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Abstract. Dietary selenium (Se) deficiency is widespread in Malawi, due to the

limited supply of Se in the predominantly maize based-food system characterised by

low Se concentration. In this study, the aim was to examine the spatial variation of

Se in maize grains in Malawi, in relation to soil properties and landscape features.

Co-located soil and maize grain samples were collected in a spatially representative

survey. Selenium concentration in maize, soil properties, and environmental covariates

were determined. Soil and environmental variables were tested as potential predictors

of Se concentration in maize. A False Discovery Rate (FDR) control was used within a

Linear Mixed Model (LMM) framework. Selenium concentrations in maize ranged from

below detection limits (7.69 µg kg−1) to 1852 µg kg−1 with mean and median values of

39.1 and 16.8 µg kg−1 respectively. The ranges of concentrations of Se fractions in soil

were (i) soluble Se 0.181–18.8 µg kg−1 with mean and median values of 3.94 and 3.29

mg µg kg−1 respectively; (ii) adsorbed Se 0.019–119 µg kg−1 with mean and median

values of 3.72 and 3.02 µg kg−1 respectively; (iii) organically bound Se 9.43–1334 µg
kg−1 with mean and median values of 123 and 92.3 µg kg−1 respectively. A LMM for

maize Se concentration was used for which the independent log transformed variables

of soil soluble Se, adsorbed Se, oxalate extracted oxides, soluble and exchangeable

sulphur had predictive value (p <0.01 in all cases, with FDR controlled at <0.05).

Downscaled mean annual temperature also explained some of the spatial variation in

grain Se concentration. Spatial variation of Se in maize showed relationships with soil

and environmental variables, which can be used to identify areas most at risk of Se

deficiency and thus inform policy responses. However, only a small proportion of the

variation was explained indicating more analysis of Se geochemistry in soil may provide

more explanatory insights.

Keywords Selenium, Geostatistics, Micronutrients, Maize, Malawi

1. Introduction

Selenium (Se) is a micronutrient essential for human health [1]. Based on dietary

Se supply and direct measurement of biomarkers, it is estimated that Se deficiency

is present in more than 30% of people living in sub-Saharan Africa (SSA) [2, 3, 4, 6, 5].

In Malawi, estimated Se deficiency prevalence rates of 35.5 % and 62.5 % have been

reported, respectively, based on nationally representative surveys of blood plasma Se

concentrations from samples collected in 2015 and 2016 [4, 6].

In many SSA food systems, locally grown cereals provide most of the Se in a person’s

diet [5]. Access to animal-source foods, as a richer source of dietary Se than cereals, are

often limited due to their availability and cost [3, 5]. There is considerable variation

in the grain Se concentration of cereals, depending on where the crop is grown. For

example, in Malawi, the concentration of Se in maize (Zea mays L.) grown on Vertisols

was reported to be ten-fold larger than the grain concentration from most other soil

types in the country [7], and this was linked in subsequent studies to direct evidence

of differences in dietary intake [8] and Se status [9] among smallholder communities

farming in these areas.

Comprehensive data on grain Se concentration in staple cereal crops have been

reported recently for Ethiopia and Malawi, from surveys representing most of their
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arable land areas [10, 11]. Grain Se concentrations varied by several orders of magnitude

within both countries (e.g ranging from below detection limits (7.69 µg kg−1) to 1852

µg kg−1 for maize in Malawi). Furthermore, there was strong evidence of spatially

correlated variation in grain Se concentration of cereal crops, at distances of more than

100 km, again in both countries. What this means is that, for subsistence farmers, and

other rural dwellers dependent primarily on locally grown staples, their location is likely

to be the single biggest factor in determining whether they are likely to be at risk of Se

deficiency.

Understanding spatial variation of Se concentration in grain is vital for agronomic

biofortification interventions aimed at improving dietary intake of Se. Sources of

spatially-dependent variation of Se concentration in grains have previously been

investigated using surveys and statistical modelling. Gashu et al. 2021 [11] reported that

soil pH was positively correlated with grain Se concentration for teff, wheat and maize in

Ethiopia and for maize in Malawi. Grain Se concentration was positively correlated with

mean annual temperature for teff (Eragrostis tef (Zucc.) Trotter) and wheat (Triticum

aestivum L.) in Ethiopia, and maize in Malawi [11]. In addition, grain Se concentration

was negatively correlated with mean annual precipitation for teff, wheat and maize in

Ethiopia. In a more detailed analysis of the soils of the Amhara region of Ethiopia,

[10] reported that ‘soluble’ (extracted in 0.01 M KNO3) and ‘adsorbed/exchangeable’

(extracted in 0.016 M KH2PO4) fractions of soil Se, along with soil pH, were positively

correlated with the Se concentration in teff and wheat grain. Whilst these fractions

of soil Se are operationally defined, they are considered to represent ‘plant-available’

fractions.

The sample materials in the survey reported by [12] can be used to determine the

same crop and soil Se variables which [11] reported from Amhara. The results from [12]

indicate that the survey of Malawi is of sufficient intensity to support a spatial analysis

of the joint variation of crop and soil variables. However, we may expect Se to behave

differently in the soil, both in terms of retention and uptake by plants, and so a further

study to examine the variation of maize grain Se concentration and its joint variation

with soil and environmental properties could be expected to yield novel results.

The aim of this study was therefore to investigate whether the ‘plant-available’

fractions of Se explain the spatially correlated variation of grain Se concentration of

maize in Malawi. As with the earlier study in Amhara region [11], we used an approach

based on hypothesis-testing to select covariates. To reduce the risk of over-fitting the

model we employed False Discovery Rate (FDR) control, while maintaining power to

detect useful predictors of the target variable by employing the alpha-investment method

of [13]. The α-investment methods uses a ranking of the soil properties and wider

environmental/landscape factors that are considered by experts to be most likely, a

priori, to influence grain Se concentration. The landscape factors included in this

analysis were downscaled precipitation and temperature, terrain index (TIM), slope,

and vegetation index.
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2. Materials and methods

Most of the materials and methods used in this study are described in greater detail by

[10, 11] and [12]. Here we provide a short overview. The final and definitive data set,

as published by [14], is the one that was used in the analyses described below.

2.1. Design and field sampling

The sampling domain for Malawi was defined as the raster cells in the European Space

Agency Climate Change Initiative map allocated to a land-cover class that included

‘cropping’ in its designation. The objective of the sampling was to provide adequate

spatial coverage to support spatial prediction of the variables of interest. A detailed

description of the method used to select sampling points is given by [11].

The primary objective of the sampling was to provide adequate spatial coverage to

support spatial prediction of the variables of interest. More detail on the method used

to select sample points to achieve this is provided by [11]. Paired soil and grain samples

were collected by trained teams from 1812 locations. Only the locations where maize

crop was grown (1608 locations ≈ 89 % of total samples), were included in this study.

2.2. Grain and soil analyses

Selenium concentration in grain was determined using inductively coupled plasma

mass spectrometry (ICP-MS; iCAPQ, Thermo Fisher Scientific, Bremen, Germany)

following acid digestion with 70% HNO3 (Trace Analysis Grade) in a Multiwave Pro

5000 microwave digestion system (Anton Paar). The following soil properties were

determined: soil organic carbon (SOC, dry combustion), effective cation exchange

capacity (eCEC) and exchangeable cations (hexamine cobalt trichloride solution),

amorphous oxides (AlOx, FeOx, MnOx; ammonium oxalate extraction), Olsen P; pH in

water (1:2.5 solid to solution ratio) and pH in 0.01 M Ca(NO3)2 (1:10 solid to solution

ratio), and quasi-total elemental concentration determined by ICP-MS after extraction

with Aqua Regia. Different Se fractions in soil were determined by using a 3-step

sequential extraction scheme as described in detail in [14]. The scheme is designed to

sequentially extract three operationally defined fractions (i) a ‘soluble’ fraction in 0.01

M KNO3 (SeSol), (ii) a ‘specifically adsorbed’ fraction in 0.016 M KH2PO4 (SeAds), and

(iii) an organically bound fraction in 10% tetra methyl ammonium hydroxide (SeOrg).

Selenium concentrations in grain fell below the detection limits (average of 7.69

µg kg−1) in 409 samples therefore they were removed from the analysis. Consequently,

a total of 1199 samples were included in the analysis in the current study. Values of

LODs were calculated for each separate ICP-MS run (n = 6) and samples analysed in

each run were compared to the corresponding LOD, and when the concentration of Se

in grain was ≤ LOD, the sample was removed from the analysis. The limits of detection

for selenium, determined across the six ICP-MS runs, varied from 2.69 to 18.1 µg kg−1,

with a mean of 7.69 µg kg−1. For details, please refer to [14]. It is worth noting that we
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used a different approach in [11], where the average value of LODs, calculated for each

ICP-MS run (n = 6), was used.

2.3. Extraction of environmental covariates

We selected environmental covariates which were judged to be possible predictors of

grain selenium concentration through their effect on, or status as a proxy for, factors of

crop growth and soil conditions. These covariates were the MERIT Digital Elevation

Model [15] and derived variables, specifically surface slope and the topographic index

which represents the up-slope area that potentially contributed runoff to a point. In

addition, we considered climate variables from the CHELSA set [16, 17] (downscaled

mean annual temperature and precipitation) and the Enhanced Vegetation Index (EVI)

computed from measurement by the MODIS remote sensor satellite [18]. Specifically,

we used the average over the period 2000–2016 of the 250-m EVI product (MOD13Q1).

2.4. Data analyses

The data analyses approaches used are described in detail by Botoman et al. 2022 [12].

Summarised they were:

2.4.1. Linear mixed model To identify links between soil properties and Se

concentration in grain and to model the spatial variation of Se in maize grain, a Linear

Mixed Model (LMM) framework was used. The variable is modelled as a combination of

fixed effects (linear functions of soil properties or environmental covariates), a correlated

random effect, and an independent and identically distributed (iid) random error (nugget

effect). The nugget effect incorporates variation due to measurement error and factors

that vary over short distances relative to the spacing of sample points.

2.4.2. Statistical inference and FDR control with α-investment In a LMM framework,

the evidence that adding fixed effects to a simpler model achieves a significant

improvement by computing the log-ratio statistic:

L = 2(ℓ1 − ℓ0), (1)

where ℓ1 and ℓ0 are the maximised log-likelihoods from fitting the model with the

additional fixed effects, and the simpler model without them, respectively [19]. Under

the null hypothesis, where the additional fixed effects are not related to the dependent

variable, this statistic is asymptotically distributed as chi-square with degrees of freedom

equal to the number of additional fixed effects. To avoid the problem of multiple

hypothesis testing when evaluating multiple models with different predictors [22] we

controlled the FDR over a sequence of tests [20]. This is the expected proportion of

rejected null hypotheses which are false rejections, and it can be controlled by various

methods [21]. While it is desirable to control FDR when evaluating evidence to include

predictors in a final model, this comes at the cost of reduced statistical power to detect
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informative predictors. The method of α-investment due to [13] can improve the power

of testing with FDR control. In this method the threshold value against which the p-

value for a new covariate is tested depends on the α-wealth, a quantity which is reduced

on acceptance of a null hypothesis increased on rejection, while still controlling FDR.

We used this combination of FDR control with α-investment when modelling grain

Se concentration, following [23]. Models were fitted sequentially, first, with a ‘null model’

with the only fixed effect a spatial trend identified in exploratory analysis of the data.

This model was used, rather than a model with a constant mean as the only fixed effect,

because the latter model would violate assumptions of second-order stationarity when

a spatial trend is pronounced [24]. The null model was fitted by maximum likelihood

(ML). The first predictor was then included as a fixed effect, the model refitted and then

the log-likelihood ratio statistic (Equation 1) was computed. If the p-value for this test

exceeded 0.05 then the predictor was dropped, otherwise it was provisionally retained,

and the next predictor was considered. Once all the predictors had been considered

the p-values for each were compared to thresholds according to the α-wealth controlling

FDR at a target value of 0.05. Those predictors for which the p-values was less than

the FDR threshold were retained for inclusion in a final model which was refitted by

residual maximum likelihood (REML).

Separate rankings of the soil properties and the environmental covariates as

potential predictors of the Se concentration in maize grain were based on a priori

understanding of the processes involved, not from data exploration. We used the same

ranking of predictors for grain Se which we used previously for analysis of data on

grain Se in Ethiopia [10]. These rankings reflected a consensus view of soil and plant

scientists on the project team. They were not shown any data on grain Se from Malawi

but were shown the correlations among the candidate independent variables (Figure

B4). This is because the value of a predictor depends not only on the extent to which

it is related to the target variable, but also on its correlation with predictors already

included in the model. Such a correlation introduces redundancy. If two predictors

are quite strongly correlated then the expert should select just one for inclusion early

in the testing sequence. It should be noted that this ranking procedure allows us to

improve the statistical power of the overall selection procedure. If the ranking is poor,

not representing the real value of the predictors, then the gain in power will be reduced,

but the control of the FDR is unaffected.

