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Abstract
Dietary selenium (Se) deficiency is widespread in Malawi, due to the limited supply of Se in the
predominantly maize based-food system characterised by low Se concentration. In this study, the
aim was to examine the spatial variation of Se in maize grains in Malawi, in relation to soil
properties and landscape features. Co-located soil and maize grain samples were collected in a
spatially representative survey. Selenium concentration in maize, soil properties, and
environmental covariates were determined. Soil and environmental variables were tested as
potential predictors of Se concentration in maize. A false discovery rate (FDR) control was used
within a linear mixed model (LMM) framework. Selenium concentrations in maize ranged from
below detection limits (7.69µg kg−1) to 1852µg kg−1 with mean and median values of 39.1 and
16.8µg kg−1 respectively. The ranges of concentrations of Se fractions in soil were (i) soluble Se
0.181–18.8µg kg−1with mean and median values of 3.94 and 3.29mgµg kg−1 respectively; (ii)
adsorbed Se 0.019–119µg kg−1 with mean and median values of 3.72 and 3.02µg kg−1

respectively; (iii) organically bound Se 9.43–1334µg kg−1 with mean and median values of 123 and
92.3µg kg−1 respectively. A LMM for maize Se concentration was used for which the independent
log transformed variables of soil soluble Se, adsorbed Se, oxalate extracted oxides, soluble and
exchangeable sulphur had predictive value (p< 0.01 in all cases, with FDR controlled at<0.05).
Downscaled mean annual temperature also explained some of the spatial variation in grain Se
concentration. Spatial variation of Se in maize showed relationships with soil and environmental
variables, which can be used to identify areas most at risk of Se deficiency and thus inform policy
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responses. However, only a small proportion of the variation was explained indicating more
analysis of Se geochemistry in soil may provide more explanatory insights.

1. Introduction

Selenium (Se) is a micronutrient essential for human health [1]. Based on dietary Se supply and direct
measurement of biomarkers, it is estimated that Se deficiency is present in more than 30% of people living in
sub-Saharan Africa (SSA) [2–6]. In Malawi, estimated Se deficiency prevalence rates of 35.5% and 62.5%
have been reported, respectively, based on nationally representative surveys of blood plasma Se
concentrations from samples collected in 2015 and 2016 [4, 6].

In many SSA food systems, locally grown cereals provide most of the Se in a person’s diet [5]. Access to
animal-source foods, as a richer source of dietary Se than cereals, are often limited due to their availability
and cost [3, 5]. There is considerable variation in the grain Se concentration of cereals, depending on where
the crop is grown. For example, in Malawi, the concentration of Se in maize (Zea mays L.) grown on Vertisols
was reported to be ten-fold larger than the grain concentration from most other soil types in the country [7],
and this was linked in subsequent studies to direct evidence of differences in dietary intake [8] and Se status
[9] among smallholder communities farming in these areas.

Comprehensive data on grain Se concentration in staple cereal crops have been reported recently for
Ethiopia and Malawi, from surveys representing most of their arable land areas [10, 11]. Grain Se
concentrations varied by several orders of magnitude within both countries (e.g ranging from below
detection limits (7.69µg kg−1) to 1852µg kg−1 for maize in Malawi). Furthermore, there was strong
evidence of spatially correlated variation in grain Se concentration of cereal crops, at distances of more than
100 km, again in both countries. What this means is that, for subsistence farmers, and other rural dwellers
dependent primarily on locally grown staples, their location is likely to be the single biggest factor in
determining whether they are likely to be at risk of Se deficiency.

Understanding spatial variation of Se concentration in grain is vital for agronomic biofortification
interventions aimed at improving dietary intake of Se. Sources of spatially-dependent variation of Se
concentration in grains have previously been investigated using surveys and statistical modelling. Gashu et al
2021 [11] reported that soil pH was positively correlated with grain Se concentration for teff, wheat and
maize in Ethiopia and for maize in Malawi. Grain Se concentration was positively correlated with mean
annual temperature for teff(Eragrostis tef (Zucc.) Trotter)and wheat (Triticum aestivum L.) in Ethiopia, and
maize in Malawi [11]. In addition, grain Se concentration was negatively correlated with mean annual
precipitation for teff, wheat and maize in Ethiopia. In a more detailed analysis of the soils of the Amhara
region of Ethiopia, [10] reported that ‘soluble’ (extracted in 0.01M KNO3) and ‘adsorbed/exchangeable’
(extracted in 0.016M KH2PO4) fractions of soil Se, along with soil pH, were positively correlated with the Se
concentration in teff and wheat grain. Whilst these fractions of soil Se are operationally defined, they are
considered to represent ‘plant-available’ fractions.

The sample materials in the survey reported by [12] can be used to determine the same crop and soil Se
variables which [11] reported from Amhara. The results from [12] indicate that the survey of Malawi is of
sufficient intensity to support a spatial analysis of the joint variation of crop and soil variables. However, we
may expect Se to behave differently in the soil, both in terms of retention and uptake by plants, and so a
further study to examine the variation of maize grain Se concentration and its joint variation with soil and
environmental properties could be expected to yield novel results.

