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Rationale: Phosphorus losses from agriculture pose an environmental threat to watercourses.

A new approach using the stable oxygen isotope ratio of oxygen in phosphate (δ18OPO4 value)

may help elucidate some phosphorus sources and cycling. Accurately determined and isotopically

distinct source values are essential for this process. The δ18OPO4 values of animal wastes have, up

to now, received little attention.

Methods: Phosphate (PO4) was extracted from cattle faeces using anion resins and the

contribution of microbial PO4 was assessed. The δ18OPO4 value of the extracted PO4 was measured

by precipitating silver phosphate and subsequent analysis on a thermal conversion elemental

analyser at 1400°C, with the resultant carbon monoxide being mixed with a helium carrier gas

passed through a gas chromatography (GC) column into a mass spectrometer. Faecal water

oxygen isotope ratios (δ18OH2O values) were determined on a dual‐inlet mass spectrometer

through a process of headspace carbon dioxide equilibration with water samples.

Results: Microbiological results indicated that much of the extracted PO4 was not derived

directly from the gut fauna lysed during the extraction of PO4 from the faeces. Assuming that

the faecal δ18OH2O values represented cattle body water, the predicted pyrophosphatase

equilibrium δ18OPO4 (Eδ18OPO4) values ranged between +17.9 and +19.9‰, while using

groundwater δ18OH2O values gave a range of +13.1 to +14.0‰. The faecal δ18OPO4 values

ranged between +13.2 and +15.3‰.

Conclusions: The fresh faecal δ18OPO4 values were equivalent to those reported elsewhere

for agricultural animal slurry. However, they were different from the Eδ18OPO4 value calculated

from the faecal δ18OH2O value. Our results indicate that slurry PO4 is, in the main, derived from

animal faeces although an explanation for the observed value range could not be determined.
1 | INTRODUCTION

Phosphorus (P) is an essentialmacro‐nutrient for plants and animals. It is

fundamental to many biological processes because it is involved in

energy transfer and is the constituent of several organic molecules.1
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As such, it is essential to modern agricultural systemswhere it is applied

both in the form of animal and plant wastes and as inorganic mineral

fertilizers. However, in many parts of the world, a P surplus now exists

such that more P is contained within the soil than is required by

plants,2,3 leading to increased P in soil water,4 and ultimately a

proportion of this is lost to watercourses alongside any incidental losses

thatmay occur fromdirectly applied amendments.5 Even small increases

of P in watercourses can have serious detrimental effects,6 causing

eutrophication and eventually important shifts in ecosystems7,8 and, for
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this reason, it is essential weunderstand better P chemistry, biochemistry

and emissions from key sources in the landscape.

Stable isotope ratios have been used to track elements during

transfers between different pools and to understand the respective

roles of abiotic and biotic processes during these transfers.9-11

However, P has only one stable isotope and therefore the stable

isotope ratio approach is not directly applicable. Despite this, a stable

isotope approach has been developed which may shed more light on

P cycling. This is because in the environment most P is bound to

oxygen (O), forming anions such as orthophosphate (PO4
3−), hydrogen

phosphate (HPO4
2−) and dihydrogen phosphate (H2PO4

−) which can

collectively be termed 'phosphate' (subsequently referred to as PO4

in the manuscript). This new approach uses the ratio between the
18O and 16O in PO4 (δ18OPO4 value) to understand better P sources

