midday and a dusk/noc-
turnal peak in the evening, typically shortly after sunset (Hu
et al. 2016). To identify more specific start and end periods for
these peaks within a year and within a day, we used annual and
diurnal time series profiles of Z,;. Data from all 15 WSRs were
used to generate two distinct categories of time series profiles:
annual time series with a daily resolution and a daily time series
with hourly resolution. Using non-linear Generalized Additive
Models (GAMs), we selected a seasonal time window between
15" April to 30" October with peaks in Z, (corresponding to
higher density of horizontally elongated targets, that is, arthro-
pods; Supporting Information Section S6) and truncated the
data to only this period for estimating arthropod abundances
(Figure S2). Using a similar approach, we identified two dif-
ferent time windows within each day: 0800 to 1400h and 1800
to 2200h GMT, corresponding to the maximum in daily Z;
(Figure S2). To avoid repeatedly counting the same insects, we
restricted our analysis to a single scan (with maximum Z ) per
time window, resulting in two abundance estimates—referred
to as diurnal and nocturnal, respectively—per day between 15
April and 30™ October. Selecting only one scan per time window
also ensures that the unequal temporal coverage of 6h during

diurnal and 4h during nocturnal does not bias the downstream
modeling. The nocturnal scan window may overlap with civil
twilight or daylight hours, potentially capturing dusk take-offs
in addition to nocturnal flights. This overlap was accepted to
maintain a standardized approach and to capture aerial arthro-
pod abundance in a consistent and comparable manner across
latitudes and months.

2.4 | Estimating Aerial Arthropod Abundance

Columns are approximated as cylinders for the calculation of
all mean polarimetric variables at different height bands within
a CVP. Therefore, arthropod abundance estimates discussed
throughout the text correspond to the volume density within a
single “CVP band”, that is, estimated abundance per km?3 of at-
mosphere between specific height intervals of 200m depth and
referred to by the lower limit (e.g., abundance density at 500m
corresponds to the mean estimated abundance/km? of atmo-
sphere between 500 and 700 m, and so on).

To estimate abundances at different heights, we adopted the
methods developed by Chilson et al. (2012). We converted the
radar reflectivity factor (Z) to the more biologically meaning-
ful radar reflectivity (n) using the equation: » (dB)=Z (dBZ) + 5,
where $=26.58 for the UKMO C-Band wavelengths (Chilson
et al. 2012). The total (mean) reflectivity (in units of decibels)
from each height band within a CVP, was then converted to lin-
ear units (cm?/km?), and multiplied by the total volume of a CVP
band (km?; V,, = T x r2 X h, where r=2.5km and h=0.2km) to
obtain the total back-scattering area (cm?) (i.e., the total reflec-
tive surface from all arthropods within a CVP band). By divid-
ing the total back-scattering area by the estimated mean radar
cross section (o) of a single arthropod, we derived the total num-
ber of arthropods across different heights (Chilson et al. 2012;
Stepanian et al. 2020) (see Supporting Information: Section S2
for more information on how ¢ was estimated). Dividing this
number again by V,, we obtained the volume density within a
single CVP band. All estimates correspond to the reflectivity
from a single radar scan per diurnal and nocturnal time period
(the scan with a maximum value of Z, within each period).
This approach avoided double-counting of individuals that take
flights more than once or that remain airborne in the same vol-
ume of air over an extended period of time per diurnal or noc-
turnal time window.

2.5 | Validation Using Long-Term Arthropod
Monitoring Data

For validation of the estimated abundances, we used concur-
rent samples from a suction trap maintained by the Rothamsted
Insect Survey (Bell et al. 2020), which is within the scan radius
of Chenies weather radar (~17.6 km from the suction trap). Using
the approach discussed above, we estimated aerial arthropod
abundances for different heights above the location of the suc-
tion trap. We used Ordinary Least Squares (OLS) regression to
assess the relationship between the observed daily arthropod
abundances near the ground (from the suction trap data) and
the abundance estimates obtained from the CVPs at different
heights above the trap.
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2.6 | Statistical Analysis

To model spatio-temporal variation in aerial arthropod abun-
dance, we focused on estimates from a single band at 500m,
which was represented in the maximum number of CVPs
per radar. Lower bands at 100 and 300 m were not available
for all CVPs due to radar beam angle (also see Supporting
Information: Section S4; results for other heights are dis-
cussed in Section S5).

