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Abstract

The sensitivity of model outputs to parameter variations is crucial for effective model
calibration and application. This study assessed the sensitivity of N2O and CH4 emissions
to varying weather conditions and fertilization practices in a winter wheat–rice cropping
system. Using the Sobol first-order sensitivity index within the SPACSYS model, key
parameters and input variables influencing gas emissions were identified. The results
showed that the index effectively detected highly sensitive parameters, particularly those
related to soil water content, oxygen dynamics and microbial processes. Both N2O and
CH4 emissions were sensitive to carbon availability and soil oxygen levels. For N2O
emissions, microbial process parameters and soil water content had substantial impacts,
whereas CH4 emissions were more responsive to methane consumption, oxygen levels, and
carbon substrates. Fertilization, rainfall and temperature showed high sensitivity for N2O
emissions, while temperature emerged as the dominant factor controlling CH4 emissions.
The identified parameters offer valuable insights for improving model performance and
informing strategies to mitigate greenhouse gas emissions.

Keywords: SPACSYS; double cropping system; Sobol sensitivity analysis; gas emissions

1. Introduction
Nitrous oxide (N2O) and methane (CH4) emissions from agricultural fields are major

components of the greenhouse gases (GHGs) responsible for global environmental prob-
lem [1,2]. Although the winter wheat–rice double-cropping system maximizes land use
efficiency by producing two crops annually and supports food security and economic re-
turns [3], it is also identified as a substantial source of N2O and CH4 emissions in China [4].
Thus, understanding and mitigating these emissions is essential for promoting sustainable
agricultural development.

Considerable amounts of N2O and CH4 are produced in this system due to alternating
aerobic and anaerobic soil conditions [5,6]. N2O emissions originate primarily from two
soil microbial processes, nitrification and denitrification, both of which are influenced
by soil water content (SWC), temperature, organic matter (OM) content, and agronomic
practices [7–9]. Excessive nitrogen (N) fertilization can increase the availability of substrates
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for these microbial processes, thereby enhancing N2O emissions [10]. Under anaerobic
paddy conditions, CH4 is generated by methanogenic archaea that consume acetate or CO2

as substrates, facilitated by the enzyme methyl-coenzyme M reductase [11,12]. However,
accurately measuring in situ N2O and CH4 emissions across spatial and temporal scales
remains challenging [13]. Rapid fluctuations in SWC, temperature, and OM content can
cause substantial changes in gas production [14]. Traditional measurement techniques
often lack the temporal and spatial resolution needed to capture these variations, resulting
in knowledge gaps concerning GHG spatiotemporal variability [15,16]. These limitations
underscore the necessity of advanced modelling approaches that can simulate gas fluxes
under diverse environmental and management conditions.

Mathematical models are widely used to explore the impacts of environmental condi-
tions and management practices (e.g., water and fertiliser management, tillage) on N2O
and CH4 production and dissipation, as well as the interactions between crop, soil and
environment [17]. The SPACSYS model is one such sophisticated tool designed to simulate
soil–plant–atmosphere interactions; it can reliably predict crop growth, soil hydrology,
nutrient cycling, and GHG emissions in complex agroecosystems [18,19]. Briefly, SPACSYS
integrates microbial and chemical processes associated with nitrification and denitrification
processes for N2O production and the entire methanogenesis pathway, including CH4 oxi-
dation by methanotrophs, diffusion, plant mediated transport, and ebullition [19]. Previous
studies have applied SPACSYS to assess crop production and GHG emissions to agronomic
management and climate change in both arable and grassland ecosystems across diverse
soil types and climatic regions [20–22].

Process-based models often incorporate numerous parameters associated with con-
siderable uncertainties, leading to variability in model predictions [23]. Understanding
the sensitivity of model outputs to parameters variations is therefore essential for effective
model calibration, as it helps identify and prioritise the most influential parameters [24].
Sensitivity analysis (SA) serves as a vital tool for this purpose, allowing both qualitative and
quantitative assessments of how input variables and parameters affect model outputs [25].
By focusing on these parameters identified as most sensitive, users can streamline the
calibration process and improve overall model performance and reliability [24].

Sensitivity analysis techniques can generally be categorized as local and global. Global
SA quantifies how output uncertainty can be apportioned to multiple sources of input
uncertainty [26], whereas local SA, typically a one-at-a-time (OAT) technique, focuses
on the primary (first-order) effects of individual input variables on model outputs while
holding all others constant [27]. Local SA is particularly effective for linear or near-linear
systems, as it isolates individual parameter effects.

