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A LARGE-SAMPLE TEST FOR THE GOODNESS OF FIT OF AUTOREGRESSIVE SCHEMES

(1)

By M. H. QUENOUILLE
(Rothamsted Experimental Station)

BARTLETT (1946) has recently given formula for the variances and covariances of observed auto­
correlation coefficients in terms of their theoretical values. These formula, which are independent
of the underlying distribution error, have been used by Bartlett in their limiting forms to obtain
a rough goodness-of-fit test for autoregressive schemes. The purpose of this paper is to demon­
strate a more precise test for autoregressive schemes in large samples.

Bartlett's main formula for the covariance of two observed auto-correlations rs and rs+! in terms
of the theoretical auto-correlations may be written-

I if.)

cr4 cov (rs, rs+t) '"" - I; (Pv Pv-t + Pv-s-t Pv+s + 2ps Ps+! p2 v
n v=- CfJ

- 2ps Pv Pv-s-t - 2ps+! Pv Pv-s)
00

If we put Xt = I; Pv Pv-t and
v= - 00

00

+ ak X k)2 = I; Ai Xi
i=- 00

(2)
00

I; Ai Pt-i = 0

i= - 00

i= - co

and

then by methods previously given (Quenouille, 1947a) it may be shown that

> 0 I
t>kf

00

Using the formula (2) if we define Rs = I; Ai rs-i, s = k + 1, k + 2,.
-i=-oo

then it is not difficult to see that

coy (rs, Rt) '"" 0 t > s
1 00

'"" -----. I; AiXi, t = s
ncr i= - 00

from which we get the following important result :
For n large, the forms Rs are independently and normally distributed about zero with variances

if.)

I; AiXi/ncr4. Furthermore the forms rs - Ps s = 1, 2, • • • k arejoint~y distributed independent
=- co

of the forms Rs. Thus, if we use the equations Ps = rs to fit an autoregressive scheme, we can
use the forms Rs to test the adequacy of the fit. For example, for the Markoff scheme un+1 =

pu" + e:"+h we have Ps = Ps Xt = pt 1 + P: + tpi so that the forms 1'1 - P, Rs = rs - 2prS - 1 +1 _. P
p2rS _ 2' s = 2, 3, . . . are independently and normal1y distributed with variances (1-p2)/n
and (1- p2)2/n. To test whether any scheme deviates significantly from a Markoff scheme, we
might set P = 1'1' and test the remaining degrees of freedom given by the forms R. to magnitude,
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124 Miscellanea [Part II,

homogeneity, etc. Alternatively we can use the forms 1"1 - P1' and Rs (s = 2 q + 1)
to obtain an optimum fit, and test the remaining q degrees of freedom together with the degrees
of freedom given by Rs (s = q + 2. .).

It is not difficult to see the forms Rs are related to the correlations l"i1 of the Ej, since

Rk+j = ~ Ai I"k+j-i
i

~ Ai ~ ul u"+i+l-i
i l

(3)

where
a" + a"-lt +
ao + a1t +

From which, we deduce directly,
00 =0
~ BiBi-"-l -- 1

i=O '

I '* 0
1=0

(4)

Thus it appears that the Rs are moving averages of infinite extent ofthe I"i\ so that each will provide
a wider, as well as a simpler, test than the I"i'.

From the formulae (3) and (4), it can be seen that

I (var E)2var Rs """ - --
n varu'

s>O (5)

A similar application confit:ms that R s and Rt are uncorrelated. Thus, if we wish to test the
legitimacy of assuming an autoregressive 'scheme u"+2 + all"+l + bu" = E"+2' we can use the
estimates

a = - 1"10 - 1"2), b = I - 1"2_ - I and test that
1 - 1"12 I - 1"12

I"S+2 + 2a I"S+l + (a2 + 2b)l"s + 2abl"s-1 + b21"s_2 = R/, s = 1,2,

are distributed with mean zero, and variance ! [~-=- b) {(l +bi - a
2}J 2. This approximation

n I+b
can be improved still further by the use of n-s instead of n.

