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Introduction: In the temperate grasslands of the UK, forage quality is a key 
factor influencing both animal performance and environmental impact. Because 
forage quality strongly affects rumen fermentation, improving it can reduce 
enteric methane emissions and mitigate animal nutritional stress. However, 
large-scale monitoring of forage quality remains limited due to the reliance 
on destructive, labor-intensive, and costly sampling methods. Remote sensing 
offers a promising alternative for scalable monitoring.
Methods: We explored an indicative approach combining optical remote sensing 
(Sentinel-2) with random forest regression (RFR) models to predict four critical 
forage quality attributes: crude protein (CP), water-soluble carbohydrates (WSC), 
neutral detergent fiber (NDF), and acid detergent fiber (ADF). Calibration and 
validation were performed using >9,500 georeferenced observations collected 
between 2020 and 2022 at the North Wyke Farm Platform in southwest UK. 
Forage quality was measured using near-infrared (NIR) sensors mounted on 
agricultural machinery across paddocks containing permanent and improved 
pastures. Sentinel-2 spectral predictors included visible, NIR, and red-edge 
bands, and model performance was evaluated using R² and RMSE metrics.
Results: Model performance was strong across all four forage quality attributes, 
with R² values ranging from 0.77 to 0.86 and consistently low RMSE values, 
indicating high predictive accuracy. Red-edge and NIR wavelengths were the 
most influential predictors. Improved pastures generally exhibited higher forage 
quality—characterized by lower ADF and higher WSC concentrations—than 
permanent pastures. Model-predicted seasonal changes were modest, whereas 
spatial contrasts between paddocks were much more pronounced.
Discussion: The calibrated models are suitable for forage systems with species 
composition and quality ranges similar to those represented in our dataset 
but should not be directly applied to other forage types without recalibration. 
Overall, this work demonstrates the potential of Sentinel-2 remote sensing 
combined with machine-learning approaches for tolerably accurate, large-
scale forage quality monitoring. Such advancements could help improve grazing 
management, support nutritional planning, and contribute to efforts aimed at 
reducing methane emissions from livestock systems.
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1 Introduction

In temperate regions worldwide, grazing-based livestock production 
supplies a substantial share of high-quality animal protein and dairy 
products (1). Forage quality is a key determinant of animal productivity 
and the environmental footprint (2, 3). In the face of climate change, 
temperate grasslands are emerging as crucial for food security. Their 
unique ability to utilize fibrous materials enables sustainable production 
where other systems may struggle. Detailed monitoring of forage quality 
dynamics is thus essential to enhance animal performance while 
minimizing environmental impacts (4–7). This study focuses on 
temperate grasslands in the United Kingdom, providing a context where 
pasture-based livestock production is predominant and forage quality 
monitoring is critical for sustainable management. This requires 
addressing a fundamental challenge in grasslands—capturing changes in 
key forage quality attributes across both time and space with 
high frequency.

At least four forage quality attributes can be considered critical for 
animal performance and environmental outcomes: crude protein 
(CP), water-soluble carbohydrates (WSC), and the fiber fractions 
neutral detergent fiber (NDF) and acid detergent fiber (ADF). Optimal 
CP levels enhance feed conversion efficiency via rumen microbial 
synthesis, while excess CP leads to nitrous oxide (N₂O) emissions and 
nitrate leaching; mismatches with WSC can also increase methane 
(CH₄) production through inefficient fermentation (8–12). Several 
authors (8–12) showed that high WSC levels enhance fiber 
digestibility, leading to greater weight gain and milk production. In 
contrast, high WSC levels enhance fiber digestibility, leading to greater 
weight gain and milk production. These authors (8–12) also found 
that WSC-rich diets reduce the acetate:propionate ratio in rumen 
fermentation, favoring propionate, a less methanogenic pathway and 
potentially lowering enteric CH₄ emissions per unit of animal product. 
NDF represents the structural fraction of the plant that limits 
voluntary dry matter (DM) intake. Its digestibility depends on lignin 
content and microbial activity in the rumen (13, 14). Moderate NDF 
levels are necessary to maintain rumen motility, but high levels reduce 
intake and passage rate, limiting animal performance. ADF includes 
the least digestible forage components (cellulose and lignin) and is a 
direct predictor of DM digestibility. High ADF levels reduce overall 
digestibility, lower energy availability, and increase CH4 emissions per 
unit of metabolizable energy (13). Indeed, digestibility metrics such 
as organic matter digestibility (OMD) or dry matter digestibility 
(DMD) are often derived from ADF and NDF values, highlighting the 
integrative role of these attributes in estimating overall forage quality.

