Fluctuating environments drive insect swarms into a new state that is robust to perturbations

Reynolds, Andy (2018) Fluctuating environments drive insect swarms into a new state that is robust to perturbations. EPL, 124. p. 38001. 10.1209/0295-5075/124/38001
Copy

In contrast with laboratory insect swarms, wild insect swarms display significant coordinated behaviour. Here it is hypothesised that the presence of a fluctuating environment drives the formation of transient, local order (synchronized subgroups), and that this local order pushes the swarm as a whole into a new state that is robust to environmental perturbations. The hypothesis finds support in a theoretical analysis and in an analysis of pre-existing telemetry data for swarming mosquitoes. I suggest that local order is sufficient to make swarms fault-tolerant and that the swarm state and structure may be tuneable with environmental noise as a control parameter. The new theory opens a window onto thermodynamic descriptions of swarm behaviours and extends a long-standing analogy with self-gravitating systems.


picture_as_pdf
Reynolds_2018_EPL_124_38001.pdf
subject
Published Version
Available under Creative Commons: Attribution 3.0

View Download

Accepted Version


Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads