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Designing on-farm trials: an example with
interventions to improve micronutrient
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Design of on-farm experiments to achieve particular objectives, including statistical power, precision
of estimates of treatment effects and spatial coverage, remains to be systematically studied. We
assessed design options for an extended network to evaluate micronutrient-biofortification
interventions for cereal crops in Ethiopia. We identified feasible designs to detect plausible treatment
effects with power >0.8. Sufficient replication at farm-scale (where each farm is a complete block) was
critical for this. To estimate the treatment mean with precision requires sufficient regional replication at
the scale of farm clusters. With 250 clusters across the region the median distance from arandom point
in the region to an experimental site exceeded 5 km, so active steps would be needed to engage
farmers, by facilitating visits to experimental sites. The approach used here could be applied more
generally to design effective and efficient on-farm experimental networks.

In Africa, and elsewhere in what it loosely called the ‘Global South’, food
supply is largely dependent on smallholder producers'. As well under-
pinning food security, the contribution of smallholder farmers is essential
for achieving environmental objectives for land management, such as
increasing soil carbon stocks®. However, it is forecast that smallholder
production will decline by between 10 and 50% to 2050, over much of sub-
Saharan Africa given climate change and the decline of the natural resource
base, assuming ‘business as usual’ without adaptation and the take-up of
agricultural innovations’. Along with this threat to food security, the
nutritional security of populations dependent, in large part, on subsistence
or other small-scale local food production, is widely undermined by
inadequate micronutrient supply from staple crops. Deficiency of mineral
micronutrients such as zinc (Zn) and selenium (Se) is widespread in sub-
Saharan Africa, and elsewhere, with implications, inter alia, for child health
and development*”.

Agricultural interventions suitable for smallholders can address the
problem of micronutrient deficiency, by improved management’ and crop
breeding’. Scientists address other challenges which the smallholder faces
but fundamental obstacles, including limited access to resources and
inadequate technical support, prevent many farmers from taking up
innovations®. It has been suggested that effective scientific solutions for
agricultural problems require better engagement with producers, and their
priorities’.

Chief among the strategies to improve the impact of agricultural
reseaarch for smallholders is the use of on-farm experimentation to support
‘participatory’ agricultural development through a process which does not

privilege technocratic outsiders at the expense of the rural community
whose development is the ostensible objective of the research.

On-farm research has become increasingly popular globally. For
example, Mihiretu et al."” report a large on-farm experiment in marginal
drylands of Ethiopia to evaluate new sorghum varieties against locally
favoured ones. They concluded that on-station trials could not substitute for
the on-farm evaluations, not least because of the confidence in the inno-
vations which their performance on-farm engendered among the growers.
Despite these benefits, Nyikahadzoi et al."' emphasize that simply under-
taking experiments on farmers’ fields may not suffice to promote agri-
cultural innovations. They advocate participatory action research, led by
communities. Similarly, Mapfumo et al.’ emphasize the importance of
accounting for indigenous knowledge in research programmes. On-farm
experiments, nonetheless, remain an essential component of participatory
research.

The benefits of participatory research have been widely accepted, but
there are concerns whether on-farm experiments necessarily sacrifice usual
standards of scientific rigour, e.g."”. Early in the emergence of participatory
methodology Chambers” queried how far it is consistent with scientific
methodology, whether there is a trade off, and, if so, how the balance should
be struck. Gladwin et al." argued that levels of rigour normally expected in
scientific research focused on the testing of hypotheses need not be
eschewed. Whereas Chambers" emphasised the unpredictability of the
successful strategies by which farmers respond to the challenges of mana-
ging locally complex and dynamic systems, Gladwin et al."* argued that this
unpredictability could be overstated, and that participatory research can still
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embed standards of design, hypothesis testing and the scientific develop-
ment of knowledge.

Conventional plot experiments at research farms provide robust
information about treatment effects. They have practical advantages
because plots and inputs can be carefully managed. There are also statistical
advantages which follow from the history of site management, which means
that sources of yield variation are understood, so blocking can be done
efficiently, and quantitative information on the between-plot variation of
responses can be used in power analysis to ensure that sufficient replication
is done to detect effect sizes of interest and to estimate treatment effects with
sufficient precision. It is necessary to address these same issues if on-farm
experiments are to provide robust information.

There are examples of careful methodological practice to ensure power
and efficiency for on-farm experiments.' reports how farm-scale trials to
measure impact of genetically modified crops on biodiversity in the UK were
designed to achieve a target power, and Wuest et al.”” used data from on-
farm uniformity trials to select statistically-efficient plot sizes for further
experiments.