To illustrate the method we shall consider firstly artificial series, for which a and b are known,
and secondly series experienced in practice, for which a and b have been calculated. The adequacy
of the usual methods of fitting an autoregressive scheme and its suitability for the representation
of practical results will not be discussed here, but a discussion of these problems will be given
elsewhere (Quenouille and Orcutt, 1947b).

Kendall (1946) has calculated auto-correlations of

(i) 480 terms of U"+2 - 1. 1 11"+1 +O· 5 /I" = E"+2

(ii) 240 terms of U"+2 - 1·2 U"+l + 0·4 Uti = E"+2

(iii) 240 terms of u"+2 -1·1 U"+l +0·8 UI/ = E"+2

(iv) 240 terms of U"+2 + 1·0 u"+l + O' 5 II" = E"+2
where the E" is a randomly-chosen number betw';';;1 - 49 and +49. The values of RSI together
with the corresponding values of X2 (1) and ~ X2 (1) for each of the four series are given in Table 1.

It is seen that the values of ~ X2 (1) behave according to theory, the total for 90 degrees of freedom
being 85·868. The values of X2(1) can be compared with its distribution. This is done in Table 2.
The expected number in each class is nine, so that the observed results again conform to theory.
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1947] A Large-Sample Test for the Goodness of Fit of Autoregressive Schemes 125

TABLE l.-Values ofRs', X2 (1), and :EX2 (1) fiJr Kendall's Artificial Series.
Series i

s Rs' X2
(1) :E X2

(1) s R S' X2
(1) :E X2

(1)

I ·02412 2·319 2·319 16 -·00341 0·045 13·363
2 ·00417 0·068 2·387 17 - ·00305 0·036 13·399
3 ·01979 1·558 3·945 18 ·00687 0'181 13 ·580
4 -- ·00812 0·261 4·206 19 ·01558 0·931 14· 511
5 - ·00013 0·000 4·206 20 - ·00955 0·349 14·860
6 ·02026 1·619 5·825 21 - ·01610 0·990 15·850
7 -·02247 1·987 7·812 22 ·00604 0·139 15·989·
8 - ·02903 3·310 11 ·122 23 - ·01464 0·815 16·804
9 - ·01047 0·430 11·552 24 - ·02046 1·589 18·393

10 - ·01226 0·588 12·140 25 - ·00996 0·376 18·769
11 ·00747 0·218 12·358 26 - ·02064 1·610 20·379
12 ·01345 0·704 13 ·062 27 - ·00083 0·003 20·382
13 - ·00573 0·128 13·190 28 ·00079 0·002 20·384
14 - ·00517 0·104 13·294 29 ·00224 0·019 20·403
15 ·00249 0·024 13·318 30 ·00895 0·300 20·703

Series ii
s R' X

2
(1) :E X2

(1 \ S RS' X2
(1) :E X2

(1)S

I -·02440 2·865 2·865 11 -:- ·00500 0·115 14·012
2 - ·01156 0·640 3·505 12 - ·03040 4·243 18·255
3 - ·01056 0·532 4·037 13 ·00912 0·380 18·635
4 ·02704 3·474 7·511 14 - ·02896 3·816 22·451
5 -·02398 2'721 10·232 15 ·00792 0·284 22'735
6 - ·00040 0·001 10'233 16 ·00624 0·176 22·911
7 ·01992 1·862 12·095 17 ·00068 0·002 22'913
8 -·01924 1·730 13·825 18 ·01600 1·145 24·058
9 ·00320 0·048 13·873 19 ·01132 0·570 24·628

10 ·00228 0·024 13·897 20 ·01204 0·642 25·270

Series iii
s Rs' X"(l) :E X"(l) s Rs' X"(l) LX"(l)

I ·01133 0·605 0·605 11 ·00247 0·027 13·919
2 ·00773 0·280 0·885 12 ·03281 4·824 18·743
3 ·00243 0·028 0·913 13 - ·01769 1·396 20·139
4 - ·01192 0·659 1·572 14 ·02389 2·535 22·674
5 - ·01941 1·740 3·312 15 ·01053 0·490 23 ·164
6 ·03032 4·228 7'540 16 ·00415 0·076 23·240
7 ·00178 0·015 7·555 17 ·00347 0·053 23·293
8 - ·02385 2·594 10 ·149 18 ·02687 3·151 26·444
9 ·00885 0·356 10·505 19 - ·00180 0·014 26·458