We assessed variation in the aerial arthropod abundance along
spatial, temporal, and environmental variables, using a gen-
eralized additive modeling (GAM) framework (Wood 2011,
2017). GAM is an additive modeling technique where the im-
pact of the different predictor variables is captured through
non-linear, additive smoothing functions using the general
form: g(u) =p + 28‘=1>)§ (xj), where the mean response (W) is re-
lated to the predictor variables (x,, ..., x) by the identity link
function g(u) which defines the relationship between the re-
sponse and ‘n’ additive predictors. § represents the intercept
term, and f, is a smoothing function for the predictor x;. Since
our estimates of abundance were not derived from individual
counts but total reflectivity on a continuous scale, we used
Gaussian error distributions to model the estimated abun-
dances instead of the commonly used Poisson for abundance
counts. All GAMs were fitted using the R package ‘mgcy’
(Wood 2011), and the function “bam” with discrete=TRUE
option for the large dataset.

Using the estimated arthropod abundance densities between
500 and 700m as the response variable (u), a total of 7 hier-
archical spatio-temporal GAMs were fitted to the diurnal and
nocturnal datasets independently (Table S1). The covariates
maximum daily temperature (Tmax), Rain, Wind, Artificial
Light at Night (ALAN), Elevation, percentage land cover
under Arable, Woodland, Grassland, and Urban (built-up
areas+ gardens) categories, Year, and the Latitude (y) and
Longitude (x) of each CVP centroid, were fitted with thin-
plate regression splines (Supporting Information: Section S3).
As GAMs use shrinkage to reduce overfitting, the predictor
“Year” only contributes to the effect not represented by cli-
mate and land cover data. This minimizes the probability of
wrongly detecting a trend over time that could be attributed to
variation in these environmental variables. We included CVP
Grid location within the 12x 12 lattice (Figure 1b), Month,
and Radar as random effects. Overall temporal trends in
abundance were assessed by using the modelled predictions
averaged across all CVPs for each year, while complete spatio-
temporal predictions are based on all significant covariate
relationships.

Given the large parameter space, we performed an automated
variable selection using the ‘double penalty approach’, imple-
mented via the argument select = TRUE in mgcv. This approach
adds an additional, second penalty that allows shrinkage of
the model linear terms, and therefore, when added to the first
‘wiggliness’ penalty, the two can result in an insignificant co-
variate being entirely removed from the model. The best model
was selected using a combination of model diagnostics (normal-
ity and spread of the residuals, k-index (Wood 2011), deviance
explained, AAIC and adj-R?), and AIC scores. We accounted

for spatial autocorrelation by including smooth functions of
the individual CVP coordinates, that is, f{x,)), and for temporal
autocorrelation using AR (1) autoregressive function with the
value of the temporal autocorrelation parameter ‘rho’ estimated
using the function start_value_rho() from the package itsadug
(van Rij et al. 2022). Residual spatial autocorrelation (patterns
in residuals correlated to spatial proximity) was evaluated using
correlograms based on Moran's I (Wood 2003), using CVP cen-
troids as the spatial coordinates. Model fit was evaluated using
the gam.check() function in mgcv.

We used the function predict.gam(), which enables a fitted GAM
model object to be used for prediction at different values of the
model covariates. We also used predict.gam() to estimate the (ap-
proximate) uncertainty (standard errors) of those predictions ob-
tained by the Taylor expansion approach. These spatio-temporal
predictions were used to generate yearly spatial maps of aerial
arthropod abundances per km? of atmosphere. All statistical
analyses were performed in the R programming environment
(version 4.3.0; R Core Team 2023) on Platform:x86_64-pc-linux-
gun (64-bit). Raw weather data retrieval, storage, and CVP
analyses were facilitated using JASMIN, the UK's collabora-
tive data analysis environment (https://jasmin.ac.uk; Lawrence
et al. 2013).

3 | Results

3.1 | Arthropod Abundance From Weather
Surveillance Radars

Median arthropod density within the 500m CVP band (i.e.,
abundance/km? between 500 and 700 m height) was 4.61 x 107
(interquartile range =3.77 x 10%) and 2.06x 107 (interquartile
range =2.91 X 10%) diurnal and nocturnal arthropods, respec-
tively. Extrapolating this to the entire UK indicates that an
average of 1.12 (£0.01)x 10'3 diurnal and 5.02 (+0.01) x 10'2
nocturnal arthropods were present over the UK between 500
and 700m height, between 15th April and 30th October, and
at any given instance between 0800-1400 and 1800-2200
GMT, respectively, although with high inter-annual variabil-
ity (Figure S3).

On average, arthropod abundances decreased monotonically
at the rate of 8.74 (£0.01)x 10° individuals per 200m of height
gained in the air column (Diurnal: slope =-7.77 (£0.01)x 10,
Adj. R?=0.11, p<0.001; Nocturnal: slope=-9.71 (+0.21) X 10°,
Adj. R?>=0.12, p<0.001; Figure S4).

3.2 | Validation Using Long-Term Arthropod
Monitoring Data

Based on the dual-polarization coverage of the Chenies WSR
and the number of operational days at the Rothamsted suc-
tion trap, we obtained n=127days that overlapped across
the two datasets. We further removed days (n=9; entire day,
i.e., 24-h removed) where heavy rainfall occurred, resulting
in a total of 116days for comparison. We found strong and
significant correlations between estimated abundances and
at different heights in the CVP with the observed arthropod
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FIGURE 2 | Validation of radar-derived estimates of arthropod abundance using a ground-based suction trap. We obtained daily total arthropod
counts from a 12.2m suction trap maintained by the Rothamsted Insect Survey, which is 17.6 km from the Chenies weather radar, and therefore with-
in the radar's scanning range. We estimated aerial arthropod abundances for different heights in the air column, at the location of the suction trap
using the methods developed in this study. We used Ordinary Least Squares (OLS) regression to assess the correlation between the observed daily
arthropod abundances near the ground (from the suction trap data), and the abundance estimates obtained from the CVPs at different heights. We
found strong and significant correlations between the observed arthropod abundance recorded at the suction trap, and (a) abundance estimated from
the Chenies weather radar, and (b) Z,; or differential reflectivity. We measured the correlations at different heights within the CVP and observed
that the slope of both relationships decreased with height, with the strongest relationship at the lowest height. We used scaled variables for regression

models since the two datasets are obtained at different spatial scales.

abundances at 12.2m suction traps (Adj. R?=0.32 to 0.47;
p<0.001I; Figure 2a). As expected, the slope of this relation-
ship decreased with height, with the strongest relationship at
the lowest height (Figure 2a).

3.3 | Spatio-Temporal Variation

Of the 7 hierarchical GAMs tested (Table S1), the best fitting
model included the following terms:

g(u)=f1(year)+f2(year;, R) +f3(radar, R)+f4(Year, by = Radar)
+f5(month, R) +f6(CVP,gcaiion R) +£7(x, )

along with the following 9 covariates:
F8(Tmax) +f9(Rain) +f10(Wind) +f11(Arable) +f12(Urban)
+f13(Woodland) +f14(Grassland) + f 15(ALAN) + f 16(Elevation)

This model explained 80.2% and 76.4% of the total deviance in
diurnal and nocturnal arthropods respectively and revealed
significant spatio-temporal heterogeneity across the WSR
network (Tables S2 and S4). Average cumulative predictions
per year revealed significant declines in nocturnal arthro-
pod abundances over time; however, diurnal abundances did
not exhibit a consistent negative trend with year (Figure 3a).
Nearly all the tested variables had similar patterns of asso-
ciations with both diurnal and nocturnal arthropod popula-
tions, indicating a broad- scale generality of the relationships
(Figure 3b-g). The only variable showing different effects on
diurnal and nocturnal arthropods was ALAN, which had a
weak negative effect on nocturnal species, and a strong neg-
ative effect on diurnal ones, but only at higher ALAN lev-
els. Woodland and grassland cover had positive associations
(Figures 3g and 3f), while arable cover revealed a negative

relationship with aerial arthropod abundances but only for
high arable land cover (Figure 3d). Across the individual,
height-stratified GAMs, the estimated effect sizes (and signif-
icance) of land cover covariates declined progressively with
increasing height (Supporting Information: Section S5).