We agree that concerns about the statistical power of on-farm
experiments are important and address them in this paper, but we think that
the design of on-farm experimental networks raises new questions that are
not encountered in on-station research. The first is the challenge of esti-
mating the mean response to a treatment over a larger domain, the on-farm
trial is more representative of conditions for which recommendations are
needed than the station, so the estimated mean yield, or other output, is of
interest, and its precision for some region is an important output and will
depend on the distribution of experimental sites across that region.

The second question concerns opportunities offered by experiments at
widely distributed on-farm sites. First, these allow one to map the experi-
mental output by geostatistical interpolation, to identify variations arising
from underlying environmental effects. These might imply that a treatment
will be of greatest value in certain subregions, where recommendations
could be subsequently targeted. Panten et al."* and Bishop and Lark" con-
sidered this approach to experimentation, the former in the context of
variable viticultural sites and the latter in multifield trials across contrasting
geological outcrops. Second, a widely-distributed network allows extensive
recruitment of secondary participants in the trial through exposure of
farmers to ‘parent’ experiments on the initial trial sites (referred to as parent-
sites elsewhere in this paper) who are then recruited to run associated ‘child’
trials. The so-called parent and child network structure for on-farm
experimentation can accelerate development and dissemination of new
interventions among smallholder farmers™.

The study reported in this paper was prompted by interest in the
possibility of addressing mineral micronutrient deficiencies by agronomic
biofortification, or agrofortification, in which the element is applied to staple
crops, either as a solid fertilizer or a foliar spray. In this case, we consider the
micronutrients Zn and Se. Zn deficiency has high prevalence globally,
including in sub-Saharan Africa*’. Botoman et al.>* undertook on-station
trials in Malawi which showed benefits from Zn fertilizer applied to the soil
in maize plots, both with respect to crop yield and Zn concentration in the
grain. There is a similar concern about Se deﬁciencyzz, and evidence for the
effects of agrofortification on the Se concentration in maize grain™. A pilot
on-farm experiment, conducted in western Amhara, Ethiopia, with wheat
(Triticum aestivum) and teft (Eragrostis tef) crops, showed benefits from
agrofortification for both these micronutrients™. Individual farms were
treated as blocks within which fertilizer treatments were randomized in a
single replication. Farms were selected in clusters of neighbouring farms
distributed over three defined landscape units—foot slope, mid-slope, and
hillslope—all of which were found within each cluster. In a second season a
new set of farms was recruited within the same landscape units and clusters.
Note that the same variety of wheat (TAY) and of teff (Kuncho) was used
across the experiment™.

Manzeke-Kangara et al.”* showed that agrofortification methods can
increase the concentration of Zn and Se in grain of wheat and teff, with
effects of landscape position, method of application and macronutrient

fertilizer management. This intervention requires further evaluation in an
on-farm experimental network, comparable to those commonly encoun-
tered in the US”. Such a network would provide evidence for the value of the
intervention in the farm environment across a wider region of Amhara
region, including assessment of options for micronutrient application. It
would also facilitate knowledge transfer within communities where trials are
undertaken. In this paper we examine how information from the pilot trial
can be used to address questions about the design of such a network, given
the various options for development of on-farm experimentation which we
discussed above.

We consider three specific experimental questions, each of which raises
distinct methodological challenges, and so might be addressed, optimally, by
a particular experimental design. The first question is concerned with
whether the on-farm experimental network is large enough to provide
evidence for an positive effect of agrofortification on micronutrient con-
centration in grain, assuming that the effect size exceeds some minimal
threshold? In experimental methodology this is a matter for power analysis,
power being the probability that, given a minimum effect size, a significant
effect will be detected. That is to say, that a null hypothesis of no effect may
be rejected on the basis of a p-value smaller than some threshold. We
consider here the effect of the amount of replication (total number of farms
recruited per cluster, and number of clusters) on statistical power.

The second question we consider is the precision with which an effect
size can be estimated, considering the mean effect size over a domain of
interest. The precision of the effect size estimate is important, for example,
when evaluating whether the impact of agrofortification on micronutrient
intake is cost-effective, comparing favourably with the impact of alternative
interventions. We consider how this might be achieved over a region with
clusters of farms, as in the original experiment in Amhara, distributed across
the region of Amhara used in the original survey.

We next consider a highly spatially distributed network of single farms
(which we call trial sites) for the two functions introduced above: the spatial
prediction of treatment responses across the region, and the recruitment of
secondary farms, associated with parent-sites from the designed trial. The
precision of spatial predictions depends on the spatial distribution of the
observations (experimental farms here), and can be calculated as the pre-
diction error variance (kriging variance) given model parameters”’. We
considered the distance from a location in the domain to the nearest parent-
sites as a measure of the quality of a design here, on the assumption that
farmers are most likely to encounter a parent-site if it is closer than some
maximum distance from their own farm.

