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 A B S T R A C T

Conservation Agriculture (CA) is proposed as a ‘climate-smart’ intervention for resilient crop production in 
dryland areas affected by climate change. Evidence is needed for how these practices affect fundamental 
properties of the soil. The soil water retention curve (SWRC) is a physical attribute of the soil which provides 
information on its porous structure and physical quality. It is also critical for modelling processes in the soil 
such as water movement, water availability for plants and infiltration into the soil during rainfall events. 
In this paper we estimate parameters of the van Genuchten model of the SWRC from experiments on CA 
interventions in southern Africa, using a linear mixed modelling framework. The method we use, stochastic 
approximation maximization, allows for maximum likelihood estimation of the parameters without use of 
linearizing approximation. We show how sequential fitting of model parameters, with marginal false discovery 
rate control, allows us to make robust inferences about differences in the SWRC between soils under contrasting 
experimental management. We also show how the method allows us to draw samples from distribution of 
SWRC parameters, reflecting the uncertainty which arises from variation within the management treatments. 
Indices of soil physical quality may be computed from the parameter estimates to compare treatments, and by 
computing them from the samples, the uncertainty in these indices can also be assessed. We use the estimated 
model parameters to simulate infiltration of water into the soils under different management during a rainfall 
event. Again, by using the samples from the joint distributions of the parameters the effects of uncertainty 
in these parameters as propagated through the model can be computed. We applied these methods to soils 
collected from experimental plots under CA and conventional tillage (CV) at sites in Zimbabwe, Zambia and 
Malawi. We observed differences in the SWRC for the CA and CV plots at the Zambian site where a physically 
vulnerable soil showed greater macroporosity under CA than CV. In contrast, a sandy and organic-poor soil at 
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the site in Zimbabwe showed somewhat greater macroporosity under cultivation rather than CA management. 
There was no detectable treatment effect of the management system on the SWRC for the soils at the site in 
Malawi.
1. Introduction

Climate change is having significant impact on global food produc-
tion, not least in Africa (Onyeaka et al., 2024). One critical effect of a 
changing climate is the increased frequency of extreme weather events, 
droughts and floods (WMO, 2025), and the resilience of a farming 
system to these challenges is largely dependent on soil physical quality, 
in particular the capacity of the soil to retain water and to sustain 
infiltration.

Conservation agriculture (CA) in which soil disruption by cultiva-
tion is minimized or avoided altogether, the soil is protected by organic 
mulch, commonly crop residues, and cropping systems are diversified 
is widely promoted in southern Africa and elsewhere as a resilient 
farming practice under climate change (e.g. Mkomwa and Kassam, 
2022). There is some evidence that, in dryland agriculture, CA results 
in improved rainfall-use efficiency through increased water infiltration 
and decreased evaporation from the soil surface, with associated de-
creases in runoff and soil erosion (Steward et al., 2018; Corbeels et al., 
2020). However, not all experiments have shown that CA improves 
soil water properties, relative to CV. Mbanyele et al. (2021) reported 
from Zimbabwe that soil water content under CV was larger than 
under CA by a factor of 9%–27% on sandy soil during a drought year. 
Esser (2017) found that infiltration rates between rip lines and basins, 
reduced tillage options widely used as part of a CA strategy, were 
smaller than in a ploughed or hoed field by a factor of 31%–37%. In 
consequence, CA fields showed a consistently shorter time for the start 
of surface water saturation, ponding, and runoff under artificial rain 
compared to conventionally-cultivated fields.

These inconsistent outcomes are likely to result from effects of 
local environmental conditions on the impact of CA. For example, CA 
entails increase organic carbon input to the soil through mulches, but 
Lal (2020) noted that soil texture, among other factors, could control 
the effects of increased soil carbon status on plant-available water. 
This is consistent with the ‘socio-ecological niche’ concept (e.g. De-
scheemaeker et al., 2019), which emphasizes the importance of match-
ing interventions for agricultural improvement to the specific condi-
tions of small-holder farmers, given the diversity of environmental, 
biophysical and socioeconomic circumstances in which they operate.

The discussion above shows that it is necessary to develop a better 
understanding of how CA practices impact soil functions in differing 
environments. Our contention is that this requires study of treatment 
effects on basic soil properties, and not just outcomes such as crop 
yield. One fundamental physical property of the soil, which determines 
key aspects of its physical quality, is the soil water retention curve 
(SWRC, also called the soil water release curve or soil water charac-
teristic curve). This represents the volumetric water content of the soil 
(sometimes the gravimetric water content) as a function of the soil 
water tension or, equivalently pF or the matric potential (Hillel, 1980). 
One can think of it as showing how the soil water content is reduced 
on applying an increasing suction to water held in soil pores. The 
SWRC is an important descriptor of soil physical behaviour, it quantifies 
the capacity of the soil to hold water at different tensions, and so to 
drain excess water and to retain water against gravity, some which 
is available to plants and microbes and some of which is unavailable. 
Fundamentally the SWRC summarizes the structure and quality of the 
soil porous architecture, and so also expresses the capacity of the soil to 
provide a suitable environment for roots and microbes, and to sustain 
processes such as infiltration (e.g. Dexter, 2004; Reynolds et al., 2007)

The SWRC has been used to measure impacts of soil management 
practices on soil quality and function. In some studies SWRC param-
eters have been treated as soil properties for comparison between 
2 
management practices or land uses. For example, Liu et al. (2011) 
fitted SWRC to measurements from aggregates in different size classes 
under different management practices. To assess the effects of inorganic 
fertilizer use on water retention they used the fitted SWRC to compute 
the water content at a specified pF, and then regressed this on soil 
organic carbon content.

A similar approach was taken by Eze et al. (2020) who fitted water 
retention curves to measurements from soils in experiments on CA 
practices across Malawi, and then used each to compute the plant 
available water capacity as the difference between the water retained 
at tension −33 kPa, treated as field capacity, and −1500 kPa, treated 
as the permanent wilting point. This showed that the available water 
under CA increased relative to CV, but remained suboptimal, which was 
attributed to the lack of evidence for increased soil organic carbon in 
the soils.

The form of the SWRC reflects the underlying distribution of pore 
sizes. It is possible to approximate a pore-size distribution from the 
SWRC (see Section 2.6 below). Gao et al. (2016) did this with mollisol 
soils under ridge tillage and zero tillage from an experiment in China, 
and showed a reduction in the micropore space in the top 20 cm depth 
under zero till. Eze et al. (2020) showed increases in porosity, and 
fine-scale porosity, under CA in Malawi by the same approach. Abu 
and Abubakar (2013) fitted water retention curves to measurements 
from samples in experiments with contrasting cultivation methods in 
the Guinea Savanna of Nigeria and then used these to compute pore 
space over different intervals and compared these values between pairs 
of treatments with multiple paired t-tests

Further interpretation of the SWRC parameters can be made in 
terms of soil physical quality. Dexter (2004) proposes an index, 𝑆, 
based on the slope of the SWRC at its inflexion point (gravimetric 
water relative to the natural log of water potential). Over a range of 
soils larger values of 𝑆 imply a well-defined soil microporous structure 
(see Section 2.6 below). Aparicio and Costa (2007) found that Dexter’s 
𝑆, CEC and change in soil aggregate mean weight diameter were 
predictive of the number of years that soil in the Argentinian Pampas 
had been under cultivation.