10 ·02737 3·387 13 ·892 20 ·01367 0·808 27·266

Series ii'
s Rs' X

2
(l) ZX2

(1) s Rs' X"(I) :E X"(l)
I ·02900 1·158 1·158 11 ·01900 0·476 9·362
2 ·02000 0·548 1·706 12 - ·03725 1·822 11'1~4 .
3 ·00000 0·000 1·706 13 - ·01225 0·196 11·380
4 - ·04150 2·341 4·047 14 ·00200 0·005 11 ·385
5 ·00000 0·000 4·047 15 - ·02350 0·716 12·101
6 - ·05050 3·437 7·484 16 ·00550 0·039 12·140
7 ·03125 1·311 8·795 17 - ·00575 0·043 12·183
8 ·00025 0'000 8·795 18 - ·01025 0·134 12·317
9 ·00725 0·070 8·865 19 ·01375 0·241 12·558

10 '00400 0·021 8·886 20 ·00750 0·071 12·629

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/110/2/123/7097155 by R

O
TH

AM
STEAD

 R
ESEAR

C
H

 W
EST C

O
M

M
O

N
 user on 11 February 2026



126 !l1iscellanea [Part II,

TABLE 2.-0bserved Distribution of X'(l)

P Number observed.
0-0-0-1 II
0-1-0-2 12
0-2-0-3 9
0-3-0-4 6
0·4-0·5 8
0-5-0-6 11
0·6-0·7 5
0·7-0·8 8
0-8-0'9 9
0-9-1'0 11

90
Before testing series which have been observed in practice, we shall be faced with the problem
of superposed variation. If, in fact, a superposed variation, Yji, exists, then we shall observe a
quantity Ui + Yji, and

(6)1 ( var e: )2var Rs ""' - -------
n var u + var Yj

Thus significant differences between proposed and existing autoregressive schemes will tend to be
obscured by superposed variation. This difficulty can be overcome if we observe from equation (3)
that such differences will, in general, yield significant values of Rs only for s small, while for s large,
Rs will have a variance given by (6). It will therefore be possible to list the values of Rs for s
large to indicate the presence of superposed variation, while the adequacy of the fitted autoregres­
sive scheme can be tested by a comparison of the values of Rs for s small and for s large. In
carrying out this latter test, we must remember that our choice of what constitutes a large or small
value of s will necessitate using a higher level of significance than usual. Thus the choice of the
first eight values of series i and the first seven values of series iv to be tested against the other
values given in Table 1, indicates a significant superposed variation and a significant deviation in
the autoregressive equation at the 5 %level. These spurious effects arise from a choice of a low
level of significance, in fact, the next ten values of X'(1) for series i total 7 -2038, while the corre­
sponding total for the next five values of series iv is 8·5638.

If we decide that a superposed variation is present, then we will require fresh estimates of a

and b together with an estimate of var Yj. These may be obtained in several ways: we may
var u

minimize the X' obtained from Rs, S = 1 . . . q, or we may use the equations Ps = rs.
This latter method will be equivalent to choosing q = k + 1. Thus, for example, for the linear

autoregressive scheme un+2 + aUn+ 1 + bUn = e:n+2, if we put var Yj = C, we have
var u

= r1 (l + c)

(7)

= r. (I + c)b
1 + b

a3 ab
- 1 + b + ab + 1 + b = r3 (l + c).