Results

Variance components

The variability of the micronutrients of interest (log scale for Se) differs
between these variables and with the crop. For Zn concentration in wheat,
and the log Se concentration in teff, the short-range variation (between-plot
within site) is the dominant component of variance (Table 1), although the
between-site variation is comparable. The between-site variation is the

Table 1| Variance parameters for each target variable, used in
power and related analyses and derived from models for
GeoNutrition experiment and surveys as described in section
“Combining the sources of information”

npj Sustainable Agriculture| (2025)3:58

Term Wheat Zn Teff Zn Wheat Se /log  Teff Se /log
/mg kg™’ /mg kg™’ mg kg™’ mg kg’

Variances

Residual, ¢2 17.5 8.3 0.44 0.60
Farm:site, 2, 4.6 5.2 0.35 0.12

Site, 2, 14.4 11.0 1.10 0.40

site 19.6 15.9 36.20 12.20

Ksite 0.75 0.50 0.25 2.00
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dominant component for Zn concentration in teff and log Se concentration
in wheat. The effective range of spatial dependence of the between-site
component of variation depends on the distance parameter ¢ and the
smoothness parameter k. Supplementary Fig. 1 shows the likelihood profile
used to select the value of «, and Supplementary Fig. 2 shows the corre-
sponding variogram plots. For wheat and teff Zn concentration and wheat
and teff Se concentration (log), the respective effective ranges are 74, 48, 72
and 67 km, respectively.

Power to detect treatment effects

The power to detect a target effect size on Zn concentration in wheat grain
(Fig. 1a) depends on the total number of farms recruited into the experi-
mental network, with little effect of the number of clusters over which they are
distributed. For this variable the conventional target power of 0.8 to detect a
difference of 2.5 mgkg " (equal to ~10% of the mean concentration in the
control treatment) is achieved with ~50 farms in the experiment. Adding

another 10 farms increases the power to 0.9 (Fig. 1a). With a relatively small
experiment (20 farms in total) the power to detect the target effect is quite
small (just over 0.5). That is to say, if the effect size specified applied but we
had just 20 farms in the experiment, we would be about as likely not to detect a
significant effect of the agrofortification treatment as to detect it.

For Zn concentration in teff the same required effect size of 2.5 mg kg™
was specified. The target power of 0.8 can be achieved with about 25 sites,
half as many as for wheat, with 50 farms the estimated power is 0.99
(Fig. 1b). Note that the experiment of just 20 farms, clearly inadequate for
the wheat Zn effect, has an expected power only just below the target of 0.8
for teff grain Zn concentration, and that the power is very close to 1.0 for 60
or more farms.

As noted in the Methods section, the statistics for Se concentrations in
both grains were analysed on the log scale (natural logarithms to base e). We
first considered the task of detecting a 10% increase in Se concentration,
equivalent to an effect size oflog(1.1) on the log scale. However, this effect is
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Fig. 2 | Power (red symbol) to detect a specified a)
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small relative to the magnitude of the random variation in grain Se, and the
power to detect this effect for Se concentration in teff grain was only 0.14
with 70 farms. We also considered the challenge of detecting a rather larger
effect of the biofortification, that it increases grain Se concentration by 50%
—an effect size of log(1.5) on the log scale. Figure 2 shows that detecting this
effect size with power of 0.8 requires 50 and 65 farms for wheat (Fig. 2a) and
teff (Fig. 2b), respectively.

Note that, while there was a marked difference in power between
experiments with the same number of farms for Zn concentration in grain of
wheat and of teff, the results are much more similar for Se in the two crops,
with power to detect a 50% increase in concentration close to 0.4 with 20
farms, and not approaching 1.0 for either grain within the range of
experiment sizes considered here.

Precision of estimates of a regional treatment mean
Results for the variance with which the treatment mean (spatial mean across
the domain) is estimated for grain Zn concentration from 50 farms at 5, 10

or 25 clusters, are shown in Fig. 3. Note that increasing the number of
clusters from 5 to 10 has a substantial effects on the error variance for the
regional mean for both teff and wheat, there is a smaller reduction in the
error variance on a further increase of the number of clusters to 25. Plots
such as this, therefore, allow one to select the number of clusters required if
an effect size estimate is required as well as an inference about its
significance.