The SWRC therefore is a fundamental property of the soil, and the 
effects of CA on its parameters could give basic insight into potential 
benefits of CA in particular circumstances. There are two challenges, 
however. The first is that the statistical methods used to compare SWRC 
between treatments in the cited studies are limited. Eze et al. (2020), 
for example, estimated SWRC parameters by a least squares method 
coded in Excel and then used these to compute available water for each 
experimental plot. This derived property was then treated as a variable 
for comparison, but no consideration was given to the uncertainty of 
the estimate, which is not simple measurement error but depends on 
the correlated estimation uncertainty of the SWRC parameters. Abu 
and Abubakar (2013) did a similar analysis after fitting the SWRC 
parameters by non-linear least squares with the RETC program of 
van Genuchten et al. (1991). It would be better to be able to make 
direct inferences about differences of the SWRC between contrasting 
treatments with some set of parameters allowed to differ between 
the treatments. Furthermore, when an interpretation is made of some 
function of the parameter, such as Dexter’s (2004) 𝑆, the uncertainty 
of that parameter estimate should be considered, if it is large then the 
interpretation may have little value.

The second challenge is that measurement of the SWRC requires 
special equipment, such as pressure vessels (see Section 2.3 below) 
and trained technical staff both to collect suitable intact soil cores for 
measurements at the low-tension end of the SWRC and to make the 
measurements. Measurements are also time consuming. For this reason 
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there are few data on the SWRC made in southern Africa, particularly 
in recent years. A search on the topic terms {‘‘soil water retention’’ 
OR ‘‘soil water release’’ OR ‘‘soil water characteristic’’}AND{‘‘con-
servation agriculture’’ OR ‘‘zero till*’’ OR ‘‘min* till*’’ } on Web of 
Science (19th May 2025) returned only 56 articles, and just 7 from 
Africa. Of these only two (plus one conference proceedings from the 
same project as one of them) reported measurements at multiple points 
on the SWRC. These are the articles by Abu and Abubakar (2013) and 
Eze et al. (2020) cited above.

In the project reported here we have attempted to address both 
challenges, and the results are reported in this paper. First, we propose 
an approach to estimation and comparison of SWRC models based on 
the work of Omuto et al. (2006) who first demonstrated that parameters 
of the SWRC can be estimated in a non-linear mixed effects model 
(NLME). In this study we use a stochastic method to obtain maximum 
likelihood estimates of SWRC parameters by expectation maximiza-
tion within an NLME (Comets et al., 2017), and build these into a 
workflow to assess the strength of evidence that the parameters differ 
between treatments and to quantify uncertainty in SWRC parameters. 
We demonstrate this by using the estimated values of the parameters 
first to assess soil physical quality using published criteria based on 
the SWRC and, second, in a version of the Green-Ampt model of soil 
water infiltration. We then use parametric bootstrap samples of the 
parameters to assess the uncertainty of the interpretations and the 
model outcomes which is attributable to parameter uncertainty.

The second challenge was addressed in a project to develop a 
network of soil physics laboratories at University of Zimbabwe, Uni-
versity of Zambia and Lilongwe University of Agriculture and Natural 
Resources (Malawi) with capacity to undertake integrated research on 
soil and groundwater under CA practices (see acknowledgements for 
project details). This included the establishment (Malawi) or supple-
mentation (Zambia, Zimbabwe) of laboratory capacity to measure soil 
water retention over the conventional range of tensions, training in the 
necessary laboratory and field work, and the development and use of 
the workflow outlined above to analyse water retention measurements 
from three experiments on CA in Zimbabwe, Zambia and Malawi and 
to assess the experimental findings. This paper reports the resulting 
findings, using the NLME modelling

2. Methods

2.1. Field experiments

The locations of the experimental sites, described below, are shown 
in Fig.  1. Basic information on each experiment is given below, with 
more detail in supplementary material.

The experiment at the University of Zambia farm (hereafter, we 
refer to this experiment as ‘Liempe Farm’) was established in 2017 and 
has four replicated and randomized complete blocks with a conser-
vation agriculture (CA) treatment with zero tillage and intercropped 
maize (Zea mays L.) and soybeans (Glycine max) and a conventional 
(CV) treatment with inversion tillage and monocrop maize.

The experiment in Zimbabwe was undertaken at the Domboshava 
Training Centre (hereafter ‘Domboshava’). The experiment was estab-
lished in 2010, with replicates of each of three treatments in complete 
randomized blocks. For present purposes, we examined two treatments, 
both with a maize monocrop: a CA treatment (zero tillage and appli-
cation of crop residues at 5 t ha−1) and a CV treatment with inversion 
tillage and no crop residues applied.

The experiment in Malawi was undertaken at Chitedze Research Sta-
tion (hereafter ‘Chitedze). The experiment was established in 2007 with 
8 basic treatments replicated and randomized in four complete blocks. 
In this study we examined the soils from treatments T1 (monocrop 
maize planted after cultivation and ridging of the soil by hand-hoe), T3 
(monocrop maize planted without cultivation by direct seeding in holes 
made with a dibble stick, and crop residues retained on the soil surface) 
3 
and T8 (direct-seeded maize intercropped with velvet bean (Mucuna 
pruriens), crop residues retained on the soil surface).

Note that each of these experiments was analysed individually. This 
is because of the differences in soil and environmental differences 
between their locations, the fact that the soil sampling depths differed 
between the experiments to address local priorities, and that what 
constitutes a CA treatment is not consistent across all sites, although 
all included minimum or zero till, retention of residues and (except for 
Domboshava and T3 at Chitedze) an intercrop.

2.2. Soil sampling for physical properties

In each plot, three locations were selected independently and at 
random within the rows of maize and between individual plants. Loca-
tions that were unrepresentative such as large termite holes and stones 
were avoided. At each of the selected locations, one undisturbed soil 
sample was taken using a uniquely-numbered stainless steel sample ring 
(internal diameter: 50 mm, height 51 mm). Soil samples were collected 
from the surface of each plot (from 0–5 cm and 5–10 cm depths at Chit-
edze and Liempe Farm; from 0–10 cm and 10–20 cm at Domboshava). 
The ring was trimmed to the precise cylindrical volume of the ring, 
and carefully placed in a pre-labelled sample bag without disturbing 
the sample further. At the same locations and depths, disturbed soil 
samples (about 200 g) were collected and placed into pre-labelled 
sample bags. The within-plot replication of intact and disturbed soil 
samples collected, per depth, was one sample per plot at Chitedze and 
three samples per plot at Liempe Farm and Domboshava.

