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Abstract. Dietary selenium (Se) deficiency is widespread in Malawi, due to the
limited supply of Se in the predominantly maize based-food system charagterised by
low Se concentration. In this study, the aim was to examine the spatial variation of
Se in maize grains in Malawi, in relation to soil properties and landscape features.
Co-located soil and maize grain samples were collected in a spatially representative
survey. Selenium concentration in maize, soil properties, and envirénmental covariates
were determined. Soil and environmental variables were tested as'potential predictors
of Se concentration in maize. A False Discovery Rate (FDR) control wassused within a
Linear Mixed Model (LMM) framework. Selenium concentrations in maize ranged from
below detection limits (7.69 ng kg™!) to 1852 pg kg~! with mean andmiedian values of
39.1 and 16.8 pg kg ! respectively. The ranges of concentrations of Se fractions in soil
were (i) soluble Se 0.181-18.8 pg kg~! with mean and'median valdes of 3.94 and 3.29
mg png kg~! respectively; (ii) adsorbed Se 0.019-119 pg kg™l with mean and median
values of 3.72 and 3.02 pg kg~ respectively; (iii) organically bound Se 9.43-1334 ng
kg~! with mean and median values of 123 and.92.3 g kg~ 4 respectively. A LMM for
maize Se concentration was used for which the independent log transformed variables
of soil soluble Se, adsorbed Se, oxalate extracted oxides, soluble and exchangeable
sulphur had predictive value (p <0.01 im‘all cases, with FDR controlled at <0.05).
Downscaled mean annual temperature falso explainéd some of the spatial variation in
grain Se concentration. Spatial variation of Se in maize showed relationships with soil
and environmental variables, which can be used to identify areas most at risk of Se
deficiency and thus inform policy responses. However, only a small proportion of the
variation was explained indicating more amnalysis of Se geochemistry in soil may provide
more explanatory insights.

Keywords Selenium, Geostatistics, Micronutrients, Maize, Malawi

1. Introduction

Selenium (Se) is a micronutri?nt essential for human health [1]. Based on dietary
Se supply and direct measurement of biomarkers, it is estimated that Se deficiency
is present in more than.30% of‘people living in sub-Saharan Africa (SSA) [2, 3, 4, 6, 5].
In Malawi, estimatedsSe defi¢iency prevalence rates of 35.5 % and 62.5 % have been
reported, respectively, based on nationally representative surveys of blood plasma Se
concentrationsfromysamples collected in 2015 and 2016 [4, 6].

In many SSAcfood systems, locally grown cereals provide most of the Se in a person’s
diet [5]. Access'to animal-source foods, as a richer source of dietary Se than cereals, are
often limited dueto their availability and cost [3, 5|. There is considerable variation
in the grain Se concentration of cereals, depending on where the crop is grown. For
example, in'Malawi, the concentration of Se in maize (Zea mays L.) grown on Vertisols
was, reported to be ten-fold larger than the grain concentration from most other soil
types imgthe country [7], and this was linked in subsequent studies to direct evidence
of differences in dietary intake [8] and Se status [9] among smallholder communities
farming in these areas.

Comprehensive data on grain Se concentration in staple cereal crops have been
reported recently for Ethiopia and Malawi, from surveys representing most of their
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arable land areas [10, 11]. Grain Se concentrations varied by several orders of magnitude
within both countries (e.g ranging from below detection limits (7.69 pg kg=4) to 1852
ng kg=! for maize in Malawi). Furthermore, there was strong evidénce. of spatially
correlated variation in grain Se concentration of cereal crops, at distances of more than
100 km, again in both countries. What this means is that, for subsistence farmers; and
other rural dwellers dependent primarily on locally grown staples, theirlocatien is likely
to be the single biggest factor in determining whether they are likely to bed@at risk of Se
deficiency.

Understanding spatial variation of Se concentration in grain is vital for agronomic
biofortification interventions aimed at improving dietary ‘imtake of /Se. Sources of
spatially-dependent variation of Se concentration in grains have previously been
investigated using surveys and statistical modelling. Gashuet.al. 2021 [11] reported that
soil pH was positively correlated with grain Se concentration for teff, wheat and maize in
Ethiopia and for maize in Malawi. Grain Se concenttation was positively correlated with
mean annual temperature for teff (Eragrostis tefd(Zuec.)yTIrotter) and wheat ( Triticum
aestivum L.) in Ethiopia, and maize in Malawi [11]4In addition, grain Se concentration
was negatively correlated with mean anmual precipitation for teff, wheat and maize in
Ethiopia. In a more detailed analysis of theisoils of the Amhara region of Ethiopia,
[10] reported that ‘soluble’ (extracted in 0.01 M'KNO;3) and ‘adsorbed/exchangeable’
(extracted in 0.016 M KH,PO,) fractionssef soil Se, along with soil pH, were positively
correlated with the Se concentration imnteff and wheat grain. Whilst these fractions
of soil Se are operationally defined, they are considered to represent ‘plant-available’
fractions.

The sample materials in the surveypreported by [12] can be used to determine the
same crop and soil Se variablésswhich{11] reported from Amhara. The results from [12]
indicate that the survey of Malawi is of sufficient intensity to support a spatial analysis
of the joint variation of crop and(soil variables. However, we may expect Se to behave
differently in the soil; both in terms of retention and uptake by plants, and so a further
study to examine/the variation of maize grain Se concentration and its joint variation
with soil and enyironmental properties could be expected to yield novel results.

