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Abstract

Alopecurus myosuroides Huds. (black-grass) grows in patches within fields. This presents
an opportunity for site-specific management by patch spraying. Despite the economic
and environmental benefits of this type of management, it is not being readily taken
up by farmers, largely due to the risk of missing weeds that fall outside of established
patches. I focus on the environmental determinants of patch location in A. myosuroides
and the scale-dependence of relationships between A. myosuroides and environmental
properties. Understanding these relationships allowed me to determine which abiotic
factors can be used to identify A. myosuroides vulnerable zones within fields and if
these relationships occur at scales appropriate for management. This presents a more
conservative approach than patch spraying according to observations of previous years’
infestations, as a greater area of the field is sprayed, yet the overall use of pesticide is
still reduced.

By combining field work, pot experiments, and modelling, I discovered that soil
organic matter, water, and pH, amongst other environmental properties, show strong
scale-dependent relationships with the within-field distribution of A. myosuroides. These
relationships between A. myosuroides and soil properties were often strongest at coarse
scales making them particularly useful for the implementation of management practices,
which are often limited to coarse-scale implementation by the available machinery.
The effects of these soil properties on A. myosuroides are both direct (affecting the
plant’s life-cycle) and indirect (altering herbicide efficacy). The incremental changes I
observed to different aspects of the life-cycle due to soil properties may seem too small
to be of consequence when studied independently, yet when combined in a modelling
approach their additive nature revealed them as important determinants of the within-
field distribution of this species and the coarse-scale relationships observed in the field

are an emergent property of the model.
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Chapter 1

Introduction

In a world where the population is set to reach 9.7 billion in 2050 (UN, DESA, 2015),
food security is an issue of great importance. The severity of this issue is recognized
in the United Nations’ sustainable development goals (UN, 2017). These not only
encompass zero hunger, but also good health and well-being, sustainable cities and
communities, responsible consumption and production, and climate action. Each of
these goals requires forward steps in the field of food security in order to be achieved. In
the global efforts to realise these goals, not only does food production need to increase,
but this needs to be done in a more sustainable, climate-friendly manner, using less land

and ensuring the foods we produce are healthy.

The Green Revolution of the 1950s, 1960s and 1970s saw the widespread uptake of
agricultural technologies including irrigation, pesticides and synthetic nitrogen fertilisers.
It also saw the introduction of improved crop varieties, bred to include semi-dwarfing
genes. These lead to improved yields and an improved harvest index by allowing extra
nitrogen uptake by the plant whilst reducing the risk of lodging. These combined
improvements to agricultural practice and technologies allow increased production
across all crops, with cereal yield worldwide increasing by more than 50% over the
period 1961-1981 (FAOSTAT, 2017). These yield increases, and the technologies that
allowed them, are exemplified in the Broadbalk experiment at Rothamsted Research
(Figure 1.1) where winter wheat has been sown and harvested on all or part of the field
each year since 1983, making it the longest continuously running agronomic experiment
in the world. Key agronomic changes introduced throughout the Green Revolution were

also introduced into this experiment and so the changing yield observed provides a good
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indication of the advantages provided by each subsequent technological or agronomic
advancement (Figure 1.1). Particularly striking is the yield increase following the
introduction of herbicides and the first modern short-strawed variety “Capelle D.” These
combined improvements in cultivars and increased agricultural inputs, demonstrated in
this experiment, underpinned the yield increases observed during the Green Revolution.
Following these improvements made during the Green Revolution yield increases have
begun to stagnate with an increasing gap between potential yields and those achieved
on farms — the so-called “yield gap”. This indicates that the technological advances of
the Green Revolution can no longer be relied upon to support yield gains and instead
we should now be aiming to improve the efficiency of resource use and production, for
example by integrating ecology with food production to reduce the need for external

inputs (Smith et al., 2010).
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Figure 1.1. Mean long-term winter wheat grain yields on the Broadbalk long-term
experiment at Rothamsted. The introduction of new wheat varieties to the experiment
are shown beneath the x-axis. The timing of the introduction of new agricultural
practices are indicated by arrows. This image is licensed under a Creative Commons

Attribution 4.0 International Licence - Rothamsted Research 2017.

Cereals make up the majority of production in the crop sector and are the most
important food source for human consumption (FAO, 2015). The Food and Agriculture
Organization of the United Nations (FAO, 2017) estimates world cereal production in

2016 to have amounted to 2,600 million tonnes. In the United Kingdom (UK), 51%
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of the 6.1 million-hectare croppable area was in cereal production in 2015 making
cereals a key aspect of the UK agricultural industry (National Statistics, 2015). These
statistics highlight the importance of cereals in our food system. Therefore, in order
to meet global food security challenges there is not only a need to improve the yield
and nutritional value of cereals but also to minimize the yield gap associated with their

production.

