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Introduction: In the temperate grasslands of the UK, forage quality is a key
factor influencing both animal performance and environmental impact. Because
forage quality strongly affects rumen fermentation, improving it can reduce
enteric methane emissions and mitigate animal nutritional stress. However,
large-scale monitoring of forage quality remains limited due to the reliance
on destructive, labor-intensive, and costly sampling methods. Remote sensing
offers a promising alternative for scalable monitoring.

Methods: We explored an indicative approach combining optical remote sensing
(Sentinel-2) with random forest regression (RFR) models to predict four critical
forage quality attributes: crude protein (CP), water-soluble carbohydrates (WSC),
neutral detergent fiber (NDF), and acid detergent fiber (ADF). Calibration and
validation were performed using >9,500 georeferenced observations collected
between 2020 and 2022 at the North Wyke Farm Platform in southwest UK.
Forage quality was measured using near-infrared (NIR) sensors mounted on
agricultural machinery across paddocks containing permanent and improved
pastures. Sentinel-2 spectral predictors included visible, NIR, and red-edge
bands, and model performance was evaluated using R? and RMSE metrics.
Results: Model performance was strong across all four forage quality attributes,
with R? values ranging from 0.77 to 0.86 and consistently low RMSE values,
indicating high predictive accuracy. Red-edge and NIR wavelengths were the
most influential predictors. Improved pastures generally exhibited higher forage
quality—characterized by lower ADF and higher WSC concentrations—than
permanent pastures. Model-predicted seasonal changes were modest, whereas
spatial contrasts between paddocks were much more pronounced.
Discussion: The calibrated models are suitable for forage systems with species
composition and quality ranges similar to those represented in our dataset
but should not be directly applied to other forage types without recalibration.
Overall, this work demonstrates the potential of Sentinel-2 remote sensing
combined with machine-learning approaches for tolerably accurate, large-
scale forage quality monitoring. Such advancements could help improve grazing
management, support nutritional planning, and contribute to efforts aimed at
reducing methane emissions from livestock systems.
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1 Introduction

In temperate regions worldwide, grazing-based livestock production
supplies a substantial share of high-quality animal protein and dairy
products (1). Forage quality is a key determinant of animal productivity
and the environmental footprint (2, 3). In the face of climate change,
temperate grasslands are emerging as crucial for food security. Their
unique ability to utilize fibrous materials enables sustainable production
where other systems may struggle. Detailed monitoring of forage quality
dynamics is thus essential to enhance animal performance while
minimizing environmental impacts (4-7). This study focuses on
temperate grasslands in the United Kingdom, providing a context where
pasture-based livestock production is predominant and forage quality
monitoring is critical for sustainable management. This requires
addressing a fundamental challenge in grasslands—capturing changes in
key forage quality attributes across both time and space with
high frequency.

At least four forage quality attributes can be considered critical for
animal performance and environmental outcomes: crude protein
(CP), water-soluble carbohydrates (WSC), and the fiber fractions
neutral detergent fiber (NDF) and acid detergent fiber (ADF). Optimal
CP levels enhance feed conversion efficiency via rumen microbial
synthesis, while excess CP leads to nitrous oxide (N,O) emissions and
nitrate leaching; mismatches with WSC can also increase methane
(CH,4) production through inefficient fermentation (8-12). Several
authors (8-12) showed that high WSC levels enhance fiber
digestibility, leading to greater weight gain and milk production. In
contrast, high WSC levels enhance fiber digestibility, leading to greater
weight gain and milk production. These authors (8-12) also found
that WSC-rich diets reduce the acetate:propionate ratio in rumen
fermentation, favoring propionate, a less methanogenic pathway and
potentially lowering enteric CH,4 emissions per unit of animal product.
NDF represents the structural fraction of the plant that limits
voluntary dry matter (DM) intake. Its digestibility depends on lignin
content and microbial activity in the rumen (13, 14). Moderate NDF
levels are necessary to maintain rumen motility, but high levels reduce
intake and passage rate, limiting animal performance. ADF includes
the least digestible forage components (cellulose and lignin) and is a
direct predictor of DM digestibility. High ADF levels reduce overall
digestibility, lower energy availability, and increase CH, emissions per
unit of metabolizable energy (13). Indeed, digestibility metrics such
as organic matter digestibility (OMD) or dry matter digestibility
(DMD) are often derived from ADF and NDF values, highlighting the
integrative role of these attributes in estimating overall forage quality.