The aim<of thisistudy was therefore to investigate whether the ‘plant-available’
fractions of [Se explain the spatially correlated variation of grain Se concentration of
maize in Malawi. As with the earlier study in Amhara region [11], we used an approach
based on hypothesis-testing to select covariates. To reduce the risk of over-fitting the
model we,employed False Discovery Rate (FDR) control, while maintaining power to
detect useful predictors of the target variable by employing the alpha-investment method
of {13]. The a-investment methods uses a ranking of the soil properties and wider
environmental /landscape factors that are considered by experts to be most likely, a
prioris. to influence grain Se concentration. The landscape factors included in this
analysis were downscaled precipitation and temperature, terrain index (TIM), slope,
and vegetation index.
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2. Materials and methods

Most of the materials and methods used in this study are described in greater detail by
[10, 11] and [12]. Here we provide a short overview. The final and definitive,data set;
as published by [14], is the one that was used in the analyses described below.

2.1. Design and field sampling

The sampling domain for Malawi was defined as the raster cells'in the European Space
Agency Climate Change Initiative map allocated to a land-cover class that included
‘cropping’ in its designation. The objective of the sampling was toprovide adequate
spatial coverage to support spatial prediction of the variables of imterest. A detailed
description of the method used to select sampling points. is given/by [11].

The primary objective of the sampling was to provide adequate spatial coverage to
support spatial prediction of the variables of interest..More detail on the method used
to select sample points to achieve this is provided by, [bL]. Eaired soil and grain samples
were collected by trained teams from 1812 locations. Only the locations where maize
crop was grown (1608 locations =~ 89 % ©ftotal samplés), were included in this study.

2.2. Grain and soil analyses

Selenium concentration in grain was determined using inductively coupled plasma
mass spectrometry (ICP-MS{iCAPQ, Thermo Fisher Scientific, Bremen, Germany)
following acid digestion with 70%»HNO3 (Trace Analysis Grade) in a Multiwave Pro
5000 microwave digestion system (Amton Paar). The following soil properties were
determined: soil organic carbon (SQC, dry combustion), effective cation exchange
capacity (eCEC) and exchamgeable cations (hexamine cobalt trichloride solution),
amorphous oxides (AlQx, FeOx, MnOx; ammonium oxalate extraction), Olsen P; pH in
water (1:2.5 solid toselution ratio) and pH in 0.01 M Ca(NOs)s (1:10 solid to solution
ratio), and quasi-totalielemental concentration determined by ICP-MS after extraction
with Aqua Regia. Different Se fractions in soil were determined by using a 3-step
sequential extraction schéme as described in detail in [14]. The scheme is designed to
sequentiallyfextract three operationally defined fractions (i) a ‘soluble’ fraction in 0.01
M KNOj (Sesef), (i) a ‘specifically adsorbed’ fraction in 0.016 M KHoPOy (Seaqs), and
(iii) an organically bound fraction in 10% tetra methyl ammonium hydroxide (Seoyg).
Selenium concentrations in grain fell below the detection limits (average of 7.69
ng kg ') in 409 samples therefore they were removed from the analysis. Consequently,
a total of 1199 samples were included in the analysis in the current study. Values of
LODs were calculated for each separate ICP-MS run (n = 6) and samples analysed in
each.run were compared to the corresponding LOD, and when the concentration of Se
in grain was < LLOD, the sample was removed from the analysis. The limits of detection
for selenium, determined across the six ICP-MS runs, varied from 2.69 to 18.1 ug kg1,
with a mean of 7.69 pg kg™!. For details, please refer to [14]. It is worth noting that we
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used a different approach in [11], where the average value of LODs, calculated for each
ICP-MS run (n = 6), was used.

2.3. Extraction of environmental covariates

We selected environmental covariates which were judged to be possible predictors of
grain selenium concentration through their effect on, or status as a/proxy for, factors of
crop growth and soil conditions. These covariates were the MERIT. Digital Elevation
Model [15] and derived variables, specifically surface slope and thetopographic index
which represents the up-slope area that potentially contributedsrunoff to a point. In
addition, we considered climate variables from the CHELSA set [16; 17] (downscaled
mean annual temperature and precipitation) and the Enhanced Vegetation Index (EVI)
computed from measurement by the MODIS remote sensor satellite [18]. Specifically,
we used the average over the period 2000-2016 of the 250-m EVI product (MOD13Q1).

2.4. Data analyses IS

The data analyses approaches used are déscribed in.detail by Botoman et al. 2022 [12].
Summarised they were:

2.4.1. Linear mixed model To identify, links between soil properties and Se
concentration in grain and to model the gpatial variation of Se in maize grain, a Linear
Mixed Model (LMM) framework,was used. The variable is modelled as a combination of
fixed effects (linear functions ofso6il properties or environmental covariates), a correlated
random effect, and an independent and identically distributed (iid) random error (nugget
effect). The nugget effect imeorporates variation due to measurement error and factors
that vary over short distances relative to the spacing of sample points.

2.4.2. Statistical inferenee and FDR control with a-investment In a LMM framework,
the evidence that adding fixed effects to a simpler model achieves a significant
improvement by computing the log-ratio statistic:

L= 2(£1 B 60)7 (1)

where /1 _and ¥, are the maximised log-likelihoods from fitting the model with the
additional fixedseffects, and the simpler model without them, respectively [19]. Under
the null'hypothesis, where the additional fixed effects are not related to the dependent
variable, this'statistic is asymptotically distributed as chi-square with degrees of freedom
equal to the number of additional fixed effects. To avoid the problem of multiple
hypothesis testing when evaluating multiple models with different predictors [22] we
controlled the FDR over a sequence of tests [20]. This is the expected proportion of
rejected null hypotheses which are false rejections, and it can be controlled by various
methods [21]. While it is desirable to control FDR when evaluating evidence to include
predictors in a final model, this comes at the cost of reduced statistical power to detect
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informative predictors. The method of a-investment due to [13] can improve thé power
of testing with FDR control. In this method the threshold value against which the p-
value for a new covariate is tested depends on the a-wealth, a quantity which is reduced
on acceptance of a null hypothesis increased on rejection, while still controlling FDR:

We used this combination of FDR control with a-investment whenfmodelling grain
Se concentration, following [23]. Models were fitted sequentially, first ith a ‘null model’
with the only fixed effect a spatial trend identified in exploratory analysis{of the data.
This model was used, rather than a model with a constant mean@s the.only fixed effect,
because the latter model would violate assumptions of second-order s?ationarity when
a spatial trend is pronounced [24]. The null model was fitted, by maximum likelihood
(ML). The first predictor was then included as a fixed effect, the model refitted and then
the log-likelihood ratio statistic (Equation 1) was computeds, If the p-value for this test
exceeded 0.05 then the predictor was dropped, otherwise it, was provisionally retained,
and the next predictor was considered. Once all 4he predictors had been considered
the p-values for each were compared to thresholds aceording to the a-wealth controlling
FDR at a target value of 0.05. Those predictors for which the p-values was less than
the FDR threshold were retained for inglusion in‘a final model which was refitted by
residual maximum likelihood (REML).

Separate rankings of the soil properties amd the environmental covariates as
potential predictors of the Se cohcentration in maize grain were based on a priori
understanding of the processes involved,mot from data exploration. We used the same
ranking of predictors for graim,Se which we used previously for analysis of data on
grain Se in Ethiopia [10]. These rankings reflected a consensus view of soil and plant
scientists on the project team. They were not shown any data on grain Se from Malawi
but were shown the correlationshamong the candidate independent variables (Figure
B4). This is because the/valué of@ predictor depends not only on the extent to which
it is related to the target wvariable, but also on its correlation with predictors already
included in the model.Such a correlation introduces redundancy. If two predictors
are quite strongly/correlated then the expert should select just one for inclusion early
in the testing sequence. It should be noted that this ranking procedure allows us to
improve the statistical.power of the overall selection procedure. If the ranking is poor,
not representing/the teal walue of the predictors, then the gain in power will be reduced,
but the comntrol of the FDR is unaffected.

2.4.3. Baploratory data analysis and model-fitting Summary statistics of the predictor
variables were examined along with the octile skewness coefficient [25]. While no
assumptions are made about the distribution of independent variables in the LMM,
we preferred to avoid using strongly skewed variables as large values in the upper
portion, of a skewed distribution would be given undue influence Variables for which
the absolute value of the conventional skewness coefficient, based on data moments,
exceeds 1 are commonly considered for transformation [24]. However, like all statistics
based on second or higher-order moments, the skewness coefficient is sensitive to small
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numbers of outlying observations. For this reason we considered a robust alternative,
the octile skewness [25] which takes absolute values larger than 0.2 for a widérange of
random variables with a conventional skewness outwith [—1,1]. Those variables with<a
pronounced octile skew coefficient were transformed to natural logarithms before they
were used.

Exploratory spatial analysis of the data was undertaken by creating classified post-
plots with the plot.geodata function from the geoR package for the R platferm [28, 27].
This reveals evidence of spatial trends in plots, and spatial post-plets of the data,
with symbols coded to indicate the quartiles of the data set to which they belong.
‘Saturated’ exploratory models for grain Se concentration with (i) all soil properties as
fixed effects, along with a trend in the eastings identified from the spatial plots, and
(ii) all environmental covariates and easting as fixed effects were then fitted by ordinary
least squares. The decision as to whether a transformation of the data was needed to
justify the assumption that the random variation of#he variables is normally distributed
was based on exploratory statistics and plots of these residuals as described above.

The parameters of the LMM were estimated/ by M or REML, using the likfit
function from the geoR library. The ML method allows the most straightforward
comparison of models with different fixed effects, necessary for the sequential testing for
variable selection. However, REML is preferable for estimation of the random effects
parameters, [19, 26]. The variance parameters are the variance of the spatially correlated
random variation (¢2), and a parameteri(¢) which quantifies how the spatial correlation
decays with distance. The smoothness of the spatially correlated random variation is
quantified by a parameter (k) which,can be challenging to estimate, so we followed [26]
and used a profiling method. (This was done for the null model, and the selected value
of k was then used for all others,»The final random effects parameter is the variance of
an iid component which is uncorrelated at scales resolved by sampling.

Once a set of govariates had been selected a final model was fitted by REML
estimation of the LMMyparameters. The model was then tested by cross-validation.
Each observation svas withheld from the data set in turn and predicted from the model
and the remaining data.. We then computed standardised squared prediction errors
(SSPE), the square of the difference between each observation and its cross validation
prediction, standardized by the prediction error variance. The mean and median SSPE
were computed.. For a valid model we expect the mean value to be close to 1 and the
median/to be clese to 0.455 [29].