Weeds affect crop productivity through competition for resources; water, light, and
inorganic nutrients. They are the largest single crop protection limitation on crop
yield worldwide (Ziska & Dukes, 2011) and are the most important pest group in
wheat production, causing potential losses of 23%, compared to only 16, 3, and 9%
for pathogens, viruses, and animal pests respectively (Oerke, 2006). As such they are
a major limitation on food production and present an important obstacle if we are to
achieve the sustainable development goals relating to food security outlined above.
They are also of huge economic importance. A weed can be defined as a plant growing
out of place (Radosevich et al., 2007 p4). In agriculture, this translates as plants other
than the crop being grown for commercial production. This can include both wild plants
that establish within the agricultural landscape as well as volunteers from previous
crops. Weeds often exhibit rapid vegetative growth and are able to germinate, grow
and reproduce in a wide range of environments (Baker, 1974). They are also very quick
to adapt to changing selection pressures (Neve et al., 2009). This makes them very
difficult to manage in an agricultural situation as they can quickly adapt to changing

management practices.

Alopecurus myosuroides Huds. (black-grass), an annual grass, is one of the most
common grass weeds of winter cereals in north-west Europe (Holm et al., 1997) and is
particularly problematic in the UK (Figure 1.2). Alopecurus myosuroides produces many
seeds and shows strong competitive ability with the crop (Maréchal et al., 2012). The
distribution of the species within the UK corresponds primarily to that of the wheat
growing area and is largely concentrated in the south and east. With climate change
the distribution of A. myosuroides is predicted to remain broadly similar with a possible
northward shift in its range (Stratonovitch et al., 2012). Alopecurus myosuroides exhibits
two cohorts of germination; the majority of seedlings emerge in the autumn, and a
second smaller flush in the spring. By emerging whilst the crop is in the field, there is

synchronisation with the crop life-cycle allowing it to compete at all stages of growth
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(Maréchal et al., 2012), whilst completing its life-cycle before the crop is harvested.
Seed shed occurs from late June to mid August with peak shedding occurring in late
July (Moss, 1980). Alopecurus myosuroides plants are capable of producing vast amounts
of seeds (Moss, 1980), meaning small failures in control can lead to rapid population
growth and dense infestations within some fields. As such, control of their population is

of great importance to farmers.

Figure 1.2. Alopecurus myosuroides plant in a crop of winter wheat. This image is
licensed under a Creative Commons Attribution 4.0 International Licence - Rothamsted

Research 2017.

1.1 Weed Management

The first chemicals used for weed control were introduced in the early 1900s, but it was
in the 1940s that the development of new herbicides dramatically increased farmers’
ability to control weeds (Oerke, 2006). For many farmers, the main option for control of
A. myosuroides and other weeds is still through the application of herbicides. These are
often heavily relied upon as the sole method of control and are generally applied using
a broadcast spray. In 2015, in the UK, 4,200 tonnes of herbicide were applied to cereal
crops (FERA, 2017) with farmers using an average of six herbicidal active substances in
a season for a single arable crop (Garthwaite et al., 2014). For A. myosuroides, herbicides
have long proven to be effective at killing individuals as well as suppressing growth
and seed return of survivors (Moss, 1980), yet many farmers are seeing a decline in the
levels of control achieved as A. myosuroides populations in the UK are rapidly developing

resistance to many commonly used active ingredients including acetyl-CoA carboxylase
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(ACCase) and acetolactate synthase (ALS) type herbicides (Heap, 2017) and so farmers

are looking to find alternative methods of weed management.

There are also economic, environmental and legislative pressures on the use of
herbicides. First, the cost of agrochemicals, whilst small, is an important component
in the cost of cereal production. Second, there are many environmental concerns
surrounding the widespread use of herbicides: Agrochemicals can contaminate surface
water, ground water and the atmosphere (Garibay et al., 2001) leading to multiple
problems in terms of both biodiversity losses, loss of ecosystem function and other
problems for humans such as contamination of drinking water. There are also an
increasing number of regulations being placed on herbicides and so by reducing their
usage, farmers become less reliant on individual active ingredients which could be
withdrawn. So, by aiming to minimise the amount of herbicide used on farms the
benefits would be multiple: production costs would be reduced, the effective life of some
active ingredients would be prolonged, environmental concerns would be addressed,
and there would be less reliance on this singular method of control encouraging greater

adoption of integrated weed management programs.