and transformations. Comprehensive reviews have been written by

Davis et al12 and Tamburini et al13 but, in short, at typical terrestrial

temperatures and pH, and in the absence of biological activity, the

P–O bonds in PO4 are stable. Therefore, bonds are only broken

through biological mediation, and in these cases PO4 exchanges O

with the ambient water within which it is in solution.14-16 The most

important of these biological processes is generally considered to

be that performed by pyrophosphatase, a ubiquitous intracellular

enzyme that facilitates the hydrolysis of pyrophosphate. The

hydrolysis of pyrophosphate leads to the formation of two PO4 ions

incorporating one O atom from the ambient H2O. This process is

extremely fast and leads to a complete O exchange between H2O

and PO4 over time because PO4 as well as pyrophosphate can bind

at the active site of pyrophosphatase.13 This enzyme‐catalyzed O

exchange is subject to a thermodynamic isotopic fractionation, leading

to a temperature‐dependent equilibrium value (Eδ18OPO4) which is

predictable and initially described by Longinelli and Nuti15 but since

refined by Chang and Blake17 and modified by Pistocchi et al:18

Eδ18OPO4 ¼ −0:18Tþ 26:3þ δ18OH2O

where Eδ18OPO4 is the stable O isotope ratio of PO4 at equilibrium in

‰, T is the temperature in degrees Celsius and δ18OH2O is the stable

oxygen isotope ratio of water in ‰.

For effective use of this approach for tracing the sources of PO4,

the following criteria should be met:12

• The δ18OPO4 values for significant PO4 sources are well

characterised (spatially and temporally)

• The individual sources of PO4 possess distinct δ
18OPO4 signatures

• The δ18OPO4 values for PO4 sources are not equal to the Eδ18OPO4

values

• The δ18OPO4 signatures for PO4 sources are maintained and not

rapidly transformed or modified by fractionation caused by

metabolic processes.

One of the confounding issues surrounding this area of research is

the narrow range of δ18OPO4 values that most PO4 sources have and

that they often overlap or they are similar to the Eδ18OPO4 value.
13,19,20

A recent study byGranger et al,19 which characterised different sources
within a river catchment found that farm slurry, a mix of fresh and aged

animal urine, faeces, beddingmaterials and other farmwashings,21 had a

relatively consistent δ18OPO4 value for water‐extractable PO4 despite

its heterogenous composition. Furthermore, this study reported that

its value was noticeably lower than the Eδ18OPO4 value in the rivers.

Granger et al19 speculated that, given that the primary source of slurry

PO4 was probably animal faeces, the δ18OPO4 value probably reflected

the Eδ18OPO4 value of PO4 within the animal due to high microbial

turnover, and that the Eδ18OPO4 value was strongly influenced by the

higher body temperature relative to the ambient water temperature in

the aquatic environment receiving the slurry.

In the present study, we sought to analyse fresh cattle faeces to

establish its δ18OPO4 value, to see how consistent this value was, and

whether it was similar both to the values of animal slurry already

measured and to the calculated Eδ18OPO4 value for the animal. The

forms of P in animal faeces can be split into three broad categories. Toor

et al22 described many forms of P in animal faeces, although these can

be more simply described as (i) organic P and (ii) inorganic P. However,

their NaOH/EDTA extraction subsumes and incorporates a third form

of P which is of interest when examining δ18OPO4 values – (iii) the

microbial P. For the purposes of this study, we did not attempt to

examine the δ18OPO4 values of organic forms of P, but, instead, aimed

to characterise the inorganic 'free' PO4, and the 'microbial' PO4 of cattle

faeces. There is no reported method for doing this in animal faeces so

we attempted to apply and adapt an approach used for soils to test

the following hypothesis: The δ18OPO4 value of inorganic 'free' PO4

and the 'microbial' PO4 will be the same and will reflect the Eδ18OPO4

value calculated for fresh cattle faeces.
2 | EXPERIMENTAL

2.1 | Sample collection

The details of the animals sampled are presented in Table 1. The animals

sampledwere being reared on the NorthWyke Farm Platform23 and came

from one of the three treatments which, individually, comprise a farmlet;

(1) 'Legumes': sward improvement by reseeding with long‐term grass

and white clover mixtures; (2) 'Planned reseeding': sward improvement

through regular reseeding using new varieties of grass; and (3) 'Permanent

pasture': sward improvement of the existing permanent grassland

using artificial fertilisers (both other treatments are also fertilised).