Traditional prediction of these attributes relies on destructive, 
costly lab analysis with limited scale (15). Machinery-mounted NIR 
sensors provide high-resolution alternatives (≈1.5 m) during harvests. 
One such system is the John Deere HarvestLab™ 3,000, which 
performs real-time NIR-based measurements of forage constituents 
during harvest. It operates using calibration curves developed in 
laboratory settings, matched to the reflectance spectra of the crop 
material. The system is widely used in commercial agriculture and has 
been certified for accuracy in dry matter estimation by independent 

organizations such as the Deutsche Landwirtschafts-Gesellschaft, 
DLG. Sentinel-2 satellite observations, from the visible, red-edge and 
NIR bands, show strong potential as predictors of forage biochemistry 
(6, 16–21). Spectral bands in the visible, red, red-edge, and NIR regions 
(bands 2, 3, 4, 5, 6, 7, 8, and 8A) capture variations in canopy structure 
and composition, which can influence livestock post-ingestive 
behavioral responses. However, calibrating and validating satellite 
observations requires reliable and representative reference data.

This study aims to calibrate and validate random forest regression 
(RFR) models for predicting four key forage quality attributes (CP, 
WSC, ADF, and NDF) using NIR-harvester data. It also identifies key 
Sentinel-2 spectral portions for predictions, enabling better grazing 
decisions that enhance animal welfare by reducing nutritional stress. 
Models were developed for the agroecological conditions of southwest 
UK, trained with 70% of the available data and validated with the 
remaining 30%, using an optimized RFR configuration. This 
integrated approach is designed to support accurate and cost-effective 
forage monitoring, with potential applications in pasture management, 
forage harvest planning, and precision livestock nutrition.

2 Materials and methods

2.1 Ethics statement

No animal studies are presented in this manuscript. No ethical 
clearance was required as the study did not involve direct 
animal experimentation.

2.2 Site

The study was conducted at the North Wyke Farm Platform 
(NWFP), located in southwest England, UK (50°46′12″N, 3°54′05″W), 
at an elevation ranging from 120 to 190 meters above sea level (22). 
The region has a temperate humid climate, with an average annual 
precipitation of 1,031 mm (range: 705–1,361 mm) and average daily 
minimum and maximum temperatures of 6.8 °C and 13.5 °C, 
respectively, for the period 1982–2019 (23). The predominant soils 
belong to the Hallsworth (Dystric Gleysol) and Halstow (Gleyic 
Cambisol) series, characterized by a moderately stony clay loam 
surface layer (~36% clay) over a denser mottled clay subsoil (~60% 
clay), derived from Carboniferous rocks (23).

The NWFP comprises 63 ha with contrasting pasture treatments: 
permanent (Green farmlet) and improved (Blue farmlet) pastures, 
representing typical temperate livestock systems (24). The study 
focused on data from 2020–2022 (24). In our analysis, the forage 
quality data used for RFR calibration and validation came exclusively 
from the two pasture types within the Green and Blue farmlets—
permanent pastures dominated by Lolium perenne L. (Green) and 
improved pastures composed of Lolium perenne L. and Trifolium 
repens L. (Blue). These pasture systems represent typical livestock 
production systems in temperate environments (24).
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2.3 Data

Ground reference data were obtained from a NIR sensor mounted 
on a John Deere forage harvester, while the remote spectral data were 
derived from Sentinel-2 satellite imagery. The NIRS sensor used in this 
study was the John Deere HarvestLab™ 3,000, which employs 
proprietary calibration models developed from thousands of 
laboratory-analyzed forage samples. These calibrations are embedded 
in the device and benchmarked against wet-chemical reference 
methods, as validated by independent testing (DLG, calibration model 
LKS 04/18).1 The sensor reports forage constituents including dry 
matter, crude protein (CP), neutral detergent fiber (NDF), acid 
detergent fiber (ADF), and water-soluble carbohydrates (WSC), 
primarily on a dry matter basis. Moisture content is also measured 
directly, allowing conversion to fresh matter values if needed. While 
the calibration specifications (e.g., precision, sensitivity) are proprietary, 
the sensor has been validated for field use and shows performance 
comparable to laboratory standards. These calibrations were used to 
generate reference values for model training and evaluation. The sensor 
operates in the NIRS range (1,100–2,500 nm) and is integrated into the 
harvester’s monitoring system, allowing data to be recorded at an 
approximate spatial resolution of 1.5 meters in the direction of travel. 
This enables detailed characterization of within-paddock variability.