The solution of these equations gives

2 r1
2 - r2

2
a + 2ar2 + ra = 0

r1 - ra
b = _ ar. + r3

rl
(8)

a
c= (9)
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1947] A Large-Sample Test for the Goodness of Fit of Autoregressive Schemes 127

(10)

where a is chosen from equation (7) so that c will be positive. This method of estimating a, b
and c will not be the most efficient, and other methods are possible. Thus, for example, we might
estimate a and b from

r. + ar, + bri = 0

r4 + ar. + br, = 0

and these estimates will be independent of superposed variation.
We shall then have

var R
8

,...; -----occ--l~~ [(1 - b) {(l + b)' - a'}] 2

n (1 + c)' 1 + b

provided that we replace ro = 1 by (1 + C)-i in R8•

If we had treated this scheme as if no superposed error were present, we should have estimated

val' R,...; 1 [(1 - b) {(l + b)' -,-- a'}
8 n(1 + c)' 1 + b

+ C ((1 - b) + (1 + b) (1 + c + 2b + be) {(l + b + c) (1 + b) - a'} )] 2 • (11)
(1 + b)' (1 + c)' - a'

,...; (1 + ll)' [(1 - b) {(1 + b)' - a'}] for c small
n (1 + c)' 1 + b

h II _ 2 (1 + b) (1 - b3)

were - (1 _ b)' {(l + b)' - a'}

Therefore the detection of any superposed variation will depend upon the value of (1 + ll)'.
Thus, for example, in Kendall's series (i), we have

(
var '1))2

(I + ll)' = (I + 10·1 c)' = 1 + 29·1 -- ; so that we should be able to detect easily
var s:

a superposed variation of 5 %.
If we multiply each of the coefficients of Kendall's series 1 by 0·9 this will roughly correspond

to a superposed variation of 4 %. We can fit an autoregressive scheme using the first two coeffi­
cients, giving a = - O· 8554, b = O· 2662. The values of R/, X'(l) and I: X'(l) are given in Table 3.

TABLE 3.-Values of R 8i, X'(l) and I: X'(l) for Kendall's Series i with Theoretical Damping

s R/ X'(l) I: X'(l) s R/ X'(l) I: X'(l)

1 -·04923 4·550 4·550 11 ·00678 0·084 10·150
2 ·00556 0·058 4·608 12 ·01372 0·345 10·495
3 ·01694 0·536 5·144 13 ·01340 0·329 10·824
4 ·00045' 0·000 5·144 14 ·00150 0·004 10·828
5 -·00249 0·011 5·155 15 -·00160 0·005 10·833
6 ·01390 0·359 5·514 16 -·00799 0'116 10·949
7 ·01463 0·397 5·911 17 -·00805 0'117 11·066
8 -·03471 2·229 8·140 ·18 ·00245 0·011 11·077
9 -·02625 1'272 9·412 19 ·01706 0·526 11·603

10 - ·01884 0·654 10·066 20 ·00127 0·003 11·606

If the first ten degrees of freedom from this table are tested against the second ten, the result is
significant at the 1 per cent. level, while the latter ten degrees of freedom are 99 per cent. significant.
Thus it appears that the estimates of a and b are biased towards zero, probably as a result of
superposed variation. This conclusion is strengthened by the large value of R i \ due to the fact
that ro = 1 cannot be altered by superposed variation. For practical series, we use Beveridge's
(1921) series of wheat-price index, and Kendall's (1943) series of wheat, barley and oats prices.
Autoregressive schemes have been fitted to these series using the first two autocorrelations, and
the fitted schemes are tested in Table 4.
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128 Miscellanea [Part 11,

TABLE 4.- Vallles of Rs', X2 (1) alld "£ x2
(]) for Practical Series

Bel'ericzr;e's wheat-price index

s Rs' X2
(1)

'\~ . s Rs' X\I) ~ X2
(])~X-(I)

1 ·02395 0-554 0-554 11 -02011 0-380 20,279*
2 - -02230 0-479 1-033 12 ·04181 1-639 21-918*
3 - -02662 0·681 1-714 13 -02435 0-554 22-472*
4 --07800 5-831 7-545 14 -06797 4·307 26,779*
5 - ·07122 4·848 12-393* 15 - -02899 0-781 27-560*
6 -- -07984 6-076 1-8·469t 16 - -01629 0-246 27 '806*
7 -00118 0-001 18-470* 17 - -01360 0-171 27 -977*
8 - -00760 0-055 18-525* 18 ·01619 0-242 28-219
9 - -02433 0-560 19-085* 19 ·00738 0·050 28-269