Precision of interpolated grain micronutrient concentration, and
distance from locations in the domain to the nearest parent-site
If the number of parent-sites within a fixed region, and so the sample
density, is increased a priori, this is expected to reduce the prediction error
variance for farm-scale mean responses to a treatment obtained by spatial
interpolation from observations at the parent-sites. Exactly how this occurs
depends on the spatial variance parameters in Table 1, and the distribution
of candidate sites across the region, and the form of this effect for the
examples here is given in Fig. 4. As the sample density increases so the
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prediction error variance of the farm-scale mean Zn concentration in wheat
grain (Fig. 4a) and teff grain (Fig. 4b) at an unsampled location declines, that
is to say a more precise estimate is obtained. Note that the reduction in the
prediction error variance per additional site declines somewhat as the total
sample size increases, so that there is a smaller reduction in error variance on
increasing the number of sites from 200 to 250 than there is on increasing
from 50 to 100. This effect is larger for grain Zn concentration in wheat than
it is in teff.

It is clear, intuitively, that distributing more experimental parent-sites
around a fixed region will also reduce the typical distance from a particular
smallholder’s farm, not included in the trial, to the nearest parent-site where
they can observe the experiment. The simulations undertaken here allow us
to quantify this effect. Figure 5 shows this for experimental parent-sites,
selected within the Amhara domain by spatially balanced sampling. For any
given number of parent-sites the solid green line shows the median distance
from a site within the domain to the nearest parent-site, the dashed lines
show the first and 9th decile (and so bracket the range of distances for 80% of
locations in the domain) and the solid green region is bounded by the first
and third quartiles (and so brackets 50% of locations in the domain). The

figure shows that, if we want at least half of potential ‘child’ trial sites to be
within 10 km of the nearest parent-site in Amhara region, then more than 75
parent-sites are required. To get better coverage, with atleast 75% of sitesina
domain within 10 km of a parent-site requires about 150 sites. If it were
thought that a parent site is unlikely to recruit farmers who are more than
5 km away, then the figure shows that approaching 250 sites are needed to
achieve this for 50% of locations in the domain.

As with the prediction error variance, the reduction of the distance
from a smallholder to the nearest parent-site on addition of an extra site
declines as the total sample size increases. Thus, on the basis of this criterion
only, we might consider that the benefit from having 250 sites rather than
200 does not justify the additional cost while the benefit from having 100
rather than 50 is substantial.

Discussion

The variance model (Table 1) used in this study is specific to the Amhara
region, and a similar pilot study would be needed if an on-farm network
were to be set up elsewhere. However, the approach which we outline shows
how existing trial and survey data can be assimilated to address design
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Fig. 4 | Prediction error variance of farm-scale treatment effect by ordinary
kriging from spatially balanced and spread sets of parent-sites, asa function of
the number of these sites. This is shown for Zn concentration in grain of (a) wheat
and (b) teff.

questions. As noted the variables of interest here show spatial dependence
over distances between about 50 and 80 km. This implies that there may be
substantial differences in the micronutrient concentrations of grains
between substantial sub-regions of Amhara, and so obtaining locally-
predicted outcomes of a trial to support site-specific advice would be more
efficient than using a single recommended intervention across Amhara.

The results (section “Power to detect treatment effects”) show that
power to detect an effect depends on the number of farms, and changes little
if this remains constant but the farms are distributed between different
numbers of clusters. This result is not unexpected because the treatment
comparisons are made within balanced blocks (farms) and so the variation
between these is immaterial to the inference about treatment effects. If,
however, incomplete blocks were used because more treatments were
required than can be accommodated on a single farm then some attempt
should be made to achieve within-cluster balance, and the numbers of farms
per cluster would affect the power to detect effects of interest partly esti-
mated from between-farm comparisons.

In the case of Amhara and the responses of interest, the results show
that, on considerations of power alone, an on-farm network for teff Zn
agronomic biofortification could be markedly smaller than one for wheat
(50 farms are required to achieve the target power for wheat, and half as
many for teff). If power to detect effects were the only consideration, then
this could provide a basis for efficiently dividing a total set of participating

Distance to nearest ’parent-site’

Number of sites

Fig. 5 | Distances (km) to nearest neighbouring parent-site as a function of
parent-site number in the Amhara domain. The solid green line is the median
distance, the green polygon spans the first and third quartile, and the dashed green
lines show the first and 9th decile. The horizontal dotted blue line is at 10 km, the
dashed blue line is at 5 km.

farms between those allocated trials on teff and those allocated trials on
wheat. However, this might compromise other objectives of the on-farm
research. First, it would reduce the level of participation by individual
farmers with interests in both crops so that the network would not benefit
from their experience, and the communication of experimental findings to
the wider smallholder community would be impaired. It would also reduce
the efficacy of the network for other statistical objectives, as we now con-
sider. The power considerations are not irrelevant, however. They might
show that an affordable trial is not sufficiently well-powered to detect effects
of interest, which could inform a decision to focus on fewer treatments.