Samples were collected from seven animals whose ages ranged

between 359 and 490 days old; six were male and one female, and five

were Charolais crosses, one a Limousin cross, and one a Stabilizer.

Animals were not preselected for the study; simply, the first animal

to defecate was selected. The animal ID number was noted and about

150 g of faeces was collected from the ground using sterile containers.

Samples of fresh faeces were collected directly after being voided onto

the soil surface in clean aluminium containers and returned immediately

to the laboratory for sub‐sampling and preparation. First, a sub‐sample

of 2–3 g faeces was placed into a 12‐mL glass exetainer, sealed

and frozen at −20°C, ready for determination of its δ18OH2O value.

Secondly, a 1 g faeces sub‐sample for microbial analysis was placed in

a 25‐mL polystyrene screw‐capped container (Sterilin, Newport, UK),

diluted with 9 mL of Ringer's solution, (g L−1; sodium chloride, 2.25;



TABLE 1 Information on the cattle from which faeces were sampled

Faeces ID Animal ID Date sampled Gender Breed Age (days) Farmlet

FP075/001 101621 27/6/17 Male CHX 413 3

FP075/004 501569 28/6/17 Male CHX 465 3

FP075/007 401561 29/6/17 Male CHX 469 1

FP075/010 301623 3/7/17 Male LIMX 417 2

FP075/013 601577 4/7/17 Male ST 465 3

FP075/016 701536 5/7/17 Female CHX 490 1

FP075/019 701634 6/7/17 Male CHX 359 3

Breed codes: CHX = Charolais cross, LIMX = Limousin cross, ST = Stabilizer.

Farmlet codes: 1 = Legume enhanced, 2 = Planned reseeding, 3 = Permanent pasture.
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potassium chloride, 0.105; calcium chloride 6H2O, 0.12; sodium

bicarbonate, 0.05; pH 7.0; Oxoid, Basingstoke, UK), and stored at 4°C

for analysis within 24 h. Thirdly, a 20–30 g sub‐sample was taken,

placed in a pre‐weighed foil tray, weighed, and then dried to a constant

weight at 105°C overnight to determine dry matter (DM) content.
2.2 | Development of extraction methods for
distinguishing inorganic andmicrobial PO4 in cattle faeces

The method development experiments for distinguishing inorganic and

microbial PO4 were based on extraction methods described for

soils;24,25 whereby samples were extracted in a matrix of deionised

water, or deionised water and hexanol, in the presence of anion‐

exchange resins to collect 'free' PO4 and 'microbial' PO4, respectively.

Tests using faeces found that there was no difference in the amounts

of PO4 recovered from faeces with, or without, hexanol (results not

presented). This suggested that either there was no microbiological

content within the faeces, or that hexanol did not lyse the cells. As it

seemed unlikely that there would be no faecal microbial content, it

was hypothesised that osmotic stress was causing the lysis of most

of the microbial cells present and therefore the addition of hexanol

would not further increase the amount of extractable PO4. This

hypothesis was based on the standard practice of microbiologists in

using a buffered solution when extracting gut microbiology for

culture.26,27 Unlike soil microbiology, gut microbiology tends to be

adversely affected in pure water and, to prevent this, the use of an

isotonic diluent such as ¼ strength Ringer's solution is well established.

Ringer's solution contains mainly anions, to prevent the osmotic

stress of the microbiology, so a recovery test was undertaken to see

if it would adversely affect the ability of the anion resins to collect

PO4. A PO4 spike was added to a container of Ringer's solution into

which anion resins were placed. After a 16‐h shaking period, it was

found that PO4 recovery was unaffected by the Ringer's solution

(results not shown) and on this basis the study was continued.