2.4.4.  Spatial prediction Once a LMM was fitted with selected environmental
predictors, the Empirical Best Linear Unbiased Predictor (E-BLUP) was computed for
each raster cell at which the selected covariates were recorded [19]. This prediction
combines a ‘regression-type’ component, based on the selected covariate(s), and a
‘kriging-type’ prediction from the random effects. The prediction minimises the expected
value of the prediction error variance, which quantifies the uncertainty of the prediction,
and which was mapped alongside predictions of grain Se concentration.
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Although the prediction error variance quantifies uncertainty, it is not necessarily
an accessible measure for all users of information [30]. To illustrate how uncertainty
might be communicated, we considered a threshold grain concentratioft of 38 pg kg=*.
Grain with a smaller concentration of Se provides less than one third of the expected
average requirement of Se for a woman of reproductive age withinda 330-g serving
daily intake [30, 31]. On the assumption (checked in the cross-validation procedure)
of normally distributed prediction errors, it is possible to compute the  probability
at a prediction location that the true grain Se concentration is below the threshold.
Decision-makers might consider an intervention in these circlimstafices. Chagumaira
et al. (2021) found that decision-makers with varied mathematicaldexperience, and
with differing professional background, found such probability maps effective guides to
the interpretation of uncertain information. Further, theyfound [31] that the average
threshold probability (that grain Se falls below the fhresheld), at which the same set
of decision-makers favoured intervention was 0.31.4This indicates that the information
users are generally more concerned to avoid theferror of failing to intervene where Se
supply is deficient than they are to avoid intervention where it is not necessary. We
therefore mapped the probability that grain Se concentration is <38 pg kg™!, and also
showed those regions where this probability exceeds 0.31.

3. Results

3.1. Ezploratory analysis

Summary statistics of maize @rain Se concentration, residuals from the exploratory
model, and cross-validation errors are shown in Table 1. Except for pH, which is reported
on a logarithmic scale, soil pr@erties (Table 2) are mostly skewed and therefore were
transformed to logarithms (natural log). We decided to transform the measurements
of grain Se concentration to matural logarithms after inspection of summary plots and
statistics for the residualsifrom the exploratory model (Supplementary Figures B1 and
B2).

3.2. Ranking of predictor variables as predictors of Se concentration in grain

The ranking of soil properties and of environmental covariates is presented in Table 3
and wag based en the ordering used in [10]. The top three ranked properties were the
different eperationally defined fractions of ‘soluble’, ‘adsorbed’, and ‘organically-bound’
Se in soil, followed by pH, which were hypothesised to be the most likely predictors of Se
congentration in grain. The sum of oxalate-extractable Fe, Mn, and Al oxides was then
includedjfollowed by soluble and organic fractions of soil sulphur (S), which will interact
with-plant Se uptake [33, 32], followed by soil organic carbon (SOC), oxalate-extractable
P, and phosphorus buffer index (PBI).

The top three ranked environmental covariates were down-scaled precipitation,
down-scaled mean annual temperature, and slope.

Page 8 of 32
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Table 1. Summary statistics of Se concentration in grain (n=1603), residuals from
fitted exploratory saturated models and cross-validation errors for the E‘BLUP with
coordinates and downscaled mean annual temperature as fixed effects.

Concentration Residuals from Residuals from Cross-validation

Semaize model with, model with, errors for
(ng kg™!) soil properties environmental the E-BLUP
as covariates® covariates®

Mean 39.1 0.00 0.00a 0.00
Median 16.8 -0.03 -0.04 -0.07
Minimum -1.85 -4.26 -3:55 -3.93
Maximum 1852 4.61 4.22 4.72
Standard deviation 92.3 1.11 1,00 0.95
Skewness 9.65 0.01 0.32 0.36
Octile skewness 0.509 0.06 0.04 0.12

& Residuals from fitting with log, transformed maize grain’Se.
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Table 2. Summary statistics of soil properties proposed as predictors of Se concentration in grain

Variable Original variablés Log.-transformed
Mean Median Standard “ Skew Octile Mean Median Standard Skew Octile
skewness skewness
%

Senit?® (ng kg1t) 3.94 3.30 2.99 1.29° 0.23 1.07 1.19 0.83 -0.30 -0.21
Sepho (ng kg™1) 3.72 3.02 3.79 16.6  0.32 1.07 1.10 0.72 -0.67 -0.04
Serman (ng kg™1) 123 95.5 104:9 3.12  0.43 4.55 4.53 0.72 0.13 0.04
pH 6.37 6.29 0.69 0.61  0.13

Oxides (pg kg™!) 3853 3238 2625 2.89  0.29 8.09 8.08 0.56 0.33  -0.02
Snit (mg kg™1) 4.41 2.83 15.2 24.3  0.36 1.08 1.04 0.70 0.91 0.01
StMan (mg kg-1) 65.46 46.9 76.3 6.23  0.38 3.82 3.85 0.88 -0.70  -0.03
SOC (%) 1.13 0.96 0.68 2.32  0.33 -0.02  -0.04 0.28 0.22  0.03
Oxalate P (mg kg=') 235 155 242 2.35  0.49 4.97 5.05 1.10 -0.80 -0.05
PBI 73.2 57.2 64.3 5.20  0.38 4.08 4.05 0.63 0.29  0.05

* The subscripts Nit, Phosand TMAH denote the soluble (nitrate extraction), exchangeable (phosphate extraction) and organic (TMAH
extraction) fractions. SOC denotes soil organic carbon. Oxides denotes the sum of oxalate-extractable Fe, Al and Mn oxides. Oxalate P
denotes oxalate-extragtable P. PBI denotes phosphorus buffer index.