Traditional prediction of these attributes relies on destructive,
costly lab analysis with limited scale (15). Machinery-mounted NIR
sensors provide high-resolution alternatives (=1.5 m) during harvests.
One such system is the John Deere HarvestLab™ 3,000, which
performs real-time NIR-based measurements of forage constituents
during harvest. It operates using calibration curves developed in
laboratory settings, matched to the reflectance spectra of the crop
material. The system is widely used in commercial agriculture and has
been certified for accuracy in dry matter estimation by independent
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organizations such as the Deutsche Landwirtschafts-Gesellschaft,
DLG. Sentinel-2 satellite observations, from the visible, red-edge and
NIR bands, show strong potential as predictors of forage biochemistry
(6, 16-21). Spectral bands in the visible, red, red-edge, and NIR regions
(bands 2, 3,4, 5, 6,7, 8, and 8A) capture variations in canopy structure
and composition, which can influence livestock post-ingestive
behavioral responses. However, calibrating and validating satellite
observations requires reliable and representative reference data.

This study aims to calibrate and validate random forest regression
(RFR) models for predicting four key forage quality attributes (CP,
WSC, ADEF, and NDF) using NIR-harvester data. It also identifies key
Sentinel-2 spectral portions for predictions, enabling better grazing
decisions that enhance animal welfare by reducing nutritional stress.
Models were developed for the agroecological conditions of southwest
UK, trained with 70% of the available data and validated with the
remaining 30%, using an optimized RFR configuration. This
integrated approach is designed to support accurate and cost-effective
forage monitoring, with potential applications in pasture management,
forage harvest planning, and precision livestock nutrition.

2 Materials and methods

2.1 Ethics statement

No animal studies are presented in this manuscript. No ethical
clearance was required as the study did not involve direct
animal experimentation.

2.2 Site

The study was conducted at the North Wyke Farm Platform
(NWEP), located in southwest England, UK (50°46'12"N, 3°54'05"W),
at an elevation ranging from 120 to 190 meters above sea level (22).
The region has a temperate humid climate, with an average annual
precipitation of 1,031 mm (range: 705-1,361 mm) and average daily
minimum and maximum temperatures of 6.8 °C and 13.5°C,
respectively, for the period 1982-2019 (23). The predominant soils
belong to the Hallsworth (Dystric Gleysol) and Halstow (Gleyic
Cambisol) series, characterized by a moderately stony clay loam
surface layer (~36% clay) over a denser mottled clay subsoil (~60%
clay), derived from Carboniferous rocks (23).

The NWFP comprises 63 ha with contrasting pasture treatments:
permanent (Green farmlet) and improved (Blue farmlet) pastures,
representing typical temperate livestock systems (24). The study
focused on data from 2020-2022 (24). In our analysis, the forage
quality data used for RFR calibration and validation came exclusively
from the two pasture types within the Green and Blue farmlets—
permanent pastures dominated by Lolium perenne L. (Green) and
improved pastures composed of Lolium perenne L. and Trifolium
repens L. (Blue). These pasture systems represent typical livestock
production systems in temperate environments (24).
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2.3 Data

Ground reference data were obtained from a NIR sensor mounted
on a John Deere forage harvester, while the remote spectral data were
derived from Sentinel-2 satellite imagery. The NIRS sensor used in this
study was the John Deere HarvestLab™ 3,000, which employs
proprietary calibration models developed from thousands of
laboratory-analyzed forage samples. These calibrations are embedded
in the device and benchmarked against wet-chemical reference
methods, as validated by independent testing (DLG, calibration model
LKS 04/18)." The sensor reports forage constituents including dry
matter, crude protein (CP), neutral detergent fiber (NDF), acid
detergent fiber (ADF), and water-soluble carbohydrates (WSC),
primarily on a dry matter basis. Moisture content is also measured
directly, allowing conversion to fresh matter values if needed. While
the calibration specifications (e.g., precision, sensitivity) are proprietary,
the sensor has been validated for field use and shows performance
comparable to laboratory standards. These calibrations were used to
generate reference values for model training and evaluation. The sensor
operates in the NIRS range (1,100-2,500 nm) and is integrated into the
harvester’s monitoring system, allowing data to be recorded at an
approximate spatial resolution of 1.5 meters in the direction of travel.
This enables detailed characterization of within-paddock variability.