2.3. Measuring points on the soil water retention characteristic

The intact cores were used to measure the soil water retention 
characteristic (SWRC) at large (less-negative) matric potentials on a 
large-surface extraction plate (SoilMoisture Equipment Corp., Santa 
Barbara, CA, USA). The matric potential was controlled by an ad-
justable Haines-type hanging column of water. A nylon cloth was 
attached to the underside of the intact core to allow removal from 
and replacement on the extraction plate in between weighing without 
losing the hydraulic connection between the soil and extraction plate. 
The cores were first saturated on the tension plate before the initial 
mass was recorded. Thereafter a series of decreasing (becoming more-
negative) matric potentials from 0 (saturation) to ≤ −30 kPa was 
set by adjusting the hanging water column and the soil was allowed 
to equilibrate for a few days with daily recording of the mass for 
each matric potential. When this process was complete a sample of 
the material at the smallest tension was oven-dried to determine the 
water content of the soil at this potential, and the dry soil mass. At 
smaller (more-negative) matric potentials, we equilibrated subsamples 
from the disturbed soil samples, held within a shallow retaining ring, 
on pressure plates within pressure extractor apparatus (SoilMoisture 
Equipment Corp., Santa Barbara, CA, USA) to obtain equilibrated water 
contents at matric potentials between ≤ −50 and −1500 kPa. Hereafter 
we use the absolute (i.e. positive) values to refer to matric potential or 
tension. All soil samples were oven-dried at 105 ◦C for 48 h to calculate 
equilibrated water contents and, for the intact cores, dry bulk density.

2.4. The van Genuchten model

van Genuchten’s (1980) model for the soil water retention curve 
(SWRC) expresses the volumetric water content of the soil at tension ℎ
as 
𝜃(ℎ) = 𝜃r +

𝜃s − 𝜃r
{

1 + (𝛼ℎ)𝑛
}𝑚 , (1)

where 𝜃s and 𝜃r are, respectively, the volumetric water content at 
saturation and the residual water content, 𝛼 is related to the reciprocal 
of air-entry tension, and 𝑛 and 𝑚 are parameters which describe the 
shape of the pore size distribution. In this study we did not estimate 𝑚
as an independent parameter but set it to 1 − 𝑛−1.
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Fig. 1. Map of Zimbabwe, Zambia and Malawi showing location of experimental sites. Large water bodies (Lake Malawi and Lake Kariba) are shown in black.
2.5. Fitting non-linear mixed models by SAEM and inference about treat-
ment effects

Our objective, at each of the three experimental sites was to test 
the hypothesis that the SWRC differs between soils under contrasting 
management. The challenge was to estimate parameters for the SWRC 
under each of the treatments, with a model for the random variation 
of observations within treatments which allows for a statistical test of 
a null hypothesis that a common set of parameters applies across the 
treatments. A natural way to do this is with a non-linear mixed effects 
model (NLME). A NLME allows one to estimate parameters which have 
a mechanistic interpretation. Values of the parameters may depend on 
covariates, or, as in this case, may differ between treatment groups, but 
are also subject to random variation (e.g., from the random allocation 
of treatments to plots, and random variation within blocks). In the 
NLME this random variation enters the model non-linearly, and this 
complicates the task of estimation (Pinheiro and Bates, 2000).

Omuto et al. (2006) used NLME to estimate parameters of the 
SWRC, and to relate these to covariates, with a focus on being able 
to predict SWRC parameters from easier-to-measure data. This same 
approach can provide an inferential basis for examining experimental 
effects where the treatment factors are substituted for covariates. We 
have used a different computational approach, using the Stochastic 
Approximation Expectation Maximization (SAEM) algorithm. This is 
one of a number of numerical methods which allow for maximum 
likelihood estimation without requiring a linearization of the model 
parameters (Comets et al., 2017). We used the saemixModel function 
from the saemix library for the R platform (Comets et al., 2017; R 
Core Team, 2020), and used the importance sampling method for nu-
merical evaluation of the log-likelihood. A form of distribution for each 
parameter is proposed, either normal, log-normal, probit or logistic. We 
4 
specified the log-normal distribution for the 𝛼 and 𝑛 parameters as the 
most appropriate for a strictly positive variable without an absolute 
upper bound, and the logistic distribution for the volumetric water 
contents as the most appropriate for a variable bounded in the interval 
[0, 1].

There are exploratory statistics and plots which may be examined 
to evaluate the fit of the NLME in saemix (Comets et al., 2017). 
First, the sequence of proposed values of the model parameters (fixed 
and random effects) can be examined. These should show the algo-
rithm initially exploring a range of values for each parameter and 
then converging to a solution. The plots which are produced indicate 
when the algorithm enters a closing phase in which the magnitude 
of potential changes in the parameter values is damped. Evidence of 
convergence before this will indicate that a good solution has been 
found as opposed to a solution which simply represents a point in 
random exploration of the space ‘frozen’ at initiation of phase 2. For 
exploratory purposes, Comets et al. (2008) suggest the computation of 
normalized prediction distribution errors (NPDE), these are generated 
by simulation of the observed results conditional on the fitted NLME, 
and decorrelation of the resulting departures from the observations. We 
used the npde package for R to compute NPDE (Comets et al., 2008), 
and then examined their distribution with a histogram and box-plot 
and QQ plot of the observed against the standard normal quantiles to 
evaluate the plausibility that the errors are normally distributed. We 
also examined a plot of the NPDE against the fitted volumetric water 
contents, and against the tensions (Comets et al., 2017) to look for 
evidence of lack of fit or non-homogeneity of the errors.

Under a ‘null’ model, one may allow all four parameters of the 
SWRC to be common to observations in all treatments of interest. In 
an alternative model one or more of those parameters is estimated 
separately for the treatments. The resulting log-likelihoods of the null 
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model, 𝓁n, and the alternative, 𝓁a, can then be compared by computing 
the log-likelihood ratio statistic 
𝐿 = 2

{

𝓁n − 𝓁n
}

, (2)

which, in the case of an alternative model with 𝑞 more parameters 
estimated separately for the groups, has an asymptotic 𝜒2 distribution 
with 𝑞 degrees of freedom if those 𝑞 parameters do not differ between 
the groups. This therefore provides a basis for a hypothesis test.

In the case of Domboshava we had two treatments to compare, a 
CV and a CA treatment, and measurements for the 0–10 and 10–20 cm 
depth intervals. In each case duplicate samples within the same plot 
were averaged, that is to say the mean volumetric water content was 
calculated at each matric potential. We initially fitted a null model in 
which all the SWRC parameters were common to both treatments. We 
then fitted an alternative in which the parameter 𝛼 differed between the 
treatments and tested the null hypothesis that it was common across 
the treatments by a log-likelihood ratio test. If the null hypothesis was 
rejected, then the new null model had different values of 𝛼 for the 
treatments, and a new alternative was fitted for comparison with the 
parameter 𝑛 also differing between the treatments. If, on the other 
hand, the first null hypothesis regarding 𝛼 was accepted, then the alter-
native model with 𝑛 differing between the treatments was tested against 
the original null model with all parameters common. The inclusion 
of treatment-specific values of 𝜃s in the model was considered next, 
following the same procedure. Finally we considered the possibility that 
𝜃r differed between the treatments.