10 - -02939 0-814 19-899* 20 -06872 4-328 33· 597*

Kendall's wheat prices

s RBl X2
(1) "£X2

(1) s Rs' X2
(1) :E X"(I)

1 - ·02173 0-110 0-110 11 - -09806 1-884 15-333
2 - -14697 4-936 5-046 12 ·00078 0-000 15-333
3 --04400 0-435 5-481 13 - -15599 4·590 19-923
4 - -12796 3-623 9·104 14 - -07101 0-933 20-856
5 -01950 0-083 9-187 15 -10241 1-902 22-758
6 -12078 3-122 12·309 16 - ·00230 0-001 22-759
7 -03703 0·288 12-597 17 -09470 1-562 24-321
8 -01337 0-037 12-634 1'8 -04095 0-286 24-607
9 -04921 0·492 13 -126 19 - -04107 0-282 24·889

10 - -03990 0-323 13-449 20 - -01493 0·036 24-925

Kendall's barley prices

s Rl X2
(1) "£X2

(1) s Ri X2
(1) "£X2

(1)
1 - -20886 8-019 8-019t 11 -00340 0-002 21-142*
2 - -01528 0-042 8-061* 12 -01367 0·028 21-170*
3 - ·01587 0-045 8,106* 13 ·00017 0-000 21 ·170
4 - ·02523 0-112 8·218 14 ·01247 0-023 21·193
5 -·24002 9·928 18-146t 15 -09616 1-328 22-521
6 ·05606 0·533 18·679t 16 -06852 0-661 23·182
7 ·06002 0·600 19-279t 17 ---01177 0-019 23-201
8 - -05828 0·556 19-835* 18 - -01926 0-050 23-251
9 --07066 0-803 20-638* 19 --01130 0-017 23·268

10 - -05634 0-502 21 '140* 20 - -05253 0-357 23-625

Kendall's oats prices

s RBl X2
(1) "£X2

(1) s Rl X2
(1) "£X2

(1
1 - -15114 4-023 4-023* 11 - -09810 1-415 20,882*
2 - ·20087 6-995 11-018t 12 ·02960 0-128 21 -010
3 ·06577 0-738 11'756t 13 - ·03101 0·138 21-148
4 - -15404 3-983 15-739t 14 -03699 0·192 21-340
5 ·11821 2·307 18-046t 15 ·12130 2-024 23-364
6 ·07870 1·006 19-052t 16 -00706 0-007 23-371
7 - -03137 0-154 19-206t 17 - -00608 0-005 23·376
8 ·01818 0-052 19-258* 18 -02389 0-074 23·450
9 -00783 0-009 19-267* 19 - -07951 0-800 24-250

10 - -03633 0-200 19-467* 20 - -05293 0-347 24-597

* Denotes 5 per cent. significance. t Denotes 1 per cent. significance_

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/110/2/123/7097155 by R

O
TH

AM
STEAD

 R
ESEAR

C
H

 W
EST C

O
M

M
O

N
 user on 11 February 2026



1947] A Large-Sample Test for the Goodness of Fit of Autoregressive Schemes 129

It appears that, of the four series, only Kendall's wheat prices are fitted adequately by the chosen
autoregressive scheme. That the other series differ from the fitted autoregressive schemes is
shown by the high values of :EX"(l) and the correlation between successive values of Rsi. For
Kendall's wheat and oats prices, the estimates of a and b appear to be biased towards ·zero, and
there is a strong suggestion of superposed variation, since the initial values are high, and X"(l) rapidly
decreases to a mean value of less than one.

It must be remembered that the above examples test particular autoregressive schemes, and
not the most general autoregressive scheme. Thus it may be possible to a better fit by another
second-order autoregressive scheme, or by a scheme of a higher order. This presents primarily
a problem of fitting, which is being made the subject of another paper (Quenouille and Orcutt,
I 947b).

Summary

A test has been proposed for the adequacy of representation of fitted autoregressive schemes,
when the number of observations is large. This test has been found to work satisfactorily on
artificial series. It has been shown how superposed variation can be detected by this method,
and series experienced in practice have been used to demonstrate the test.
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