0T
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2
3 11
4
5 Table 3. Sequence of predictors for maize grain Se concentration (both soil properties
? and environmental covariates) for testing with the a-investment
8 Order Soil property Order Environmental covariate
?O 1 Senit? 1 Downscaled mean annual precipitation
1 2 Sepho 2 Downscaled mean annual temperature
12 3 Serman 3 Slope
13 4 pH 4 Topographic index
14 5 Oxides 5 Enhanced vegetation index
15 6 Snit 6 MODIS Band 7 ~
16 7 STMAH 7 MODIS Band 1
17 8 SOC 8 MODIS Band 2
18 9 Oxalate P 9 MODIS Band 3
19 10 PBI
20
21 & The subscripts Nit, Pho and TMAH denote the denote the soluble (nitrate
22 extraction), exchangeable (phosphate extréction) and organic (TMAH extraction)
23 fractions. SOC denotes soil organic carbon.  Oxides denotes the sum of oxalate-
24 extractable Fe, Al and Mn oxides. Qxalate Pydemnotes oxalate-extractable P. PBI
25 denotes phosphorus buffer index.
26
27
;g 3.3. Model-fitting
2(1) The 1st-, 2nd-, 4th, 5th-, 6th-, 8th and 9th-ranked soil properties, Senit, Sepno, pH,
32 oxides, Syit, SOC and Oxalate P were retained as predictors for grain Se concentration
33 by the FDR criterion (Figure 1a).
2‘5‘ The variogram functions for themull model with coordinates filtering spatial trend
36 and models for the selected sail properties, added in succession, are shown in Figure 2.
37 The variogram representsithe Spatial dependence of the correlated random effect. It
38
39
40
41
42 o (a) Soil properties . (b) Environmental Covariates
43 g —] O O g —] o O ...... O ..... O O ...... O ...... o
45 z " : : =z
46 3 b 5 b

o 8 | o 3 |
47 S S ° S
48 o . o |

4 & Oreee O -

‘s‘g ST T T T ° ™
o1 0 2 4 6 8 10 0 2 4 6 8
gg Test Test
54
gg Figure 1. The p-values (open circles) for successive tests on predictors added to the
57 model for maize grain Se concentration from (a) soil properties and (b) environmental
58 covariates. Tests are on addition of variables in the order given in Table 3. The solid
59 circles are the threshold for rejection of each null hypothesis under the FDR control.
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Figure 2. Variogram funetions for'the null model (coordinates filtering spatial trend)
for maize grain Se concentrationpand for successive models with selected soil properties
added as predictots

is half the expected squared difference between the random components of the target
variable at two locations, siodelledras a function of the distance between them.

The variance of the'iid #andom effect is the apparent intercept of the variogram,
and the function ineréases to,asmaximum which is the sum of the variances of both
random effects, also_called the a priori variance. The dependence of the variogram on
the separation distance depends on the ¢ and s parameters. The a priori variance
is smaller for the random effects of models with predictors added as fixed effects, the
reduction representing'the information which these terms provide. Here the reduction
of this component by adding the selected terms for the final model, expressed as a
proportien'ef the.aprior: variance for the model with spatial coordinates only is small

2 accounts for sources

(0.04). [The spatially uncorrelated random effect with variance 7
of variation spatially dependent at finer scales resolved by sampling, or without any
spatial dependence. This will include measurement error. For this reason, it is also
usefiil.to compute the adjusted R? value for the spatially correlated variation alone, i.e.

the reduction in o2

on adding predictors as fixed effects to the model expressed as a
proportion of this variance component for the null model.
Variogram functions for the null model (coordinates the only fixed effect) and then

for successive models in which soil properties were added as predictors, retained with
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FDR control, are shown in Figure 2. Although there is strong evidence linking Selected
soil properties to Se concentration in maize grain, these properties only accéunt for a
small fraction of the variation. While soil properties are one source of variation in grain
Se, other factors appear to contribute substantially more.

Soil Seni; and Sepy, have a positive coefficient (Table A1), indicating that pesitive
deviations from the spatial trend in grain Se are associated with larger'éoncentrations of
soluble and exchangeable Se in the soil. This is plausible and consistent with previous
studies, such as that of [44]. The soil pH was also retained in4he medels also with a
positive coefficient. It should be noted that the sign of the doeffigientt in a statistical
model depends, in part, on the other covariates included. Hewever, here the positive
sign makes sense mechanistically. The pH of the soil and redox potential together affect
the speciation of Se, with Se(VI), the , more accessible form, increasingly predominant
over the less accessible Se(IV) form as pH + pE in¢reases, [40]. It has been shown
in Malawi [7] that Se uptake into maize grain teuds to be larger soils with pH > 5.
The negative effect of metal oxides in the modelfis consistent with findings that these
can absorb forms of Se, reducing availability, an effect teduced by soil organic carbon
[41]. Soil Sni; has a negative coefficient which is attributable to the strong competition
between selenate and sulphate for transporterisites and hence for plant uptake [34, 35].
Soil organic carbon is included in the predictivesmodel, with a negative sign. This
can be attributed to the way in which Sepby substituting for S, can bond with C and
O in humic molecules, reducing availability. However, it should be noted that SOC
can reduce Se absorption on‘metal oxides, increasing availability. Oxalate-extractable
P has a positive correlation with grain Se in the model. This is not consistent with
observations in more acid soil conditions, where Se(IV) dominates in speciation, and
there can be competition between Se'and P for plant uptake, see [45]. This could be
explained through the better/development of the root system in maize plants with a
good P supply [42, 43]¢ which in furn would improve uptake of Se.