A previous sensitivity analysis of SPACSYS based on data from a winter wheat field
experiment examined 61 parameters across 27 output variables [28]. That study iden-
tified the maximum autotrophic nitrification rate, the fraction of NO produced during
nitrification, and the Q10 temperature coefficient for denitrification as the most sensitive
parameters affecting the N2O emission rate in upland soil. Since the CH4 dynamics mod-
ule was incorporated into SPACSYS after that study, no SA has yet been performed for
CH4 emissions. Consequently, a comprehensive SA of both N2O and CH4 emissions in
paddy–upland cropping systems remains lacking. Compared with earlier modelling efforts,
SPACSYS’s integrated structure, which simulates soil–plant–atmosphere interactions and
coupled carbon (C)–N cycling, enables the model to capture feedbacks among soil physico-
chemical conditions, crop growth, and N transformations, providing a robust framework
for identifying key parameters driving GHG emissions.

The SPACSYS model has been calibrated and validated with the dataset from the
experiment that underpins this study [29]. Here, we conducted a comprehensive SA involv-
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ing that included 65 parameters related to soil C and N cycling and water movement, 21 soil
properties, and two representative weather scenarios (each including five levels of rainfall
and temperature). We employed the classic Sobol first-order sensitivity index (SFI) within
a local SA framework to quantify the sensitivity of key parameters in SPACSYS model. The
primary objective of this study was to identify the parameters that govern variability in
N2O and CH4 emissions in the winter wheat–rice cropping system, thereby improving the
robustness of SPACSYS through targeted SA. Specifically, we aimed to (1) assess how vari-
ations in weather conditions and fertilization practices influence N2O and CH4 emissions;
(2) to identify the most influential parameters affecting N2O and CH4 emissions; and (3) to
refine model calibration by prioritizing these critical parameters.

2. Materials and Methods
2.1. Study Site

The experimental dataset from a winter wheat–rice cropping system was used for
this study. The field experiment was conducted between 2020 and 2023 in a subtropical
humid monsoon climate zone in He County, located in the lower Yangtze River Basin
in China (31◦46′ N, 118◦12′ E, 18 m a.s.l.). The average annual temperature and rainfall
in the region are 15.8 ◦C and 1067 mm, respectively. The soil at the experiment site was
classified as Hydragric Anthrosols based on the World Reference Base for Soil Resources
(WRB) system [30], corresponding broadly to Anthraquolls or Aquepts in the USDA Soil
Taxonomy. At the beginning of the experiment, initial soil physical and chemical properties
were measured for the 0–60 cm soil layer (Table 1).

Table 1. Initial soil physical and chemical properties at different soil depths at the experimental site
in October 2020.

Depth Clay Silt Sand BD pH SOM TN

(cm) (%) (%) (%) (g cm−3) (g kg−1) (g kg−1)

0–20 20.8 63.4 15.8 1.19 6.0 14.8 1.07
20–40 18.1 63.5 18.4 1.53 6.4 10.6 –
40–60 17.9 54.6 27.5 1.53 6.4 6.2 –

Note: BD, bulk density; SOM, soil organic matter; TN, soil total N.

Winter wheat and rice rotation is a typical cropping system in this region, with winter
wheat grown under rainfed conditions and rice grown under irrigation, receiving approxi-
mately 500 mm over the whole growing season. Local cultivars of wheat (‘Zhenmai 12’) and
rice (‘Fuxiangzhan’) were used, along with standard field management practices including
tillage, weed and pest control. Before sowing or transplanting, each plot was tilled to a
depth of 20 cm using a field cultivator to prepare the seedbed. Winter wheat was sown in
early November and harvested in late May, followed by transplanting in mid-June and
harvesting in late September. The plot size for both crops was 40 m × 40 m.

2.2. The SPACSYS Model

The overall structure of SPACSYS includes the coupling of soil C–N cycling, plant
growth, and water–heat transfer modules, following the standard framework described
in the SPACSYS manual [18–20,31]. Here, we briefly summarise the processes related to
GHG emissions. The nitrification process considers the autotrophic pathway involving
a series of microbial evolution and response functions governed by substrate availability
and soil environmental conditions. Denitrification is modelled as a sequential reduction
of nitrate to gaseous N compounds under anaerobic conditions. For CH4 dynamics, the
model integrates major processes, including methane production, oxidation, diffusion,

https://doi.org/10.3390/agriculture16010011

https://doi.org/10.3390/agriculture16010011


Agriculture 2026, 16, 11 4 of 16

plant-mediated uptake and transport, and ebullition. Methane oxidation is calculated
as a function of soil temperature, moisture, gas diffusivity, substrate concentration, and
methanotrophic inhibition [32]. Methane production is estimated based on the sensitivity
of methanogenesis to O2 inhibition [33], while plant-mediated CH4 transport and ebullition
are modelled based on gas diffusion driven by partial pressure gradients [34].