The regional mean response to a treatment (section “Precision of
estimates of a regional treatment mean”) is an important variable to esti-
mate, as it allows assessments to be made of the impact of an intervention at
regional scale which can inform the use of limited resources by policy
makers and extension services. Because the spatial variation of grain Zn
concentration, without any intervention, is modelled in these studies as
spatially dependent, the number of clusters (when these are selected
according to a spatially balanced design) does influence the precision of the
estimate, and is improved when the network as a whole achieves good spatial
coverage of the region. While the power of a network to detect an effect is
important, it cannot be the only consideration, and the precision of the
estimate of the effect size may also affect important practical considerations.
This will have implications for network design because the distance travelled
to visit all experimental farms will increase more, on average, on the addition
of a cluster to the network than on the addition of an equivalent number of
farms to existing clusters.

Spatial predictions, at farm scale, of the response to a treatment may be
useful for making site-specific decisions on the adoption of an intervention,
and may be supported by data from a spatially distributed experimental on-
farm network. As found in the results (section “Precision of interpolated
grain micronutrient concentration, and distance from locations in the
domain to the nearest parent-site”) the prediction error variance declines
with increasing numbers of sites (i.e. the precision increases).

What constitutes sufficient precision of this estimate is difficult to state
outside a specific context™. The expected cost from making decisions from
uncertain spatial predictions depends on the options available and the costs
of inputs and opportunity costs from not using them. It is possible, however,
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to elicit target precisions in particular circumstances (e.g.”’), and output such
as Fig. 4 may be used to select the number of sites to achieve this target.

What is notable over this range of potential network sizes, given the
range of spatial dependence of grain Zn concentration, is that the precision
of the estimate is relatively insensitive to the size of the network. For
example, reduction of the network from 250 to 125 increases the median
prediction error variance for Zn concentration in wheat grain over the
domain from just over 11 (units are mg’kg ) to just over 13. The corre-
sponding increase in the 95% confidence interval is from +6.7 mgkg ™ to
+7.3mgkg . It is unlikely that this relatively small difference in absolute
precision would itself justify the costs of the larger network, although better
coverage also improves the estimate of the regional mean (see above) and
accessibility to smallholders in the region (below).

The distance from a smallholder farm to its nearest neighbour in the
network (Fig. 5) shows rather greater sensitivity to the number of sites than
does the prediction error variance for responses. This consideration is sig-
nificant in the design of participatory research because of the wish to recruit
additional participants, or at least to ensure that as many smallholders as
possible are exposed to the interventions under investigation and have a
chance to interact with the research. The curves in Fig. 5 could be used to
consider the trade-off between coverage of the network and the costs of
recruiting and servicing the experiments, and of additional steps to boost
exposure to the parent-sites in the trial such as organizing transport to
farmer events.

In summary, with sufficient replication at farm level in complete
blocks, regardless of the number of discrete sites over which those plots are
distributed, sufficient power can be attained to produce evidence for treat-
ment effects in on-farm experiments as with on-station ones. However, the
potential of on-farm experimentation for improving the efficacy of agri-
cultural research goes beyond this. Information about expected treatment
mean responses (e.g. yield of a new variety) in farm conditions is important
for economic and policy decisions, and requires sufficient spatial replication
across a heterogeneous domain if it is to be sufficiently precise to support
decision making. Estimation of local response values by geostatistical
modelling could also be useful particularly, for example, where effects of a
treatment are additive or interact with environmental variation. It is known,
for example, that the concentration of Zn in the grain of a wheat variety bred
to accumulate this mineral also depends on local soil conditions’. To map
such effects requires sufficient on-farm sites, distributed to achieve spatial
coverage to ensure that prediction error variances are acceptable. Spatial
coverage with on-farm trials is also needed for their reach in the community,
both to recruit additional participants and to disseminate research findings.
With information from pilot studies and surveys it is possible to make
rational decisions about design, considering different objectives, their trade-
offs and the costs and logistical challenges of implementation.