The single environmental covariate selected by the FDR approach was mean annual
temperature, with'a positive coefficient. Table 4 shows the estimated parameters for
this model, relative to the null model with coordinates as the only fixed effects, and
Figure 3 shows'the variogram functions. There was a larger reduction in the unexplained
variation when mean‘annual temperature was added as a predictor than for the model
with soil preperties/as shown by the value of }?gdj (0.057) for the selected model, after
FDR, neportedan Table 4. The égdj for the final model used for spatial prediction is
0.07.

The summary statistics for the cross-validation errors are presented in Table 1 and
their exploratory plots are shown in Figure B3. The assumption of normal errors appears
plausible.
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Table 4. Parameter estimates for the null model for transformed grain selenium concentration (spatial coordinates the only fixed effects)
and a model with selected environmental covariates as additional fixed effects

Predictand Predictor coefficient Ridj ]:Zidj kT2 o? )
IEh B B2 Bs
Easting Northing Mean Apnual Temperature
Null model 24.4138 -0.0025 -0.0023 0.5 0.8972 0.5277 10.8
Model after FDR  20.3792 -0.0042 £-0.0021 0.0162 0.0529 0.0571 0.5 0.8520 0.4976 7.44
Final model 20.5162 -0.0043 -0.0022 0.0162 0.0446 0.0702 0.5 0.8708 0.4907 8.25

& Bo—P3: fixed effects coefficients [y is a comstant and §; is the coefficient for the ith random effect; Ridj: the difference between the
variance of the correlated randofn efféetn(a?) for the null model and the proposed model expressed as a proportion of that variance for

the null model; I:Z?l g the difference between the variance of the correlated random effect (0%) for the null model and the proposed model
expressed as a proportion of that varianeexor the null model; x: smoothness parameter of the Matérn correlation function; 72:

of the iid random effect (nugges. variance); o=

variance
variance of the correlated random effect; ¢:distance parameter of the correlation function.

¢
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The mean standardised squared prediction error is 1, but the median is 0.384./Thisuis
smaller than expected; the 95% confidence interval for the median under a validmodel i3
[0.40, 0.51], and the kriging variances may be somewhat large, possibly due to outlying
observations in the data, so inferences will be conservative in the sense that uneertainty
is slightly overestimated.

3.4. Spatial mapping

Spatial mapping of grain Se was done by computing the E-BLUP for<the model with
mean annual temperature as a fixed effect in addition to spatial’ecovariates. Although
these fixed effects left 80% of the variation of grain Se unexplained; the kriging-type
component of the E-BLUP, based on the spatial correlation of the random effects, gives
an optimal local prediction with quantified uncertaintyanIhere are pronounced spatial
patterns in the predicted concentrations of Se in maize at the national scale (Figure
4). There are large concentrations in the Shire River valley in the south of the country
and marked east — west trends in the southern and centwal provinces. Variations in
predicted grain Se over small regions where the covariate changes markedly should be
interpreted with caution. For example, the predicted €oncentrations are smaller around
the Mulanje Massif in the south east of the country. This may reflect the influence of
the mean annual temperature covariate howeyer, it is likely that this reflects primarily
the markedly larger concentrations in'the hot; low altitude Shire valley than elsewhere
in the country, and the prediction of trends associated with shorter-scale topographic
variation may be artefacts. Notesalso that the kriging variances are greater over the
Mulanje Massif.

Figure b5a shows the prebability that grain Se concentration is less than the
threshold of 38 ng kg™!. In Figure 5b, these values are presented using the verbal scale
with calibrated phrases preposed by the IPCC [36]. Following [37] the phrases and the
probability ranges to which they correspond are both presented. The probability that
grain Se concentration.is below the threshold is ‘Unlikely’ or ‘Very unlikely’ (1-33 %) in
the southern part of the Shire valley and near Salima on the south-west shore of Lake
Malawi. It is ‘Verylikely” in much of the north of the country, and near Dedza south
of Lilongwe./Over much. of the country the probability of being below the threshold is
‘As likely as mot’, i.e., 33-66%. In such areas local decisions on interventions based on
predicted grain Serecontent should probably be based on direct local measurements.

Figure 6 shows the probability the concentration of Se in maize grain falls
beloWw 38 Jig-kg ! annotated with the average probability threshold, Py, value of
0.31 as the red probability isoline on (a). This average probability threshold can be
applied, by stakeholder groups in Malawi, those in agronomy/soil science and public
health/nutrition. Interventions to address Se deficiencies would be recommended where
the probability takes a greater value than the average probability threshold. Figure 6 (b)
shows an area of 17,208 km? where the probability is above the P; 0.31. These are the
locations where interventions addressing Se deficiencies should be targeted. Agronomists
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Figure 6. Probability that the,concentration of Se in maize grain across Malawi is
<38 pg kg~ ! expressed on a numerical scale. The red line probability isoline on (a) is
the mean probability value, Py , applied by stakeholders’ groups (agronomy /soil science
and public health/nutrition) in Malawi would to recommend interventions to address
Se deficiencies. (b) shows the proportion of the area recommended for interventions
by the stakeholder groups.

and soil scientist may advocatefor agronomic biofortification as an intervention. Public
health and nutrition specialist may recommend provision of Se-fortified food products
in those regions with probability abeve the 0.31.