The decreasing number of chemical products available to farmers and the increasing
pressures to reduce pesticide use puts a growing emphasis on the optimisation of current
techniques and finding alternative approaches (Grundy, 2003). An increasing level of
integrated weed management prevents reliance on one particular management option,
such as herbicides. However, designing effective integrated weed management programs
is a complex task and requires an in-depth understanding of the dynamics of weed
populations (Fernandez-Quintilla, 1988) as many cultural control methods focussing
on the species’ biology and ecology are often incorporated into such programs. For
example, delaying drilling of the crop can allow a greater level of germination prior to
sowing. This cohort of weeds can then be removed with a single application of herbicide
early in the season. However, this technique relies on a good understanding of the
periodicity of emergence of different weed species. One option suggested for reducing
the amount of herbicides used for weed management is through the consideration
of economic thresholds, or particular densities of weeds below which there is little
economic reason to spray herbicides as the cost of inputs will exceed yield losses.
However, for A. myosuroides it is difficult to establish such damage thresholds for

herbicide application, as there is great variability in the yield response (Moss, 1980).



Chapter 1. Introduction

Another option might be through the use of precision management techniques such as

the spatially variable application of herbicides, or patch spraying.

The distributions of many weed populations are heterogeneous within individual
fields; often showing aggregation at various densities, with patches of varying size
and shape. No consistent patterns are observed across species (Cardina et al., 1997;
Dieleman et al., 2000; Walter et al., 2002; Heijting et al., 2007). However, despite some
level of unpredictability in patch size and location, this spatial heterogeneity within weed
populations can be incorporated into population dynamics models (van Groenendael,
1988) allowing it to be studied in detail, and management regimes to be developed
that incorporate the idea that weeds are spatially variable and so should be managed
as such. Most crop management practices are aimed at minimizing heterogeneity to
optimize yield (Pollnac et al., 2008) and so it follows that site-specific management of
weeds can improve crop yield through the minimisation of heterogeneity within the
crop. Alopecurus myosuroides, like many weed species, grows in patches that vary in
size and shape (Wilson & Brain, 1991; Krohmann et al., 2006). This makes it an ideal

candidate species for site-specific weed management.

1.1.1 Site-Specific Weed Management

The intrinsic patchiness of weeds can lead to inefficiencies in their control, as often
a farmer will base their decision to spray a field on the presence of weeds at any
location within the field or on overall densities, whereas in reality there might be
large areas of the field that require no spraying, causing the farmer to waste time,
money, and chemical (Cardina et al., 1997). However, advances in modern agronomy
allow much greater precision, and as such it is now possible to take into account finer
scale spatial variations than may have been achievable in the past. This is already
commonplace in many aspects of farming. Information-based management systems
to adapt fertiliser distribution across the field were first introduced in the mid-1980s
(Gebbers & Adamchuk, 2010) and since then precision farming techniques including
GPS steering, soil mapping, and variable rate seeding are becoming increasingly popular;
with the proportion of UK farmers who implement these techniques increasing over

recent years (Defra, 2013).

The concept of site-specific weed management, specifically patch spraying (see
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Figure 1.3) is gathering interest. This takes into account the spatial variability of
weeds either through intermittent spraying based on observed weed density at different
locations or by modelling the thresholds for weed density above which it is economic to
spray (Garibay et al., 2001). This results in reduced chemical cost and more accurate
application of control practices where required (Dieleman et al., 2000). However, the
economic benefits of site-specific weed management are related to both the proportion
of the field that is infested as well as the number of weed patches. Therefore, to
determine the economic viability of this approach and subsequently to implement
any patch spraying program, the distribution of the weeds within the field must be
mapped. Treatment maps can be created with the use of manually collected data on
weed distributions, which is time-consuming and costly (Rew & Cousens, 2001), or
through real-time detection of weeds using optical sensors. This real-time approach is
still in development, and whilst already feasible is not yet at the stage of widespread
commercialization (e.g. Murdoch et al., 2010). A third approach, in development,
that shows some potential for rapid map production is through remote sensing and
multi-spectral imaging. However, the required knowledge to implement this is still
lacking (Rew & Cousens, 2001). When any of these methods are implemented for
A. myosuroides, the current practice is to map the distribution of seed heads in the

summer as these are easily detectable, often growing above the crop.

Knowing the spatial distribution of weed species is vital when implementing precision
management techniques and can be one of the barriers facing the uptake of this type
of management due to the time-consuming or costly nature of map creation. However,
site-specific management can be facilitated if weed patches are stable in location. Patch
stability allows weed maps produced in one year to be used for site-specific control in
future years (Pollnac et al., 2008). This can be particularly useful when considering
the application of pre-emergence herbicides as there is no visual indication of weed
distributions at the time of their application and so it would be useful to use the known
distribution of weeds from the previous year to help inform decision-making (Colbach
et al., 2000). The stability of A. myosuroides patches is not an area that has been
extensively examined, but from the relatively few experiments that have studied patch
stability it is apparent that patches can be fairly stable (Wilson & Brain, 1991) with core
areas of A. myosuroides patches moving only 3-4 m over several years (Lutman et al.,
2002). This spatial stability does not, however, confer stability in weed density (Cardina