For example, if 50 farms are used in a trial, distributed in pairs at
25 sites across the domain of the Amhara survey, then the results in Fig. 1
suggest that this would be sufficient to ensure power of 0.8 to detect an
increase of Zn concentration in wheat or teff grain of 2.5 mg kg ™' resulting
from an intervention such as agrofortification. It would also suffice to
ensure that the regional mean concentration of Zn in these grains can be
estimated with a prediction error variance of less than 1.0 mg’kg > (Fig. 3).
The median prediction error variance for a farm-scale prediction of the
concentration in wheat grain would exceed 15 mg’ kg (Fig. 4) so the 95%
confidence interval would be 7.7 mgkg™". The scope to increase this
precision is somewhat limited (unless additional predictive covariates are
found), increasing sample size to 150 sites would reduce the width of the
confidence interval by about 10%, but 75% of non-trial farms would be
within 10 km of an on-farm experimental site. If 25 sites were used, on the
basis of the considerations above, most non-trial farm sites in the domain
would be more than 10 km from their nearest trial site and 25% would be
further than 20 km (Fig. 5). This is unlikely to support all the objectives of a
participatory network, so it would be necessary either to facilitate travel to
experimental sites for smallholders outside the network, or to improve its
spatial coverage.

The objectives of an on-farm network must therefore be clear, because
the size of an on-farm experimental network and the distribution of total
numbers of farms between sites will affect the costs of recruiting, servicing
and administering that network. We would expect the marginal cost of one
more farm in an existing site to be substantially smaller than the marginal
cost of adding a new site, as the latter will require a new recruitment cam-
paign, recruitment of local leaders and travel costs to the site for inspections,
data collection etc. In general we may find an optimal solution to this
problem if the marginal costs or their ratio can be specified, the maximum
acceptable error variances for the regional mean responses and for farms-
scale spatial prediction can also be stated, and constraints on particular
quantiles of distance from a smallholder to a trial site may be identified. This
latter problem may require further work with stakeholders, along the lines of
that done by Chagumaira et al.” in connection with spatial information on
micronutrient concentration in crops.

To conclude there are different considerations in the design of a par-
ticipatory on-farm research network which will constrain both its costs and
its effectiveness. This study has shown how information from surveys and
from pilot trials can be used to compute relationships between quality
measures for a network and its structure and size. Further work is needed on
how stakeholders can be helped to use this information to make decisions on
the tradeoffs between costs and these objectives.

Whilst this study has focused on one particular intervention (agro-
nomic biofortification) to address a particular problem (micronutrient
deficiency), the methods which are presented could be used across a range of
problems where participatory on-farm research is required. For example, it
could be used to study yield responses to conservation agriculture inter-
ventions, aimed to make smallholder production ‘climate smart”. The
approach could be particularly useful when the estimation of landscape-
scale outcomes, such as changes in soil organic carbon status under alter-
native management systems, is of particular policy relevance’.

Methods

GeoNutrition on-farm experiments

A detailed account of the experiments used to provide information of this
study is given by Manzeke-Kangara et al.”* for details, including the statis-
tical model used. This was a linear mixed model with nested random effects
for site of variance 02,,, between-farm within-site with variance ¢, ,and a
residual of variance 0%, crossed with a random effect for the cropping year
of variance of,ear.

Manzeke-Kangara et al.”* undertook exploratory data analysis of the
marginal residuals of their model-fitting to these experimental data to decide
whether they could be analysed on the original scale of measurement (mg
kg™") consistently with the assumptions of the linear mixed model. For both
crops the grain Zn concentration could be analysed on these units, but the Se
concentration was transformed to natural logarithms. All analyses reported
are on these units.

The estimated variance components for these random effects are
presented in Supplementary Table 1, along with 95% confidence intervals
which were obtained with the confint. merMod function from the Ime4
package for the R platform. This finds a confidence interval by profile
likelihood on the model parameters™.

For comparison with the spatial model from the GeoNutrition survey,
we examined distances between farms within the experimental sites. The
mean distance was 0.7 km, with a median of 0.5 km, a first quartile of 0.3 km
and a third quartile of 1.0 km.

GeoNutrition survey

The GeoNutrition survey and data are described by Gashu et al.”*" and
Kumssa et al.”’. For purposes of this study we consider data from the survey
on Zn concentration in grain of wheat and teff, and Se concentrations in the
same grains. We fitted linear mixed models to these data. For concentration
of Se in teff there was a marked west-to-east increase, which was modelled as
a linear trend. For all other variables the only fixed effect was a constant
mean. The random effects of the model comprised a spatially-correlated
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Gaussian random field, and an independent and identically distributed
Gaussian residual. To make the assumption that the data were a realization
of a Gaussian random field plausible it was necessary to transform the data
on Se concentrations to natural logarithms. A transformation was not
required for the data on Zn concentrations.

These models were fitted with the variofit function in the geoR
package”. A Matérn spatial correlation function was specified for the
spatially-dependent random effect, and, following Diggle and Ribeiro™, the
smoothness parameter, k, was estimated by calculating the profile likelihood
over a number of values. The geostatistical model parameters, presented in
Supplementary Table 2, describe a spatially correlated random effect among
the survey observations (variance of and with spatial autocorrelation
described by the parameters x and ¢), and an independent and identically
distributed random effect (variance ¢3) which characterises short-range
variability and measurement error.