2.3. Sensitivity Analysis Design

To evaluate the sensitivity of N2O and CH4 emissions simulated by SPACSYS, we
examined how variations in weather conditions, soil properties, fertilization practices, and key
model parameters governing soil C–N cycling and water movement influence model outputs.

2.3.1. Weather Conditions

Historical daily weather data were served as the baseline for simulations. To analyse
the impacts of changing weather conditions on model outputs, we conducted simulations
in which the average temperature and rainfall were increased or decreased by 10%, 20%
and 30% relative the historical values.

2.3.2. Soil Property Settings

Ten soil physical variables plus pH were adjusted by ±50% from their default values
(Table 2). Each variable was sampled 100 times, resulting in a total of 1100 simulations to
evaluate the influence of soil property variations on model outputs [28].

Table 2. Soil physical and chemical variables, their abbreviation and default values at the depths of
0–10 cm and 10–20 cm during the sensitivity simulation period.

Description
0–10 cm 10–20 cm

Abbreviation Value Abbreviation Value

pH value (-) PHL1 6.36 PHL2 6.4
Air entry pressure (cm water) AEPL1 46.8 AEPL2 46.2
Pore size distribution index (-) PSDIL1 0.31 PSDIL2 0.35
Macro pore volume (vol%) MPVL1 4 MPVL2 6.3
Saturated total conductivity
(mm day−1) TKSL1 743 TKSL2 1060

Saturated matrix conductivity
(mm day−1) SMCL1 22.4 SMCL2 22.4

Water content at wilting point
(vol%) WPL1 13.3 WPL2 7.9

Field capacity (vol%) FCL1 27.2 FCL2 22.5
Saturated water content (vol%) SSCL1 45.4 SSCL2 39.5
Residue water content (vol%) RSWCL1 6.8 RSWCL2 4.1
Dry soil bulk density (g cm−3) DSBDL1 1.19 DSBDL2 1.19

2.3.3. Fertilization Practices

Fertilization practices involved applying urea (46% N) at rates of 150 and 180 kg N ha−1 for
wheat and rice, respectively, following standard local management practices. To quantify
the sensitivity of model outputs to fertilization practices and their impact on GHG emis-
sions, we evaluated several fertiliser application strategies, while keeping total N rates
consistent with the same as the field experiment. These included basal application plus
topdressing at tillering with ratios of 70:30 (R7:3), 60:40 (R6:4) and 50:50 (R5:5), as well
as basal application combined with topdressings at tillering and heading with ratios of
40:30:30 (R4:3:3) and 50:30:20 (R5:3:2).

https://doi.org/10.3390/agriculture16010011

https://doi.org/10.3390/agriculture16010011


Agriculture 2026, 16, 11 5 of 16

2.3.4. Model Required Parameters on Water, C and N Processes

Sixty-five parameters related to water distribution, nitrification and denitrification,
methane dynamics were considered (Table S1). Each parameter range was set to ±50% of
its default value. To ensure uniform coverage across the entire probability distribution,
each parameter was sampled 100 times, resulting in a total of 6500 simulations.

2.4. The Sobol’s First-Order Method for Sensitivity Diagnostics

The Sobol’s first-order index provides a non-parametric measure of the individual
contributions of input variables to the variance of model outputs, enabling a comprehen-
sive assessment of their relative importance. In this study, we leverage SFI to unravel
the intricate relationships between parameters or input variables and their influence on
simulation output variables. This approach provides valuable insights into the key factors
driving the behaviour of simulation output variables. SFI is defined as [35]:

SFI = (V[E(Y|Xi)])/(V(Y))

where V is the partial variance associated with the main effect of input variable Xi(I = 1, 2,
. . . , 100); V(Y) is the total unconditional variance of the output Y; and E(Y|Xi) represents the
expected value of Y conditional on a fixed value of Xi. A higher SFI indicates that variation
in a factor has a greater impact on output variance. Generally, a model output is considered
sensitive to a parameter if its corresponding SFI > 0.1 [35]. In this study, we employed SFI
to unravel the relationships between parameters or input variables and their influence on
simulation outputs, providing insights into the key factors driving model behaviour.