et al., 1997). Colbach et al., (2000) demonstrated this effect through correct prediction
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Figure 1.3. Diagrammatic representation of the principles of patch spraying. Patch
spraying often involves the mapping of weed patches within fields (A), either through
manual surveying of heads or real-time detection. A buffer zone (B) is then drawn
around these mapped patches to allow for the spread of the patch in the following
season. The field is then divided into grids of a manageable size — often the width of the
spray boom — and all grid cells that contain the patch and buffer zones will be sprayed
(cells within the red line). This approach does not account for individuals dispersing
outside of the buffer zones (C), being dragged long distances by the cultivator (D) or
entering the field from the margin (E). If a suite of soil properties could be identified that
are favourable to A. myosuroides (grey areas). Then we may be able to identify “weed
vulnerable zones” and spray accordingly (cells within the yellow line). This presents a
more conservative approach as a greater area of the field is sprayed, making it more
appealing to farmers, yet still reducing the overall use of pesticide. It is likely that in
this instance the seeds that fell outside of the original buffer zones, but are captured
within the weed vulnerable zone, would have gone on to form a new patch (C and
D). However, the seeds entering the field from the margin to land outside of the weed

vulnerable zone (E) would not present a risk.
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of the location of patches from previous years’ maps but the density at the site was often
incorrectly estimated. They also showed that the greater the time between sampling and
prediction the less accurate the prediction becomes. This means that whilst it may be
possible to use maps from previous seasons as treatment maps they may be unsuitable

in a threshold type approach.

Uptake of Site-Specific Weed Management

Despite the numerous benefits of introducing patch spraying as a form of weed manage-
ment, it is not being readily taken up as a standard management tool. There may be
many reasons for this. First, with the growing problem of herbicide resistance on many
farms, spraying is not always the best form of management and many cultural controls
are now being used more commonly than in recent years. Also, resistance can lead to
very large seed densities or large patches, which can make patch spraying less profitable

(Audsley, 1993).

The cost and availability of equipment required for patch spraying can be a deterrent
to the uptake of patch spraying. Equipment is required to recognize, quantify, and
indicate spray actions, all of which can be expensive. Not all of the equipment is
essential but without it, a lot of time and labour is required for sampling the field to
obtain the data needed to construct maps used to direct the sprayer (Colbach et al.,
2000). Also, many of the technologies developed so far are dedicated to specific crops
and ranges of weed species, which limits the range of usage (Christensen et al., 2009).
However, if a farmer is already using some precision management techniques such as
mapping the yield through the combine and varying fertilizer on a spatial basis then
they will already have a lot of the equipment required for patch spraying (Lutman et al.,

2002).

Finally, a change to patch spraying goes against current practice and often faces
resistance from many farmers, despite the fact that an unwillingness to adapt treatments
to spatial heterogeneity leads to inefficiencies in control measures (Colbach et al., 2000).
This unwillingness to implement site-specific weed management may also stem from the
perceived risk of missing individuals that grow outside of currently established patches.
Individuals may enter the field from elsewhere or a patch may expand due to increased

dispersal from highly dense patches or through cultivation. If these individuals remain
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unsprayed there is a risk they will turn into new patches outside of currently mapped
zones (Figure 1.3). Failure to control A. myosuroides is known to lead to large levels
of seed return (Moss, 1980) and so many farmers have an innate conservatism when
it comes to the control of this pernicious weed and will often adopt a zero-tolerance
approach. The incorporation of buffer zones into spray maps is a general measure taken
to try and combat this, however this does not account for seed spreading outside of the

immediate area surrounding the patch or entering the field from elsewhere.

Current Research into Site-Specific Weed Management

In recent years, the idea of studying the spatial distribution of weeds with intent to
introduce a site-specific aspect to their management has been an area that has had
growing interest. The introduction of satellite spatial technology in the 1990s introduced
the possibility of locating weed patches in the field (Lutman et al., 2002) and this is
something that is now being explored further with the use of unmanned aerial vehicles
(e.g. Castaldi et al., 2016, Lopez-Granados et al., 2016a, Lépez-Granados et al., 2016b,
Pérez-Ortiz et al., 2016). Work examining the possibility of real-time mapping of weeds
(e.g. Murdoch et al., 2010, Tian et al., 2000) is also ongoing. However, both of these
techniques rely on mapping current weed distributions, and so neither addresses the
concern surrounding the risk of missing individuals that disperse outside of currently
established patches. In this project I address these concerns by identifying areas of a field
vulnerable to invasion by A. myosuroides. This would allow the creation of treatment

maps without first mapping the distribution of the weed within the field.