2.2.1 | Microbiology

Determination of the number of bacteria was undertaken using the

standard plate count method for Escherichia coli, a faecal indicator

organism. The sample to be tested was diluted through serial dilutions

to obtain a small number of colonies on each agar plate; 0.1 mL of the

diluted sample was spread on the surface of a Membrane Lactose

Glucuronide Agar (MLGA) (Oxoid) plate. Samples were initially vortex
mixed before appropriate serial dilutions, from which 0.1 mL was

spread plated aseptically. Once plates were dry, they were incubated

at 44.0°C (±0.5°C) for between 18 and 24 h. After the total incubation

period, all plates were examined and plates with between 30 and 300

colonies were counted.

2.3 | Sample extraction

2.3.1 | Faecal PO4

Two further sub‐samples were extracted for PO4; (i) Resin PO4:

25–100 g placed in a 5‐L HDPE sealable bottle, diluted with 3 L

Ringer's solution, and 72 anion‐exchange resin (VWR International

Ltd, Lutterworth, UK) squares (4 cm × 4 cm) added; and (ii) Microbial

PO4: 1–2 g placed in a 5‐L HDPE bottle and diluted with 3 L deionised

water, and 72 anion‐exchange resin squares added. The bottles were

placed on an orbital shaker set at 100 rpm, in a 4°C walk‐in refrigerator.

After 16 h, the bottles were removed and the extracting solution

sub‐sampled for microbial analysis by diluting 1 mL of extractant

solution in 9 mL Ringer's solution and stored at 4°C before analysis

within 24 h. Resins were then recovered by pouring the extraction

solution from the 5‐L bottle though a 4mm sieve ensuring that all resins

were recovered from the bottle. As the sample was highly organic in

nature we felt it necessary to test and, if needed, account for any

potential hydrolysis of organic P during the extraction of PO4 from the

resins. Resins from each extraction were divided into two sub‐sets of

36, placed in a 250‐mL polypropylene screw‐capped bottle and washed

several times with their respective, fresh, matrix solutions. When clean,

PO4 was liberated from the resins using 75 mL of 0.2 M nitric acid

(HNO3). For each of the two sub‐sets of 36 resins collected from a

single extraction matrix, δ18OH2O unlabelled (−5.7‰) and labelled

(+81.6‰) 0.2 M NHO3 was used to test for hydrolysis of organic P by

the acid. The corrected δ18OPO4 value is then calculated using a revised

version18 of the mass balance equation described by McLaughlin et al:28

δ18OPO4 ¼
δ18OPsp*δ18OAus

� �
− δ18OPus*δ18OAsp

� �

δ18OPsp−δ18OPus−δ18OAsp þ δ18OAus

� �

where δ18OPO4 is the corrected final stable oxygen isotope ratio for PO4

considering the effect of any hydrolysis of organic P, δ18OPsp is the stable

oxygen isotope ratio of the PO4 collected using 18O‐spiked HNO3,

δ18OPus is the stable oxygen isotope ratio of the PO4 collected using

unspiked HNO3, δ
18OAus is the stable oxygen isotope ratio of the water
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in the unspiked HNO3, and δ18OAsp is the stable oxygen isotope ratio of

water in the 18O‐spiked HNO3.

Phosphate in the extracts was converted into silver phosphate

(Ag3PO4) using the purification protocol described by Tamburini

et al.29 The process utilises a series of dissolution and precipitation

reactions to isolate and purify dissolved PO4. The PO4 is precipitated

first as ammonium phosphomolybdate before it is dissolved and

reprecipitated as magnesium ammonium phosphate which is dissolved

again. The resultant PO4 in solution is converted into Ag3PO4

through the addition of an Ag‐ammine solution which is then placed

in an oven for 1 day at 50°C. Although the Tamburini protocol uses a

DAX‐8 resin early in the extraction its use is not necessary unless

organic contamination is present in the subsequent Ag3PO4

(F. Tamburini, personal communication).30

2.3.2 | Faecal water

Cryogenic extraction of faeces water was undertaken at the National

Isotope Geosciences Laboratory, based at the British Geological Survey

in Nottingham, UK. Frozen samples were placed in a U‐shaped vacuum

tube (borosilicate glass), the sample containing side of which was

immersed in liquid N2 to ensure complete freezing of sample water.