Arthropod abundances showed a strong spatial depen-
dence, with a significant effect of the smoothed terms for the
CVP'sxand y coordinates [f,(x,))]; the temporal trends exhib-
ited a higher net decline towards the higher latitudes for both
diurnal and nocturnal arthropods (Figure 4). We also observed
an increase (positive change) in arthropod abundances at the
lower latitudes (Figure 4). The modelled relationship between
abundance and all covariates was used to generate national-
scale spatio-temporal predictions for new, unsampled locations
(Figure 5).

4 | Discussion

By employing an extensive and standardized dataset on a na-
tional scale, our study has revealed important broad-scale
spatio-temporal patterns in the abundance of aerial arthropods
across the UK between 2014 and 2021. On average, nocturnal
arthropods showed a decline in abundance, while diurnal ar-
thropods showed substantial inter-annual variation, but no
overall increasing or decreasing trend (Figure 3a). However,
these trends were not consistent across all regions; both groups
exhibited significant increases in abundance over the southern
latitudes, with declines primarily confined to the northernmost
regions (Figure 4). Our study emphasizes the significance of spa-
tial variation in obscuring temporal trends (Wagner et al. 2021),
which is likely important when analyzing the impact of spatially
structured drivers. Furthermore, we have demonstrated that
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FIGURE3 | Temporal trends and drivers of variation for aerial diurnal and nocturnal arthropod abundances estimated over 35,000 sq. km in the
UK, using UK-Met Office weather radar stations across an 8-year period. Within each plot, the values on the y-axis correspond to arthropod abun-
dance per km? between 500 and 700 m in the atmosphere (a) Cumulative abundances for diurnal (between 0800 and 1400 GMT; shown in green)
and nocturnal (between 1800 and 2200 GMT; shown in purple) aerial arthropods were predicted using generalized additive models for each year be-
tween 2014 and 2021 (for raw temporal series see Figure S3) (b-g) Each plot shows a covariate on the x-axis and aerial arthropod abundance on the

y-axis. Variables shown are (b) TMax: Maximum daily air temperature; (c) ALAN: Artificial Light at Night measured using DN Values that is, Digital

Number, which ranges from 0 to 63, where 63 represents maximum night-time illuminated sky; (d-g) Percentage land cover under arable, urban,

woodland and grassland. The relationships are shown for both diurnal (green) and nocturnal (purple) arthropods.

WSR networks can deliver systematic, non-invasive biodiversity
monitoring, which provides large-scale and continuous cover-
age at high temporal resolutions.

Spatio-temporal variation indicated declines in arthropod
abundance at higher latitudes across the UK, compared to the
south (Figure 4b). The decline in the north reflects the observed
negative association between maximum daily air temperature
(T, and arthropod abundances, which were most prom-
inent at lower values of Tmax typical of northern latitudes in
the UK (Figure 3b). Temperature has increased in the UK over
the study period (Christidis et al. 2023), and the positive cor-
relation between arthropod abundance and Tmax at higher val-
ues of the latter would also explain the increase in the southern
latitudes. Recent warming has been highly uneven across the
globe, with higher latitudes warming faster than the tropics
(Intergovernmental Panel on Climate Change (IPCC) 2021).
However, the UK Climate Projections 2018(UKCP18) projec-
tions reveal the opposite latitudinal gradient for the UK: max-
imum temperatures have risen (and are projected to rise) more
sharply in southern England than in northern Scotland (Lowe
et al. 2018; Murphy et al. 2020). This north-south asymmetry
in warming, together with the positive correlation between ar-
thropod abundance and higher Tmax, would offer some expla-
nation for why increases were concentrated in southern CVPs,
whereas declines were largely confined to the northernmost
regions. These findings underscore how spatial variation in cli-
mate change can drive contrasting temporal biodiversity trends
within a relatively small geographic area. Previous research has
shown that distinct atmospheric layers in aerial arthropods are
associated with local maxima in the vertical air temperature pro-
file (Drake 1984; Wood et al. 2006), suggesting that the inclusion
of finer-scale variables (vertical profiles of local climate) is likely

to improve the prediction of aerial arthropod variability in radar
datasets in future (e.g., UK Met Office's numerical weather pre-
diction model, the “Unified Model”) (Brown et al. 2008).