1.2 Within-Field Spatial Heterogeneity in Weed Distributions

One possible option for site-specific weed management that addresses concerns about
individuals establishing outside of mapped patches is to identify parts of the field that
are vulnerable to invasion by a weed and are at risk to the establishment of a new patch.
These “weed vulnerable zones”, once identified, could be used in the creation of spray
maps to guide the precision application of herbicides (Figure 1.3). By defining all parts
of the field that are vulnerable to weed invasion the concept of applying buffer zones to

existing patches is incorporated, as well as capturing any individuals that may enter the
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field from elsewhere. In order to be able to identify such weed vulnerable zones within a
field it is important to understand what influences the observed spatial heterogeneity in
the weed population. Weed patches can be modelled simply by using mathematical rules
allowing for aggregation as random events (Audsley, 1993). In a uniformly infested
field, this will give rise to a patchy population (Lutman et al., 2002). However, it is likely
that these random events are not the only factor causing patchiness in the population
as the agroecosystem is a complex interaction of biological mechanisms, agricultural

activities, and environmental variables.

1.2.1 Weed Biology and Ecology

Many aspects of the biology of weed species make them intrinsically prone to aggregation.
By assessing the life-cycle of a given species the effects on patchiness can be considered
(van Groenendael, 1988). The life-cycle of A. myosuroides is typical of an annual grass
and comprises four main stages: the seedbank, seedlings, mature plants and fresh seed
(Figure 1.4). Impacts on any of these stages, or processes occurring between them, has
the potential to affect the distribution of the population and so may lead to patchiness

within fields.
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Figure 1.4. The life-cycle of A. myosuroides. Biological processes are shown in green

and chemical interventions in orange.
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One of the main causes of spatial heterogeneity is seed dispersal (van Groenendael,
1988). Seed dispersal range determines the possibility of new site colonisation (Maréchal
et al., 2012) and depends on the weed plant and seed characteristics as well as external
factors such as wind speed for anemochorous species. For A. myosuroides, despite being
primarily dispersed by barochory, increasing wind speed can increase the number of
seeds dispersed, and the distance that they are dispersed (Colbach & Sache, 2001). For
most species with these dispersal types natural seed dispersal only occurs over short
distances, causing many new plants to develop in a small area around the parent plant.
This can form the start of a patch. Distribution patterns are often more dense along the
edge of a field suggesting border effects, as seeds will only disperse short distances from
parent plants located in hedgerows or headlands (Cardina et al., 1997). As seedlings
mature, and increase in size, density dependent effects will begin to become important in
determining survivorship and seed production (Dieleman et al., 2000), as such patches
can become self-regulating with plant densities levelling off after several years (Moss,

1990).

As well as the intrinsic biology of the weed itself other ecological factors within the
community can also play an important role in controlling the spatial distribution of
weed species. For example, competition with the crop and other weed species, mediated
by the local environment, can affect the distribution of a weed (Radosevich et al.,
2007). Herbivory and disease can also be important in regulating population size and

distribution.

In terms of improving weed control, the biology of the weed presents some oppor-
tunities for exploitation. If we know about typical dispersal ranges for a given species,
then this can be incorporated into current models for patch spraying through the ad-
dition of buffer zones around mapped patches to encompass all areas where the weed
might typically be able to disperse (Rew & Cousens, 2001). If these buffer zones are
omitted then these patch boundaries could act as the foci for the spread of new patches
(Paice et al., 1998). Modern high-yielding varieties often demonstrate less tolerance
to competition from weeds (Oerke, 2006) and so the typical competitive ability of a
given weed species can be exploited by choosing a crop cultivar that is more competitive

against that weed species (Andrew et al., 2015).

13



Chapter 1. Introduction

1.2.2 Agronomy

Agronomic factors can also influence the spatial distribution of weed species with the
agronomic history of the field having a large influence on weed distribution. For example,
former field boundaries may have a higher density of weed seeds than the rest of the
field due to the bigger seed bank from old hedgerows (Lutman et al., 2002). Historic
fertility patterns could also affect weed growth and their competitive ability, as well as
that of the crop, in much the same way as current nutrient management does (Dieleman

et al., 2000).

Variability in herbicide application across the field due to drift can influence patch
formation as areas receiving less or no herbicide are likely to lead to the persistence
of weeds, which would otherwise have been controlled (Williams II et al., 2001). This
leads to commonly observed increases in weed densities at the edges of fields. However,
organic systems also display non-random patterns of weed distribution (Pollnac et al.,
2008) indicating that herbicide control failure is not the only intervening factor. Poor
crop establishment in parts of a field may lead to the development of a patch, where
competition is reduced (Lutman et al., 2002). Often, when a patch forms due to control
failure, there will be a large seed return in following years leading to patch longevity

(Lutman et al., 2002).