The forage quality data for the NWFP’s Green and Blue farmlets
were collected during the 2020, 2021, and 2022 harvest campaigns, at
two points in the year: a first harvest in late May or early June, and a
second in mid to late August. All sampled paddocks were managed for
silage production during the study period. No grazing occurred prior
to harvest, ensuring that biomass accumulation reflected ungrazed
growth. This management context is relevant for interpreting forage
composition, as it tends to result in higher biomass and more uniform
canopy structure compared to grazed systems. Data were automatically
recorded by the harvester’s integrated system, which includes high-
precision GPS, and later downloaded from the John Deere online
platform. Each harvester observation represented an approximate area
of 4-5 m?, based on a 1.5 m resolution in the direction of travel and
the width of the cutting head. Geolocation accuracy was ensured
through triangulation with a local ground station at the North Wyke
head office, providing sub-meter precision for all georeferenced
points. For data analysis, the data were exported in shapefile format.
A cleaning process was applied, including the removal of observations
with missing values for any attribute and the exclusion of outliers
identified NIRS
measurements were performed post-harvest using a sensor mounted

through variable relationship inspection.
on a forage harvester. Therefore, the spectral data used for calibration
represent mowed biomass rather than canopy-level estimates.
Sentinel-2 data were extracted via Google Earth Engine (25),
selecting the closest low-cloud image (<20% cover, typically within
8 + 5 days prior, range = 3-13 days) for each NIR point. Bands
B2-B8A and B11 were used. The extraction was performed via point
sampling on each selected image, and the spectral values were linked
to each forage quality sampling point from the harvester. This
procedure enabled the association of satellite spectral data with

1 https://www.dlg.org/en/tests/agricultural-technology-and-farm-inputs/

test-reports/test-john-deere-harvestlab-3000-kalibrationsmodell-lks04-18
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high-resolution ground reference data, facilitating the calibration of
forage quality prediction models. Each Sentinel-2 pixel typically
aggregated between 12 to 14 NIR observations.

2.4 Data analysis

To predict forage quality attributes from satellite data, RFR models
were fitted using functions available in the ‘randomForest' package in
R. Independent RFRs were developed for each of the four attributes: CP,
WSC, NDF and ADE The dataset included a total of 9,531 observations,
which were randomly split into 70% for training and 30% for validation.
The predictor variables included the optical bands from Sentinel-2 (B2,
B3, B4, B5, B6, B7, B8, and B8A). Each RFR was trained using 2,000
trees and five randomly selected predictors (mtry = 5) at each split,
values determined through manual tuning that optimized predictive
accuracy and model stability. The relative importance of each predictor
variable was assessed using the mean decrease in the accuracy metric
and visualized through bar plots. Model validation was performed on
the test dataset by comparing predicted values with observed values
using scatter plots and calculating the Pearson correlation coefficient (r).
Hyperparameter tuning was performed manually, without formal grid
or random search. Multiple configurations were evaluated heuristically,
and the final model parameters were selected based on performance on
independent test datasets. In addition to Pearson correlation, we
calculated R?, RMSE, and MAE to provide a more comprehensive
evaluation of model accuracy and generalization, as shown in Figure 1.

3 Results

The four forage quality attributes predicted by the John Deere
system showed marked variability across the six NWFP paddocks
(Figure 2). WSC ranged fourfold (4-16%), CP twofold (8-16%), NDF
1.5-fold (40-60%), and ADF 1.4-fold (26-36%). These datasets
provided the target variables for the RFR models. These datasets,
reflecting potential shifts in stem-to-leaf ratios and selectivity in
grazing, provided the target variables for RFR models.