2.4.3. Exploratory data analysis and model-fitting Summary statistics of the predictor

variables were examined along with the octile skewness coefficient [25]. While no

assumptions are made about the distribution of independent variables in the LMM,

we preferred to avoid using strongly skewed variables as large values in the upper

portion of a skewed distribution would be given undue influence Variables for which

the absolute value of the conventional skewness coefficient, based on data moments,

exceeds 1 are commonly considered for transformation [24]. However, like all statistics

based on second or higher-order moments, the skewness coefficient is sensitive to small
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numbers of outlying observations. For this reason we considered a robust alternative,

the octile skewness [25] which takes absolute values larger than 0.2 for a wide range of

random variables with a conventional skewness outwith [−1, 1]. Those variables with a

pronounced octile skew coefficient were transformed to natural logarithms before they

were used.

Exploratory spatial analysis of the data was undertaken by creating classified post-

plots with the plot.geodata function from the geoR package for the R platform [28, 27].

This reveals evidence of spatial trends in plots, and spatial post-plots of the data,

with symbols coded to indicate the quartiles of the data set to which they belong.

‘Saturated’ exploratory models for grain Se concentration with (i) all soil properties as

fixed effects, along with a trend in the eastings identified from the spatial plots, and

(ii) all environmental covariates and easting as fixed effects were then fitted by ordinary

least squares. The decision as to whether a transformation of the data was needed to

justify the assumption that the random variation of the variables is normally distributed

was based on exploratory statistics and plots of these residuals as described above.

The parameters of the LMM were estimated by ML or REML, using the likfit

function from the geoR library. The ML method allows the most straightforward

comparison of models with different fixed effects, necessary for the sequential testing for

variable selection. However, REML is preferable for estimation of the random effects

parameters, [19, 26]. The variance parameters are the variance of the spatially correlated

random variation (σ2), and a parameter (ϕ) which quantifies how the spatial correlation

decays with distance. The smoothness of the spatially correlated random variation is

quantified by a parameter (κ) which can be challenging to estimate, so we followed [26]

and used a profiling method. This was done for the null model, and the selected value

of κ was then used for all others. The final random effects parameter is the variance of

an iid component which is uncorrelated at scales resolved by sampling.

Once a set of covariates had been selected a final model was fitted by REML

estimation of the LMM parameters. The model was then tested by cross-validation.

Each observation was withheld from the data set in turn and predicted from the model

and the remaining data. We then computed standardised squared prediction errors

(SSPE), the square of the difference between each observation and its cross validation

prediction, standardized by the prediction error variance. The mean and median SSPE

were computed. For a valid model we expect the mean value to be close to 1 and the

median to be close to 0.455 [29].

2.4.4. Spatial prediction Once a LMM was fitted with selected environmental

predictors, the Empirical Best Linear Unbiased Predictor (E-BLUP) was computed for

each raster cell at which the selected covariates were recorded [19]. This prediction

combines a ‘regression-type’ component, based on the selected covariate(s), and a

‘kriging-type’ prediction from the random effects. The prediction minimises the expected

value of the prediction error variance, which quantifies the uncertainty of the prediction,

and which was mapped alongside predictions of grain Se concentration.
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Although the prediction error variance quantifies uncertainty, it is not necessarily

an accessible measure for all users of information [30]. To illustrate how uncertainty

might be communicated, we considered a threshold grain concentration of 38 µg kg−1.

Grain with a smaller concentration of Se provides less than one third of the expected

average requirement of Se for a woman of reproductive age within a 330-g serving

daily intake [30, 31]. On the assumption (checked in the cross-validation procedure)

of normally distributed prediction errors, it is possible to compute the probability

at a prediction location that the true grain Se concentration is below the threshold.

Decision-makers might consider an intervention in these circumstances. Chagumaira

et al. (2021) found that decision-makers with varied mathematical experience, and

with differing professional background, found such probability maps effective guides to

the interpretation of uncertain information. Further, they found [31] that the average

threshold probability (that grain Se falls below the threshold), at which the same set

of decision-makers favoured intervention was 0.31. This indicates that the information

users are generally more concerned to avoid the error of failing to intervene where Se

supply is deficient than they are to avoid intervention where it is not necessary. We

therefore mapped the probability that grain Se concentration is <38 µg kg−1, and also

showed those regions where this probability exceeds 0.31.

3. Results

3.1. Exploratory analysis

Summary statistics of maize grain Se concentration, residuals from the exploratory

model, and cross-validation errors are shown in Table 1. Except for pH, which is reported

on a logarithmic scale, soil properties (Table 2) are mostly skewed and therefore were

transformed to logarithms (natural log). We decided to transform the measurements

of grain Se concentration to natural logarithms after inspection of summary plots and

statistics for the residuals from the exploratory model (Supplementary Figures B1 and

B2).

3.2. Ranking of predictor variables as predictors of Se concentration in grain

The ranking of soil properties and of environmental covariates is presented in Table 3

and was based on the ordering used in [10]. The top three ranked properties were the

different operationally defined fractions of ‘soluble’, ‘adsorbed’, and ‘organically-bound’

Se in soil, followed by pH, which were hypothesised to be the most likely predictors of Se

concentration in grain. The sum of oxalate-extractable Fe, Mn, and Al oxides was then

included, followed by soluble and organic fractions of soil sulphur (S), which will interact

with plant Se uptake [33, 32], followed by soil organic carbon (SOC), oxalate-extractable

P, and phosphorus buffer index (PBI).

The top three ranked environmental covariates were down-scaled precipitation,

down-scaled mean annual temperature, and slope.
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Table 1. Summary statistics of Se concentration in grain (n=1603), residuals from

fitted exploratory saturated models and cross-validation errors for the E-BLUP with

coordinates and downscaled mean annual temperature as fixed effects.