Dispersal of seed due to cultivations can also be important in determining where
weed seeds are distributed. In many systems, there has been shown to be a directional
effect with weeds forming elliptical patches of longest dimension in the direction of
the crop rows (Colbach et al., 2000). This is thought to be due to the movement of
seeds by agricultural tillage and harvesting machinery. Large awned seeds are more
likely to be spread in this manner as they can become easily trapped in the machinery
(Lutman et al., 2002) with particularly large seeds such as wild oat being moved up
to 30 m by equipment such as combine harvesters (Lutman et al., 2002). There is also
the possibility of mature plants getting caught on farmland machinery and seeds being
dispersed long distances (Pollnac et al., 2008) allowing the formation of new patches
(Lutman et al.,2002). Dispersal of seeds in the direction of crop rows does not always
occur through human intervention. It can also occur due to natural seed dispersal in tall
crops where the weed seeds can move more freely in the rows between crops compared

to their ability to move across the crop rows (Colbach et al., 2000). In shorter crops,
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where the weed flowers are above the crop canopy, this type of natural seed dispersal is

more likely to be uniform (Paice et al., 1998).

Cultivation can also contribute to the vertical movement of weed seeds in the soil
profile (Moss, 1990). This can be exploited by farmers by choosing only to use deep
cultivations infrequently. These type of cultivations bury large numbers of seed at depth.
In the intervening years shallow cultivations will not return these seeds to the surface
and so viability levels will decrease whilst the seeds remain at a depth from which
they cannot germinate. Another opportunity that these agronomic effects on patch
distribution presents for improved weed management is to clean machinery before
moving between farms in order to reduce the spread of weeds. This can be particularly

important in reducing the introduction of seed to new locations.

1.2.3 Environment

In addition to the biology and ecology of weeds, and agronomic factors; the environment
is a large determinant in the location of weed patches and this is the main focus of
this project. Many aspects of the natural environment vary spatially, and it is known
that the distribution of weeds can be strongly affected by abiotic factors including light,
precipitation, temperature, soil type, pH and moisture (Radosevich et al., 2007). It is
therefore important to consider the spatial distribution of these abiotic factors when
considering causes of patchiness in weed populations. However, covariation of site
properties and weed distributions is not something that is well understood (Dieleman et
al., 2000). Abiotic and biotic factors are strongly related and so a plant’s response to
them is hard to separate out (Radosevich et al., 2007). For example, the density of the
plant canopy can have a strong effect on the quality and quantity of radiation received
by other plants in the understory (Radosevich et al., 2007). In many instances several
environmental variables may be linked and show correlations between them, making it
difficult to disassociate one from another when trying to determine the cause of spatial
aggregation in weed population. For example, local topographic variations may cause
variation in weed distribution but this may be linked to multiple soil factors, for example

soil moisture and temperature (Lutman et al., 2002).

Abiotic factors can be an important determinant in whether a site is favourable

for growth, as if a seed lands in an environment unsuitable for its germination it is
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unlikely to germinate, or to compete successfully. Therefore spatial heterogeneity of
weed populations is considered to be partially determined by the local distribution of
sites with suitable abiotic conditions (van Groenendael, 1988). Vertical variation in soil
can also result in variable seed survival, dormancy, and therefore emergence (Cardina
et al., 1997). There is also a substantial environmental influence on seed dormancy
(Finch-Savage & Leubner-Metzger, 2006). Natural seed burial in a minimum or no tillage
system is also dependent on soil texture with slower seed burial in clay soil than in soil
of coarser texture (Benvenuti, 2007). However, this natural seed burial is dependent on
seed weight and so may only lead to sufficient depth of burial to prevent germination
in some weed species. The distribution of some species can be affected by soil type.
For example, Galium aparine L. (cleavers) and A. myosuroides are often associated with
soil of larger clay content, whereas other species such as Senecio vulgaris L. (groundsel)
prefer lighter soil (Lutman et al., 2002). Other soil variables such as carbon, water,
and macronutrients have been shown to be correlated to weed distributions (Lutman
et al., 2002) and are rarely homogeneously distributed in the soil (Robertson & Gross,
1994). The influence of various soil factors on weed abundance can often be related
back to their effect on soil moisture and water holding capacity (Dieleman et al., 2000).
Availability of water in the soil is important in many aspects of the weeds’ life-cycle,

particularly in the early growing season (Dieleman et al., 2000).

Soil properties not only affect the distribution of weeds directly but they can also
have an indirect effect in terms of altering the efficacy of some herbicides (Lutman et
al., 2002). High amounts of clay and organic carbon in soil can lead to the sorption of
most herbicides (Gaston et al., 2001) and the pH of the soil can also affect the sorption
of ionizable herbicides as well as several chemical degradation mechanisms (Gaston et
al., 2001). Sorption of herbicides will reduce the amount of herbicide taken up by the
plant and through this mechanism, different soil types will affect the level of control
achieved through herbicide use. If this differs spatially across the field, then it may lead
to differential control across the field and lead to the establishment of weed patches

where herbicide control is reduced.