An example profile likelihood plot, and plots of the variance models
fitted to the survey data for Zn and (log-transformed) Se concentrations in
wheat and teff grain and shown in Supplementary Figs. 1 and 2.

Combining the sources of information

For the analyses undertaken in this study we require, for each variable
(micronutrient in a particular grain), values of a spatially-correlated
between-site variance component, which we denote by cfite, with a Matérn
smoothness and distance parameter, specified here by kge and @ge
respectively. We also require a between-farm within-site variance 2 anda
residual variance term 2. In this section we discuss how these values were
selected, based on models for the GeoNutrition survey and
experimental data.

Both the experiment and the survey used data on micronutrient con-
centration in grains from a composite sample. In the survey the composite
was formed from within a 100-m* (0.01-ha) circular plot. In the experiment
each measurement was based on a composite sample from within an
experimental plot of area 25 m* The support of each sample set, that is to say
the size and distribution of the aliquots which make up an individual grain
sample, are therefore not identical but are very similar, particularly relative
to the scale of the Amhara region. The same analytical methods were used to
obtain the values of micronutrient concentrations from each set of samples.
On this basis, the two sets of statistics are comparable.

To address design questions we require a random effects model for
grain micronutrient concentrations with a site, between-farm and between-
plot (residual) component. Ideally the site component can be modelled as a
spatially-dependent random function with an autocorrelation function
which allows the computation of a between-site covariance matrix for any
spatial distribution of sites. We restrict our analysis to consideration of
effects observed within a single season, not least because the between year
variance component is estimated from the two seasons of data with con-
siderable uncertainty.

The residual variance terms reported in Table 1 comprise between-plot
within farm variance and the variance of analytical error. The uncorrelated
variance (03) in the geostatistical model also includes analytical error, and
variance correlated at scales shorter than the shortest interval among sample
points in the survey. As the survey included close-paired sites over 500 m,
which is large relative to between-plot distances, but small relative to the
effective range of the spatial models (Supplementary Table 2), we may
expect these two variance terms to be approximately equal. This is born out
by a comparison between Supplementary Tables 1 and 2. For this reason the
larger of the two terms was treated as a conservative value for the residual
variance, cfes, to use in the model for power analyses.

In principle the between-site variation should be characterized by the
distance parameters and correlated variance of the geostatistical model
regularized to a site support. However, the within-site differences are two
orders of magnitude smaller than the effective range of the variograms as
presented in Supplementary Table 2, and so the difference between the
regularized and unregularized variograms will be very small. It is therefore
slightly conservative to treat o2 as corresponding to the between-site

variance component ¢%,, with spatial parameters kg and ¢ set to the
values fitted to the survey data (Supplementary Table 2). As the direct
estimate of the between-site variance from the experimental data has con-
siderable uncertainty (due to the small number of sites), this value is ignored.
The between-farm within site variance ¢} = was taken directly from the
estimate provided by the experimental data, 6% in Supplementary Table 1.
The variance terms used for the investigation of experimental designs for
each variable are tabulated below.

Designs and quality measures

The power of an experiment to detect a specified effect size is the probability
that the effect would be declared significant with p less than some specified
threshold (e.g. 0.05). A threshold power of 0.8 is often specified. We started
by considering a fixed number of sites (10) and different numbers of farms
per site (2, 3, .., 7). The site locations were selected by spatially balanced
random sampling with spread™ from locations within the sampling frame
for the original GeoNutrition survey of Amhara®. This sampling was done
with the BalancedSampling library for the R platform™.

A covariance matrix for plot-level responses was specified for each
design under consideration, using the variance parameters in Table 1 (see
section “Combining the sources of information”, and with two treatments, a
control and an agrofortification treatment with a specified difference in the
means. For the Zn effect size we specified an increase of 2.5 mg kg™ in grain
Zn for both wheat and teff. This was equivalent to about 10% of the control
mean concentration of Zn in wheat, and about 8% of the control mean for
teff, in the GeoNutrition experiments™.

Because the data on grain Se for both wheat and teff (experiment and
survey) were modelled on a log-scale due to the distribution of the residuals,
a power analysis cannot be undertaken for a linear effect (e.g. an addition of
2.5 mgkg"). Rather, one can undertake the power analysis for a specified
proportional increase of x%. On the log scale this is equivalent to an increase
oflog(1 + x/100). For grain Se we considered an effect size of log 1.1 and of
log 1.5 on the log scale, i.e. a 10% and 50% increase respectively. The latter
was achieved by improved macronutrient fertilization of wheat (not agro-
fortification) in the GeoNutrition trial.