The U‐tube was then evacuated to a pressure of <10−2 mbar, removing

all the residual atmosphere. Once under stable vacuum, the U‐tube was

sealed, removed from the vacuum line and the sample side of the tube

placed in a furnace at 100°C. Sample water collection was achieved by

immersing the opposite side of the glass U‐tube in liquid nitrogen,

forcing evaporated sample water to condense and collect. This setup

was maintained for at least 1 h to ensure complete water transfer.

Sample water was collected and stored refrigerated in 1.5‐mL vials with

no headspace until isotope analysis. Samples were weighed before and

after extraction to assess whether they had been successfully dried.

2.4 | Sample analysis

2.4.1 | Phosphate

Phosphate concentrations were determined colourimetrically on an

Aquachem 250 analyser (Thermo Fisher Scientific, Waltham, MA, USA)

using amolybdenumblue reaction31 after they had beendiluted (typically

1/10th) to avoid any acid interference with the molybdenum chemistry.
2.4.2 | Isotopes

Measurement of the PO4
18O/16O ratio was undertaken by weighing

approximately 300 μg of Ag3PO4 into a silver capsule to which a small
TABLE 2 Properties of the different fresh faeces samples collected

Faeces ID

Fresh faeces Ringer's solution

%DM
δ18OH2O

values (‰)
Faeces
used (g)

μg PO4‐
recovere

FP075/001 16.6 ‐ 23.4 259

FP075/004 10.0 ‐ 28.8 247

FP075/007 9.3 −1.19 23.5 204

FP075/010 12.6 −0.85 99.1 874

FP075/013 10.0 −1.02 100.2 805

FP075/016 10.6 −0.98 100.4 786

FP075/019 10.8 0.41 100.2 814
amount of fine glassy carbon powder was added.29 The sample was

converted into carbon monoxide by dropping it into a thermal

conversion elemental analyser (ThermoFinnigan, Bremen, Germany) at

1400°C; the resultant carbon monoxide mixed with a helium carrier gas

passed through a GC column into a Delta + XL mass spectrometer

(ThermoFinnigan). The δ18OPO4 values were calculated by comparison

with an internal Ag3PO4 laboratory standard, ALFA‐1 (ALFA‐1 = δ18O

VSMOW value of +14.2‰). In the absence of an international Ag3PO4

reference material, we derived this value for ALFA‐1 by comparison with

theAg3PO4 standard 'B2207' (ElementalMicroanalysis Ltd, Okehampton,

UK), which has been measured in an inter‐laboratory comparison study

to have a δ18O value of +21.7‰ versus VSMOW. Samples were run in

triplicate, with a typical precision σ ≤0.3‰. Sample purity was assessed

by determining the CO yield compared with the yield of Ag3PO4

standards, and samples were rejected where this differed by 10%.

Faeces water δ18OH2O values were determined on an Isoprime

Aquaprep coupled to an Isoprime 100 dual‐inlet isotope ratio mass

spectrometer (Isoprime Ltd, Cheadle Hulme, UK) through a process

of headspace CO2 equilibration with water samples. The isotope ratios

are reported as δ18OH2O values versus VSMOW, based on comparison

with laboratory standards calibrated against IAEA standards VSMOW

and SLAP, with analytical precision typically σ ≤0.05‰.

2.5 | Statistical analysis

All statistical analyses were conducted in R.32
3 | RESULTS

3.1 | Faecal properties

The fresh faeceswere found tohave aDM ranging from9.3 to16.6%with

a mean of 11.4% (±2.5) while the δ18OH2O values ranged between −1.19

and +0.41‰ with a mean of −0.73‰ (±0.65) (Table 2). The amounts of

PO4 collected from faeces when using Ringer's solution ranged from

67 to 93 μg PO4‐P g−1 DM with a mean of 78 (±9.1) μg PO4‐P g−1

DM. This was found to be significantly less (t6 = −8.03; p <0.001) than

that collected using deionised water which ranged from 3885 to

8635 μg PO4‐P g−1 DMwith amean of 5713 (±1856) μg PO4‐P g−1 DM.

