A - Papers appearing in refereed journals
Darino, M., Jaiswal, N., Darma, R., Kroll, E., Urban, M., Xiang, Y., Kim, H., Myers, A., Scofield, S., Innes, R. W., Hammond-Kosack, K. E. and Helm, M. 2025. The Fusarium graminearum effector protease FgTPP1 suppresses immune responses and facilitates Fusarium Head Blight Disease. Molecular Plant-Microbe Interactions - MPMI. (24 January). https://doi.org/10.1094/MPMI-08-24-0103-FI
Authors | Darino, M., Jaiswal, N., Darma, R., Kroll, E., Urban, M., Xiang, Y., Kim, H., Myers, A., Scofield, S., Innes, R. W., Hammond-Kosack, K. E. and Helm, M. |
---|---|
Abstract | Most plant pathogens secrete effector proteins to circumvent host immune responses, thereby promoting pathogen virulence. One such pathogen is the fungus Fusarium graminearum, which causes Fusarium Head Blight (FHB) disease on wheat and barley. Transcriptomic analyses revealed that F. graminearum expresses many candidate effector proteins during early phases of the infection process, some of which are annotated as proteases. However, the contributions of these proteases to virulence remains poorly defined. Here, we characterize a F. graminearum endopeptidase, FgTPP1 (FGSG_11164), that is highly upregulated during wheat spikelet infection and is secreted from fungal cells. To elucidate the potential role of FgTPP1 in F. graminearum virulence, we generated FgTPP1 deletion mutants (ΔFgtpp1) and performed FHB infection assays. While the number of completely bleached spikes infected by F. graminearum wild-type reached 50% of total infected spikes, the number of fully bleached spikes infected by ΔFgtpp1 mutants was 25%, suggesting FgTPP1 contributes to fungal virulence. Transient expression of green fluorescent protein (GFP)-tagged FgTPP1 revealed that FgTPP1 localizes, in part, to chloroplasts and attenuates chitin-mediated activation of mitogen-activated protein kinase (MAPK) signaling, reactive oxygen species production, and cell death induced by an autoactive disease resistance protein when expressed in planta. Notably, the FgTPP1 protein is conserved across the Ascomycota phylum, making it a core effector among ascomycete plant pathogens. These properties make FgTPP1 an ideal candidate for decoy substrate engineering, with the goal of engineering resistance to FHB, and likely other crop diseases caused by ascomycete fungi. |
Keywords | ROS; MAPK; Cell death; Pathogenesis; Immune suppression; Fusarium head blight; Fusarium graminearum; Triticum aestivum; Wheat |
Year of Publication | 2025 |
Journal | Molecular Plant-Microbe Interactions - MPMI |
Journal citation | (24 January) |
Digital Object Identifier (DOI) | https://doi.org/10.1094/MPMI-08-24-0103-FI |
PubMed ID | 39853238 |
PubMed Central ID | 39853238 |
Open access | Published as bronze (free) open access |
Funder | Biotechnology and Biological Sciences Research Council |
Funder project or code | UKRI/BBSRC-NSF/BIO Determining the Roles of Fusarium Effector Proteases in Plant Pathogenesis |
DFW - Designing Future Wheat - Work package 2 (WP2) - Added value and resilience | |
Delivering Sustainable Wheat | |
Delivering Sustainable Wheat (WP2): Delivering Resilience to Biotic Stress | |
Semiochemical-based alternative concepts for the management of wireworms | |
Accepted author manuscript | |
Output status | Published |
Publication dates | |
Online | 24 Jan 2025 |
Publisher | Cold Spring Harbor Lab Press, Publications Dept |
American Phytopathological Society (APS) | |
ISSN | 0894-0282 |
Permalink - https://repository.rothamsted.ac.uk/item/991vx/the-fusarium-graminearum-effector-protease-fgtpp1-suppresses-immune-responses-and-facilitates-fusarium-head-blight-disease