Because this is a multiple testing approach, in which our overall 
hypothesis of a difference between the SWRC for the two treatments 
could be supported by rejection of any one of the null hypotheses (or 
more), we controlled the marginal false discovery rate (mFDR) over the 
full set at 0.05. The false discovery rate FDR (Benjamini and Hochberg, 
1995) is the expected proportion of a set of multiple tests which would 
falsely reject a true null hypothesis. We followed Foster and Stine 
(2008) in controlling the mFDR with a method called alpha-investment. 
In this approach the 𝑝-value for each test in the set is compared with a 
threshold value which depends on the alpha-wealth, a quantity which 
is depleted when a null hypothesis is accepted and increased when a 
null hypothesis is rejected. This maintains the control of mFDR, while 
increasing the power to detect real effects. Lark (2017) provides detail 
of the method and provides an example from soil science. In this case 
we applied mFDR control with alpha-investment to the successive tests 
of differences between treatments for 𝛼, 𝑛, 𝜃s and 𝜃s in that order, 
retaining terms as distinct between treatments if 𝑝 < 0.05, but only 
making a final decision as to whether parameters were pooled over 
treatments or not on the mFDR criterion when all had been considered.

The same approach was used to compare the SWRC for the CV 
and CA treatments at Liempe Farm (0 – 5 and 5 – 10 cm depth 
intervals). At Chitedze, with three treatments, we considered evidence 
for difference in SWRC parameters for two orthogonal comparisons: (1) 
for a comparison between the check CV plots and pooled observations 
for the two CA treatments, and, (2) between the two CA treatments.

2.5.1. Parametric bootstrap
To investigate the significance of uncertainty in the fitted parame-

ters of the SWRC parameters we obtained 1000 parametric bootstrap 
resample sets using the saemix.bootstrap function. These parameter 
sets were retained for use in the Green-Ampt modelling of infiltration.

2.6. van Genuchten parameters, soil porosity and soil physical quality

The SWRC summarizes information about the soil’s porous structure 
over a range of length scales. The pore-size distribution of a soil can be 
accessed as the slope of the SWRC with respect to the log of the tension, 
where the ‘equivalent pore diameter’ (𝑑e) (in μm) for tension ℎ in kPa 
is 
𝑑 ≈ 300 , (3)
e ℎ
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Table 1
Indices of soil physical quality derived from water retention curve parameters.
 1a. Dexter’s 𝑆, Dexter (2004).
 𝑆 > 0.035 Good microstructural quality  
 0.02 < 𝑆 ≤ 0.035 Poor microstructural quality  
 𝑆 ≤ 0.02 Very poor microstructural quality  
 1b. Macroporosity, Reynolds et al. (2007)
 macroporosity ≤ 0.04 Degraded  
 macroporosity > 0.04 Undegraded (medium to fine textured soil)  
 1c. Relative water capacity, RWC suitability for microbial activity (Reynolds et al., 
2007)

 RWC ≤ 0.6 Too dry  
 0.6 < RWC ≤ 0.7 Optimal  
 0.7 < RWC Too wet  
 1d. Plant available water capacity, PAW, Reynolds et al. (2007)
 PAW > 0.2 Ideal  
 0.15 < PAW ≤ 0.2 Good  
 0.1 < PAW ≤ 0.15 Limited  
 PAW ≤ 0.1 Poor  
 1e. Air capacity, AC, Reynolds et al. (2007)
 AC > 0.15 Aeration likely to be adequate for all soils  
 0.10 < AC ≤ 0.15 Aeration likely to be adequate except for fine-textured soils 
 AC ≤ 0.1 Crop-damaging aeration deficit likely  

see Reynolds et al. (2007) and Gao et al. (2016). We computed and plot-
ted the pore volume distribution corresponding to each fitted SWRC.

The information on soil porosity can also be used to compute indices 
of soil physical quality. We consider five such indices for interpretation 
of water retention curves from the CA experiments. Note that, for those 
indices where a value of field capacity is required, we specify the water 
content at a tension of 33 kPa.

2.6.1. Dexter’s 𝑆
This quantity is the modulus (absolute value) of the gradient of 

the water retention curve at its inflection point (i.e. where the slope 
stops increasing with increased tension), interpreted in terms of the 
microstructure of the soil, which is better-defined, with a wider range 
of pore sizes, when 𝑆 is large. Dexter (2004) gives an interpretation of 
values of 𝑆 which this function reproduces, and threshold values are 
presented in Table  1a.

Note that 𝑆 is defined with respect to the water release curve for
gravimetric water content, so an adjustment is made to the parameters 
fitted for volumetric water content.

2.6.2. Macroporosity
The total porosity of the soil is equal to 𝜃S, i.e. the volumetric 

water content of the saturated soil. The macroporosity of the soil is the 
difference between total porosity and porosity at a tension when it is as-
sumed that only micropores are filled (matrix porosity). Reynolds et al. 
(2007) suggest three values, by default we use the median (4.9 kPa). 
The interpretation is based on Reynolds et al. (2007), (see Table  1b) 
if macroporosity is ≤0.04 (volumetric) then the soil is assumed to be 
degraded by compaction or consolidation. Otherwise, for medium to 
fine textured soils, it is regarded as undegraded.

2.6.3. Soil relative water capacity (RWC)
RWC is defined as the ratio of the volumetric water content at field 

capacity to the total porosity. This is interpreted (Table  1c) as optimal 
for microbial activity in the interval 0.6 < RWC ≤ 0.7, too dry below 
the range and too wet above (Reynolds et al., 2007).

2.6.4. Plant available water capacity (PAW)
This is the difference between the volumetric water content of the 

soil at field capacity and at the permanent wilting point. Permanent 
wilting point is a tension of 1471 kPa, it is assumed that the water 
retained at this tension, or larger, is inaccessible to plants.
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PAW is the difference between the water content at field capacity 
and the permanent wilting point. The values of PAW are interpreted as 
in Table  1d, following Reynolds et al. (2007).

2.6.5. Air capacity (AC)
AC of the soil measures how well-aerated the soil environment is 

to allow the growth, development and function of plant roots. The 
measure of AC based on the water retention curve is the difference 
between the total porosity and the field capacity. Following Reynolds 
et al. (2007) these values are interpreted according to threshold values 
presented in Table  1e.

2.7. Green-Ampt model

The statistical methods outlined above allow us to assess evidence 
for differences between SWRC parameters for soils under different 
treatments. The practical significance of these differences is another 
matter. One approach to assessing the impact of an observed difference 
in SWRC parameters is to consider their effect on hydraulic processes in 
the soil. A simple case is given in 2.6.4 above, the difference between 
the water content at two specified tensions gives a measure of available 
water. Another approach is to consider a process model, and we do that 
here.