A realization of this model was generated with the mvrnorm function
from the MASS package for the R platform™. The simulated data were then
analysed with a linear mixed model fitted with the Ime function from the
nlme package”. If the p-value for the null hypothesis of zero treatment effect
was smaller than 0.05 then the null hypothesis was rejected. The proportion
of rejections over 1000 realizations of the design was computed, and the 95%
confidence interval for this estimate of power was obtained with the method
of Blaker™ as provided in the PropCls package for the R platform™.

In the case of Zn concentration in wheat grain, a number of additional
cases were then simulated with either 5 sites or 20 sites, and total number of
farms equal to one or more cases of the original series. This was done for
illustrative purposes, the distribution of farms among different numbers of
sites will not affect power systematically because, in effect, the farms are
blocks.

Our second possible objective of an on-farm experimental network is
to provide a domain-wide estimate of the treatment mean. For some spe-
cified spatial distribution of farms the variance of this estimate can be
computed directly from terms of the variance model. This was done for a
fixed total number of farms (50) distributed between 5, 10 or 25 sites. The
domain was defined as the sampling frame for the original GeoNutrition
survey of Amhara®. For a set of proposed sample sites the variance of the
estimate of the domain mean was obtained with the following equation, as
used, for example, by Lark et al.*’,

Grznzizy(xﬂB) _%ZZ))(xi_xj) —¥(B,B), 1)
i=1

i=1 j=1

where x; is a vector that denotes the location of the ith out of n sample sites,
and y(h) is the variogram of the random variation of micronutrient con-
centration about a treatment mean, specified in this case by the following
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function, with terms taken from Table 1,

k.
h site h
y(h) = Cfes + c%arm + Cgite{l - stitc’lll"(ksilc <ﬁ) Kkme ((‘Pm‘e> }’ |h| =0
=0, |h|>0,
2

where I'( - ) denotes the Gamma function and K, . (+) is a modified Bessel
function. The term in Eq. (2) inside the large bracesis 1 — the Matérn spatial
correlation function.

The symbol B denotes the domain to be sampled,

y(x;, B) = /x GBY(Xi —x;) dxy, (3)

and

Y(B,B) = / . / Ylr—x) dx )

where the integrals are over the two-dimensional space of 3. The integrals
are evaluated numerically.

This quality measure was computed only for the data on grain Zn
concentration. It is possible to back-transform log-transformed variables to
original units with a change of support to the domain mean, but generalized
quality measures for those quantities cannot usefully be specified just from
the terms of the variance model. This precludes using the model terms for
log-transformed Se concentrations in grain. The approaches used here for
the Zn data could, in principle, be extended to variables such as Se on a log
scale, but this is a topic for further research, based perhaps on the approach
of Lark and Lapworth*".

A third possible consideration in network design is the precision of
interpolated treatment mean Zn concentrations in grain from a network of
parent-sites, and distribution of distances from a farm outside the network
to the nearest neighbouring farm in the network. For some given spatial
distribution of sample points, and a specified variogram model, the pre-
diction error variance of a kriged interpolation at an unsampled site may be
computed”. Here, we assumed that a block-kriging prediction at farm scale
is made and the prediction error variance was computed using the vario-
gram in Eq. (2) and Eq. (9.24) from Webster and Lark®.

Again, this calculation was done only for data on Zn concentration
because the computation of the block kriging variance for a prediction on a
log scale cannot be done without implausible assumptions®.

For some specified number, n,,, of parent-sites 7, locations were
selected from the Amhara survey domain by spatially balanced random
sampling with spread, as described in section “Designs and quality mea-
sures”. The kriging variance for mean Zn concentration in wheat or teff
grain under a specific treatment was computed, as described above, at 5000
locations sampled from the Amhara survey domain, again by spatially
balanced random sampling with spread. In addition, for each of these
sample locations the distance to the nearest parent-site was computed.

Data availability

The experimental data ** used in this study are currently available on request
from the MGM-K. Meta-data associated with these data are available at
https://doi.org/10.23637/rothamsted.98y40 Open access to the data will be
available at https://harvestirr.rothamsted.ac.uk/ once they are published.
The GeoNutrition survey data are available at https://doi.org/10.6084/m9.
figshare.15911973 and readers are referred to Kumssa et al.”” for more
information. The power and variance computations were done with
bespoke R code which will be provided by the corresponding author on
request.

Code availability
The power and variance computations were done with bespoke R code
which will be provided by the corresponding author on request.
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