Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides )

Cummins, I., Moss, Stephen, Cole, D. J. and Edwards, R. (1997) Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides ). Pesticide Science, 51 (3). pp. 244-250. 10.1002/(SICI)1096-9063(199711)51:3<244::AID-PS643>3.0.CO;2-2
Copy

Glutathione transferase (GST) activities toward the selective herbicide fenoxaprop-ethyl together with thiol contents, have been compared in seedlings of wheat (Triticum aestivum) and two populations of black-grass (Alopecurus myosuroides) which are resistant to a range of herbicides (Peldon and Lines El), and a black-grass population which is susceptible to herbicides (Rothamsted). GST activities toward the non-cereal herbicides metolachlor and fluorodifen were also determined. On the basis of enzyme specific activity, GST activities toward fenoxaprop-ethyl in the leaves were in the order wheat > Peldon = Lines El > Rothamsted, while with fluorodifen and metolachlor the order was Peldon = Lines El > Rothamsted > wheat. Using an antibody raised to the major GST from wheat, which is composed of 25-kDa subunits, it was shown that the enhanced GST activities in both Peldon and Lines El correlated with an increased expression of a 25-kDa polypeptide and the appearance of novel 27-kDa and 28-kDa polypeptides. Leaves of both wheat and black-grass contained glutathione and hydroxymethylglutathione, with the concentrations of glutathione being in the order Peldon > Lines El = Rothamsted = wheat. However, in glasshouse dose-response assays, the Lines El population showed much greater resistance to fenoxaprop-ethyl than Peldon. We conclude that high GST activities and the availability of glutathione may contribute partially to the relative tolerance of black-grass to herbicides detoxified by glutathione conjugation. Although herbicide-resistant populations show enhanced GST expression, in the case of fenoxaprop-ethyl the associated increased detoxifying activities alone cannot explain the differences between populations in the degree of resistance seen at the whole plant level.

Full text not available from this repository.

Atom BibTeX OpenURL ContextObject in Span OpenURL ContextObject Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation METS MODS RIOXX2 XML Reference Manager Refer ASCII Citation
Export

Downloads