The model of infiltration due to Green and Ampt (1911) has been 
developed and extended by various workers and applied for catchment-
scale hydrological modelling (Zubelzu et al., 2024) and catchment-scale 
modelling of transfers of soil water and contaminants (Zhu, 2019). 
It has been applied to investigate run-off and infiltration by water 
(e.g. Mallari et al., 2015). Its solutions correspond to those of Richards’ 
equation under certain assumptions (Barry et al., 1993). We acknowl-
edge that Richards’ equation is more general, and may therefore be 
more generally physically realistic. For example, under the Green-Ampt 
model a sharp wetting front moves down the soil profile during a 
process of infiltration, the soil above the front is saturated and the 
soil below is in its initial state of wetness (e.g. Warrick, 2003), wheras 
Richards’ equation does not necessarily have a sharp wetting front. 
However, the Green-Ampt model, as noted above, is physically based, it 
is relatively simple and computationally tractable and key parameters 
can be obtained from the van Genuchten model. For that reason we 
chose to use it to explore the implications of treatment differences in 
van Genuchten parameters for important processes in the water cycle.

We used the extension of the Green-Ampt model for soils with 
contrasting layers and irregular rainfall input as presented by Liu et al. 
(2008). In this model the soil is considered as 𝑁 successive layers of 
thickness d𝑧𝑖, 𝑖 = 1, 2,… , 𝑁 . It is assumed that the water content is 
uniform in each layer, that the soil above the wetting front is saturated, 
and that there is a sharp wetting front at which ‘piston flow’ takes place 
with a uniform water potential.

The 𝑖th layer can accommodate a depth of infiltration of d𝑧𝑖𝑀𝑖
where 
𝑀𝑖 = 𝜃s,𝑖 − 𝜃0,𝑖, (4)

and where 𝜃s,𝑖 and 𝜃0,𝑖 denote, respectively, the saturated and initial 
volumetric water content of soil in the 𝑖th layer.

The second assumption of the Green-Ampt approach is that, over a 
short time interval, the water flux is uniform in all layers above the 
wetting front. If the saturated hydraulic conductivity and the matric 
potential of the 𝑖th soil layer are 𝐾𝑖 and ℎ𝑖 respectively and the wetting 
front is at depth 𝑙𝑖+1 in the 𝑖 + 1thlayer then the water flux in the 𝑖th 
layer is 

𝑞𝑖 = 𝐾𝑖
d𝑧𝑖 − ℎ𝑖 + ℎ𝑖−1

d𝑧𝑖
, (5)

and that in the 𝑖 + 1th layer is 

𝑞𝑖+1 = 𝐾𝑖+1
𝑙𝑖+1 + 𝑆𝑖+1 + ℎ𝑖 , (6)
𝑙𝑖+1
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The term 𝑆𝑖+1 is the capillary drive, or mean suction in the designated 
layer. Given the assumption of uniform water flux in all layers, it is then 
possible (Liu et al., 2008) to obtain the following expression where 𝑓𝑝
is the infiltration capacity of the soil when the wetting front is in layer 
𝑖 + 1.

𝑓𝑝 =

∑𝑖
𝑙=1 d𝑧𝑙 + 𝑆𝑖+1 +

𝐹 ′
𝑖+1

𝑀𝑖+1

∑𝑖
𝑙=1

d𝑧𝑙
𝐾𝑙

+
𝐹 ′
𝑖+1

𝑀𝑖+1𝐾𝑖+1

, (7)

where 𝐹 ′
𝑖+1 is the cumulative infiltration. In this study we obtained a 

numerical solution, computing 𝑓𝑝 with Eq. (7) for successive time steps 
during a rainfall event, with known water input for each time-step, and 
calculated runoff (assuming that all water which did not infiltrate in the 
time step ran off) and the depth of the wetting front for each time-step 
by distributing the infiltrated water in the profile under the assumption 
of piston flow with saturated soil above the wetting front.

We followed Morel-Seytoux et al. (1996) and Chen et al. (2015) in 
obtaining the capillary drive from the van Genuchten parameters 𝛼 and 
𝑚 = 1 − 1∕𝑛 as 

𝑆 = 0.046 m + 2.07 m2 + 19.5 m3
(

1 + 4.7 m + 16 m2
)

𝛼
. (8)

We followed Guarracino (2007) by inferring the saturated conductivity 
(cm day−1) as 
𝐾 = 4.65 × 104𝜙𝛼2, (9)

where 𝜙 denotes the soil porosity.
The model was run with rainfall data recorded at 15 min intervals at 

the University of Zambia farm, beginning at 10.00 AM Central African 
Time on 29th January 2022. The model was run using the sets of van 
Genuchten parameters estimated for each location, and for separate 
treatments where significant differences were found. It was assumed 
that, at the onset of the rainfall event, the soil profile had a uniform 
soil moisture deficit of 40% of the plant-available water capacity, and 
these results are reported in detail, but we also assessed the modelled 
infiltration and depth of the wetting front assuming a range of values of 
the initial soil water content to check any sensitivity to this assumption.

We also used the bootstrap samples of van Genuchten parameters 
(Section 2.5.1) and ran the model with each sample set to investigate 
the implications of the model parameter uncertainty for modelled 
run-off and infiltration.

3. Results

3.1. Inferences about treatment effects on the SWRC parameters, their 
interpretation and its uncertainty

Our results showed contrasting effects of the local CA treatment on 
the SWRC over the different experiments. These are discussed in more 
detail below but, in summary, there was no evidence for management 
effects at either depth at Chitedze, but evidence from the NLME model 
inference for a difference between CA and CV in the shallower soil at 
Liempe farm and the deeper soil at Domboshava. As seen below, where 
there are differences they may be interpreted in terms of quality mea-
sures and the bootstrap resampling allows us to account for parameter 
uncertainty in this interpretation

At Liempe farm there was evidence (Fig.  2(a), Table  2) for dif-
ferences between the CA and CV treatment in the van Genuchten 
parameters 𝛼, 𝜃s and 𝜃r for the 5 – 10 cm depth interval. The conver-
gence plot for the fit of the final models for 0 – 5 cm and 5 – 10 cm are 
shown in Figs. A1 and A4 respectively of the Supplementary Material. 
Convergence to a value close to the final solution within phase 1 is seen 
for all parameters. Exploratory plots of NDPE for the two depths are in 
Fig. A2, A3 and A5, A6. The distribution of the NPDE is close to normal 
at both depths although with somewhat heavy tails at 5 – 10 cm (Fig 
A5). The plots of the NPDE against predicted values, and the measured 
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Fig. 2. Successive hypothesis testing on treatment contrasts for van Genuchten parameters of the water retention curve with marginal false discovery rate control and 𝛼-investment 
for (a) Zambian site, Liempe farm, 0–5 cm, (b) Zambian site, Liempe farm, 5–10 cm, (c) Zimbabwean site, Domboshava Training Centre , 10–20 cm.
tensions (A6 and A9) not indicate any lack of fit, the variability of the 
errors may be more limited in the range of predicted 𝜃 between 0.25 
and 0.35 than at smaller or larger tensions. There is no evidence for a 
difference in these plots between the CA treatments (black symbols) or 
the CV treatments (red symbols).