The aim of this study was therefore to investigate whether the ‘plant-available’ fractions of Se explain the
spatially correlated variation of grain Se concentration of maize in Malawi. As with the earlier study in
Amhara region [11], we used an approach based on hypothesis-testing to select covariates. To reduce the risk
of over-fitting the model we employed false discovery rate (FDR) control, while maintaining power to detect
useful predictors of the target variable by employing the alpha-investment method of [13]. The α-investment
methods uses a ranking of the soil properties and wider environmental/landscape factors that are considered
by experts to be most likely, a priori, to influence grain Se concentration. The landscape factors included in
this analysis were downscaled precipitation and temperature, terrain index, slope, and vegetation index.

2. Materials andmethods

Most of the materials and methods used in this study are described in greater detail by [10, 11] and [12].
Here we provide a short overview. The final and definitive data set, as published by [14], is the one that was
used in the analyses described below.
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2.1. Design and field sampling
The sampling domain for Malawi was defined as the raster cells in the European Space Agency Climate
Change Initiative map allocated to a land-cover class that included ‘cropping’ in its designation. The
objective of the sampling was to provide adequate spatial coverage to support spatial prediction of the
variables of interest. A detailed description of the method used to select sampling points is given by [11].

The primary objective of the sampling was to provide adequate spatial coverage to support spatial
prediction of the variables of interest. More detail on the method used to select sample points to achieve this
is provided by [11]. Paired soil and grain samples were collected by trained teams from 1812 locations. Only
the locations where maize crop was grown (1608 locations≈89% of total samples), were included in this
study.

2.2. Grain and soil analyses
Selenium concentration in grain was determined using inductively coupled plasma mass spectrometry
(ICP-MS; iCAPQ, Thermo Fisher Scientific, Bremen, Germany) following acid digestion with 70% HNO3

(Trace Analysis Grade) in a Multiwave Pro 5000 microwave digestion system (Anton Paar). The following soil
properties were determined: soil organic carbon (SOC, dry combustion), effective cation exchange capacity
and exchangeable cations (hexamine cobalt trichloride solution), amorphous oxides (AlOx, FeOx, MnOx;
ammonium oxalate extraction), Olsen P; pH in water (1:2.5 solid to solution ratio) and pH in 0.01M
Ca(NO3)2 (1:10 solid to solution ratio), and quasi-total elemental concentration determined by ICP-MS
after extraction with Aqua Regia. Different Se fractions in soil were determined by using a 3-step sequential
extraction scheme as described in detail in [14]. The scheme is designed to sequentially extract three
operationally defined fractions (i) a ‘soluble’ fraction in 0.01M KNO3 (SeSol), (ii) a ‘specifically adsorbed’
fraction in 0.016M KH2PO4 (SeAds), and (iii) an organically bound fraction in 10% tetra methyl ammonium
hydroxide (SeOrg).

Selenium concentrations in grain fell below the detection limits (average of 7.69µg kg−1) in 409 samples
therefore they were removed from the analysis. Consequently, a total of 1199 samples were included in the
analysis in the current study. Values of LODs were calculated for each separate ICP-MS run (n= 6) and
samples analysed in each run were compared to the corresponding LOD, and when the concentration of Se in
grain was⩽ LOD, the sample was removed from the analysis. The limits of detection for selenium,
determined across the six ICP-MS runs, varied from 2.69 to 18.1µg kg−1, with a mean of 7.69µg kg−1. For
details, please refer to [14]. It is worth noting that we used a different approach in [11], where the average
value of LODs, calculated for each ICP-MS run (n= 6), was used.

2.3. Extraction of environmental covariates
We selected environmental covariates which were judged to be possible predictors of grain selenium
concentration through their effect on, or status as a proxy for, factors of crop growth and soil conditions.
These covariates were the MERIT digital elevation model [15] and derived variables, specifically surface slope
and the topographic index which represents the up-slope area that potentially contributed runoff to a point.
In addition, we considered climate variables from the CHELSA set [16, 17] (downscaled mean annual
temperature and precipitation) and the enhanced vegetation index (EVI) computed from measurement by
the MODIS remote sensor satellite [18]. Specifically, we used the average over the period 2000–2016 of the
250m EVI product (MOD13Q1).

2.4. Data analyses
The data analyses approaches used are described in detail by Botoman et al 2022 [12]. Summarised they were:

2.4.1. Linear mixed model (LMM)
To identify links between soil properties and Se concentration in grain and to model the spatial variation of
Se in maize grain, a LMM framework was used. The variable is modelled as a combination of fixed effects
(linear functions of soil properties or environmental covariates), a correlated random effect, and an
independent and identically distributed (iid) random error (nugget effect). The nugget effect incorporates
variation due to measurement error and factors that vary over short distances relative to the spacing of
sample points.

2.4.2. Statistical inference and FDR control with α-investment
In a LMM framework, the evidence that adding fixed effects to a simpler model achieves a significant
improvement by computing the log-ratio statistic:

L= 2(ℓ1 − ℓ0) , (1)
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where ℓ1 and ℓ0are the maximised log-likelihoods from fitting the model with the additional fixed effects,
and the simpler model without them, respectively [19]. Under the null hypothesis, where the additional fixed
effects are not related to the dependent variable, this statistic is asymptotically distributed as chi-square with
degrees of freedom equal to the number of additional fixed effects. To avoid the problem of multiple
hypothesis testing when evaluating multiple models with different predictors [22] we controlled the FDR
over a sequence of tests [20]. This is the expected proportion of rejected null hypotheses which are false
rejections, and it can be controlled by various methods [21]. While it is desirable to control FDR when
evaluating evidence to include predictors in a final model, this comes at the cost of reduced statistical power
to detect informative predictors. The method of α-investment due to [13]can improve the power of testing
with FDR control. In this method the threshold value against which the p-value for a new covariate is tested
depends on the α-wealth, a quantity which is reduced on acceptance of a null hypothesis increased on
rejection, while still controlling FDR.