3.2 | Faecal microbiological content

Fresh cattle faeces had E. coli concentrations ranging from 6.1 to

7.85 CFU g−1 DM (Table 3). The concentrations of E. coli in the two
Deionised water

P
d

μg PO4‐P
g−1 DM

Faeces
used (g)

μg PO4‐P
recovered

μg PO4‐P
g−1 DM

67 2.2 3145 8635

86 1.8 699 3885

93 1.6 772 5161

70 1.7 1431 6686

80 2.0 840 4181

74 1.7 739 4109

75 1.5 1192 7331



TABLE 3 Colony‐forming units (CFU) for E. coli in raw faeces, a
Ringer's solution extraction and a deionised water extraction
expressed in per g of faecal dry matter (DM)

Ringers solution

Faeces ID
Raw
faeces log10 CFU g−1 DM

Deionised
water

FP075/001 6.28 6.38 6.22

FP075/004 7.85 7.71 8.02

FP075/007 7.01 6.99 7.05

FP075/010 6.10 5.73 5.85

FP075/013 7.10 7.22 7.04

FP075/016 6.93 7.08 7.46

FP075/019 7.38 7.35 7.63

GRANGER ET AL. 707
extracting solutions ranged from 5.73 to 7.71 CFU g−1 DM in Ringer's

solution and from 5.85 to 8.02 CFU g−1 DM in deionised water. There

was no significant difference in E. coli concentrations between raw

faeces, Ringer's solution and deionised water.
3.3 | Extractable faecal δ18OPO4 values

To assess whether organic P had been hydrolysed by the 0.2 M HNO3

resin elution solution, the δ18OPO4 values obtained following extraction

with 18O‐labelled and unlabelled HNO3 were analysed statistically and

it was found that no significant difference occurred between labelled

and unlabelled acid elution for extractions with either Ringer's solution

(t3.358 = −1.2012; p >0.05) or deionisedwater (t11.606 = 0.6995; p >0.05).

It was concluded therefore that there was no need to correct data using

the equation described by McLaughlin et al.28 Instead, a mean of the

spiked and unspiked values was used to report the resin‐extractable

δ18OPO4 values. The δ18OPO4 values for the PO4 extracted from faeces

are presented in Table 4. The δ18OPO4 values for PO4 extracted using

Ringer's solution for the first three samples are not presented as

the amount of some of them was too small for standard Ag3PO4

precipitation. Of the remaining four faecal samples the values ranged

from +12.0 to +19.8‰ with mean values between +12.1 and

+16.3‰. The values for the seven samples extracted in deionisedwater

ranged from +12.9 to +15.6‰with mean values of +13.2 and +15.3‰.

The greatest variation between labelled and unlabelled acid δ18OPO4

elution values occurred in the Ringer's solution dataset with the mean
TABLE 4 Measured and mean δ18OPO4 values of PO4 collected from
seven fresh cattle faeces samples using anion resins in either Ringer's
solution or deionised water

Ringer's solution Deionised water

Unspiked Spiked Mean Unspiked Spiked Mean

Faeces ID δ18OPO4 (‰)

FP075/001 ‐ ‐ ‐ +15.6 +15.0 +15.3

FP075/004 ‐ ‐ ‐ +12.9 +13.4 +13.2

FP075/007 ‐ ‐ ‐ +15.3 +13.5 +14.4

FP075/010 +13.5 +13.4 +13.4 +14.2 +14.2 +14.2

FP075/013 +12.3 +12.0 +12.1 +13.7 +13.5 +13.6

FP075/016 +12.9 +19.8 +16.3 +13.9 +15.3 +14.6

FP075/019 +14.3 +16.3 +15.3 +15.1 +13.3 +14.2
difference of the labelled acid extraction being +2.1‰. This result,

however, was strongly influenced by one anomalously high labelled

acid δ18OPO4 value of +19.8‰, leading to a difference of +6.9‰. This

sample also had a slightly higher oxygen yield indicating that it was

not pure Ag3PO4 which could explain the relatively high difference

between the δ18OPO4 values of labelled and unlabelled acid extraction.