The saturated water content is larger under the CA treatment as 
is the 𝛼 parameter. As can be seen in Fig.  3, the soil at 5 – 10 cm 
under CA has a somewhat larger modal pore diameter and the pore 
volume distribution is shifted to larger values. The equivalent pore size 
distribution was computed from each of the bootstrap-resample sets of 
SWRC parameters for the soil at 5 – 10 cm, and the plot is shown in 
Fig. A25 in the Supplementary Material. This shows that, despite the 
uncertainty in the estimated parameters the distributions for CA and 
CV soils are quite clearly separated at larger pore sizes (larger than 
about 60 μm).

At Liempe farm the fitted value of Dexter’s 𝑆 is larger under CA than 
CV at each 5 – 10 cm (Table  3), but both count as indicating ‘good 
microstructural quality’ according to the criterion in Table  1. In fact 
all the structural quality measures from Dexter (2004) and Reynolds 
et al. (2007) have the same interpretation for the CA and CV soils 
at 5 – 10 cm by Table  1. On examining the empirical distribution of 
the soil quality measures obtained from the bootstrap resamples of the 
fitted SWRC parameters (Figs.  6 and 7) to account for the uncertainty 
in parameter estimation, it is seen that the distributions of 𝑆 for 5 – 
10 cm under CA and CV have distinct modes, although they overlap, 
and all boot-strap resamples fall in the ‘good microstructural quality’ 
interval (Fig.  7a). There are clear separations of the distributions for 
total porosity, macroporosity and air capacity at 5–10 cm (all larger 
under CA), even though they sit in the same interpretative ranges. 
The plant-available water capacity is poor under both depths as is 
the relative water capacity. At 5 – 10 cm at Liempe farm there is no 
evidence for an effect of management. The boot-strap resampled values 
of plant-available water capacity fall mainly in the ‘limited’ category, 
although about one third fall in the category ‘poor’.
7 
Table 2
Inferences and estimates for van Genuchten parameters of the water retention curve for 
all sites. For Zambia and Zimbabwe the 𝑝-value relates to comparisons between the CA 
and CV treatments for each parameter. For Malawi contrast 1 is a comparison between 
the check plots (conventional management) and those with zero-tillage, and contrast 2 
is between the two zero-tillage treatments (maize monocrop or intercrop with velvet 
bean). Where no treatment difference was found a pooled parameter value is shown 
across the two treatment columns.
 (a). Zambia, Liempe farm
 Parameter 0–5 cm 5–10 cm
 𝑝-value CA CV 𝑝-value CA CV  
 𝛼 0.118 0.459 0.008 0.384 0.266  
 𝑛 0.396 1.310 1.0 1.609
 𝜃s 0.228 0.424 0.006 0.409 0.380  
 𝜃r 0.598 0.057 0.839 0.115

 (b). Zimbabwe, Domboshava
 Parameter 0–10 cm 10–20 cm
 𝑝-value CA CV 𝑝-value CA CV  
 𝛼 0.318 0.216 1.0 0.235
 𝑛 1.0 1.390 0.184 1.392
 𝜃s 0.669 0.308 0.002 0.297 0.331  
 𝜃r 1.0 0.003 0.621 0.011

 (c). Malawi, Chitedze
 Parameter 0–5 cm 5–10 cm
 Contrast 1 Contrast 2 Pooled Contrast 1 Contrast 2 Pooled  
 𝑝-value 𝑝-value estimate 𝑝-value 𝑝-value estimate 
 𝛼 0.798 0.485 0.042 0.887 0.290 0.042  
 𝑛 0.779 0.784 2.907 0.178 0.709 2.590  
 𝜃s 0.227 0.383 0.496 0.746 0.421 0.492  
 𝜃r 0.186 0.516 0.157 0.214 0.246 0.166  
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Fig. 3. Zambia, Liempe Farm: (a) Measured points on the water retention curve (0 – 5 cm) with final (pooled) model and (b) corresponding pore volume distribution (c) Measured 
points on the water retention curve (5 – 10 cm) with models by treatment and (d) corresponding pore volume distributions.
It is interesting to note that the plant-available water capacities 
for the two treatments at Liempe farm, based on the estimated SWRC 
parameters, are identical at the 5 – 10 cm depth, despite the evidence 
for a difference between the curves with respect to two parameters. 
The difference, as shown in Fig.  3c, are largest at small tensions (i.e. in 
pores too coarse to retain water against gravity), but the curves are very 
close at field capacity and the permanent wilting point. This highlights 
that a real change in the porous structure of the soil, reflected in the 
SWRC, does not necessarily increase the water-retaining properties of 
the soil, although there may be other benefits.

The soil at Liempe farm is known to have considerable potential 
for crop production, but soil structure is the main limitation although 
micropores are common in the surface soil. Conventional practice has 
been to till with a ripper cultivator at regular intervals to address 
this. However, the results here for the soil at 5 – 10 cm indicate that 
macroporosity (pores >75 μm) is increased under CA relative to CV. 
This might be due to the effects of roots of the soybean intercrop, 
and possibly a tendency for macropores to slump under conventional 
tillage. Longer monitoring of this relatively new trial is needed to 
show whether the increased macroporosity under CA is sustained, and 
whether, after longer under CA, there are further changes which affect 
the plant-available water capacity.

The fitted models for Domboshava are shown in Fig.  4(a,c) and 
convergence plots and NPDE plots are shown in Figs. A7, A8 and A9 (0 
– 10 cm) and A10, A11, A12 (10–20 cm) in the Supplementary Material. 
These do show the fitted SWRC systematically below the measurements 
at −20 kPa and over at −100 kPa, most markedly in the shallower 
soil. At Domboshava there was no evidence for a difference in the 
SWRC between CA and CV at depths 0 – 10 cm. However, there was 
evidence for a difference in the 𝜃s parameter at the 10–20 cm depth 
(Fig.  2c). In contrast to Liempe farm, however, 𝜃s was smaller under the 
CA treatment than under conventional cultivation. The value of 𝑆 was 
larger under CV at the lower depth, indicating good microstructural 
quality, whilst that under CA was poor (Table  3) and Fig. A10a shows 
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that, when we consider the bootstrapped distribution of 𝑆 to allow for 
uncertainty in its estimation, the modes are strongly separated for CA 
and CV falling below and above the threshold for good microstructural 
quality respectively. Fig. A10c in the Supplementary material shows 
that the difference in Total Porosity for the two management systems 
at the lower depth is very marked in the bootstrapped distributions.

Despite the difference in the 𝜃s parameter for the CA and CV soils 
at 10–20 cm, the difference in the plant-available water capacity are 
very small (0.11 and 0.10 for CV and CA respectively) and both are 
interpreted as ‘poor’. The modes of the bootstrapped distributions for 
this index do fall either side of the threshold between ‘poor’ and 
‘limited’, but are not strongly separated (Fig A2). Again, on examining 
the fitted SWRC (Fig.  4c) it is clear that the main difference between 
the SWRC for the two management systems is at the smaller tensions, 
where water is not retained against gravity.