We used this combination ofFDR control with α-investment when modelling grain Se concentration,
following [23]. Models were fitted sequentially, first, with a ‘null model’ with the only fixed effect a spatial
trend identified in exploratory analysis of the data. This model was used, rather than a model with a constant
mean as the only fixed effect, because the latter model would violate assumptions of second-order
stationarity when a spatial trend is pronounced [24]. The null model was fitted by maximum likelihood
(ML). The first predictor was then included as a fixed effect, the model refitted and then the log-likelihood
ratio statistic (equation 1) was computed. If the p-value for this test exceeded 0.05 then the predictor was
dropped, otherwise it was provisionally retained, and the next predictor was considered. Once all the
predictors had been considered the p-values for each were compared to thresholds according to the α-wealth
controlling FDR at a target value of 0.05. Those predictors for which the p-values was less than the FDR
threshold were retained for inclusion in a final model which was refitted by residual ML (REML).

Separate rankings of the soil properties and the environmental covariates as potential predictors of the Se
concentration in maize grain were based on a priori understanding of the processes involved, not from data
exploration. We used the same ranking of predictors for grain Se which we used previously for analysis of
data on grain Se in Ethiopia [10]. These rankings reflected a consensus view of soil and plant scientists on the
project team. They were not shown any data on grain Se from Malawi but were shown the correlations
among the candidate independent variables (figure B4). This is because the value of a predictor depends not
only on the extent to which it is related to the target variable, but also on its correlation with predictors
already included in the model. Such a correlation introduces redundancy. If two predictors are quite strongly
correlated then the expert should select just one for inclusion early in the testing sequence. It should be noted
that this ranking procedure allows us to improve the statistical power of the overall selection procedure. If the
ranking is poor, not representing the real value of the predictors, then the gain in power will be reduced, but
the control of the FDR is unaffected.

2.4.3. Exploratory data analysis and model-fitting
Summary statistics of the predictor variables were examined along with the octile skewness coefficient [25].
While no assumptions are made about the distribution of independent variables in the LMM, we preferred to
avoid using strongly skewed variables as large values in the upper portion of a skewed distribution would be
given undue influence variables for which the absolute value of the conventional skewness coefficient, based
on data moments, exceeds 1 are commonly considered for transformation [24]. However, like all statistics
based on second or higher-order moments, the skewness coefficient is sensitive to small numbers of outlying
observations. For this reason we considered a robust alternative, the octile skewness [25] which takes
absolute values larger than 0.2 for a wide range of random variables with a conventional skewness outwith
[−1,1]. Those variables with a pronounced octile skew coefficient were transformed to natural logarithms
before they were used.

Exploratory spatial analysis of the data was undertaken by creating classified post-plots with the
plot.geodata function from the geoR package for the R platform [27, 28]. This reveals evidence of spatial
trends in plots, and spatial post-plots of the data, with symbols coded to indicate the quartiles of the data set
to which they belong. ‘Saturated’ exploratory models for grain Se concentration with (i) all soil properties as
fixed effects, along with a trend in the eastings identified from the spatial plots, and (ii) all environmental
covariates and easting as fixed effects were then fitted by ordinary least squares. The decision as to whether a
transformation of the data was needed to justify the assumption that the random variation of the variables is
normally distributed was based on exploratory statistics and plots of these residuals as described above.

The parameters of the LMM were estimated by ML or REML, using the likfit function from the geoR
library. The ML method allows the most straightforward comparison of models with different fixed effects,
necessary for the sequential testing for variable selection. However, REML is preferable for estimation of the
random effects parameters [19, 26],. The variance parameters are the variance of the spatially correlated
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random variation (σ2), and a parameter(ϕ) which quantifies how the spatial correlation decays with
distance. The smoothness of the spatially correlated random variation is quantified by a parameter (κ) which
can be challenging to estimate, so we followed [26] and used a profiling method. This was done for the null
model, and the selected value of κ was then used for all others. The final random effects parameter is the
variance of an iid component which is uncorrelated at scales resolved by sampling.

Once a set of covariates had been selected a final model was fitted by REML estimation of the LMM
parameters. The model was then tested by cross-validation.Each observation was withheld from the data set
in turn and predicted from the model and the remaining data. We then computed standardised squared
prediction errors (SSPEs), the square of the difference between each observation and its cross validation
prediction, standardized by the prediction error variance. The mean and median SSPE were computed.For a
valid model we expect the mean value to be close to 1 and the median to be close to 0.455 [29].