4. Discussion

If we consider a médian grain' Se concentration of 16.8 pg kg~! and a reference daily maize
intake of 342.8 gicapita™ day~! from food balance sheets [2], the typical dietary intake
of Se from maize aloneinMalawi is 5.76 pg capita™! day—!. This intake represents 10.4%
of a Recommended Dietaty, Allowance (RDA) of 55 pg capita™ day™! for Se. However,
grain Se goncentrations from the survey ranged from ranging from below detection limits
(7.69 ng kg!) o 1852 pg kg=!. An individual could therefore be consuming 0.353-635
mg capitas! d ! from maize, or 0.64-1150% of the Se RDA, depending upon the location
from where this maize is sourced. Location is a critical factor in the likely prevalence of
Se deficiency among populations, notably, where a single dietary staple crop dominates
and is produced locally [11]. A previous dietary survey in Malawi reported low dietary
Se supply. It was estimated that 70% of the population are consuming insufficient Se
with an average daily intake range of 27-45 ng capita™! day~! [7, 9, 3], compared to the
Se RDA of 55 g capita™! day~!. Smaller intakes are likely in rural areas and among
poorer households who have limited access to more Se-rich food sources such as meat,
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fish, and vegetables [3].

Geographical differences in Se concentration and intake have beenéreported
previously in Malawi from (i) compositional analysis of dietary intakes in two locations
[9], (ii) national-scale dietary surveys linked to food composition data based on
convenience sampling [7], (iii) the concentrations of Se in blood plasma and urine as
population biomarkers of Se status [4, 38]. The current spatially representative survey
of maize grain Se concentration is consistent with data from these earlier studies.

Hurst et al. (2013) designed a cross-sectional study to comparésthe/Se status of
women living in locations with contrasting soil types and maize grain Se concentrations.
They observed marked differences in the Se status of blood plasma and casual urine.
The median value of plasma Se concentration in the Zombwe Extension Planning Area
(EPA) was 53.7 ng L™! (ranging between 32.3-78.4 ng L=% SD = 9.7 pg L), which
was less than half of the median value, 117 png L=, seen in, Mikalango (range 82.6-204
ng L7 SD = 22.5 pg L) which was selected beause of the local Vertisol soil type
used for local crop production. Moreover, Se gonc¢entration in casual urine samples
in Zombwe EPA ranged between 4.1 and 13.3 pg 4.~* With a median value of 7.3 ng
L~ (SD = 2.0) which was one third thét. of median wyalue, 25.3 ng L™!, observed in
Mikalango EPA (range 12.4-106 ng L™'; SDi=18.9 ng L~!). This is consistent with
the results of the current survey, which demonstrate low concentration of Se in grain (a
light green area in Figure 4) in Northermregions (where Zombwe EPA is located), and
high grain Se concentrations (a dark green area in Figure 4) in Southern regions (where
Mikalango EPA is located). High erythrocyte Se concentration [39] is consistent with
greater plasma Se concentrationrof people living in areas where Vertisols are prevalent
in Malawi.

Chilimba et al. (2041) estimated dietary Se intake in Malawi surveying Se
concentrations in maize graindandssoil from 88 field sites. They predicted a widespread
suboptimal dietarysintake ‘and Se deficiency risks in Malawi. They noted spatial
variation in Se concentration in maize grain which, in turn, was determined by soil
properties, where Se eoncentration in maize grain was higher by up to 10-fold in crops
grown on soils imsouthern Malawi with high pH (>6.5).

The predietive value of soil factors for maize grain Se concentration was significant,
albeit these factors (Senigy Sepno, oxides and Syi;) explained just a small proportion of
the randomsspatial effects (adjusted R* = 0.046) within the overall model, once the fixed
spatial frend effect had been accounted for. However, much of the unexplained variation
shows spatial dependence, so the E-BLUP predictions of grain Se concentration are more
reliable than predictions based on the fixed effects only.

Finally, it is interesting to compare these findings for grain and soil Se with previous
findings, based on the same survey, for Zn [12]. One marked difference is seen in the
scalerof spatial dependence of the micronutrient concentration in grain. For Zn spatial
dependence is seen up to 100 km, but in this study, it was found that variation in grain
Se concentration is correlated up to a distance of 40 km. This indicates a finer scale
of spatial variation in grain Se than in grain Zn, which would require more intensive
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survey effort to support local interventions. For both micronutrients, there was evidence
for a relationship between measures of the crop-available concentration in the soil and
the concentration in grain. However, for both, the proportion of thé total variatien
accounted for by this model was very small, as was the proportion of, thesspatially
dependent variation 0.03 and 0.07 respectively for Zn [12] and 0.044and 0.05 for Se
(Tables 4 and 5).

It is interesting that mean annual temperature was the selected environmental
covariate for both micronutrients, suggesting that this variablé, or ene for which it
is a proxy, influences the concentration of both micronutrients_ in gain. However,
the relationship with grain Zn was stronger than for grain‘Se, the proportions of the
total variance, and the spatially correlated variance accounted for by the model with
mean annual temperature as a covariate were 0.09 and 0.52, for grain Zn [12], and the
corresponding values were 0.03 and 0.21 for Se (Tables 4 and 5). Some of the top
ranked covariates such as slope and precipitation were not selected in the final model—
one underlying reason is that the variable would be rejected because it is strongly
correlated with another one already in the modelfor was measured with substantial
error. This suggests that while such variables may be important at broader scales,
their mechanistic role at the scale of our study.may be indirect or confounded by other
landscape factors. This insight could help refine variable selection in future landscape-
level modelling efforts.