Concentration Residuals from Residuals from Cross-validation

Semaize model with, model with, errors for

(µg kg−1) soil properties environmental the E-BLUP

as covariatesa covariatesa

Mean 39.1 0.00 0.00 0.00

Median 16.8 -0.03 -0.04 -0.07

Minimum -1.85 -4.26 -3.55 -3.93

Maximum 1852 4.61 4.22 4.72

Standard deviation 92.3 1.11 1.00 0.95

Skewness 9.65 0.01 0.32 0.36

Octile skewness 0.509 0.06 0.04 0.12

a Residuals from fitting with loge transformed maize grain Se.
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10
Table 2. Summary statistics of soil properties proposed as predictors of Se concentration in grain

Variable Original variables Loge-transformed

Mean Median Standard Skew Octile Mean Median Standard Skew Octile

skewness skewness

SeNit
a (µg kg−1) 3.94 3.30 2.99 1.29 0.23 1.07 1.19 0.83 -0.30 -0.21

SePho (µg kg−1) 3.72 3.02 3.79 16.6 0.32 1.07 1.10 0.72 -0.67 -0.04

SeTMAH (µg kg−1) 123 95.5 104.9 3.12 0.43 4.55 4.53 0.72 0.13 0.04

pH 6.37 6.29 0.69 0.61 0.13

Oxides (µg kg−1) 3853 3238 2625 2.89 0.29 8.09 8.08 0.56 0.33 -0.02

SNit (mg kg−1) 4.41 2.83 15.2 24.3 0.36 1.08 1.04 0.70 0.91 0.01

STMAH (mg kg-1) 65.46 46.9 76.3 6.23 0.38 3.82 3.85 0.88 -0.70 -0.03

SOC (%) 1.13 0.96 0.68 2.32 0.33 -0.02 -0.04 0.28 0.22 0.03

Oxalate P (mg kg−1) 235 155 242 2.35 0.49 4.97 5.05 1.10 -0.80 -0.05

PBI 73.2 57.2 64.3 5.20 0.38 4.08 4.05 0.63 0.29 0.05

a The subscripts Nit, Pho and TMAH denote the soluble (nitrate extraction), exchangeable (phosphate extraction) and organic (TMAH

extraction) fractions. SOC denotes soil organic carbon. Oxides denotes the sum of oxalate-extractable Fe, Al and Mn oxides. Oxalate P

denotes oxalate-extractable P. PBI denotes phosphorus buffer index.
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Table 3. Sequence of predictors for maize grain Se concentration (both soil properties

and environmental covariates) for testing with the α-investment

Order Soil property Order Environmental covariate

1 SeNit
a 1 Downscaled mean annual precipitation

2 SePho 2 Downscaled mean annual temperature

3 SeTMAH 3 Slope

4 pH 4 Topographic index

5 Oxides 5 Enhanced vegetation index

6 SNit 6 MODIS Band 7

7 STMAH 7 MODIS Band 1

8 SOC 8 MODIS Band 2

9 Oxalate P 9 MODIS Band 3

10 PBI

a The subscripts Nit, Pho and TMAH denote the denote the soluble (nitrate

extraction), exchangeable (phosphate extraction) and organic (TMAH extraction)

fractions. SOC denotes soil organic carbon. Oxides denotes the sum of oxalate-

extractable Fe, Al and Mn oxides. Oxalate P denotes oxalate-extractable P. PBI

denotes phosphorus buffer index.

3.3. Model-fitting

The 1st-, 2nd-, 4th, 5th-, 6th-, 8th and 9th-ranked soil properties, SeNit, SePho, pH,

oxides, SNit, SOC and Oxalate P were retained as predictors for grain Se concentration

by the FDR criterion (Figure 1a).

The variogram functions for the null model with coordinates filtering spatial trend

and models for the selected soil properties, added in succession, are shown in Figure 2.

The variogram represents the spatial dependence of the correlated random effect. It

Test
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(a) Soil properties 
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(b) Environmental Covariates
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Figure 1. The p-values (open circles) for successive tests on predictors added to the

model for maize grain Se concentration from (a) soil properties and (b) environmental

covariates. Tests are on addition of variables in the order given in Table 3. The solid

circles are the threshold for rejection of each null hypothesis under the FDR control.
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Figure 2. Variogram functions for the null model (coordinates filtering spatial trend)

for maize grain Se concentration, and for successive models with selected soil properties

added as predictors

is half the expected squared difference between the random components of the target

variable at two locations, modelled as a function of the distance between them.

The variance of the iid random effect is the apparent intercept of the variogram,

and the function increases to a maximum which is the sum of the variances of both

random effects, also called the a priori variance. The dependence of the variogram on

the separation distance depends on the ϕ and κ parameters. The a priori variance

is smaller for the random effects of models with predictors added as fixed effects, the

reduction representing the information which these terms provide. Here the reduction

of this component by adding the selected terms for the final model, expressed as a

proportion of the a priori variance for the model with spatial coordinates only is small

(0.04). The spatially uncorrelated random effect with variance τ 2 accounts for sources

of variation spatially dependent at finer scales resolved by sampling, or without any

spatial dependence. This will include measurement error. For this reason, it is also

useful to compute the adjusted R2 value for the spatially correlated variation alone, i.e.

the reduction in σ2 on adding predictors as fixed effects to the model expressed as a

proportion of this variance component for the null model.

Variogram functions for the null model (coordinates the only fixed effect) and then

for successive models in which soil properties were added as predictors, retained with
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FDR control, are shown in Figure 2. Although there is strong evidence linking selected

soil properties to Se concentration in maize grain, these properties only account for a

small fraction of the variation. While soil properties are one source of variation in grain

Se, other factors appear to contribute substantially more.

Soil SeNit and SePho have a positive coefficient (Table A1), indicating that positive

deviations from the spatial trend in grain Se are associated with larger concentrations of

soluble and exchangeable Se in the soil. This is plausible and consistent with previous

studies, such as that of [44]. The soil pH was also retained in the model, also with a

positive coefficient. It should be noted that the sign of the coefficient in a statistical

model depends, in part, on the other covariates included. However, here the positive

sign makes sense mechanistically. The pH of the soil and redox potential together affect

the speciation of Se, with Se(VI), the , more accessible form, increasingly predominant

over the less accessible Se(IV) form as pH + pE increases, [40]. It has been shown

in Malawi [7] that Se uptake into maize grain tends to be larger soils with pH > 5.

The negative effect of metal oxides in the model is consistent with findings that these

can absorb forms of Se, reducing availability, an effect reduced by soil organic carbon

[41]. Soil SNit has a negative coefficient which is attributable to the strong competition

between selenate and sulphate for transporter sites and hence for plant uptake [34, 35].

Soil organic carbon is included in the predictive model, with a negative sign. This

can be attributed to the way in which Se, by substituting for S, can bond with C and

O in humic molecules, reducing availability. However, it should be noted that SOC

can reduce Se absorption on metal oxides, increasing availability. Oxalate-extractable

P has a positive correlation with grain Se in the model. This is not consistent with

observations in more acid soil conditions, where Se(IV) dominates in speciation, and

there can be competition between Se and P for plant uptake, see [45]. This could be

explained through the better development of the root system in maize plants with a

good P supply [42, 43], which in turn would improve uptake of Se.

The single environmental covariate selected by the FDR approach was mean annual

temperature, with a positive coefficient. Table 4 shows the estimated parameters for

this model, relative to the null model with coordinates as the only fixed effects, and

Figure 3 shows the variogram functions. There was a larger reduction in the unexplained

variation when mean annual temperature was added as a predictor than for the model

with soil properties, as shown by the value of R̆2
adj (0.057) for the selected model, after

FDR, reported in Table 4. The R̆2
adj for the final model used for spatial prediction is

0.07.

The summary statistics for the cross-validation errors are presented in Table 1 and

their exploratory plots are shown in Figure B3. The assumption of normal errors appears

plausible.
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Figure 3. Variogram functions for the null model (coordinates filtering spatial trend)

for maize grain Se concentration, and for successive models with selected environmental

covariates added as predictors.
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Table 4. Parameter estimates for the null model for transformed grain selenium concentration (spatial coordinates the only fixed effects)

and a model with selected environmental covariates as additional fixed effects

Predictand Predictor coefficient R2
adj R̆2

adj κ τ2 σ2 ϕ
βa
0 β1 β2 β3

Easting Northing Mean Annual Temperature

Null model 24.4138 -0.0025 -0.0023 0.5 0.8972 0.5277 10.8

Model after FDR 20.3792 -0.0042 -0.0021 0.0162 0.0529 0.0571 0.5 0.8520 0.4976 7.44

Final model 20.5162 -0.0043 -0.0022 0.0162 0.0446 0.0702 0.5 0.8708 0.4907 8.25

a β0–β3: fixed effects coefficients β0 is a constant and βi is the coefficient for the ith random effect; R2
adj : the difference between the

variance of the correlated random effect (σ2) for the null model and the proposed model expressed as a proportion of that variance for

the null model; R̆2
adj : the difference between the variance of the correlated random effect (σ2) for the null model and the proposed model

expressed as a proportion of that variance for the null model; κ: smoothness parameter of the Matèrn correlation function; τ2: variance

of the iid random effect (nugget variance); σ2: variance of the correlated random effect; ϕ:distance parameter of the correlation function.
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The mean standardised squared prediction error is 1, but the median is 0.384. This is

smaller than expected; the 95% confidence interval for the median under a valid model is

[0.40, 0.51], and the kriging variances may be somewhat large, possibly due to outlying

observations in the data, so inferences will be conservative in the sense that uncertainty

is slightly overestimated.

3.4. Spatial mapping

Spatial mapping of grain Se was done by computing the E-BLUP for the model with

mean annual temperature as a fixed effect in addition to spatial covariates. Although

these fixed effects left 80% of the variation of grain Se unexplained, the kriging-type

component of the E-BLUP, based on the spatial correlation of the random effects, gives

an optimal local prediction with quantified uncertainty. There are pronounced spatial

patterns in the predicted concentrations of Se in maize at the national scale (Figure

4). There are large concentrations in the Shire River valley in the south of the country

and marked east – west trends in the southern and central provinces. Variations in

predicted grain Se over small regions where the covariate changes markedly should be

interpreted with caution. For example, the predicted concentrations are smaller around

the Mulanje Massif in the south east of the country. This may reflect the influence of

the mean annual temperature covariate however, it is likely that this reflects primarily

the markedly larger concentrations in the hot, low altitude Shire valley than elsewhere

in the country, and the prediction of trends associated with shorter-scale topographic

variation may be artefacts. Note also that the kriging variances are greater over the

Mulanje Massif.

Figure 5a shows the probability that grain Se concentration is less than the

threshold of 38 µg kg−1. In Figure 5b, these values are presented using the verbal scale

with calibrated phrases proposed by the IPCC [36]. Following [37] the phrases and the

probability ranges to which they correspond are both presented. The probability that

grain Se concentration is below the threshold is ‘Unlikely’ or ‘Very unlikely’ (1–33 %) in

the southern part of the Shire valley and near Salima on the south-west shore of Lake

Malawi. It is ‘Very likely’ in much of the north of the country, and near Dedza south

of Lilongwe. Over much of the country the probability of being below the threshold is

‘As likely as not’, i.e., 33–66%. In such areas local decisions on interventions based on

predicted grain Se content should probably be based on direct local measurements.

Figure 6 shows the probability the concentration of Se in maize grain falls

below 38 µg kg−1 annotated with the average probability threshold, Pt, value of

0.31 as the red probability isoline on (a). This average probability threshold can be

applied by stakeholder groups in Malawi, those in agronomy/soil science and public

health/nutrition. Interventions to address Se deficiencies would be recommended where

the probability takes a greater value than the average probability threshold. Figure 6 (b)

shows an area of 17,208 km2 where the probability is above the Pt 0.31. These are the

locations where interventions addressing Se deficiencies should be targeted. Agronomists
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Figure 4. Grain Se concentration in maize across Malawi. (a) E-BLUP predictions,

and (b) the prediction error variance (expected squared error) of the E-BLUP.

Figure 5. Probability that concentration of Se in maize grain across Malawi is less

than 38 µg kg−1 expressed on (a) numerical scale, (b) expressed according to ‘calibrated

phrases’
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Figure 6. Probability that the concentration of Se in maize grain across Malawi is

<38 µg kg−1 expressed on a numerical scale. The red line probability isoline on (a) is

the mean probability value, Pt , applied by stakeholders’ groups (agronomy/soil science

and public health/nutrition) in Malawi would to recommend interventions to address

Se deficiencies. (b) shows the proportion of the area recommended for interventions

by the stakeholder groups.

and soil scientist may advocate for agronomic biofortification as an intervention. Public

health and nutrition specialist may recommend provision of Se-fortified food products

in those regions with probability above the 0.31.