The forage quality data for the NWFP’s Green and Blue farmlets 
were collected during the 2020, 2021, and 2022 harvest campaigns, at 
two points in the year: a first harvest in late May or early June, and a 
second in mid to late August. All sampled paddocks were managed for 
silage production during the study period. No grazing occurred prior 
to harvest, ensuring that biomass accumulation reflected ungrazed 
growth. This management context is relevant for interpreting forage 
composition, as it tends to result in higher biomass and more uniform 
canopy structure compared to grazed systems. Data were automatically 
recorded by the harvester’s integrated system, which includes high-
precision GPS, and later downloaded from the John Deere online 
platform. Each harvester observation represented an approximate area 
of 4–5 m2, based on a 1.5 m resolution in the direction of travel and 
the width of the cutting head. Geolocation accuracy was ensured 
through triangulation with a local ground station at the North Wyke 
head office, providing sub-meter precision for all georeferenced 
points. For data analysis, the data were exported in shapefile format. 
A cleaning process was applied, including the removal of observations 
with missing values for any attribute and the exclusion of outliers 
identified through variable relationship inspection. NIRS 
measurements were performed post-harvest using a sensor mounted 
on a forage harvester. Therefore, the spectral data used for calibration 
represent mowed biomass rather than canopy-level estimates.

Sentinel-2 data were extracted via Google Earth Engine (25), 
selecting the closest low-cloud image (<20% cover, typically within 
8 ± 5 days prior, range = 3–13 days) for each NIR point. Bands 
B2–B8A and B11 were used. The extraction was performed via point 
sampling on each selected image, and the spectral values were linked 
to each forage quality sampling point from the harvester. This 
procedure enabled the association of satellite spectral data with 

1  https://www.dlg.org/en/tests/agricultural-technology-and-farm-inputs/

test-reports/test-john-deere-harvestlab-3000-kalibrationsmodell-lks04-18

high-resolution ground reference data, facilitating the calibration of 
forage quality prediction models. Each Sentinel-2 pixel typically 
aggregated between 12 to 14 NIR observations.

2.4 Data analysis

To predict forage quality attributes from satellite data, RFR models 
were fitted using functions available in the `randomForest` package in 
R. Independent RFRs were developed for each of the four attributes: CP, 
WSC, NDF and ADF. The dataset included a total of 9,531 observations, 
which were randomly split into 70% for training and 30% for validation. 
The predictor variables included the optical bands from Sentinel-2 (B2, 
B3, B4, B5, B6, B7, B8, and B8A). Each RFR was trained using 2,000 
trees and five randomly selected predictors (mtry = 5) at each split, 
values determined through manual tuning that optimized predictive 
accuracy and model stability. The relative importance of each predictor 
variable was assessed using the mean decrease in the accuracy metric 
and visualized through bar plots. Model validation was performed on 
the test dataset by comparing predicted values with observed values 
using scatter plots and calculating the Pearson correlation coefficient (r). 
Hyperparameter tuning was performed manually, without formal grid 
or random search. Multiple configurations were evaluated heuristically, 
and the final model parameters were selected based on performance on 
independent test datasets. In addition to Pearson correlation, we 
calculated R2, RMSE, and MAE to provide a more comprehensive 
evaluation of model accuracy and generalization, as shown in Figure 1.

3 Results

The four forage quality attributes predicted by the John Deere 
system showed marked variability across the six NWFP paddocks 
(Figure 2). WSC ranged fourfold (4–16%), CP twofold (8–16%), NDF 
1.5-fold (40–60%), and ADF 1.4-fold (26–36%). These datasets 
provided the target variables for the RFR models. These datasets, 
reflecting potential shifts in stem-to-leaf ratios and selectivity in 
grazing, provided the target variables for RFR models.