Habitat type and land cover changes have been identified
in the past as the main drivers of arthropod declines, a fac-
tor implicated equally in global bird and mammal declines
(Chamberlain and Fuller 2000). While our samples are con-
strained to arthropods suspended in the atmosphere above
the habitat matrix below, we did find associations with the
different habitat types. We observed a negative relationship
of aerial arthropod abundances with arable cover, and a posi-
tive relationship with woodland, grassland, and, surprisingly,
urban land cover. The negative effects of increasing arable
cover are often mediated by loss of native plants, increased use
of pesticides and fertilizers, increased frequency of harvest in
recent years, and others, which are deemed to be key drivers
of arthropod declines (Fox 2013). The strong positive effect of
urban cover (Figure 3e) may be due to urban heat island ef-
fects (Youngsteadt et al. 2017); arthropod aerial movements,
particularly at higher heights, are triggered by steadily rising
isothermal currents associated with warmer temperatures of
urbanized regions (Reynolds et al. 2008). A similar observation
was noted recently for birds (Van Doren et al. 2017). Although
the pattern is contrary to expectation, it should be noted that
‘urban cover’ represents a broad, heterogeneous category span-
ning all built-up areas, gardens, and suburban areas. Thus, a
more detailed investigation into the relative abundances across
these categories may provide a deeper understanding of the role
of urban cover on aerial arthropod abundances. This positive
association likely causes predictive modeling to show urban re-
gions as the most prominent hotspots of aerial arthropod abun-
dance across the UK (Figure 5).
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FIGURE4 | Spatio-temporal surfaces for diurnal (top) and nocturnal (bottom) aerial arthropod abundance estimated from UK-Met Office weath-
er radar stations across an 8-year period in the UK. The shaded circles overlap the 15 UK weather radars for which dual-polarized data was available.
Aerial arthropod abundances were estimated for approximately 127 Columnar Vertical Profiles (a cylindrical volume of atmosphere, 2.5km in radius
and roughly spanning 1.8 km in height between 100 and 2100 m) around each radar (the shaded circles shown above are slightly enlarged for clarity).
Generalized Additive Model (GAM) was used to model the spatio-temporal relationships between abundances (only between 500 and 700m) and
latitude, longitude and year. (a) Shown here are the model outputs for only 2014 and 2021 for diurnal (top) and nocturnal (bottom) aerial arthropod
abundances. (b) Corresponds to the relative change from 2014 to 2021, with negative values indicating a decline in log (abundance/km?3) of aerial

arthropods. Map lines delineate study areas and do not necessarily depict accepted national boundaries.

The predicted patterns of urban insect abundance differed
markedly between nocturnal and diurnal arthropods, with noc-
turnal densities elevated throughout urban areas, while diurnal
taxa showed depressed abundance in urban centers. This sug-
gests that the concentration of nocturnal arthropods in cities
could at least partly be due to the attraction to ALAN, as shown
previously for birds (Van Doren et al. 2017) and insects (Tielens
et al. 2021). For example, urban areas of Las Vegas (USA) were
previously characterized as a large-scale attractive sink on noc-
turnal flights of arthropod populations, indicating the attractive
ordisorienting effect of artificial light (Tielens et al. 2021). ALAN
impacts the vital biological functions of nocturnal and diurnal
arthropods alike; it alters the circadian patterns of activity and
rest in diurnal arthropods, which results in impaired immune
function, reduced fecundity, and a shorter lifespan (Durrant
et al. 2015; Kouser et al. 2014). It also causes diurnal and crepus-
cular arthropods to move their foraging activity into the night,
which subjects them to increased predation (Garber 1978), and

cold stress (Owens and Lewis 2018). Despite a potentially nega-
tive effect on both nocturnal and diurnal arthropod populations,
the impact on nocturnal arthropods may be masked by positive
density effects due to behavioral attraction; nocturnal arthro-
pods are drawn to light sources across larger distances (Owens
and Lewis 2018). On the other hand, the negative fitness effects
on demography should accumulate over time via effects on ar-
thropod circadian rhythms, navigation, and foraging behavior
(Manfrin et al. 2017). The stronger negative effect of very high
ALAN values on diurnal arthropods in our findings is counter-
intuitive (Figure 3c) and may be due to some other driving vari-
able not considered in the present analyses. Specifically, the very
high ALAN intensities associated with reduced diurnal arthro-
pod abundances may be associated with core cities, and/or with
industrial or transport infrastructure, distinguishing them from
suburban environments characterized by only moderate ALAN
levels. With temporal niche partitioning between diurnal and
nocturnal species becoming less extreme in response to human
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FIGURE 5 | Predicted abundance densities of diurnal (shown in green; top row) and nocturnal (shown in purple; bottom row) aerial arthropods

between 500 and 700 m height in the atmosphere, across the UK between 2014 and 2021. The model predictions across the entire country are derived

by combining the stacked rasters of underlying covariates such as weather, land cover, elevation, and artificial light at night (ALAN), and using the
modelled relationships between these covariates and arthropod abundance (as shown in Figures 3 and 4). Map lines delineate study areas and do not

necessarily depict accepted national boundaries.