The differences observed in the deionisedwater labelled and unlabelled

acid elution were far smaller and ranged between −1.8 and +1.4‰with

a mean of −0.3‰. Statistical analysis of the two sets of paired data

shows that there was no difference between the δ18OPO4 values

obtained following extraction using Ringer's solution and that using

deionised water (t3.463 = 0.0785; p >0.05).
4 | DISCUSSION

4.1 | Microbiological content

The concentrations of E. coli reported here are consistent with those

reported in the literature for beef cattle faeces.33-35 The use of ¼ strength

sterile Ringer's solution before bacteriological examination is well

established26,27 to effectively protect bacterial cells from the osmotic

shock that theywould experiencewhen being suspended in sterile water.

However, the new data from this study (Table 3) indicate that there was

nodifference between Ringer's solution and deionisedwater and that the

microbial cells were thus not lysed in water and that the extracted PO4 in

both cases does not represent 'microbial' PO4 released through cellular

breakdown during the extraction process but, instead, 'free' PO4.
4.2 | Resin‐extractable PO4

The amounts of PO4 extracted in deionised water were significantly

higher than in Ringer's solution. This finding is at odds with the initial

recovery test undertaken on PO4 in a pure Ringer's solution matrix.

However, it would seem that the combination of organic material,

faecal anions, and the anions within the solution itself significantly

reduced the recovery of PO4 on the resins in a way that did not occur

in just the Ringer's solution alone. This interference raises questions

about the validity of the δ18OPO4 values of PO4 recovered in this

solution due to potential unknown fractionations that might occur as

a result of preferential adsorption/desorption of the lighter/heavier

isotopologues.36 The microbiological analysis showed that cell lysis

and rupture did not occur in either extraction (Table 3). Therefore,

the results derived from the Ringer's solution extraction are not

considered further in this discussion, as it apparent that the method

for distinguishing microbial PO4 from inorganic PO4 (as defined earlier)

requires further development.
4.3 | Faecal water

The fresh faeces %DM values are consistent with those reported

elsewhere for cattle grazing pasture.37 The cattle's main source of

water is via drinking troughs supplied using ground water originating

from a local borehole. The δ18OH2O value of the groundwater is

relatively stable and will represent an integrated value of the annual

precipitation supplying it. At this location, the δ18OH2O value is



FIGURE 1 The range of δ18OPO4 values for deionised water extracted
fresh faeces compared with (i) the reported values for agricultural
slurry, (ii) the Eδ18OPO4 for cattle assuming body water δ18OH2O is
equivalent to ground water and, (iii) the Eδ18OPO4 for cattle assuming
body water δ18OH2O is equivalent to faecal water [Color figure can be
viewed at wileyonlinelibrary.com]
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predicted to be between −5.5 and −6.0‰.38 The drinking troughs are

refilled with fresh water every time that an animal drinks from them

and therefore we do not consider deviations from the groundwater

δ18OH2O value due to evaporative losses as important. Abeni et al39

also found that summer and winter drinking water δ18OH2O values

did not differ greatly despite the increased temperatures. Water is also

ingested as metabolic water in food, which is likely to be isotopically

heavier than local meteoric water due to fractionation;40 however,

the main source of water for the animal is considered to be that

supplied by the drinking troughs. Abeni et al39 showed that the

δ18OH2O values of various forms of body water in cattle were from

4.2 to 7.9‰ heavier than in drinking water in the summer and that

for faecal water they were from 4.8 to 7.7‰ heavier. The measured

δ18OH2O value in faeces in this study was found to be up to 6.4‰

heavier than in groundwater and this was not unexpected as

demonstrated by the model proposed by Bryant and Froelich.40 Water

lost via breath water vapour and transcutaneous water vapour will be

isotopically fractionated, leading to an increase in body water δ18OH2O

values while water lost via pathways such as urine, faeces and sweat

will be similar and thus have similar δ18OH2O values to that of the

animal's body water. The increase in δ18OH2O value will also be more

pronounced in the summer when temperatures are higher.39
4.4 | Theoretical animal Eδ18OPO4 values