The soil at Domboshava has the largest proportion of sand in the 
mineral fraction of the soils in this study and the smallest baseline 
organic carbon content (Table A1 in the Supplementary Material). The 
larger porosity of the soil (10–20 cm) under the CV treatment may 
indicate that tillage is needed to avoid soil compaction, although the 
CA treatment may be beneficial for other aspects of soil quality. This 
would be consistent with studies on other sites with coarse-textured 
soils in Zimbabwe (66%–75% sand) where runoff from soils under CA 
was greater than from conventionally cultivated soils (Baudron et al., 
2012).

The fitted models for Chitedze are shown in Fig.  5(a,c) and con-
vergence plots and NPDE plots are shown in Figs. A13, A14 and A15 
(0 – 5 cm) and A16, A17 and A18 (5 – 10 cm) in the Supplementary 
Material. The NPDE plots do suggest some lack of fit and Fig.  5(a) shows 
most observations above the function for the drier soils at 0 – 5 cm, 
and poor fit at tensions of −20 and -50 kPa which bound the steepest 
portions of the curve for soils at 5–10 cm.

There was no evidence for differences between the SWRC for the 
CA and CV plots at Chitedze, for either 0 –5 cm or 5 – 10 cm (Table 
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Fig. 4. Zimbabwe, Domboshava: (a) Measured points on the water retention curve (0–10 cm) with final (pooled) model and (b) corresponding pore volume distribution (c) 
Measured points on the water retention curve (10–20 cm) with models by treatment and (d) corresponding pore volume distributions.

Fig. 5. Malawi, Chitedze: (a) Measured points on the water retention curve (0 – 5 cm) with final (pooled) model and (b) corresponding pore volume distribution (c) Measured 
points on the water retention curve (5 – 10 cm) with final (pooled) model and (d) corresponding pore volume distribution.

Geoderma 461 (2025) 117431 
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Table 3
Soil quality measures computed from the fitted water retention curves following Dexter (2004) and Reynolds et al. (2007).
 (a). Zambia, Liempe farm
 Variable 0–5 cm 5–10 cm
 Joint model CA CV

 Value Category Value Category Value Category  
 Dexter’s 𝑆 0.041 Good µsq 0.051 Good µsq 0.04 Good µsq  
 Total porosity 0.42 0.41 0.38  
 Macroporosity 0.1 Undegradedb 0.12 Undegradedb 0.08 Undegradedb 
 Relative water capacityc 0.5 Suboptimal 0.40 Suboptimal 0.50 Suboptimal  
 Available water capacityc 0.11 Limited 0.06 Poor 0.06 Poor  
 Air capacityc 0.21 Adequated 0.23 Adequated 0.20 Adequated  
 (b). Zimbabwe, Domboshava
 Variable 0–10 cm 10–20 cm
 Joint model CA CV

 Value Category Value Category Value Category  
 Dexter’s 𝑆 0.033 Poor µsq 0.031 Poor µsq 0.036 Good µsq  
 Total porosity 0.31 0.30 0.33  
 Macroporosity 0.06 Undegradedb 0.06 Undegradedb 0.06 Undegradedb 
 Relative water capacity 0.50 Suboptimal 0.50 Suboptimal 0.50 Suboptimal  
 Available water capacityc 0.11 Limited 0.10 Poor 0.11 Poor  
 Air capacityc 0.17 Adequated 0.16 Adequated 0.18 Adequated  
 (c). Malawi, Chitedze
 Variable 0–5 cm 5–10 cm
 Joint model Joint model
 Value Category Value Category  
 Dexter’s 𝑆 0.16 Good µsq 0.031 Poor µsq  
 Total porosity 0.50 0.30  
 Macroporosity 0.06 Undegradedb <0.01 Degraded  
 Relative water capacity 0.60 Suboptimal 0.50 Optimal  
 Available water capacityc 0.15 Limited 0.10 Limited  
 Air capacityc 0.17 Adequated 0.16 Adequated  
a Microstructural quality.
b For medium to fine-textured soils.
c Assuming that field capacity is equivalent to −33 kPa.
d For all soils.
Fig. 6. Histograms of soil quality measures evaluated on bootstrap sample from the water retention curves from Zambia, Liempe farm, under contrasting treatments, depth 0 – 5 
cm.
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Fig. 7. Histograms of soil quality measures evaluated on bootstrap sample from the water retention curves from Zambia, Liempe farm, under contrasting treatments, depth 5 – 
10 cm.

Fig. 8. Green-Ampt simulation for 24-h rainfall event with van Genuchten parameters for conventionally cultivated soil, Zambia, Liempe Farm.

Geoderma 461 (2025) 117431 
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Fig. 9. Green-Ampt simulation for 24-h rainfall event with van Genuchten parameters for soil under conservation tillage, Zambia, Liempe Farm.
3). Fig.  5 shows that, at both depths the pore volume distributions 
are much narrower than at either Liempe farm or Domboshava. The 
0 – 5 cm depth interval shows good microstructure with undegraded 
macroporosity and adequate air capacity. However, the plant-available 
water capacity is limited, and the relative water capacity is suboptimal 
(too small). At the 5 – 10 cm depth the microstructure is poor and 
the macroporosity is degraded. As in the shallower interval, the rel-
ative and plant-available water capacities are suboptimal and limited 
respectively and the air capacity is adequate. For physical properties 
other than macroporosity and air capacity the conditions are better at 
Chitedze than at the other sites, although indistinguishable between 
the CA and CV treatments. This may reflect the larger clay content 
and larger baseline organic carbon content in the soils at the Chitedze 
experiment.

3.2. Green-Ampt simulation of infiltration with inferred parameters

The outputs of the Green-Ampt model, for a common rainfall event, 
differ markedly between the sites. The largest effect of CA versus CV is 
seen with the SWRC parameters for Liempe farm, with more infiltration 
expected under CA. At Domboshava the overall infiltration is less than 
at Liempe, and there is no treatment effect. Infiltration is smallest at 
Chitedze, which has markedly more heavy-textured soil. Again, the 
bootstrap resampling allows us to quantify and assess the effects of 
uncertainty on the model outputs.

The results of the Green-Ampt simulation of water infiltration over 
a 24-h period under the two treatments are shown in Figs.  8 and
9. As might be expected from the greater macroporosity of the soil 
under CA, the infiltration is greater under this treatment, very nearly 
equal to runoff over the 24-h period, whereas under CV, runoff exceeds 
infiltration. Accounting for the effect of uncertainty in the estimated 
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parameters of the SWRC by running the model with 1000 bootstrap 
resamples of the parameters produces distinct distributions for total 
runoff (Fig.  10), overlapping but with interquartile ranges separated.

Fig. A21 in the Supplementary Material shows the results for the 
Green-Ampt simulation using the CA parameter set for Domboshava. In 
fact, the results for CA and CV are indistinguishable. The figure shows 
that the wetting front only just reaches 10 cm in the period of the 
simulated response to the rainfall events, and so the infiltration all takes 
place in the depth interval where no difference was found between the 
SWRC. There is less infiltration than in the simulation for the Liempe 
farm site.