2.4.4. Spatial prediction
Once a LMM was fitted with selected environmental predictors, the empirical best linear unbiased predictor
(E-BLUP) was computed for each raster cell at which the selected covariates were recorded [19]. This
prediction combines a ‘regression-type’ component, based on the selected covariate(s), and a ‘kriging-type’
prediction from the random effects. The prediction minimises the expected value of the prediction error
variance, which quantifies the uncertainty of the prediction, and which was mapped alongside predictions of
grain Se concentration.

Although the prediction error variance quantifies uncertainty, it is not necessarily an accessible measure
for all users of information [30]. To illustrate how uncertainty might be communicated, we considered a
threshold grain concentration of 38µg kg−1. Grain with a smaller concentration of Se provides less than one
third of the expected average requirement of Se for a woman of reproductive age within a 330 g serving daily
intake [30, 31]. On the assumption (checked in the cross-validation procedure) of normally distributed
prediction errors, it is possible to compute the probability at a prediction location that the true grain Se
concentration is below the threshold. Decision-makers might consider an intervention in these
circumstances. Chagumaira et al (2021) found that decision-makers with varied mathematical experience,
and with differing professional background, found such probability maps effective guides to the
interpretation of uncertain information. Further, they found [31] that the average threshold probability (that
grain Se falls below the threshold), at which the same set of decision-makers favoured intervention was 0.31.
This indicates that the information users are generally more concerned to avoid the error of failing to
intervene where Se supply is deficient than they are to avoid intervention where it is not necessary. We
therefore mapped the probability that grain Se concentration is<38µg kg−1, and also showed those regions
where this probability exceeds 0.31.

3. Results

3.1. Exploratory analysis
Summary statistics of maize grain Se concentration, residuals from the exploratory model, and
cross-validation errors are shown in table 1. Except for pH, which is reported on a logarithmic scale, soil
properties (table 2) are mostly skewed and therefore were transformed to logarithms (natural log). We
decided to transform the measurements of grain Se concentration to natural logarithms after inspection of
summary plots and statistics for the residuals from the exploratory model (supplementary figures B1
and B2).

3.2. Ranking of predictor variables as predictors of Se concentration in grain
The ranking of soil properties and of environmental covariates is presented in table 3 and was based on the
ordering used in [10]. The top three ranked properties were the different operationally defined fractions of
‘soluble’, ‘adsorbed’, and ‘organically-bound’ Se in soil, followed by pH, which were hypothesised to be the
most likely predictors of Se concentration in grain. The sum of oxalate-extractable Fe, Mn, and Al oxides was
then included, followed by soluble and organic fractions of soil sulphur (S), which will interact with plant Se
uptake [32, 33], followed by SOC, oxalate-extractable P, and phosphorus buffer index (PBI).

The top three ranked environmental covariates were down-scaled precipitation, down-scaled mean
annual temperature, and slope.

3.3. Model-fitting
The 1st-, 2nd-, 4th, 5th-, 6th-, 8th and 9th-ranked soil properties, SeNit, SePho, pH, oxides, SNit, SOC and
Oxalate P were retained as predictors for grain Se concentration by the FDR criterion(figure 1(a)).
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Table 1. Summary statistics of Se concentration in grain (n= 1603), residuals from fitted exploratory saturated models and
cross-validation errors for the E-BLUP with coordinates and downscaled mean annual temperature as fixed effects.

Concentration
Semaize

(µg kg−1)

Residuals from
model with,
soil properties
as covariatesa

Residuals from
model with,
environmental
covariatesa

Cross-validation
errors for
the E-BLUP

Mean 39.1 0.00 0.00 0.00
Median 16.8 −0.03 −0.04 −0.07
Minimum −1.85 −4.26 −3.55 −3.93
Maximum 1852 4.61 4.22 4.72
Standard deviation 92.3 1.11 1.00 0.95
Skewness 9.65 0.01 0.32 0.36
Octile skewness 0.509 0.06 0.04 0.12
a Residuals from fitting with loge transformed maize grain Se.

Table 2. Summary statistics of soil properties proposed as predictors of Se concentration in grain.

Original variables Loge-transformed

Variable Mean Median Standard Skew Octile skewness Mean Median Standard Skew Octile skewness

SeNit
a(µg kg−1) 3.94 3.30 2.99 1.29 0.23 1.07 1.19 0.83 −0.30 −0.21

SePho (µg kg
−1) 3.72 3.02 3.79 16.6 0.32 1.07 1.10 0.72 −0.67 −0.04

SeTMAH (µg kg−1) 123 95.5 104.9 3.12 0.43 4.55 4.53 0.72 0.13 0.04
pH 6.37 6.29 0.69 0.61 0.13
Oxides (µg kg−1) 3853 3238 2625 2.89 0.29 8.09 8.08 0.56 0.33 -0.02
SNit (mg kg−1) 4.41 2.83 15.2 24.3 0.36 1.08 1.04 0.70 0.91 0.01
STMAH (mg kg-1) 65.46 46.9 76.3 6.23 0.38 3.82 3.85 0.88 −0.70 −0.03
SOC (%) 1.13 0.96 0.68 2.32 0.33 −0.02 −0.04 0.28 0.22 0.03
Oxalate P (mg kg−1) 235 155 242 2.35 0.49 4.97 5.05 1.10 −0.80 −0.05
PBI 73.2 57.2 64.3 5.20 0.38 4.08 4.05 0.63 0.29 0.05
a The subscripts Nit, Pho and TMAH denote the soluble (nitrate extraction), exchangeable (phosphate extraction) and organic (TMAH

extraction) fractions. SOC denotes soil organic carbon. Oxides denotes the sum of oxalate-extractable Fe, Al and Mn oxides. Oxalate P

denotes oxalate-extractable P. PBI denotes phosphorus buffer index.