For the fitted Random Forest Regression (RFR) models, Sentinel-2 
NIR (S2_B8), red-edge (S2_B6, B7, B8A), and visible (S2_B4) bands 
were most relevant. SWIR band B11 was not influential, possibly due 
to limited moisture variability in this system (despite literature support 
in drier regions), as shown by the variable importance plots (Figure 3). 
In the case of ADF, the red-edge bands (S2_B6, B7) and narrow NIR 
(S2_B8A) contributed most to the model’s performance. For NDF, a 
combination of red-edge and NIR bands were the most influential. For 
WSC (sugars), the red-edge band S2_B6 and the red band (S2_B4, in 
the visible spectrum) dominated in importance, indicating a strong 
relationship between these wavelengths and soluble carbohydrate 
content. Finally, for CP (crude protein), variable importance was more 
evenly distributed among visible (S2_B4), red-edge (S2_B6), and NIR 
(S2_B8) bands, suggesting greater spectral complexity in its prediction 
using RFR.

The study RFRs, informed by satellite data, showed high predictive 
power for all four forage quality attributes as indicated by the 
performance metrics (Figure 4). Among traits, CP exhibited the best 
overall performance (R2 = 0.86, RMSE = 0.68, MAE = 0.44), followed 
by WSC (R2 = 0.81, RMSE = 1.11, MAE = 0.77) and NDF (R2 = 0.84, 
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FIGURE 1

Non-spatial and spatial distributions of the four key forage quality attributes predicted using near-infrared (NIR) sensors mounted on farm machinery 
(harvesters) by the John Deere system, at six paddocks of the North Wyke Farm Platform (NWFP). The violin plots (left) show the distribution of values for: 
(A) acid detergent fiber (ADF), (B) neutral detergent fiber (NDF), (C) Sugar (water-soluble carbohydrates), and (D) crude protein (CP). The maps (right) 
display the spatial variation of each attribute both within and across paddocks. Warm colors indicate higher values. Maps represent the aggregation of all 
NIRS measurements collected between 2020 and 2023, across multiple sampling events. All values are expressed on a dry matter basis.

FIGURE 2

Relative (variable) importance of different Sentinel 2 spectral bands for the random forest regression (RFR) prediction of four forage quality 
components: (A) Acid Detergent Fiber (ADF), (B) Neutral Detergent Fiber (NDF), (C) Water-Soluble Carbohydrates (WSC), and (D) Crude Protein (CP).
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RMSE = 1.36, MAE = 0.87). ADF predictions were also robust 
(R2 = 0.77, RMSE = 1.10, MAE = 0.73), though slightly more dispersed 
at extreme values. Specifically, the RMSE values indicate typical 
prediction errors of approximately 0.7 percentage points for CP, 1.1 
for WSC, 1.1 for ADF, and 1.4 for NDF. These error levels represent 
<10% of the observed range for each attribute, confirming the models’ 
strong predictive accuracy for practical forage quality monitoring. All 
Random Forest model files (.rds) and accompanying documentation 
are available through the Zenodo repository.2

Seasonal dynamics of forage quality attributes predicted by the 
RFR models revealed distinct patterns between the two functional 
communities, namely the permanent and improved pastures of the 
NWFP (Figure 1). ADF concentration followed a U-shaped pattern, 
with minimum values around mid-year and peaks at the beginning 
and end of the year. In improved pastures, lower ADF levels were 
maintained from May to August, indicating better forage quality for 
this structural component. NDF also showed noticeable seasonal 
fluctuations, with peaks in April, July, and October, and a gradual 
decline toward the end of the year. Permanent pastures exhibited 
slightly higher NDF values for most of the year, except during the 
October peak. In contrast, WSC and CP showed limited seasonal 
variation, remaining relatively stable throughout the year. Across all 
attributes, the shaded interquartile ranges revealed substantial 
temporal and spatial variability, particularly for ADF and NDF during 

2  https://doi.org/10.5281/zenodo.17543884

spring and early summer, reflecting heterogeneous canopy structures 
and phenological stages among fields. Conversely, WSC and CP 
displayed narrower variability bands during mid-summer, suggesting 
more uniform forage quality at the peak of vegetative growth.