For the fitted Random Forest Regression (RFR) models, Sentinel-2
NIR (S2_B8), red-edge (S2_B6, B7, B8A), and visible (S2_B4) bands
were most relevant. SWIR band B11 was not influential, possibly due
to limited moisture variability in this system (despite literature support
in drier regions), as shown by the variable importance plots (Figure 3).
In the case of ADE the red-edge bands (S2_B6, B7) and narrow NIR
(S2_B8A) contributed most to the model’s performance. For NDF, a
combination of red-edge and NIR bands were the most influential. For
WSC (sugars), the red-edge band S2_B6 and the red band (S2_B4, in
the visible spectrum) dominated in importance, indicating a strong
relationship between these wavelengths and soluble carbohydrate
content. Finally, for CP (crude protein), variable importance was more
evenly distributed among visible (S2_B4), red-edge (S2_B6), and NIR
(S2_B8) bands, suggesting greater spectral complexity in its prediction
using RFR.

The study RFRs, informed by satellite data, showed high predictive
power for all four forage quality attributes as indicated by the
performance metrics (Figure 4). Among traits, CP exhibited the best
overall performance (R* = 0.86, RMSE = 0.68, MAE = 0.44), followed
by WSC (R® = 0.81, RMSE = 1.11, MAE = 0.77) and NDF (R? = 0.84,
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FIGURE 1

Non-spatial and spatial distributions of the four key forage quality attributes predicted using near-infrared (NIR) sensors mounted on farm machinery
(harvesters) by the John Deere system, at six paddocks of the North Wyke Farm Platform (NWFP). The violin plots (left) show the distribution of values for:
(A) acid detergent fiber (ADF), (B) neutral detergent fiber (NDF), (C) Sugar (water-soluble carbohydrates), and (D) crude protein (CP). The maps (right)
display the spatial variation of each attribute both within and across paddocks. Warm colors indicate higher values. Maps represent the aggregation of all
NIRS measurements collected between 2020 and 2023, across multiple sampling events. All values are expressed on a dry matter basis.
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FIGURE 2
Relative (variable) importance of different Sentinel 2 spectral bands for the random forest regression (RFR) prediction of four forage quality
components: (A) Acid Detergent Fiber (ADF), (B) Neutral Detergent Fiber (NDF), (C) Water-Soluble Carbohydrates (WSC), and (D) Crude Protein (CP).
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FIGURE 3
Relationship between observed (John Deere predicted) and random forest regression (RFR) (satellite-informed) predicted values for four forage quality
attributes: (A) Acid Detergent Fiber (ADF), (B) Neutral Detergent Fiber (NDF), (C) Water-Soluble Carbohydrates (WSC), and (D) Crude Protein (CP). Each
panel shows a scatter plot with the Pearson correlation coefficient (r) between observed values (y-axis) and values predicted by the RFRs (x-axis), using
independent validation data.

RMSE = 1.36, MAE =0.87). ADF predictions were also robust
(R*=0.77, RMSE = 1.10, MAE = 0.73), though slightly more dispersed
at extreme values. Specifically, the RMSE values indicate typical
prediction errors of approximately 0.7 percentage points for CP, 1.1
for WSC, 1.1 for ADF, and 1.4 for NDE These error levels represent
<10% of the observed range for each attribute, confirming the models’
strong predictive accuracy for practical forage quality monitoring. All
Random Forest model files (.rds) and accompanying documentation
are available through the Zenodo repository.”

Seasonal dynamics of forage quality attributes predicted by the
RFR models revealed distinct patterns between the two functional
communities, namely the permanent and improved pastures of the
NWEFP (Figure 1). ADF concentration followed a U-shaped pattern,
with minimum values around mid-year and peaks at the beginning
and end of the year. In improved pastures, lower ADF levels were
maintained from May to August, indicating better forage quality for
this structural component. NDF also showed noticeable seasonal
fluctuations, with peaks in April, July, and October, and a gradual
decline toward the end of the year. Permanent pastures exhibited
slightly higher NDF values for most of the year, except during the
October peak. In contrast, WSC and CP showed limited seasonal
variation, remaining relatively stable throughout the year. Across all
attributes, the shaded interquartile ranges revealed substantial
temporal and spatial variability, particularly for ADF and NDF during

2 https://doi.org/10.5281/zenodo.17543884
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spring and early summer, reflecting heterogeneous canopy structures
and phenological stages among fields. Conversely, WSC and CP
displayed narrower variability bands during mid-summer, suggesting
more uniform forage quality at the peak of vegetative growth.