In resonance with the soil propertiesy(Tables 2 and 3) modelled (positive coefficient)
as related to the grain Se congentration, their mechanistic process can be elucidated.
Soil Seni; and Sepyp, are related tongrain Se as measures of soil supply. Wang et al.
(2020) demonstrated that soluble (nitrate) and adsorbed (phosphate) selenate fractions
are the most likely plant-available species; hence, these would correlate strongly with
grain uptake. Further, soil pH and redox together affect Se speciation in soil (Se(VI),
which is more accessible, predominates over Se(IV), and becomes less accessible, as
pE+pH increases (e.g.; 40). Se uptake into grain tends to be greater at pH > 7 (e.g., 7).
Oxides are also very important in the soil as they absorb forms of Se, while this effect
is reduced by SQC (e.g., 41). On the other hand, Sulphate transporters are responsible
for the uptake'of Se into'plants, so larger soil S will result in greater competition with
Se for uptake [46]; while,some molecules in SOC chelate Se forms in soil, reducing
availabilitys, This effect is reduced by increasing pH. Selenium can substitute for sulphur
and therefore bond with both carbon and oxygen within humic substances. Concerning
Phosphorus, Oxalate-P binds to selenium in the soil. This makes it less accessible for
plants to absorb and subsequently reduces the amount available to humans through
their, diet. 'The impact varies depending on factors like soil type, pH, and the specific
form of‘selenium involved.
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5. Conclusions

This study determined the geospatial variation of Se concentration inmaize grain in
Malawi and analyses the effects of soil properties and landscape factorsin driving
the spatially correlated variation of Se concentration in maize grain. Mean amnual
temperature captured significant variation of Se concentration in_maize,grain, but
substantial variation remained unexplained. However, this variation unagcounted for
by the covariate showed spatial dependence, and so Se concentrationicould be mapped
by geostatistical prediction, if grain Se has been measured on a suitable spatial sample
design, to provide guidance for designing efficient interventions.

Several soil properties, including measures of available forms of Se were included
in the model. For most the sign of the coefficient was ‘econsistent with known factors
influencing Se availability or uptake by the crop. However, substantial variation in
grain Se concentration remains unexplained (over 80%) mythe final model. This
suggests that the existing approaches to characterise availability of nutrients in soil,
using various chemical extractions, have limited valae for predicting Se uptake by crop
plants. In part, this is because Se availability in soil is determined by dynamic equilibria
between the soil solid phases (mineral and organic-bound forms) and soil pore water,
and the multiple (and complex) uptake meehanisis by plant roots, whereas chemical
extractions only provide a single timé=point measurement of micronutrients availability.
Measurements on extracted fractions atisingle time-points cannot capture the dynamics
of micronutrients movement between different soil phases, including the capacity of the
soil to replenish what is directly available in the soil solution following depletion by root
uptake. Furthermore, considéring only,the Se dynamics of Se in soil leaves aside the
multiple processes that drive ir{ternal transport and redistribution of Se, including its
deposition in the grain during plant growth. Further research is needed to investigate
dynamic soil geochemical processes and plant physiology to better inform agronomic
biofortification strategies for alleviating Se deficiency in SSA populations.
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Table A1l. Predictor coefficients for the null model for‘transformed grain selenium concentration (spatial coordinates the only fixed
effects) and a model with selected soil properties as additional fixed<effects

Predictand Predictor coefficient
B1 B2 B3 B4 Bs Be B7 B8 Bo
Easting Northing Senith. #5epno pH Oxides  Snit SOC Oxalate
Null model 24.4138 -0.0025 -0.0023

Model after FDR  21.1006 -0.0015 £-0:0020 0.0629 0.4567 0.1882 -0.3321 -0.3104 -0.2388 0.1401

& Bo—Ps: fixed effects coefficients 5y is a constant,and j3; is the coefficient for the ith random effect.

Ve
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Table A2. Parameter estimates for the null model for transformed grain' selenium
concentration (spatial coordinates the only fixed effects) and a model with\selected
soil properties as additional fixed effects

R2 K 72 o? )

Predictand R? adj

adj

Null model 0.5 0.8972 0.5277 10.8
Model after FDR  0.1169 0.0429 0.5 0.7534 0.5051 808

@ Ridj: the difference between the variance of the correlated random effect (%) for
the null model and the proposed model expressed as a proportion.ofthat variance for
the null model; ]u%idj: the difference between the variance of the correlated random
effect (02) for the null model and the proposed modéhexpressed/as a proportion of
that variance for the null model; k: smoothness parameteriof the Matern correlation
function; 72: variance of the iid random effect (nfigget variance); o2: variance of the

correlated random effect; ¢:distance parameter.ef.the correlation function.
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Figure B1. Histogram with boxplot and QQ plot for the residuals from an exploratory
fit of the saturated model (soil properties) for grain Se concentration on a log scale.
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Figure B2. Histogram with boxplot and QQ plot for the residuals from an exploratory
fit of the saturated model (environmental covariates) for concentration of Se in grain

on a log scale.

cross—validation errors

Sample Quantiles

2

-3 -1 1 3

Theoretical Quantiles

Figure B3. Histogram with boxplot and QQ plot for the cross-validation errors for

the E-BLUP
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