4. Discussion

If we consider a median grain Se concentration of 16.8 µg kg−1 and a reference daily maize

intake of 342.8 g capita−1 day−1 from food balance sheets [2], the typical dietary intake

of Se from maize alone in Malawi is 5.76 µg capita−1 day−1. This intake represents 10.4%

of a Recommended Dietary Allowance (RDA) of 55 µg capita−1 day−1 for Se. However,

grain Se concentrations from the survey ranged from ranging from below detection limits

(7.69 µg kg−1) to 1852 µg kg−1. An individual could therefore be consuming 0.353–635

mg capita−1 d−1 from maize, or 0.64–1150% of the Se RDA, depending upon the location

from where this maize is sourced. Location is a critical factor in the likely prevalence of

Se deficiency among populations, notably, where a single dietary staple crop dominates

and is produced locally [11]. A previous dietary survey in Malawi reported low dietary

Se supply. It was estimated that 70% of the population are consuming insufficient Se

with an average daily intake range of 27–45 µg capita−1 day−1 [7, 9, 3], compared to the

Se RDA of 55 µg capita−1 day−1. Smaller intakes are likely in rural areas and among

poorer households who have limited access to more Se-rich food sources such as meat,
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fish, and vegetables [3].

Geographical differences in Se concentration and intake have been reported

previously in Malawi from (i) compositional analysis of dietary intakes in two locations

[9], (ii) national-scale dietary surveys linked to food composition data based on

convenience sampling [7], (iii) the concentrations of Se in blood plasma and urine as

population biomarkers of Se status [4, 38]. The current spatially representative survey

of maize grain Se concentration is consistent with data from these earlier studies.

Hurst et al. (2013) designed a cross-sectional study to compare the Se status of

women living in locations with contrasting soil types and maize grain Se concentrations.

They observed marked differences in the Se status of blood plasma and casual urine.

The median value of plasma Se concentration in the Zombwe Extension Planning Area

(EPA) was 53.7 µg L−1 (ranging between 32.3–78.4 µg L−1; SD = 9.7 µg L−1), which

was less than half of the median value, 117 µg L−1, seen in Mikalango (range 82.6–204

µg L−1, SD = 22.5 µg L−1) which was selected because of the local Vertisol soil type

used for local crop production. Moreover, Se concentration in casual urine samples

in Zombwe EPA ranged between 4.1 and 13.3 µg L−1 with a median value of 7.3 µg
L−1 (SD = 2.0) which was one third that of median value, 25.3 µg L−1, observed in

Mikalango EPA (range 12.4–106 µg L−1; SD =18.9 µg L−1). This is consistent with

the results of the current survey, which demonstrate low concentration of Se in grain (a

light green area in Figure 4) in Northern regions (where Zombwe EPA is located), and

high grain Se concentrations (a dark green area in Figure 4) in Southern regions (where

Mikalango EPA is located). High erythrocyte Se concentration [39] is consistent with

greater plasma Se concentration of people living in areas where Vertisols are prevalent

in Malawi.

Chilimba et al. (2011) estimated dietary Se intake in Malawi surveying Se

concentrations in maize grain and soil from 88 field sites. They predicted a widespread

suboptimal dietary intake and Se deficiency risks in Malawi. They noted spatial

variation in Se concentration in maize grain which, in turn, was determined by soil

properties, where Se concentration in maize grain was higher by up to 10-fold in crops

grown on soils in southern Malawi with high pH (>6.5).

The predictive value of soil factors for maize grain Se concentration was significant,

albeit these factors (SeNit, SePho, oxides and SNit) explained just a small proportion of

the random spatial effects (adjusted R2 = 0.046) within the overall model, once the fixed

spatial trend effect had been accounted for. However, much of the unexplained variation

shows spatial dependence, so the E-BLUP predictions of grain Se concentration are more

reliable than predictions based on the fixed effects only.

Finally, it is interesting to compare these findings for grain and soil Se with previous

findings, based on the same survey, for Zn [12]. One marked difference is seen in the

scale of spatial dependence of the micronutrient concentration in grain. For Zn spatial

dependence is seen up to 100 km, but in this study, it was found that variation in grain

Se concentration is correlated up to a distance of 40 km. This indicates a finer scale

of spatial variation in grain Se than in grain Zn, which would require more intensive

Page 19 of 32 AUTHOR SUBMITTED MANUSCRIPT - ERFS-100163.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



20

survey effort to support local interventions. For both micronutrients, there was evidence

for a relationship between measures of the crop-available concentration in the soil and

the concentration in grain. However, for both, the proportion of the total variation

accounted for by this model was very small, as was the proportion of the spatially

dependent variation 0.03 and 0.07 respectively for Zn [12] and 0.04 and 0.05 for Se

(Tables 4 and 5).

It is interesting that mean annual temperature was the selected environmental

covariate for both micronutrients, suggesting that this variable, or one for which it

is a proxy, influences the concentration of both micronutrients in grain. However,

the relationship with grain Zn was stronger than for grain Se, the proportions of the

total variance, and the spatially correlated variance accounted for by the model with

mean annual temperature as a covariate were 0.09 and 0.52 for grain Zn [12], and the

corresponding values were 0.03 and 0.21 for Se (Tables 4 and 5). Some of the top

ranked covariates such as slope and precipitation were not selected in the final model–

one underlying reason is that the variable would be rejected because it is strongly

correlated with another one already in the model or was measured with substantial

error. This suggests that while such variables may be important at broader scales,

their mechanistic role at the scale of our study may be indirect or confounded by other

landscape factors. This insight could help refine variable selection in future landscape-

level modelling efforts.

In resonance with the soil properties (Tables 2 and 3) modelled (positive coefficient)

as related to the grain Se concentration, their mechanistic process can be elucidated.

Soil SeNit and SePho are related to grain Se as measures of soil supply. Wang et al.

(2020) demonstrated that soluble (nitrate) and adsorbed (phosphate) selenate fractions

are the most likely plant-available species; hence, these would correlate strongly with

grain uptake. Further, soil pH and redox together affect Se speciation in soil (Se(VI),

which is more accessible, predominates over Se(IV), and becomes less accessible, as

pE+pH increases (e.g., 40). Se uptake into grain tends to be greater at pH > 7 (e.g., 7).

Oxides are also very important in the soil as they absorb forms of Se, while this effect

is reduced by SOC (e.g., 41). On the other hand, Sulphate transporters are responsible

for the uptake of Se into plants, so larger soil S will result in greater competition with

Se for uptake [46]; while some molecules in SOC chelate Se forms in soil, reducing

availability. This effect is reduced by increasing pH. Selenium can substitute for sulphur

and therefore bond with both carbon and oxygen within humic substances. Concerning

Phosphorus, Oxalate-P binds to selenium in the soil. This makes it less accessible for

plants to absorb and subsequently reduces the amount available to humans through

their diet. The impact varies depending on factors like soil type, pH, and the specific

form of selenium involved.
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5. Conclusions

This study determined the geospatial variation of Se concentration in maize grain in

Malawi and analyses the effects of soil properties and landscape factors in driving

the spatially correlated variation of Se concentration in maize grain. Mean annual

temperature captured significant variation of Se concentration in maize grain, but

substantial variation remained unexplained. However, this variation unaccounted for

by the covariate showed spatial dependence, and so Se concentration could be mapped

by geostatistical prediction, if grain Se has been measured on a suitable spatial sample

design, to provide guidance for designing efficient interventions.