Spatial patterns of predicted forage quality attributes across the
study area showed marked heterogeneity among fields and greater
than seasonal shifts (Figure 5). Spatial variability was primarily
expressed across fields rather than within them, suggesting that
differences in management and vegetation composition were main
drivers of spatial heterogeneity in predicted quality attributes. This
field-level variability remained consistent throughout the months,
underscoring the ability of Sentinel-2 spectral data combined with
RFR modeling to detect management-driven contrasts in forage
quality across the landscape. Seasonal variation suggested that in April,
higher ADF and NDF values were concentrated in the central and
northern sectors of the study area. By June, both structural components
declined, reflecting the mid-season increase in forage quality. In
contrast, WSC and CP exhibited spatially variable but generally higher
values in June, coinciding with the peak of the growing season. In
September, ADF and NDF increased again, while WSC and CP
declined, indicating a late-season reduction in forage quality.

4 Discussion

Sentinel-2 data combined with Random Forest regression (RFR)
accurately predicted the four key forage quality attributes (CP, WSC,

frontiersin.org
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FIGURE 4
Seasonal dynamics of forage quality attributes predicted by Random Forest Regression (RFR) models in two functional pasture communities:
permanent and improved pastures. Median monthly values are shown for (A) Acid Detergent Fiber (ADF), (B) Neutral Detergent Fiber (NDF), (C) Water-
Soluble Carbohydrates (WSC), and (D) Crude Protein (CP). Lines represent the monthly medians, and shaded areas denote the interquartile range,
summarizing the spatial and temporal variability in model predictions across the study area. Values integrate the 2020-2022 period, and the RFR
models were trained using bi-seasonal field data collected during those years, capturing spatial, seasonal, and interannual variability in forage quality
relevant to ruminant nutrition.

ADE and NDF), achieving validation statistics comparable to those
reported in previous studies (17-21). The novelty of this work lies in
the integration of satellite data with near-infrared reference
information collected directly from a machinery-mounted NIRS
system, enabling large-scale calibration under operational farm
conditions. This highlights Sentinel-2’s robustness for estimating
forage quality in grasslands of the United Kingdom, consistent with
results observed in other temperate regions (20, 21). The approach is
therefore applicable to forage systems with species composition and
quality attribute ranges like those represented in our dataset.
Extrapolation to environments with markedly different seasonal
dynamics or forage types—such as those where crude protein regularly
falls below 6%—would exceed the calibration range and is
not recommended.

The variable importance analysis revealed that red-edge, near-
infrared (NIR), and shortwave infrared (SWIR) bands (B5, B6, B7,
B11, and B12) were the most influential for estimating the four forage
quality attributes. This pattern is consistent with previous studies
emphasizing the relevance of these spectral regions for assessing
structural and chemical properties of vegetation, including lignin,
cellulose, and soluble carbohydrates (20, 21). In particular, the
red-edge band B7 showed the highest contribution, supporting earlier
findings that identify it as a key predictor of dry matter and nutrient
content (21). The combined role of red-edge and SWIR wavelengths
enhances the prediction of both biomass and forage quality by
reducing reflectance saturation in dense canopies (19, 20).

Frontiers in Veterinary Science

The seasonal dynamics of forage quality attributes showed very
small amplitudes (<1 percentage point) compared to the variability
observed during calibration (e.g., ADF ranging from 13 to 57% or CP
from 6 to 36%). This low variability suggests that forage quality in this
system is highly stable throughout the year, despite phenological
changes. However, the spatial patterns revealed that fine-scale
variability in forage quality across fields exceeded the average intra-
annual variation observed within individual pastures. Such strong
spatial contrasts likely reflect underlying heterogeneity in management
and potentially factors associated with topographic positioning, clearly
associated with SOC (26). This pattern is like that observed under
similar pastures composition in Southern Australia (27). Moreover, the
average values of ADF (~29%), NDF (~50%), and CP (~13%) fall
within the upper range compared to global literature, where high-
quality forages typically present ADF < 35%, NDF < 50%, and CP
between 8-18% (28). Rather than implying broad management
recommendations, we emphasize that spatially explicit information
systems like this can support adaptive grazing strategies, for example
by identifying areas of higher forage quality instead of relying on fixed
rotations. It should be noted that our dataset does not include very low
biomass levels typical of heavily grazed swards, such conditions often
correspond to younger tissues with higher nutritive value, meaning
that excluding them could lead to a slight underestimation of forage
quality in contexts where quality is already high globally (28). Although
improved pastures showed slightly higher forage quality values, the
differences were modest. This reflects the fact that the primary goal of
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FIGURE 5

Spatial patterns of forage quality attributes predicted by Random
Forest Regression (RFR) models derived from Sentinel-2 spectral
data across the study area. Mean predictions for Acid Detergent Fiber
(ADF), Neutral Detergent Fiber (NDF), Water-Soluble Carbohydrates
(WSC), and Crude Protein (CP) are shown for April, June, and
September, integrating the 2020-2022 period. Each map represents
the spatial distribution of model-predicted values averaged per
month and attribute, highlighting spatial heterogeneity and seasonal
shifts in forage quality. The RFR models were trained using bi-
seasonal field data collected during 2020-2022, allowing the
predictions to capture both spatial and temporal variation relevant to
ruminant nutrition.

the improved pasture system is not only to enhance nutritional value,
but to reduce nitrogen inputs and improve environmental
sustainability (29).

Beyond decision-support for grazing management, the availability
of spatially explicit nutritional information also offers significant value
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for improving greenhouse gas (GHG) estimation frameworks in
pasture-based systems. First, remote estimates of crude protein can
support a better understanding of individual dry matter intake as a
percentage of live weight, a key determinant of enteric methane
production under Tier 2 methodologies (30). Second, forage digestibility
directly influences methane emissions per unit of dry matter intake,
thus defining emission intensity (g CH,4 kg™ DMI). While our models
do not predict digestibility directly, digestibility (%) can be derived from
the predicted ADF and CP using established nutritional frameworks,
such as the Digestibility (Van Soest) model (31) or the Digestibility
(Dairy model) tailored to temperate production systems (32, 33). By
combining satellite-predicted forage constituents with physiologically
grounded digestibility equations, this approach has the potential to
provide more realistic and spatially refined estimates of enteric methane
emissions, thereby supporting climate-smart grazing strategies.

Although the satellite-based models presented here performed well
within the conditions of this study, their transferability to other pasture
systems must be approached with caution. Machine learning
approaches such as Random Forest rely on the coverage of the
calibration domain: predictions can become unreliable when applied
to forage conditions, botanical compositions, or management regimes
that fall outside the biophysical space represented in the training data
(34, 35). In our case, the observed ADFE, NDF, and CP ranges align
closely with those reported for temperate British pasture systems
through national initiative known as GrassCheck GB (36), which
supports confidence in our predictions. Nonetheless, broader adoption
would require local calibration datasets to ensure validity under
different livestock species, fertilization regimes, and climatic contexts.
This highlights an important limitation of the current work but also a
clear pathway toward operational scalability.

5 Conclusion

This study demonstrates the feasibility of integrating NIRS-
derived forage quality data with Sentinel-2 spectral information to
model and map key nutritional attributes of pastures at landscape
scale. By combining multi-year and bi-seasonal field measurements
with machine learning techniques, we provide a framework for
predicting crude protein, fiber fractions, and sugar content with high
spatial and temporal resolution. These findings offer a scalable and
cost-effective approach for satellite-based forage monitoring, with
direct relevance to temperate humid agricultural pastures. The models
developed here can support decision-making in pasture management,
forage harvest planning, and precision livestock nutrition. More
broadly, this work contributes to the advancement of remote sensing
applications in Rangeland and Grassland ecology, enabling researchers
and producers to better assess forage dynamics and nutritional value
across space and time. The applicability of this approach is limited to
forage systems with species composition and quality ranges like those
represented in our dataset; extrapolation to markedly different
environments would require additional calibration data.
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