SFI was calculated using the variance estimators implemented in the ‘sensitivity’
package in R software (ver. 4.2). The ‘sobol()’ function, combined with the Saltelli sampling
scheme, was used to generate input matrices, and the ‘tell()’ function was applied to
incorporate model outputs and derive the first-order indices.

3. Results
N2O and CH4 emissions from the cropping system were significantly influenced by

the selected parameters and input variables, with SFI values > 0.1, as shown in Figure 1.
Emissions were insensitive to 39 and 41 of the 65 parameters for N2O and CH4, respec-
tively, as their SFI values were below 0.1. These emissions were particularly insensitive to
parameters primarily related to soil properties. Reducing the transformation of fresh litter
or OM to dissolved C could decrease both N2O and CH4 emissions.

3.1. Fertilisation and Weather Impacts on N2O and CH4 Emissions

Cumulative N2O and CH4 emissions under different levels of basal/topdressing, rain-
fall and temperature during the growing season of the crops varied (Figure 2). A higher
proportion of topdressing (i.e., R4:3:3 and R6:2:2) increased accumulated N2O emissions
by ca. 53%, while CH4 emissions under different basal/topdressing ratios showed only
slight fluctuations (<5%, Figure 2a). Among the climatic variables, the simulated emission
patterns of annual N2O and CH4 emissions varied under different rainfall and temperature
conditions. N2O emissions showed a biphasic response to increased rainfall, initially rising
by 0.24 g N m−2 day−1 before declining as rainfall continued (Figure 2b). In contrast,
CH4 emissions displayed a slight initial reduction, followed by an increase with changing
rainfall, likely due to the automatic irrigation practice during the rice growing period. The
effect of warmer temperature on N2O exhibited a pattern where emissions decreased by ca.
30% initially, then increased by 0.22 g N m−2 day−1. This response can be attributed to the
complex interactions between temperature and soil processes, where lower temperatures
initially reduce microbial activity and nitrification rates, leading to lower N2O emissions.
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However, as temperatures rise, enhanced soil microbial activity and accelerated N miner-
alization, likely contribute to increased N2O emissions. In contrast, the effect of warmer
temperatures on CH4 emissions was generally positive (ca. 239%, Figure 2c), largely due to
increased availability of soil C pools resulting from enhanced soil mineralization.

Figure 1. Heatmap of SFI for input variables and parameters influencing simulated N2O and CH4

emissions during the wheat and rice growing periods, as well as over the entire year. White pixels
indicate no significant interaction (SFI < 0.1).

Figure 2. Changes in annual N2O and CH4 emissions under different levels of basal/topdressing
ratios (a), rainfall (b) and temperature (c) in a winter wheat–rice cropping system over the simulation
period.

3.2. Relationships Between Simulated N2O and CH4 Emissions and Model Processes Parameters
3.2.1. Parameters in Soil Nitrogen Cycling

The changes in N2O and CH4 emissions with significant sensitivity parameters related
to soil nutrient and microorganisms are shown in Figure 3. N2O emissions were highly sen-
sitive to the assimilation factor (ASF) and humus potential decomposition rate (HPD) and
(Figure 3a,d), while an increase in the base temperature at which the temperature function
is in unity for denitrification and nitrification (BTD and BTN), and half NOx concentration
(HNO) notably reduced emissions (Figure 3b,f). Increases in BTD, BTN and Q10 for denitri-
fication and nitrification (Q10D and Q10N) led to a reduction in emissions (Figure 3b,c),
while higher specific fertiliser dissolution rates (SFD) and the base temperature at which
the temperature function is in unity for mineralization (BTM) notably promoted emissions
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(Figure 3a,b). In contrast, the litter unit loss fraction (LLF) and humus fraction from dis-
solved OM (HFD) exhibited only moderate impacts on emissions (Figure 3a). Furthermore,
we presented detailed results for parameters related to nitrifier and denitrifier dynamics to
examine the contribution of microorganisms to N2O emissions. These parameters include
the maximum nitrifier growth rate (MNG), the maximum nitrifier death rate (MND), the
maximum growth yield (MGY-N2O, MGY-NO, MGY-NO2 and MGY-NO3), the NO and
N2O production fractions from the nitrification process (PPF-NO and PPF-N2O) and the
maximum N2O/NO2/NO3 denitrifier growth rates (MDG-N2O/NO2/NO3). The simu-
lated N2O emission rate was most sensitive to changes in MDG-N2O (Figure 3b). Increases
in MGY-NO3, MGY-NO2 and MND resulted in a reduced emissions (Figure 3a,c). In con-
trary, emissions increased with higher MGY-N2O, MDG-N2O and MDG-NO3 which are
related to the yield rate of N2O and the turnover rate of denitrifiers (Figure 3a,c).