activity (Levy et al. 2019; Owens et al. 2020), more research is
needed to document the role of ALAN in arthropod declines,
including diurnal groups/species. We ensured that the diurnal
effect of ALAN was independent of urban cover by re-running
our models after accounting for the correlation between ALAN
and urban cover (Supporting Information Section S4).

As previously mentioned, all spatio-temporal patterns and pre-
dictions discussed here correspond to the arthropods within
a specific height band in the atmosphere (between 500 and
700m). Previous work has shown that the median flight layer
has remained altitudinally stable over the past decade (Gao
et al. 2020), and that there is strong temporal coupling among
neighboring (vertically adjacent) layers (Reynolds et al. 2005).
These observations suggest that a single, broad altitudinal band
provides a reliable index of (relative) spatio-temporal changes in
aerial abundances of arthropods. Although the vertical layer-
ing is strongly governed by temperature inversions, boundary-
layer depth, and wind shear (Drake 1984; Reynolds et al. 2005),
these phenomena have so far reported weak or non-monotonic
long-term trends in previous studies (Shahi et al. 2020; Yue
et al. 2021; Zhang et al. 2013). Nevertheless, future work link-
ing height-resolved arthropod abundances with detailed, local
temperature profiles and atmospheric processes will be essen-
tial to detect climate- and habitat-driven redistribution of flight
heights. We analyzed the land-cover relationship for estimated
arthropod abundances at different heights and observed a di-
minishing influence of land cover variables with increasing
height (Supporting Information: Section S5). Notably, aerial

arthropods at heights greater than 900 m were not significantly
correlated to a single land cover variable. This indicates that
arthropods undertaking flights at higher heights are decoupled
from the underlying habitat type, most likely because they are
engaged in a long distance flight, covering distances greater
than our CVP spatial resolution. This is further supported by
the large number of recent studies showing that even the tini-
est aerial arthropods (e.g., aphids and micro-hymenopterans)
are not entirely passive in their dispersal processes (Bell and
Shephard 2024; Ortega-Jiménez and Combes 2018; Reynolds
and Reynolds 2009; Wainwright et al. 2017), and exhibit at-
traction to light sources (Doring and Chittka 2007; Kirchner
et al. 2005). Future studies are needed to delve deeper into the
size and taxonomic classifications of radar observations, provid-
ing clearer insights into how spatio-temporal trends translate to
different ecological groups (Lukach et al. 2022).

Much of our macroscale understanding of arthropod diversity
trends so far has been derived from studies on ground-dwelling
and/or low-flying diurnal insects. Consequently, it is not unex-
pected that some of the emerging results—especially the posi-
tive association between urban land cover and aerial arthropod
density, and the negative effect of ALAN on diurnal arthro-
pods—are novel and counterintuitive. These observations show
that aerial arthropods may not be temporally and/or spatially
synchronized with arthropod activity at ground level and hence
may not accord with the monitoring of field-caught species or
the perceptions of those who collect them. It is also the case that
these arthropods are almost entirely monitored during one life
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stage—the adult winged phase, part of a much more complex
life cycle that cannot be measured using radar. The importance
of this study is to open a window to a huge and important new
source of biodiversity monitoring data. Our findings here are
just a tantalizing glimpse of what such data can reveal, and fur-
ther, long-term analyses should be conducted as these datasets
grow longer, especially to confirm the continuity of the temporal
trends we detect.

Our work has provided significant insights into aerial arthropod
activity, confirming and extending findings initially observed
with Vertical Looking Radars (VLRs; Supporting Information
Section S6). For instance, the positive correlation between
differential reflectivity (Z,;) and aerial arthropod density
(Figure 2b) is consistent with VLR observations of horizontally
aligned targets at similar heights. Peaks in Z, between April
and October, and during mid-day and evening, also validate ear-
lier observations of high insect activity during these windows
(Hu et al. 2016). The extensive scale of our results reveals the
broad-scale generality of these mechanisms across a range of
biomes.