Table 3. Sequence of predictors for maize grain Se concentration (both soil properties and environmental covariates) for testing with the
α-investment.

Order Soil property Order Environmental covariate

1 SeNit
a 1 Downscaled mean annual precipitation

2 SePho 2 Downscaled mean annual temperature
3 SeTMAH 3 Slope
4 pH 4 Topographic index
5 Oxides 5 Enhanced vegetation index
6 SNit 6 MODIS Band 7
7 STMAH 7 MODIS Band 1
8 SOC 8 MODIS Band 2
9 Oxalate P 9 MODIS Band 3
10 PBI
a The subscripts Nit, Pho and TMAH denote the denote the soluble (nitrate extraction), exchangeable (phosphate

extraction) and organic (TMAH extraction) fractions. SOC denotes soil organic carbon. Oxides denotes the sum of

oxalate-extractable Fe, Al and Mn oxides. Oxalate P denotes oxalate-extractable P. PBI denotes phosphorus buffer

index.

The variogram functions for the null model with coordinates filtering spatial trend and models for the
selected soil properties, added in succession, are shown in figure 2. The variogram represents the spatial
dependence of the correlated random effect. It is half the expected squared difference between the random
components of the target variable at two locations, modelled as a function of the distance between them.

The variance of the iid random effect is the apparent intercept of the variogram, and the function
increases to a maximum which is the sum of the variances of both random effects, also called the a priori
variance. The dependence of the variogram on the separation distance depends on the ϕ and κ parameters.
The a priori variance is smaller for the random effects of models with predictors added as fixed effects, the
reduction representing the information which these terms provide. Here the reduction of this component by
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Figure 1. The p-values (open circles) for successive tests on predictors added to the model for maize grain Se concentration from
(a) soil properties and (b) environmental covariates. Tests are on addition of variables in the order given in table 3. The solid
circles are the threshold for rejection of each null hypothesis under the FDR control.

Figure 2. Variogram functions for the null model (coordinates filtering spatial trend) for maize grain Se concentration, and for
successive models with selected soil properties added as predictors.

adding the selected terms for the final model, expressed as a proportion of the a priori variance for the model
with spatial coordinates only is small (0.04). The spatially uncorrelated random effect with variance τ 2

accounts for sources of variation spatially dependent at finer scales resolved by sampling, or without any
spatial dependence. This will include measurement error. For this reason, it is also useful to compute the
adjusted R2 value for the spatially correlated variation alone, i.e. the reduction in σ2 on adding predictors as
fixed effects to the model expressed as a proportion of this variance component for the null model.

Variogram functions for the null model (coordinates the only fixed effect) and then for successive models
in which soil properties were added as predictors, retained with FDR control, are shown in figure 2. Although
there is strong evidence linking selected soil properties to Se concentration in maize grain, these properties
only account for a small fraction of the variation. While soil properties are one source of variation in grain
Se, other factors appear to contribute substantially more.

Soil SeNit and SePho have a positive coefficient (table A1), indicating that positive deviations from the
spatial trend in grain Se are associated with larger concentrations of soluble and exchangeable Se in the soil.
This is plausible and consistent with previous studies, such as that of [44]. The soil pH was also retained in
the model, also with a positive coefficient. It should be noted that the sign of the coefficient in a statistical
model depends, in part, on the other covariates included.However, here the positive sign makes sense
mechanistically. The pH of the soil and redox potential together affect the speciation of Se, with Se(VI), the,
more accessible form, increasingly predominant over the less accessible Se(IV) form as pH+pE increases,
[40]. It has been shown in Malawi [7] that Se uptake into maize grain tends to be larger soils with pH> 5.
The negative effect of metal oxides in the model is consistent with findings that these can absorb forms of Se,
reducing availability, an effect reduced by SOC [41]. Soil SNit has a negative coefficient which is attributable
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Figure 3. Variogram functions for the null model (coordinates filtering spatial trend) for maize grain Se concentration, and for
successive models with selected environmental covariates added as predictors.

Table 4. Parameter estimates for the null model for transformed grain selenium concentration (spatial coordinates the only fixed effects)
and a model with selected environmental covariates as additional fixed effects

Predictand

Predictor coefficient

βa
0 β1 β2 β3 R2

adj R̆2
adj κ τ 2 σ2 ϕ

Easting Northing Mean annual
temperature

Null model 24.4138 −0.0025 −0.0023 0.5 0.8972 0.5277 10.8
Model after FDR 20.3792 −0.0042 −0.0021 0.0162 0.0529 0.0571 0.5 0.8520 0.4976 7.44
Final model 20.5162 −0.0043 −0.0022 0.0162 0.0446 0.0702 0.5 0.8708 0.4907 8.25

a β0–β3: fixed effects coefficients β0 is a constant and βi is the coefficient for the ith random effect; R2
adj: the difference between the

variance of the correlated random effect (σ2) for the null model and the proposed model expressed as a proportion of that variance for

the null model; R̆2
adj: the difference between the variance of the correlated random effect (σ2) for the null model and the proposed model

expressed as a proportion of that variance for the null model; κ: smoothness parameter of the Matèrn correlation function; τ 2: variance

of the iid random effect (nugget variance); σ2: variance of the correlated random effect; ϕ: distance parameter of the correlation

function.