Weeds can improve soil quality and fertility in a way that is not achieved by crop
plants alone, as they help reduce soil erosion; slowing down the rate of nutrient loss
(Ziska & Dukes 2011). Weeds also contribute to nitrogen cycling in agroecosystems

(Patriquin, 1986) as well as helping to accumulate other nutrients within the system
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(Swamy & Ramakrishnan, 1988) and so it is possible that through being aggregated the
weeds ameliorate the system allowing longevity of the patch by making conditions more

favourable for germination of new individuals.

The effect of soil properties on the patchiness of weed populations presents an
opportunity for site-specific weed management as the environments that are favourable
for weed growth are much more likely to remain stable in location than a weed patch
might and so if these areas can be targeted, rather than the patch itself, then the risks
of missing individuals dispersing outside of already established patches or entering the

field from elsewhere could be minimised.

1.3 Objectives

Alopecurus myosuroides has known associations with some soil types. It has traditionally
been found in poorly drained, heavy textured soil and is described by farmers as a marsh
weed. However, changing cropping practices and the reduction in control because of
evolved herbicide resistance may have allowed it to expand its range into lighter soil
(Holm et al., 1997). In addition to these coarse-scale associations with certain soil
types, there is some evidence that the within-field distribution of A. myosuroides is also
associated with variation in soil properties (Radosevich et al., 2007; Holm et al., 1997,
Lutman et al., 2002; Dunker & Nordmeyer, 2000). The principle of the ecological niche
dictates that a plant will grow in the environment most favourable to it and so we can
assume that there is some sort of environmental variation allowing it to grow better in
certain areas of the field than others. Our lack of detailed understanding of the ecological
niche of this important economic pest is currently preventing the implementation of
patch spraying based on that knowledge. If we can understand what drives the within-
field distribution of this species, we would be better equipped to manage this species
in a more sustainable manner through site-specific weed management. We could also
reduce the risks associated with current methods, where individuals growing outside of
established patches could be missed, by identifying weed vulnerable zones within fields

(Figure 1.3).

My main objective is to identify environmental determinants of A. myosuroides

patch location and use these to define weed vulnerable zones. In order to meet this
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main objective, I will combine field work, pot experiments and modelling to test the
following hypotheses reported in Chapters 3-6 respectively (Chapter 2 presents a new

sampling methodology to address Hypothesis 1):

1.3.1 Hypotheses

Hypothesis 1: The within-field spatial distribution of A. myosuroides is associated
with the spatial distribution of environmental variables at scales appropriate for

management.

Previous studies that have attempted to investigate the link between A. myosuroides
patch locations and soil properties have been limited in their scope; only sampling at a
single scale (e.g. Dunker & Nordmeyer, 1999 and 2000; Lutman et al., 2002). This has
led to discrepancies in conclusions, with conflicting results being obtained from different
studies. I resolved these discrepancies by examining the scale-dependence of correlations
between the distribution of A. myosuroides and various soil properties through the use of
a novel nested sampling design (Chapter 2). I investigated if any observed relationships
were consistent across fields and at what scale the strongest relations were observed
(Chapter 3) to determine if these were appropriate for management. I also identified
which environmental properties provided the most useful prediction of within-field

A. myosuroides distributions (Chapter 3).

By testing this hypothesis I improved our understanding of the habitat niche of this
important agricultural weed and therefore our understanding of the environmental
influencers on its within-field distribution. This contributed to my main objective by
identifying the soil properties that correspond most with the within-field distribution of
A. myosuroides, and that should be considered when locating weed vulnerable zones

within fields.

Hypothesis 2: Soil organic matter, moisture, and pH affect the life-cycle of

A. myosuroides from germination to seed return.

The abiotic environment exerts many influences on plants. Temperature and mois-

ture are particularly important for germination (Forcella et al., 2000) and this is well
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characterised for A. myosuroides (Colbach et al., 2002a and b). However, the influence
of other environmental properties, particularly relating to the soil, on germination and

the rest of the life-cycle, are less well understood.

Through a series of pot experiments I investigated the effect of soil organic matter,
moisture, and pH on all aspects of the life-cycle of A. myosuroides from germination to
seed return (Chapter 4). I chose to investigate these soil properties as they were found

to be particularly important in the testing of Hypothesis 1 (Chapter 3).

By testing this hypothesis, I increased our understanding of how these soil properties
affect the growth and competitive ability of A. myosuroides. This enabled me to better
understand the role of variation in the soil in determining the within-field distribution
of this species and so, in part, to determine the causality of the relationship between
the spatial distribution of soil properties in fields and the within-field distribution of

A. myosuroides.

Hypothesis 3: Soil organic matter affects the efficacy of flufenacet and
pendimethalin against A. myosuroides and the ability of the weed to withstand

sub-lethal doses of those herbicides.