A series of interesting research gaps emerge from our work.
First, the taxonomic and/or morphological resolution that can
be derived from WSR observations requires further analysis.
Although current radar-based estimates of arthropod abun-
dance are not species-specific (Bauer et al. 2024; Chapman
et al. 2011; Gauthreaux and Diehl 2020; Hiippop et al. 2019),
recent studies suggest that WSR data—especially when coupled
with ground-based monitoring—have the potential to discrim-
inate among different biological taxa, at least at higher taxo-
nomic levels (e.g., Orders) (Hu et al. 2024; Lukach et al. 2022).
There is a need for extensive work in electromagnetic modeling
and simulation to explore radar cross sections of a diverse array
of arthropod taxa to classify the radar data by broad taxonomic
groups (Matthews et al. (in press); Addison et al. 2022; Mirkovic
et al. 2016, 2019). Our analyses here have assessed only overall
arthropod numbers, but a degree of morphological information
concerning sizes and shapes is provided in dual-polarization
radar reflectance data. Future studies could be explicitly de-
signed to bridge the gap between ground-based long-term mon-
itoring and weather radar observations; high-throughput tools
such as metabarcoding from suction trap samples, along with
strategic new sampling approaches (e.g., drone-based aerial
surveys), could help build the crucial taxonomic link between
radar signals and biological identity. Second, much of the re-
search using radar has focused on migratory organisms rather
than resident populations. The relative contribution of mi-
grants to local arthropod communities, and, hence, the value of
migration to the ecosystem services that are provided by those
communities remains poorly understood. Incorporating data
from citizen and community scientists, who increasingly con-
tribute to species-level occurrence data and can measure near-
ground abundances that are invisible to the WSR, particularly
for moths and freshwater insects migrating along watercourses
in the UK, could enhance our understanding of local arthropod
communities and their ecological contributions. Addressing
these issues will require collaborations between scientists, en-
gineers, conservation practitioners, policymakers, and citizen
scientists to advance the use of radar-derived measures in bio-
diversity conservation.

Our research is one of the first studies to empirically assess
changes in abundance, and their potential drivers, across a broad
spectrum of aerial arthropod taxa at a national scale. Spatial het-
erogeneity has posed a significant challenge in reconciling tempo-
ral trends in arthropod declines, even within a single taxonomic
group (Didham et al. 2020). Until now, it has remained uncertain
whether observed heterogeneity stemmed from methodological
disparities between studies or was an inherent characteristic of
arthropod communities (Wagner 2020). The methods developed
herein provide insights into both diurnal and nocturnal arthro-
pod trends using a single monitoring method, something that is
missing from contemporary monitoring methods. This analytical
framework can be used to investigate how future changes in major
environmental conditions may influence aerial arthropod den-
sities. This is the first critical step for better understanding their
roles in ecosystem functions and services.

The benefits of WSR observations come at relatively little marginal
cost because the underlying infrastructure—comprising radar
installations, data acquisition systems, and archival platforms—
is already established and maintained through national mete-
orological services for operational weather forecasting. Unlike
traditional arthropod monitoring methods, which often involve
resource-intensive collection tools and incur significant field costs
for data collection, weather radar data are continuously and pas-
sively collected at high spatio-temporal resolution. The primary
costs associated with the ecological use of radar data arise not
from data acquisition but from data processing. These include
maintenance of processing scripts and pipelines (1 person-month
per year; ~£10,000 with full economic costing), storage and com-
pute capacity (estimated at £10,000 to £30,000 annually depending
on data volume and archival depth, though currently subsidized
for NERC projects via platforms such as JASMIN), and updates
to classification algorithms in response to changes in radar hard-
ware or improvements in methodology (additional personnel; at
approximately £10,000 per year). These are best viewed as fixed
service-level costs, akin to community-wide resources like GBIF
or GenBank, rather than project-specific expenses. Given the
ubiquity of existing national WSR networks across Eurasia, the
Americas, and Australasia (as well as the current expansion of
networks globally), there are exciting prospects for continental or
even global-scale biodiversity monitoring in the future.
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