Spatial patterns of predicted forage quality attributes across the 
study area showed marked heterogeneity among fields and greater 
than seasonal shifts (Figure 5). Spatial variability was primarily 
expressed across fields rather than within them, suggesting that 
differences in management and vegetation composition were main 
drivers of spatial heterogeneity in predicted quality attributes. This 
field-level variability remained consistent throughout the months, 
underscoring the ability of Sentinel-2 spectral data combined with 
RFR modeling to detect management-driven contrasts in forage 
quality across the landscape. Seasonal variation suggested that in April, 
higher ADF and NDF values were concentrated in the central and 
northern sectors of the study area. By June, both structural components 
declined, reflecting the mid-season increase in forage quality. In 
contrast, WSC and CP exhibited spatially variable but generally higher 
values in June, coinciding with the peak of the growing season. In 
September, ADF and NDF increased again, while WSC and CP 
declined, indicating a late-season reduction in forage quality.

4 Discussion

Sentinel-2 data combined with Random Forest regression (RFR) 
accurately predicted the four key forage quality attributes (CP, WSC, 

FIGURE 3

Relationship between observed (John Deere predicted) and random forest regression (RFR) (satellite-informed) predicted values for four forage quality 
attributes: (A) Acid Detergent Fiber (ADF), (B) Neutral Detergent Fiber (NDF), (C) Water-Soluble Carbohydrates (WSC), and (D) Crude Protein (CP). Each 
panel shows a scatter plot with the Pearson correlation coefficient (r) between observed values (y-axis) and values predicted by the RFRs (x-axis), using 
independent validation data.
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ADF, and NDF), achieving validation statistics comparable to those 
reported in previous studies (17–21). The novelty of this work lies in 
the integration of satellite data with near-infrared reference 
information collected directly from a machinery-mounted NIRS 
system, enabling large-scale calibration under operational farm 
conditions. This highlights Sentinel-2’s robustness for estimating 
forage quality in grasslands of the United Kingdom, consistent with 
results observed in other temperate regions (20, 21). The approach is 
therefore applicable to forage systems with species composition and 
quality attribute ranges like those represented in our dataset. 
Extrapolation to environments with markedly different seasonal 
dynamics or forage types—such as those where crude protein regularly 
falls below 6%—would exceed the calibration range and is 
not recommended.

The variable importance analysis revealed that red-edge, near-
infrared (NIR), and shortwave infrared (SWIR) bands (B5, B6, B7, 
B11, and B12) were the most influential for estimating the four forage 
quality attributes. This pattern is consistent with previous studies 
emphasizing the relevance of these spectral regions for assessing 
structural and chemical properties of vegetation, including lignin, 
cellulose, and soluble carbohydrates (20, 21). In particular, the 
red-edge band B7 showed the highest contribution, supporting earlier 
findings that identify it as a key predictor of dry matter and nutrient 
content (21). The combined role of red-edge and SWIR wavelengths 
enhances the prediction of both biomass and forage quality by 
reducing reflectance saturation in dense canopies (19, 20).

The seasonal dynamics of forage quality attributes showed very 
small amplitudes (<1 percentage point) compared to the variability 
observed during calibration (e.g., ADF ranging from 13 to 57% or CP 
from 6 to 36%). This low variability suggests that forage quality in this 
system is highly stable throughout the year, despite phenological 
changes. However, the spatial patterns revealed that fine-scale 
variability in forage quality across fields exceeded the average intra-
annual variation observed within individual pastures. Such strong 
spatial contrasts likely reflect underlying heterogeneity in management 
and potentially factors associated with topographic positioning, clearly 
associated with SOC (26). This pattern is like that observed under 
similar pastures composition in Southern Australia (27). Moreover, the 
average values of ADF (~29%), NDF (~50%), and CP (~13%) fall 
within the upper range compared to global literature, where high-
quality forages typically present ADF < 35%, NDF < 50%, and CP 
between 8–18% (28). Rather than implying broad management 
recommendations, we emphasize that spatially explicit information 
systems like this can support adaptive grazing strategies, for example 
by identifying areas of higher forage quality instead of relying on fixed 
rotations. It should be noted that our dataset does not include very low 
biomass levels typical of heavily grazed swards, such conditions often 
correspond to younger tissues with higher nutritive value, meaning 
that excluding them could lead to a slight underestimation of forage 
quality in contexts where quality is already high globally (28). Although 
improved pastures showed slightly higher forage quality values, the 
differences were modest. This reflects the fact that the primary goal of 