Figure 3. Relationship of N2O and CH4 emissions to various parameters: (a) OM turnover and
denitrifier growth yield related parameters, assimilation factor (ASF), maximum growth yield on
NO3 and NO2 (MGY-NO3 and MGY-NO2), specific fertiliser dissolved rate (SFD), litter loss fraction
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(LLF), humus fraction from dissolved OM (HFD); (b) temperature-related and denitrifier growth pa-
rameters, maximum denitrifier growth rates on NO2

−, N2O, and NO3
− (MDG-NO2, MDG-N2O, and

MDG-NO3), base temperature for denitrification and nitrification (BTD and BTN), and base tempera-
ture for mineralization (BTM); (c) microbial kinetic and temperature sensitivity parameters, maximum
nitrifier death rate (MND), maximum denitrifier growth yield on N2O (MGY-N2O), and Q10 for
nitrification and denitrification (Q10N and Q10D); (d) humus potential decomposition rate (HPD);
(e) oxygen inhibition (O2IH); (f) half-saturation concentration for NOx (HNO); (g) temperature- and
oxygen-related parameters, BTM, O2IH, maximum nitrifier growth rate (MNG), MDG-N2O, and
BTN and BTD; (h) N and OM input–related parameters, LLF, ammonium immobilized fraction (AIF),
SFD and NH4

+ fraction in wet and dry deposition (FDW-NH4 and FDD-NH4); (i) microbial kinetic
parameters, MND, Q10D, and MGY-N2O; (j,k) humus and litter decomposition parameters, HPD
and fresh litter potential decomposition rate (FLP).

The humus potential decomposition rate (HPD) and the fresh litter potential decom-
position rate (FLP) significantly impacted on CH4 emissions (Figure 3g,h), with higher
BTN, BTD, ammonium immobilized fractions (AIF), SFD and Q10D values resulting in
increased emissions (Figure 3g–i). Higher values for oxygen inhibition (O2IH) and BTM
values significantly reduced CH4 emission (Figure 3g). In contract, MDG-N2O, MNG, the
litter loss fraction (LLF), AIF, NH4 fractions in wet and dry deposition (FDW-NH4 and
FDD-NH4), MND and MGY-N2O had less effect on emissions (Figure 3g,i).

3.2.2. Parameters in Soil Carbon Cycling

We found that eight and eleven of parameters related to soil C processes have signifi-
cant impacts on annual N2O and CH4 emissions (Figure 4). Simulations of N2O emissions
were most sensitive to residue to the residue to litter transfer rate (RLT), where a clear
increasing trend in sensitivity was observed (Figure 4a). Higher values for DFTL, MMR,
relative activity at porosity (RAP), OAW, HDC and WCI, notably reduced in emissions
(Figure 4a,b), while MCC had a lesser impact on emissions (Figure 4c).

Similarly, DFTL, CM-O2, MMCR and the rhizospheric maximal methane consumption
rate (RMCR) significantly influenced CH4 emissions (Figure 4d,g). Plateauing trends were
still observed with higher values of RAP, RLT, MMR and RMMC, even though these
parameters had significant effects on emissions (Figures 1 and 4d). OAW was a highly
influential parameter for CH4 emissions with SFI > 0.3 (Figure 4e), while WCI and HDC
were also highly influential with SFI > 0.1 (Figure 4e).

3.2.3. Water Cycling

Both N2O and CH4 emissions are significantly influenced by parameters related to the
drainage system (Figure 5). Higher values of each of the following parameters: minimum
roughness length (MRL), runoff first order rate coefficient (RFO), correspond amount cover
surface (CAC), maximum surface storage without causing runoff (MSS), and empirical scale
in pore shape (ESP) had a clear influence on reducing in N2O emissions (Figure 5a,e). MRL
was the most influential parameter for emissions as SFI > 0.8, while the SFI values for MSS
and ESP, which influenced emissions, were both greater than 0.4. However, interception
storage capacity per LAI (ISC-LAI), precipitation N concentration (PRN), coefficient in
water function (CWF) and drain pipe level (DPL) were found to be relatively sensitive to
emissions, with SFI values ranging between 0.1 and 0.2. Simulated N2O increased slightly
across the full range of those values specified (Figure 5a–c).
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Figure 4. Relationship between N2O and CH4 emissions and various parameters: (a–c) carbon
turnover and microbial respiration parameters, dissolved fraction in transferred litter (DFTL), residue
to litter transfer rate (RLT), microbial maintenance respiration rate (MMR), relative activity at poros-
ity (RAP); optimal available water content (OAW), half DOC concentration (HDC), water content
interval to unity (WCI); maintenance coefficient on carbon (MCC); (d–g) carbon decomposition,
oxygen regulation, and methane consumption parameters: DFTL, RAP, MMR, RLT, and rhizospheric
Michaelis constant (RMMC); OAW, WCI, oxygen Michaelis constant (CM-O2), HDC, maximum
methane consumption rate (MMCR) and rhizospheric maximal methane consumption rate (RMCR).