Several soil properties, including measures of available forms of Se were included

in the model. For most the sign of the coefficient was consistent with known factors

influencing Se availability or uptake by the crop. However, substantial variation in

grain Se concentration remains unexplained (over 80%) in the final model. This

suggests that the existing approaches to characterise availability of nutrients in soil,

using various chemical extractions, have limited value for predicting Se uptake by crop

plants. In part, this is because Se availability in soil is determined by dynamic equilibria

between the soil solid phases (mineral and organic-bound forms) and soil pore water,

and the multiple (and complex) uptake mechanisms by plant roots, whereas chemical

extractions only provide a single time-point measurement of micronutrients availability.

Measurements on extracted fractions at single time-points cannot capture the dynamics

of micronutrients movement between different soil phases, including the capacity of the

soil to replenish what is directly available in the soil solution following depletion by root

uptake. Furthermore, considering only the Se dynamics of Se in soil leaves aside the

multiple processes that drive internal transport and redistribution of Se, including its

deposition in the grain during plant growth. Further research is needed to investigate

dynamic soil geochemical processes and plant physiology to better inform agronomic

biofortification strategies for alleviating Se deficiency in SSA populations.
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Appendix A.
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Table A1. Predictor coefficients for the null model for transformed grain selenium concentration (spatial coordinates the only fixed

effects) and a model with selected soil properties as additional fixed effects

Predictand Predictor coefficient
β1 β2 β3 β4 β5 β6 β7 β8 β9

Easting Northing SeNit SePho pH Oxides SNit SOC Oxalate

Null model 24.4138 -0.0025 -0.0023

Model after FDR 21.1006 -0.0015 -0.0020 0.0629 0.4567 0.1882 -0.3321 -0.3104 -0.2388 0.1401

a β0–β8: fixed effects coefficients β0 is a constant and βi is the coefficient for the ith random effect.
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Table A2. Parameter estimates for the null model for transformed grain selenium

concentration (spatial coordinates the only fixed effects) and a model with selected

soil properties as additional fixed effects

Predictand R2
adj R̆2

adj κ τ2 σ2 ϕ

Null model 0.5 0.8972 0.5277 10.8

Model after FDR 0.1169 0.0429 0.5 0.7534 0.5051 8.08

a R2
adj : the difference between the variance of the correlated random effect (σ2) for

the null model and the proposed model expressed as a proportion of that variance for

the null model; R̆2
adj : the difference between the variance of the correlated random

effect (σ2) for the null model and the proposed model expressed as a proportion of

that variance for the null model; κ: smoothness parameter of the Matèrn correlation

function; τ2: variance of the iid random effect (nugget variance); σ2: variance of the

correlated random effect; ϕ:distance parameter of the correlation function.
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Appendix B.

Se / log mg kg−1
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Figure B1. Histogram with boxplot and QQ plot for the residuals from an exploratory

fit of the saturated model (soil properties) for grain Se concentration on a log scale.
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Figure B2. Histogram with boxplot and QQ plot for the residuals from an exploratory

fit of the saturated model (environmental covariates) for concentration of Se in grain

on a log scale.

cross−validation errors
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Figure B3. Histogram with boxplot and QQ plot for the cross-validation errors for

the E-BLUP
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kriging variance
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Figure B4. Histogram with boxplot and QQ plot for the kriging variances for the

E-BLUP
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[17] Karger, D., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R., Zimmermann, N.,

Linder, H. & Kessler, M (2018) Data from: Climatologies at high resolution for the earth’s land

surface areas, Dryad 2018, http://datadryad.org/stash/dataset/doi:10.5061/dryad.kd1d4

[18] Justice, C., Vermote, E., Townshend, J., Defries, R., Roy, D., Hall, D., Salomonson, V., Privette,

J., Riggs, G., Strahler, A., Lucht, W., Myneni, R.B., Knyazikhin, Y., Running, S.W., Nemani,

R.R., Zhengming, W., Huete, A.R., van Leeuwen, W.,Wolfe, R.E., Giglio, L., Muller, J., Lewis,

P. & Barnsley, M.J (1998) The Moderate Resolution Imaging Spectroradiometer (MODIS):

Land remote sensing for global change research, IEEE Transactions On Geoscience And Remote

Sensing, 36, 1228–1249.

[19] Lark, R. M., Cullis, B. R., & Welham, S. J. (2006) On spatial prediction of soil properties in the

presence of a spatial trend: the empirical best linear unbiased predictor (E-BLUP) with REML

European Journal Of Soil Science. 57, 787-799, https://doi.org/10.1111/j.1365-2389.2005.00768.x

[20] Benjamini, Y. & Hochberg, Y (1995) Controlling the False Discovery Rate: A Practical and

Powerful Approach to Multiple Testing Journal Of The Royal Statistical Society: Series B

(Methodological), 57, 289–300 (1995), https://onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-

6161.1995.tb02031.x.

[21] Benjamini, Y. & Yekutieli, D (2001) The Control of the False Discovery Rate

in Multiple Testing under Dependency, The Annals Of Statistics, 29, 1165–1188,

https://www.jstor.org/stable/2674075

[22] Tukey, J. (1991) The Philosophy of Multiple Comparisons, Statistical Science, 6, 100-116.

[23] Lark, R.M (2017) Controlling the marginal false discovery rate in inferences from a soil dataset

with α-investment European Journal Of Soil Science 68, 221–234.

[24] Webster, R. & Oliver, M (2007) Geostatistics for Natural Environmental Scientists, John Wiley &

Sons Chichester.

[25] Brys, G., Hubert, M. & Struyf, A (2004) A Robust Measure of Skewness Journal Of Computational

And Graphical Statistics 13(4), 996–1017, https://doi.org/10.1198/106186004X12632.

[26] Diggle, P. & Ribeiro, P (2010) Model-based geostatistics, Springer Science+Business Media LLC.