The use of Eδ18OPO4 values is widespread within the δ18OPO4

community to benchmark measured values with values that have

potentially lost their original signal through intracellular cycling,

specifically through the enzyme pyrophosphatase. However, there is

much uncertainty as to how relevant this theoretical equilibrium is in

many situations, and we acknowledge that in terms of animal gut

processes other cycling pathways may predominate.

The normal temperature of cattle is 38.6°C, with anything outside

a range of 38.0 to 39.2°C indicating ill health.41 When combined with

the range of δ18OH2O values measured in faeces and with the range

expected for the ground/drinking water in the region, a Eδ18OPO4

range of values from +13.2 to +14.0‰ is expected, assuming that

the body water δ18OH2O value is similar to that of ground water and

+18.1 to +19.9‰ if the δ18OH2O values within faeces are used and

are taken to represent the animal body water (Figure 1).
4.5 | Extractable faecal δ18OPO4 values

As it was shown that the resin‐extractable PO4 was not derived

directly from the lysis of microbial cells, it was not possible to compare

'free' PO4 with 'microbial' PO4. However, the δ18OPO4 values of the

'free' PO4 ranged between +13.2 and +15.3‰ which are very similar

to those reported for slurry PO4 by Granger et al19 which ranged

between +12.0 and +15.0‰ despite being extracted differently and

representing a much more heterogeneous source material (Figure 1).

There was no apparent relationship between the δ18OPO4 values and

the animal variables; however, the scope of the study was too limited

to investigate variables such as age, gender, breed, etc. The δ18OPO4

values reported within this study indicate that the slurry δ18OPO4

values are caused by the PO4 in animal faeces. The δ18OPO4 values
of the faeces themselves, however, are at or slightly above the range

of Eδ18OPO4 values based on the ground/drinking water δ18OH2O

values. However, all the values are at least 2.8‰ lower that the

Eδ18OPO4 value range calculated from the δ18OH2O value of faecal

water, water that should be far more representative of the body water

of the animal.40 It is unclear why this is the case without further work

being carried out to investigate animal P food sources and metabolic

processes within the animal.
5 | CONCLUSIONS

• The extractable PO4 from fresh cattle faeces was lower using

Ringer's solution than deionised water. However, this did not

appear to be because of microbial cellular lysis in the deionised

water extraction. It would appear to be due to some form of

interference between the Ringer's solution ions, compounds in

the faeces and the anion resin sheets. Because of this it was

not possible to differentiate 'microbial' PO4 and 'free' PO4, and

their respective δ18OPO4 values. As it has been shown that

deionised water does not lyse the microbial cells it would be

worth repeating the study using the more traditional resin PO4

extraction in a water/hexanol extraction solution to extract

'microbial' PO4 and to also use the microbial assays described to

establish if this occurs.

• The δ18OPO4 values of fresh cattle faeces, under the conditions

reported in this study, ranged between +13.2 and +15.3‰ which

are consistent with those reported elsewhere for agricultural

animal slurry.

• The δ18OPO4 values are similar to the Eδ18OPO4 value calculated

for within the animal using the δ18OH2O value of groundwater.

However, they are at least 2.8‰ lower than the Eδ18OPO4 value

range calculated using faecal water as a proxy for the animals'

body water.

http://wileyonlinelibrary.com
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• There were no apparent relationships between the animal

variables and the δ18OPO4 value. However, to examine these, a

more detailed study is required which should also include other

animals for which few data exist in the literature.
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