Figure 5. Changes in annual N2O and CH4 emissions in response to water cycling parameters:
(a–c) showed that surface roughness, precipitation, and soil water regulation affected N2O emissions,
minimum roughness length (MRL), runoff first-order rate coefficient (RFO), interception storage
capacity per leaf area index (ISC-LAI), and nitrogen concentration in precipitation (PRN); maximum
surface storage without causing runoff (MSS), corresponding water amount to cover the surface
(CAC), and coefficient in the water function (CWF); empirical scale in pore shape (ESP) and drain
pipe level (DPL); (d–f) showed that surface storage, drainage, and hydraulic parameters affected
CH4 emissions, MSS, CWF, CAC, and distance between drainpipes (DBD); MRL and RFO; minimum
hydraulic conductivity (MHC), DPL, ESP, and drain pipe diameter (DPD).

The simulation of annual CH4 emissions was particularly sensitive to parameters
CAC, MSS, CWF, distance between drainpipes (DBD), MRL, RFO, DPL, ESP, minimum
hydraulic conductivity (MHC), and drain pipe diameter (DPD), with SFI values greater
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than 0.1 (Figures 1 and 5d–f). MSS and CWF were the most sensitive parameters (SFI > 0.6)
for emissions, with increases in CH4 emissions observed when MSS and CWF less than
150 mm and 100 mm, respectively (Figure 5d). Substantial reductions in emissions were
found for CAC (<200), MHC (<2), DPL (<2), ESP (<3) and RFO (<0.2), while MRL (>0.75)
and DBD (<25 m) resulted in significant increases in emissions. Additionally, a stepped but
small decline in CH4 emissions was observed for DPD across its minimum to maximum
specified values.

3.3. Soil Properties

To examine the contribution of soil properties to N2O and CH4 emissions, we present
detailed results of eleven parameters related to soil physical-chemical characteristics at
depths of 0–10 cm and 10–20 cm (Table 2). The changes in N2O and CH4 emissions corre-
sponding to parameters with SFI > 0.1 are shown in Figure 6. Soil saturated water content
had the greatest influence on the simulations for N2O and CH4 emissions (Figure 6a,d)
with SFI values > 0.8 (Figure 1). For the simulated N2O emissions, higher values of air
entry pressure (AEPL1 and AEPL2), saturated matrix conductivity (SMCL1), and water
content at the wilting point (WPL1) (Figure 6a), bulk density (DSBDL1, Figure 6b) and
residual water content (RSWCL1, Figure 6c) resulted in reductions in emissions (Figure 6a).
In contrary, emissions increased with higher values of soil saturated water content in
the subsoil (SSCL2, Figure 6a), pores size distribution index (PSDIL1, Figure 6b), soil pH
(PHL1, Figure 6c), which are related to the diffusion rate of N2O, substrate availability and
vertical water exchange in the soil profile. Similarly, four parameters related to soil proper-
ties, SSC (SSCL1 and SSCL2), air entry pressure (AEPL1 and AEPL2), SMCL1 and PHL1,
were also influential (Figure 6d,f), with SFI values > 0.2. For RSWCL1 values between
ca. 6 and 10 vol%, a stepped but modest increase in emissions was observed (Figure 6e).