to the strong competition between selenate and sulphate for transporter sites and hence for plant uptake [34,
35]. Soil organic carbon is included in the predictive model, with a negative sign. This can be attributed to
the way in which Se, by substituting for S, can bond with C and O in humic molecules, reducing
availability.However, it should be noted that SOC can reduce Se absorption on metal oxides, increasing
availability. Oxalate-extractable P has a positive correlation with grain Se in the model. This is not consistent
with observations in more acid soil conditions, where Se(IV) dominates in speciation, and there can be
competition between Se and P for plant uptake, see [45]. This could be explained through the better
development of the root system in maize plants with a good P supply [42, 43], which in turn would improve
uptake of Se.

The single environmental covariate selected by the FDR approach was mean annual temperature, with a
positive coefficient. Table 4 shows the estimated parameters for this model, relative to the null model with
coordinates as the only fixed effects, and figure 3 shows the variogram functions. There was a larger
reduction in the unexplained variation when mean annual temperature was added as a predictor than for the
model with soil properties, as shown by the value of R̆2

adj (0.057) for the selected model, after FDR, reported

in table 4. The R̆2
adj for the final model used for spatial prediction is 0.07.

The summary statistics for the cross-validation errors are presented in table 1 and their exploratory plots
are shown in figure B3. The assumption of normal errors appears plausible.

The mean SSPE is 1, but the median is 0.384. This is smaller than expected; the 95% confidence interval
for the median under a valid model is [0.40, 0.51], and the kriging variances may be somewhat large, possibly
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Figure 4. Grain Se concentration in maize across Malawi. (a) E-BLUP predictions, and (b) the prediction error variance (expected
squared error) of the E-BLUP.

due to outlying observations in the data, so inferences will be conservative in the sense that uncertainty is
slightly overestimated.

3.4. Spatial mapping
Spatial mapping of grain Se was done by computing the E-BLUP for the model with mean annual
temperature as a fixed effect in addition to spatial covariates. Although these fixed effects left 80% of the
variation of grain Se unexplained, the kriging-type component of the E-BLUP, based on the spatial
correlation of the random effects, gives an optimal local prediction with quantified uncertainty. There are
pronounced spatial patterns in the predicted concentrations of Se in maize at the national scale (figure 4).
There are large concentrations in the Shire River valley in the south of the country and marked east–west
trends in the southern and central provinces. Variations in predicted grain Se over small regions where the
covariate changes markedly should be interpreted with caution. For example, the predicted concentrations
are smaller around the Mulanje Massif in the south east of the country. This may reflect the influence of the
mean annual temperature covariate however, it is likely that this reflects primarily the markedly larger
concentrations in the hot, low altitude Shire valley than elsewhere in the country, and the prediction of
trends associated with shorter-scale topographic variation may be artefacts. Note also that the kriging
variances are greater over the Mulanje Massif.

Figure 5(a) shows the probability that grain Se concentration is less than the threshold of 38µg kg−1. In
figure 5(b), these values are presented using the verbal scale with calibrated phrases proposed by the IPCC
[36]. Following [37] the phrases and the probability ranges to which they correspond are both presented.
The probability that grain Se concentration is below the threshold is ‘Unlikely’ or ‘Very unlikely’ (1%–33%)
in the southern part of the Shire valley and near Salima on the south-west shore of Lake Malawi. It is ‘Very
likely’ in much of the north of the country, and near Dedza south of Lilongwe. Over much of the country the
probability of being below the threshold is ‘As likely as not’, i.e. 33%–66%. In such areas local decisions on
interventions based on predicted grain Se content should probably be based on direct local measurements.

Figure 6 shows the probability the concentration of Se in maize grain falls below 38µg kg−1 annotated
with the average probability threshold, Pt, value of 0.31 as the red probability isoline on (a). This average
probability threshold can be applied by stakeholder groups in Malawi, those in agronomy/soil science and
public health/nutrition. Interventions to address Se deficiencies would be recommended where the
probability takes a greater value than the average probability threshold. Figure 6(b) shows an area of
17 208 km2 where the probability is above the Pt 0.31. These are the locations where interventions addressing
Se deficiencies should be targeted. Agronomists and soil scientist may advocate for agronomic
biofortification as an intervention. Public health and nutrition specialist may recommend provision of
Se-fortified food products in those regions with probability above the 0.31.
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Figure 5. Probability that concentration of Se in maize grain across Malawi is less than 38µg kg−1 expressed on (a) numerical
scale, (b) expressed according to ‘calibrated phrases’.

Figure 6. Probability that the concentration of Se in maize grain across Malawi is<38µg kg−1 expressed on a numerical scale.
The red line probability isoline on (a) is the mean probability value, Pt , applied by stakeholders’ groups (agronomy/soil science
and public health/nutrition) in Malawi would to recommend interventions to address Se deficiencies. (b) Shows the proportion
of the area recommended for interventions by the stakeholder groups.

