Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

A - Papers appearing in refereed journals

Han, X., Xu, C., Dungait, J. A. J., Bol, R., Wang, X., Wu, W. and Meng, F. 2018. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis. Biogeosciences. 15 (7), pp. 1933-1946. https://doi.org/10.5194/bg-15-1933-2018

AuthorsHan, X., Xu, C., Dungait, J. A. J., Bol, R., Wang, X., Wu, W. and Meng, F.
Abstract

Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0–20 cm depth) at the rate of 0.35 (95 % CI, 0.31–0.40) Mg C ha−1 yr−1, increased crop grain yield by 13.4 % (9.3–18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha−1 yr−1 with mineral fertilizer of 200–400 kg N ha−1 yr−1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9–56.4 %) and SOC sequestrated by the rate of 0.85 (0.54–1.15) Mg C ha−1 yr−1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28–62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11–15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture intensifies both in China and other regions with different climate conditions.

Year of Publication2018
JournalBiogeosciences
Journal citation15 (7), pp. 1933-1946
Digital Object Identifier (DOI)https://doi.org/10.5194/bg-15-1933-2018
Open accessPublished as green open access
Publisher's version
Output statusPublished
Publication dates
Online03 Apr 2018
Publication process dates
Accepted04 Mar 2018
PublisherCopernicus Publications
Copernicus Gesellschaft Mbh
Copyright licenseCC BY
ISSN1726-4170

Permalink - https://repository.rothamsted.ac.uk/item/8w270/straw-incorporation-increases-crop-yield-and-soil-organic-carbon-sequestration-but-varies-under-different-natural-conditions-and-farming-practices-in-china-a-system-analysis

293 total views
62 total downloads
1 views this month
2 downloads this month
Download files as zip