Figure 6. Changes in annual N2O and CH4 emissions with parameters related to soil properties.
(a–c) Sensitivity responses of N2O emissions to soil hydraulic and physicochemical properties: soil
saturated water content at 0–10 cm (SWCL1), soil saturated water content at 10–20 cm (SWCL2),
air entry pressure at 0–10 cm (AEPL1), air entry pressure at 10–20 cm (AEPL2), saturated matrix
conductivity at 0–10 cm (SMCL1), and water content at the wilting point at 0–10 cm (WPL1); bulk
density at 0–10 cm (DSBDL1) and pore size distribution index at 0–10 cm (PSDIL1);soil residue water
content at 0–10 cm (RSWCL1) and soil pH at 0–10 cm (PHL1). (d–f) Sensitivity responses of CH4

emissions to soil hydraulic and chemical properties: SWCL1, SWCL2, SMCL1, AEPL1, and AEPL2;
RSWCL1; PHL1.
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4. Discussion
4.1. Comparison with the Previous Study

This study builds upon the previous SA by Shan et al. [28], which focused on a single
wheat season. However, our analysis focuses on conditions within a winter wheat–rice
double cropping system, characterized by alternating wet and dry cycles, to highlight the
impact of SWC and microbial activities on GHG emissions. This transition shifts N2O
responses to weather and fertilization during the upland wheat season, while amplifying
CH4 sensitivity during the flooded rice season. In addition, we assess the sensitivity of
N2O and CH4 emissions to soil properties, weather conditions and fertiliser applications
management. Importantly, the method adopted by this study differs from that used in the
previous study.

The SFI is particularly effective for SA because it directly quantifies the contribution of
each input variable/parameter to the overall variance in the model output, providing a
clear understanding of the main effects of individual factors. Unlike simpler methods such
as the Morris method or OAT analysis [36,37], which primarily focus on screening factors
or provide only qualitative insights, the SFI offers a quantitative measure that captures
both linear and non-linear effects of each input variable/parameter independently [25].
This capability is crucial for simulating complex processes in an agroecosystem, where
interactions among variables can significantly impact the outputs. Moreover, the SFI excels
at decomposing variance and providing detailed information about individual factors [35].
This precision and efficiency make the SFI particularly well-suited for large-scale models,
where computational resources may be limited but a detailed understanding of each factor’s
influence is required.

4.2. Effects of Fertilisation, Weather, Soil and Model Process Parameters on N2O
and CH4 Emissions

The type and timing of fertiliser application can significantly affect N2O and CH4

emissions. Chemical fertilisers increase soil mineral N availability, which can enhance
nitrification and denitrification processes, leading to elevated N2O emissions, especially
under wet or anaerobic conditions [6,29]. Changes in N2O emissions were markedly
higher when more fertiliser was applied as topdressing (Figure 2a). This is consistent
with the understanding that N-rich fertilisers enhance N2O emissions by simulating these
processes [38,39]

N2O emissions are influenced by multiple factors, including N availability, dissolved
organic carbon content, SWC and microorganisms, all of which vary both temporally
and spatially [40–43]. Among the sixty-five parameters, HPD, ASF, MDG-NO2, BTD,
BTN, MRL, O2IH, MDG-N2O, MSS, RLT and DFTL are the most sensitive parameters
for emissions (Figure 1). HPD, RLT and DFTL are related to the C substrate supplied
by the decomposition of humus and litter. ASF represents the conversion efficiency of
decomposed OM into microbial C, while BTN and BTD are related to the acceleration of
nitrification and denitrification as soil temperature increases, leading to enhanced microbial
activities. Their significant influence on N2O emissions is in agreement with the previous
findings that ASF, HPD, BTD and BTN are critical parameters for N2O emission rates
through microbial processes [28]. MDG-NO2 and MDG-N2O play a critical role in N2O
emissions by facilitating the conversion of nitrite intermediates and the reduction of N2O
by denitrifying bacteria, which is different from the previous study by Shan et al. [28]. MRL
and MSS are key parameters for controlling water evaporation rates and waterlogging
levels in a field, respectively. They influence the frequency of the dry-wet cycle, which in
turn affects N2O emissions through microbial pathways. The O2IH parameter controls
soil oxygen levels that significantly affect N2O production, especially under low oxygen
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concentrations when sufficient substrate is available [44]. However, lower SFI values (<0.1)
for microbial parameters that control nitrification and denitrification processes, such as
MNG, MGY-NO, PPF-N2O, MAN, PPF-NO and MDG-NO, suggested a less significant
impact on N2O emissions (Figure 1). This may be attributed to the dynamic and complex
interactions among SWC, microbial community composition, and weather conditions
within the agroecosystem [45–47].

Our analysis indicated that simulated CH4 emissions were most sensitive to changes
in HPD, RMCR, MMCR, CM-O2, O2IH, BTM, DFTL, RAP and FLP with SFI values > 0.8
(Figure 1). The parameters HPD, FLP and DFTL had significant impacts on processes in
soil C cycling, influencing the decomposition of OM transferred to the dissolved C pool,
which subsequently affects emissions. RMCR, MMCR, CM-O2 and O2IH are key control
factors for CH4 consumption by both rhizospheric and soil methanotrophs. Reduced soil
oxygen and a lower emission consumption rate favour methane-producing microbes while
inhibiting aerobic respiration, ultimately resulting in increased CH4 emissions [32]. Higher
RAP values indicated more favourable conditions for methanogenic bacteria, leading to
increased CH4 production by enhancing substrate availability and regulating oxygen ex-
change through the control of soil pore structure [48]. Rising temperatures have been
reported to contribute to increased CH4 emissions [49,50]. However, our simulation re-
sults showed elevated air temperatures led to only a slight increase in CH4 emissions
(Figure 2c). This may be associated with the slow increase in soil temperature due to higher
surface water evaporation rates during the rice growing period, which inhibits the rapid
decomposition of organic matter.

4.3. Implications and Limitation

The identified sensitive parameters translate into clear management opportunities.
Enhancing N management, particularly optimizing the basal/topdressing split, can miti-
gate N2O surges during the aerobic wheat season. For the anaerobic rice phase, improved
drainage scheduling can suppress CH4 production linked to methanogenesis-sensitive
parameters. Additionally, the strong temperature dependence of both gases suggests that
practices influencing soil thermal regimes (e.g., residue management, controlled irrigation)
may offer further emission reductions. Our findings reveal that parameters linked to
microbial activities and weather conditions significantly affect N2O and CH4 emissions
(Figure 1). This contrasts with earlier findings where soil conditions and management were
considered more sensitive than weather conditions [28]. The alternation between grow-
ing dryland wheat and paddy rice alters microbial accessibility [51] and affects microbial
structure and function due to the dry-wet cycles, likely favouring microbial taxa adapted to
these dynamic conditions [52]. Sensitivity analysis using the same model across different
cropping systems demonstrated variations in the controlling processes and conditions for
N2O and CH4 emissions.

Although our findings on parameter sensitivity may have global applicability, several
limitations warrant consideration. The sample size, consistent with the previous study [28],
involved sampling each variable or parameter 100 times. To evaluate whether this density
was sufficient, we conducted convergence tests by increasing the sample size to 200 and
500. The sensitivity rankings stabilized after approximately 100–150 samples, suggesting
that the adopted sample size provides reliable estimates while balancing computational
feasibility. Nonetheless, we acknowledge that larger sample sizes could further reduce
uncertainty and may be considered in future studies. Additionally, the intricate interplay
of multiple factors, such as SWC, temperature, and fertilization practices, adds complexity
and often results in nonlinear interactions that vary depending on environmental contexts.
While our analysis focused on temperature and rainfall as the primary climatic drivers for
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this system, existing models may inadequately capture such complexities, particularly in
regions with diverse climates or cropping systems [53,54]. Moreover, model uncertainty
partly arises from the limited availability of empirical measurements for several highly
sensitive parameters operating across both the wheat (aerobic) and rice (anaerobic) phases.
Reducing this uncertainty will require prioritizing field measurements of parameters that
strongly influence nitrification, denitrification, methanogenesis, and CH4 oxidation, thereby
improving model robustness in double-cropping systems.

5. Conclusions
Sobol’s first-order method was used to quantitatively assess the effects of weather

variations, soil properties, and fertilization on N2O and CH4 emissions, with a focus on iden-
tifying sensitive parameters in the process-based SPACSYS model for a winter wheat–rice
double cropping system. Our results showed that the Sobol method effectively pinpointed
key sensitive parameters, particularly those influencing gas emissions, such as SSCL, O2IH,
and those related to microbial processes. Both N2O and CH4 emissions were sensitive to
parameters including HPD, O2IH, and DFTL. Specifically, for N2O emissions, additional in-
fluential factors included ASF, MDG-NO2, BTD, BTN, MRL, MDG-N2O, MSS, and RLT, all
of which are associated with microbial processes and SWC. In contrast, CH4 emissions were
more sensitive to parameters related to CH4 consumption, oxygen levels, and C substrates,
including RMCR, MMCR, CM-O2, BTM, RAP, and LFLP. Furthermore, fertilization, rainfall
and temperature were found to be highly influential for N2O emissions, while temperature
was identified as the primary sensitive factor for CH4 emissions. These findings highlight
the critical role of environmental and management interactions in regulating GHG fluxes.
They also suggest that future improvements should focus on integrating microbial commu-
nity composition and functionality into parameterization strategies, as well as examining
the interactive effects of weather, soil properties, and agricultural practices to enhance the
robustness of sensitivity analyses and model calibration.
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