4. Discussion

If we consider a median grain Se concentration of 16.8µg kg−1 and a reference daily maize intake of 342.8 g
capita−1 d−1 from food balance sheets [2], the typical dietary intake of Se from maize alone in Malawi is
5.76µg capita−1 d−1. This intake represents 10.4% of a recommended dietary allowance (RDA) of 55µg
capita−1 d−1 for Se. However, grain Se concentrations from the survey ranged from ranging from below
detection limits (7.69µg kg−1) to 1852µg kg−1. An individual could therefore be consuming
0.353–635mg capita−1 d−1 from maize, or 0.64%–1150% of the Se RDA, depending upon the location from
where this maize is sourced. Location is a critical factor in the likely prevalence of Se deficiency among
populations, notably, where a single dietary staple crop dominates and is produced locally [11]. A previous
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dietary survey in Malawi reported low dietary Se supply. It was estimated that 70% of the population are
consuming insufficient Se with an average daily intake range of 27–45µg capita−1 d−1 [3, 7, 9], compared to
the Se RDA of 55µg capita−1 d−1. Smaller intakes are likely in rural areas and among poorer households who
have limited access to more Se-rich food sources such as meat, fish, and vegetables [3].

Geographical differences in Se concentration and intake have been reported previously in Malawi from
(i) compositional analysis of dietary intakes in two locations [9], (ii) national-scale dietary surveys linked to
food composition data based on convenience sampling [7], (iii) the concentrations of Se in blood plasma and
urine as population biomarkers of Se status [4, 38]. The current spatially representative survey of maize grain
Se concentration is consistent with data from these earlier studies.

Hurst et al (2013) designed a cross-sectional study to compare the Se status of women living in locations
with contrasting soil types and maize grain Se concentrations. They observed marked differences in the Se
status of blood plasma and casual urine. The median value of plasma Se concentration in the Zombwe
extension planning area (EPA) was 53.7µg l−1 (ranging between 32.3–78.4µg l−1; SD= 9.7µg l−1), which
was less than half of the median value, 117µg l−1, seen in Mikalango (range 82.6–204µg l−1, SD=
22.5µg l−1) which was selected because of the local Vertisol soil type used for local crop production.
Moreover, Se concentration in casual urine samples in Zombwe EPA ranged between 4.1 and 13.3µg l−1 with
a median value of 7.3µg L−1 (SD= 2.0) which was one third that of median value, 25.3µg l−1, observed in
Mikalango EPA (range 12.4–106µg l−1; SD= 18.9µg l−1). This is consistent with the results of the current
survey, which demonstrate low concentration of Se in grain (a light green area in figure 4) in Northern
regions (where Zombwe EPA is located), and high grain Se concentrations (a dark green area in figure 4) in
Southern regions (where Mikalango EPA is located). High erythrocyte Se concentration [39] is consistent
with greater plasma Se concentration of people living in areas where Vertisols are prevalent in Malawi.

Chilimba et al (2011) estimated dietary Se intake in Malawi surveying Se concentrations in maize grain
and soil from 88 field sites. They predicted a widespread suboptimal dietary intake and Se deficiency risks in
Malawi. They noted spatial variation in Se concentration in maize grain which, in turn, was determined by
soil properties, where Se concentration in maize grain was higher by up to 10-fold in crops grown on soils in
southern Malawi with high pH (>6.5).

The predictive value of soil factors for maize grain Se concentration was significant, albeit these factors
(SeNit, SePho, oxides and SNit) explained just a small proportion of the random spatial effects (adjusted R2 =
0.046) within the overall model, once the fixed spatial trend effect had been accounted for. However, much of
the unexplained variation shows spatial dependence, so the E-BLUP predictions of grain Se concentration
are more reliable than predictions based on the fixed effects only.

Finally, it is interesting to compare these findings for grain and soil Se with previous findings, based on
the same survey, for Zn [12]. One marked difference is seen in the scale of spatial dependence of the
micronutrient concentration in grain. For Zn spatial dependence is seen up to 100 km, but in this study, it
was found that variation in grain Se concentration is correlated up to a distance of 40 km. This indicates a
finer scale of spatial variation in grain Se than in grain Zn, which would require more intensive survey effort
to support local interventions.For both micronutrients, there was evidence for a relationship between
measures of the crop-available concentration in the soil and the concentration in grain. However, for both,
the proportion of the total variation accounted for by this model was very small, as was the proportion of the
spatially dependent variation 0.03 and 0.07 respectively for Zn [12] and 0.04 and 0.05 for Se (tables 4).

It is interesting that mean annual temperature was the selected environmental covariate for both
micronutrients, suggesting that this variable, or one for which it is a proxy, influences the concentration of
both micronutrients in grain.However, the relationship with grain Zn was stronger than for grain Se, the
proportions of the total variance, and the spatially correlated variance accounted for by the model with mean
annual temperature as a covariate were 0.09 and 0.52 for grain Zn [12], and the corresponding values were
0.03 and 0.21 for Se (tables 4). Some of the top ranked covariates such as slope and precipitation were not
selected in the final model—one underlying reason is that the variable would be rejected because it is
strongly correlated with another one already in the model or was measured with substantial error. This
suggests that while such variables may be important at broader scales, their mechanistic role at the scale of
our study may be indirect or confounded by other landscape factors. This insight could help refine variable
selection in future landscape-level modelling efforts.