The Green-Ampt simulation with the SWRC parameters estimated 
for the Chitedze experiment (Fig. A24) shows very limited infiltration 
(the wetting front only goes to just over 1 cm depth) and most of the 
precipitation runs off.

Fig. A26 in the supplementary material shows the effect of the 
initial water content on the simulated cumulative infiltration and final 
depth to the wetting front for each of the three sites, differentiating the 
treatments at Liempe farm. The effect on cumulative infiltration was 
very small, with a slight reduction with increasing water content for 
Liempe farm, more pronounced for the CV treatment. There is an effect 
of initial water content on the final depth of the simulated wetting front 
for the Liempe and Domboshava sites, with deeper wetting with larger 
initial water content. This is consistent with the ‘plug flow’ model, with 
the infiltration displacing water down the profile.

4. Discussion and conclusions

This study has shown how the linear mixed model, estimated by the 
SAEM algorithm, can be used to assess evidence for differences between 
the SWRC of soils under different management systems. The method 
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Fig. 10. Histograms showing cumulative runoff in the Green-Ampt model for 24-h 
rainfall event with bootstrap samples of the van Genuchten parameters for soil under 
(a) conventional cultivation and (b) conservation tillage, Liempe Farm, Zambia. On 
each histogram the solid coloured symbol shows the median of the simulated values 
(5.9 and 6.5 cm for CA and CV respectively) and the shaded coloured bars show the 
inter-quartile ranges.

has been applied to data from three experiments to examine evidence 
for differences in parameters of the SWRC under local CA and CV man-
agement systems. This is an advance over previous work to evaluate 
treatment effects on water retention which treat estimated parameters 
or predicted water content at specified tensions as observations in an 
analysis separate from the estimation of the SWRC parameters (e.g. Eze 
et al., 2020; Abu and Abubakar, 2013). The same approach could be 
used to compare the SWRC of unmanaged soils, for example when 
considering the impact of soil variation on information requirements 
to model water dynamics at catchment scale.

The SWRC parameters are estimated with uncertainty because of 
the variation of the soil within management systems, or soil classes 
of interest. This will arise from short range variation in soil texture 
and organic carbon content, and in processes such as root development 
or the activity of mesofauna which affect the soil macroporosity. In 
the face of this variation the LMM approach allows us to evaluate the 
evidence for differences in the SWRC attributable to management or 
to paedogenetic differences between soil classes. The SAEM algorithm 
also allows us to generate samples from the joint distribution of the 
SWRC parameters which can be used to evaluate the uncertainty of soil 
quality indices inferred from the SWRC, and, as demonstrated in this 
paper, to examine how this uncertainty propagates through non-linear 
process models to evaluate the uncertainty in predicted outcomes, 
here the runoff computed by the Green-Ampt model for a soil with 
heterogeneous layers.

In some cases at Chitedze and Domboshava we noted some poorer 
fits of the Van Genuchten SWRC function at tensions near the gap 
between those measured (wet end) on intact soil cores and those mea-
sured (dry end) on disaggregated soil in pressure vessels. This might 
13 
reflect some inconsistency between the results from the two methods, 
which could be a matter for further investigation.

Having estimated SWRC parameters, and identified differences
which can be detected between soil management practices, we have 
shown how the fitted SWRC functions can be used to compute pore 
size distributions and soil physical quality indices to interpret those 
differences. The bootstrap resampling of the SWRC parameters can be 
used to find distributions of the soil quality indices which shows how 
uncertainty in the SWRC estimation affects our conclusions. Similarly, 
the Green-Ampt model for water infiltration into layered soil can be 
used to explore the implications of differences in the SWRC for prac-
tically important effects, and again the implications of the uncertainty 
in the parameter estimates can be assessed.

The second objective of this paper was to examine differences 
between the SWRC under CA and CV treatments at the three exper-
iments. We found evidence for differences in the SWRC between CA 
and CV in some conditions at Liempe Farm (5–10 cm) and Domboshava 
(10–20 cm) but not at Chitedze.

This lack of consistency between the sites is not surprising. First, 
there are differences between the baseline soil conditions at the three 
sites (the soil texture at Domboshava is sandier than at the others, for 
example, and the organic content of the soil at Chitedze is larger (See 
Table A1 in the Supplementary material). Furthermore, the treatments 
at each site, and the depths at which soil samples were collected for 
SWRC measurements, were selected to address local questions rather 
than for consistency between sites.

Considering each experiment in turn, the following observations can 
be made. First, although the Liempe experiment was the most recent, 
it was there that we saw the biggest differences in the SWRC between 
CA and CV, and so in the pore-size distributions and modelled rainfall 
infiltration. It is interesting to note that the soil at this site was known 
to be particularly subject to structural limitations, and interesting that 
effects of the CA treatment could be seen over a relatively short period. 
The modelling provided evidence that these effects could be expected 
to have some effect on water infiltration into the soil. However, the 
plant-available water capacity was more or less the same under both 
treatments because the differences in the SWRC curve were seen at 
tensions where water is not retained against gravity. This should be 
a warning against simple generalizations that a treatment, be it CA or 
any other regenerative practice, ‘improves’ soil physical quality. There 
may be different effects (and conceivably contradictory effects) over 
different pore-size intervals, and in the Liempe case infiltration was 
improved but water retention was not. This shows the importance of 
estimating key soil physical properties from measurements, such as pa-
rameters of the SWRC. These are more informative than measurements 
of properties such as the volumetric or gravimetric water content of 
the soil at an unknown and arbitrary matric potential. There are also 
potentially useful for process modelling.

Second, at Domboshava a difference was seen in the water retention 
at 10–20 cm, but this was in the opposite direction to the effect at 
Liempe farm (porosity was larger under CV than CA). The Domboshava 
site has the lightest-textured soils (sandy loam) with 74% sand and just 
0.6% organic carbon Table A1). The scope to build soil organic carbon 
on these soils is limited, even with large inputs of crop residues, so 
structural development is unlikely. It is, perhaps, not surprising that 
greater macroporosity occurs in the conventionally cultivated soils, 
given that scope to develop more stable macroporosity around root 
channels or other biopores is probably limited in such low-carbon soils.

At Chitedze, although the CA practices have been in use for longer 
than at either of the other two sites, there was no evidence for a 
difference in the SWRC at either depth (and some physical properties 
such as plant-available water capacity) are poor under both treatments 
regardless of the long period of CA practice. This underlies the impor-
tance of not making generalizations about the impact of CA without 
considering local conditions.
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The code used for these analyses is available from the following 
link along with a demonstration R script which uses data on the SWRC 
of two soil classes (Solonetz and Nitosols according to World Refer-
ence Base (1998) measured in Kenya. The data were obtained from the 
WOSIS data base (Batjes et al., 2016) and had been published with a 
CC-BY-NC licence. https://github.com/rmlark/Soil_Water_Retention.
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