[27] R Core Team R (2023) A language and environment for statistical computing, R Foundation for

Statistical Computing, https://www.r-project.org/.

[28] Ribeiro Jr, P., Diggle, P., Christensen, O., Schlather, M., Bivand, R. & Ripley, B (2022) geoR:

Analysis of Geostatistical Data, https://CRAN.R-project.org/package=geoR, R package version

1.9-2

[29] Lark, R.M (2000) A comparison of some robust estimators of the variogram for use in soil survey,

European Journal Of Soil Science, 51(1), 137–157

Page 30 of 32AUTHOR SUBMITTED MANUSCRIPT - ERFS-100163.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



31

[30] Chagumaira, C., Chimungu, J.G., Gashu, D., Nalivata, P.C., Broadley, M.R., Milne, A.E. &

Lark, R.M. (2021) Communicating uncertainties in spatial predictions of grain micronutrient

concentration Geoscience Communication, 4(2), 245–265.

[31] Chagumaira, C., Nalivata, P.N., Chimungu, J.G., Gashu, D., Broadley, M.R., Milne,

A.E. & Lark, M.R (2022) Stakeholder interpretation of probabilistic representations of

uncertainty in spatial information: an example on the nutritional quality of staple

crops, International Journal Of Geographical Information Science, 36(12), 2446–2472,

https://doi.org/10.1080/13658816.2021.2020278

[32] Stroud, J.L., Li, H.F., Lopez-Bellido, F.J., Broadley, M.R., Foot, I., Fairweather-Tait, S.J., Hart,

D.J., Hurst, R., Knott, P., Mowat, H., Norman, K., Scott, P., Tucker, M., White, P.J, McGrath,

S.P. & Zhao, F.J. (2010), Impact of sulphur fertilisation on crop response to selenium fertilisation.

Plant And Soil, 332, 31–40

[33] White, P.J., Bowen, H.C., Parmaguru, P., Fritz, M., Spracklen, W.P., Spiby, R.E., Meacham,

M.C., Mead, A., Harriman, M., Trueman, L.J., Smith, B.M., Thomas, B. & Broadley, M.R

(2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana, Journal Of

Experimental Botany. 55, 1927–1937

[34] Liu, X., Zhao, Z., Duan, B., Hu, C., Zhao, X. & Guo, Z (2015), Effect of applied sulphur on the

uptake by wheat of selenium applied as selenite, Plant And Soil, 386, 35–45

[35] Jiang, T., Yu, T., Qi, H., Li, F. & Yang, Z (2022) Analysis of phosphorus and sulfur effect on

soil selenium bioavailability based on diffusive gradients in thin films technique and sequential

extraction, Chemosphere. 302 pp. 134831, https://doi.org/10.1016/j.chemosphere.2022.134831.

[36] Mastrandrea, M., Field, T., Edenhofer, O., Ebi, K., Frame, D., Held, H., Kriegler, E., Mach,

K., Matschoss, P., Plattner & Zwiers, F. (2010) Guidance Note for Lead Authors of the IPCC

Fifth Assessment Report on Consistent Treatment of Uncertainties, Intergovernmental Panel on

Climate Change (IPCC), https://www.ipcc.ch/

[37] Lark, R.M., Ander, E.L, Cave, M., Knights, K., Glennon, M. & Scanlon, R (2014) Mapping trace

element deficiency by cokriging from regional geochemical soil data: A case study on cobalt for

grazing sheep in Ireland, Geoderma, 226, 64–78

[38] Phiri, F.P., Ander, E.L., Lark, R.M., Bailey, E.H., Chilima, B., Gondwe, J., Joy, E.J.M., Kalimbira,

A.A., Phuka, J.C., Suchdev, P.S., Middleton, D.R.S., Hamilton, E.M., Watts, M.J., Young, S.D.

& Broadley, M.R Urine selenium concentration is a useful biomarker for assessing population

level selenium status. Environment International, 134, https://10.1016/j.envint.2019.105218

[39] Stefanowicz, F.A., Talwar, D., O’Reilly, D.S., Dickinson, N., Atkinson, J.,

Hursthouse, A., Rankin, J. & Duncan, A (2013) Erythrocyte selenium con-

centration as a marker of selenium status, Clinical Nutrition, 32, 837–842,

https://www.sciencedirect.com/science/article/pii/S0261561413000290

[40] Somagattu, P., Chinnannan, K., Yammanuru, H., Reddy, U. & Nimmakayala, P. Selenium

dynamics in plants: Uptake, transport, toxicity, and sustainable management strategies. Science

Of The Total Environment. 949 pp. 175033 (2024)

[41] Rong, Q., Chen, J., Zhang, Y., Tan, Z., Wang, W., Sun, C., Guo, X., Zhou, C., Cai, H. & Zhao,

X. (2024) The interaction between selenium and other elements in soil and rice roots shaped by

straw and straw biochar regulated the enrichment of selenium in rice grain. Frontiers in Plant

Science. 15, https://doi.org/10.3389/fpls.2024.1387460

[42] Mollier, A. & Pellerin, S. Maize root system growth and development as influenced by phosphorus

deficiency. (1999) Journal Of Experimental Botany. 50, 487-497

[43] Sun, Y., Zhang, J., Li, W., Xu, Z., Wang, S., Zhao, M., Shen, J. & Cheng, L. (2024) Regulation of

maize root growth by local phosphorus availability, sucrose metabolism, and partitioning. Annals

Of Botany. pp. mcae169

[44] Wang, J., Bailey, E., Sanders, H., Izquierdo, M., Crout, N., Shaw, G., Yang, L., Li, H., Wei, B. &

Young, S. (2020) Using chemical fractionation and speciation to describe uptake of technetium,

iodine and selenium by Agrostis capillaris and Lolium perenne. Journal Of Environmental

Page 31 of 32 AUTHOR SUBMITTED MANUSCRIPT - ERFS-100163.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



32

Radioactivity. 212 pp. 106131

[45] Liu, H., Shi, Z., Li, J., Zhao, P., Qin, S. & Nie, Z. (2018) The impact of phosphorus supply on

selenium uptake during hydroponics experiment of winter wheat (Triticum aestivum) in China.

Frontiers In Plant Science. 9 pp. 373

[46] Shinmachi, F., Buchner, P., Stroud, J., Parmar, S., Zhao, F., McGrath, S. & Hawkesford, M.

(2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the

distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiology. 153, 327–336

Page 32 of 32AUTHOR SUBMITTED MANUSCRIPT - ERFS-100163.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t