In resonance with the soil properties (tables 2 and 3) modelled (positive coefficient) as related to the grain
Se concentration, their mechanistic process can be elucidated. Soil SeNit and SePho are related to grain Se as
measures of soil supply. Wang et al (2020) demonstrated that soluble (nitrate) and adsorbed (phosphate)
selenate fractions are the most likely plant-available species; hence, these would correlate strongly with grain
uptake. Further, soil pH and redox together affect Se speciation in soil (Se(VI), which is more accessible,
predominates over Se(IV), and becomes less accessible, as pE+pH increases (e.g. 40). Se uptake into grain
tends to be greater at pH> 7 (e.g. 7). Oxides are also very important in the soil as they absorb forms of Se,
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while this effect is reduced by SOC (e.g. 41). On the other hand, Sulphate transporters are responsible for the
uptake of Se into plants, so larger soil S will result in greater competition with Se for uptake [46]; while some
molecules in SOC chelate Se forms in soil, reducing availability. This effect is reduced by increasing pH.
Selenium can substitute for sulphur and therefore bond with both carbon and oxygen within humic
substances. Concerning phosphorus, oxalate-P binds to selenium in the soil. This makes it less accessible for
plants to absorb and subsequently reduces the amount available to humans through their diet. The impact
varies depending on factors like soil type, pH, and the specific form of selenium involved.

5. Conclusions

This study determined the geospatial variation of Se concentration in maize grain in Malawi and analyses the
effects of soil properties and landscape factors in driving the spatially correlated variation of Se concentration
in maize grain. Mean annual temperature captured significant variation of Se concentration in maize grain,
but substantial variation remained unexplained. However, this variation unaccounted for by the covariate
showed spatial dependence, and so Se concentration could be mapped by geostatistical prediction, if grain Se
has been measured on a suitable spatial sample design, to provide guidance for designing efficient
interventions.

Several soil properties, including measures of available forms of Se were included in the model. For most
the sign of the coefficient was consistent with known factors influencing Se availability or uptake by the crop.
However, substantial variation in grain Se concentration remains unexplained (over 80%) in the final model.
This suggests that the existing approaches to characterise availability of nutrients in soil, using various
chemical extractions, have limited value for predicting Se uptake by crop plants. In part, this is because Se
availability in soil is determined by dynamic equilibria between the soil solid phases (mineral and
organic-bound forms) and soil pore water, and the multiple (and complex) uptake mechanisms by plant
roots, whereas chemical extractions only provide a single time-point measurement of micronutrients
availability. Measurements on extracted fractions at single time-points cannot capture the dynamics of
micronutrients movement between different soil phases, including the capacity of the soil to replenish what
is directly available in the soil solution following depletion by root uptake. Furthermore, considering only the
Se dynamics of Se in soil leaves aside the multiple processes that drive internal transport and redistribution
of Se, including its deposition in the grain during plant growth. Further research is needed to investigate
dynamic soil geochemical processes and plant physiology to better inform agronomic biofortification
strategies for alleviating Se deficiency in SSA populations.
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Appendix A

Table A1. Predictor coefficients for the null model for transformed grain selenium concentration (spatial coordinates the only fixed
effects) and a model with selected soil properties as additional fixed effects.

Predictand

Predictor coefficient

β1 β2 β3 β4 β5 β6 β7 β8 β9

Easting Northing SeNit SePho pH Oxides SNit SOC Oxalate
Null model 24.4138 −0.0025 −0.0023
Model after FDR 21.1006 −0.0015 −0.0020 0.0629 0.4567 0.1882 −0.3321 −0.3104 −0.2388 0.1401
a β0–β8: fixed effects coefficients β0 is a constant and βi is the coefficient for the ith random effect.

Table A2. Parameter estimates for the null model for transformed grain selenium concentration (spatial coordinates the only fixed
effects) and a model with selected soil properties as additional fixed effects.

Predictand R2
adj R̆2

adj κ τ 2 σ2 ϕ

Null model 0.5 0.8972 0.5277 10.8
Model after FDR 0.1169 0.0429 0.5 0.7534 0.5051 8.08

a R2
adj: the difference between the variance of the correlated random effect (σ2) for the null

model and the proposed model expressed as a proportion of that variance for the null

model; R̆2
adj: the difference between the variance of the correlated random effect (σ2) for

the null model and the proposed model expressed as a proportion of that variance for the

null model; κ: smoothness parameter of the Matèrn correlation function; τ 2: variance of

the iid random effect (nugget variance); σ2: variance of the correlated random effect; ϕ:

distance parameter of the correlation function.

Appendix B

Figure B1. Histogram with boxplot and QQ plot for the residuals from an exploratory fit of the saturated model (soil properties)
for grain Se concentration on a log scale.
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Figure B2. Histogram with boxplot and QQ plot for the residuals from an exploratory fit of the saturated model (environmental
covariates) for concentration of Se in grain on a log scale.

Figure B3.Histogram with boxplot and QQ plot for the cross-validation errors for the E-BLUP.

Figure B4.Histogram with boxplot and QQ plot for the kriging variances for the E-BLUP.
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