FIGURE 4

Seasonal dynamics of forage quality attributes predicted by Random Forest Regression (RFR) models in two functional pasture communities: 
permanent and improved pastures. Median monthly values are shown for (A) Acid Detergent Fiber (ADF), (B) Neutral Detergent Fiber (NDF), (C) Water-
Soluble Carbohydrates (WSC), and (D) Crude Protein (CP). Lines represent the monthly medians, and shaded areas denote the interquartile range, 
summarizing the spatial and temporal variability in model predictions across the study area. Values integrate the 2020–2022 period, and the RFR 
models were trained using bi-seasonal field data collected during those years, capturing spatial, seasonal, and interannual variability in forage quality 
relevant to ruminant nutrition.
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the improved pasture system is not only to enhance nutritional value, 
but to reduce nitrogen inputs and improve environmental 
sustainability (29).

Beyond decision-support for grazing management, the availability 
of spatially explicit nutritional information also offers significant value 

for improving greenhouse gas (GHG) estimation frameworks in 
pasture-based systems. First, remote estimates of crude protein can 
support a better understanding of individual dry matter intake as a 
percentage of live weight, a key determinant of enteric methane 
production under Tier 2 methodologies (30). Second, forage digestibility 
directly influences methane emissions per unit of dry matter intake, 
thus defining emission intensity (g CH₄ kg−1 DMI). While our models 
do not predict digestibility directly, digestibility (%) can be derived from 
the predicted ADF and CP using established nutritional frameworks, 
such as the Digestibility (Van Soest) model (31) or the Digestibility 
(Dairy model) tailored to temperate production systems (32, 33). By 
combining satellite-predicted forage constituents with physiologically 
grounded digestibility equations, this approach has the potential to 
provide more realistic and spatially refined estimates of enteric methane 
emissions, thereby supporting climate-smart grazing strategies.

Although the satellite-based models presented here performed well 
within the conditions of this study, their transferability to other pasture 
systems must be approached with caution. Machine learning 
approaches such as Random Forest rely on the coverage of the 
calibration domain: predictions can become unreliable when applied 
to forage conditions, botanical compositions, or management regimes 
that fall outside the biophysical space represented in the training data 
(34, 35). In our case, the observed ADF, NDF, and CP ranges align 
closely with those reported for temperate British pasture systems 
through national initiative known as GrassCheck GB (36), which 
supports confidence in our predictions. Nonetheless, broader adoption 
would require local calibration datasets to ensure validity under 
different livestock species, fertilization regimes, and climatic contexts. 
This highlights an important limitation of the current work but also a 
clear pathway toward operational scalability.

5 Conclusion

This study demonstrates the feasibility of integrating NIRS-
derived forage quality data with Sentinel-2 spectral information to 
model and map key nutritional attributes of pastures at landscape 
scale. By combining multi-year and bi-seasonal field measurements 
with machine learning techniques, we provide a framework for 
predicting crude protein, fiber fractions, and sugar content with high 
spatial and temporal resolution. These findings offer a scalable and 
cost-effective approach for satellite-based forage monitoring, with 
direct relevance to temperate humid agricultural pastures. The models 
developed here can support decision-making in pasture management, 
forage harvest planning, and precision livestock nutrition. More 
broadly, this work contributes to the advancement of remote sensing 
applications in Rangeland and Grassland ecology, enabling researchers 
and producers to better assess forage dynamics and nutritional value 
across space and time. The applicability of this approach is limited to 
forage systems with species composition and quality ranges like those 
represented in our dataset; extrapolation to markedly different 
environments would require additional calibration data.
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FIGURE 5

Spatial patterns of forage quality attributes predicted by Random 
Forest Regression (RFR) models derived from Sentinel-2 spectral 
data across the study area. Mean predictions for Acid Detergent Fiber 
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(WSC), and Crude Protein (CP) are shown for April, June, and 
September, integrating the 2020–2022 period. Each map represents 
the spatial distribution of model-predicted values averaged per 
month and attribute, highlighting spatial heterogeneity and seasonal 
shifts in forage quality. The RFR models were trained using bi-
seasonal field data collected during 2020–2022, allowing the 
predictions to capture both spatial and temporal variation relevant to 
ruminant nutrition.
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