Organic matter in the soil can lead to adsorption of herbicide (Farenhorst, 2006).
Different herbicides may be more or less adsorbed by organic matter, dependent on
their physical and chemical properties (Nordmeyer, 2015). As pre-emergence herbicides
are applied directly to the soil, it is particularly important to understand how varying
soil properties within fields may be affecting their efficacy. I investigated the effect of
soil organic matter on the efficacy of two commonly used pre-emergence herbicides for
A. myosuroides control, and whether the amount of soil organic matter plays a role in

the resulting sub-lethal effects (Chapter 5).

By testing this hypothesis I was able to determine whether the effect of soil on
A. myosuroides was only through direct effects on the weed itself or whether there
are also indirect effects on its distribution, through a modification of management
practices; in this case pre-emergence herbicides. This contributes to my main objective by
determining how current management practices may be contributing to A. myosuroides
patch locations and if this needs to be considered in addition to the current distribution

of the weed when identifying weed vulnerable zones.
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Hypothesis 4: The scale-dependent relationships between soil properties and the
density of A. myosuroides observed in fields is an emergent property of the effect

of the soil on the various aspects of the weed’s life-cycle.

Building on the modelling work of Moss (1990), Paice et al. (1998), and Colbach et
al. (2006), I developed a life-cycle model for A. myosuroides that incorporates natural
dispersal of the weed seeds as well as their dispersal by cultivation (Chapter 6). Based
on the results of my investigations in Chapters 4 and 5, I developed functions to describe
the effect of soil on various aspects of the life-cycle of A. myosuroides and included these
in the model. I verified the ability of the model to replicate the field results obtained
in Chapter 3 by replicating the sampling regime (Chapter 2) in the resulting fields
and seeing if the scale-dependent relationships observed in the field were an emergent

property of the modelling process (Chapter 6).

The development of this model allowed me to pull together all previous strands
of this project to investigate whether modelling the changes to each aspect of the
A. myosuroides life-cycle caused by different soil properties in a spatially heterogeneous
environment could explain the within-field distributions observed on farms. By testing
this hypothesis I could determine the possibility of identifying weed vulnerable zones

within fields based on pre-existing or supplemented soil maps.
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Designing a Sampling Scheme to
Reveal Correlations Between Weeds
and Soil Properties at Multiple

Spatial Scales
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My main objective in this thesis is to identify environmental determinants of
A. myosuroides patch location and use these to identify weed vulnerable zones. The
first part of this objective — identifying environmental determinants of A. myosuroides
patch location — has been previously considered (e.g. Dunker & Nordmeyer, 1999 and
2000; Lutman et al., 2002). However, these studies were limited in their scope because
they only sampled at a single scale. This led to discrepancies in their conclusions, with
conflicting results being obtained from different studies, possibly due to their failure to
account for scale. My first hypothesis addresses this by considering the scale-dependence
of correlations between the distribution of A. myosuroides and soil properties. I sampled

A. myosuroides density and soil properties across five fields according to an unbalanced
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nested sampling design. This design allowed me to partition the correlation between the
two variables of interest — A. myosuroides and each environmental variable — across
spatial scales. In this chapter, I describe the nested design and method of analysis using

one field as a case study. In Chapter 3, I present the results from all five fields.

The following was published in Weed Research 56 (1) 1-13 in February 2016. It
outlines the process by which we designed the sampling scheme for use in the field trials
detailed in Chapter 3, beginning with a design assuming equal variance at all scales
of interest. Following the analysis of the data obtained, indicating that variance is not
equal at all scales, we detail the optimization of the design, for use in further fields

focussing sampling effort on the scales of most interest.

2.1 Summary

Weeds tend to aggregate in patches within fields and there is evidence that this is partly
owing to variation in soil properties. Because the processes driving soil heterogeneity
operate at various scales, the strength of the relations between soil properties and weed
density would also be expected to be scale-dependent. Quantifying these effects of scale
on weed patch dynamics is essential to guide the design of discrete sampling protocols
for mapping weed distribution. We have developed a general method that uses novel
within-field nested sampling and residual maximum likelihood (REML) estimation to
explore scale-dependent relations between weeds and soil properties. We have validated
the method using a case study of A. myosuroides in winter wheat. Using REML, we
partitioned the variance and covariance into scale-specific components and estimated
the correlations between the weed counts and soil properties at each scale. We used
variograms to quantify the spatial structure in the data and to map variables by kriging.
Our methodology successfully captured the effect of scale on a number of edaphic
drivers of weed patchiness. The overall Pearson correlations between A. myosuroides and
soil organic matter and clay content were weak and masked the stronger correlations
at >50 m. Knowing how the variance was partitioned across the spatial scales we
optimized the sampling design to focus sampling effort at those scales that contributed
most to the total variance. The methods have the potential to guide patch spraying of

weeds by identifying areas of the field that are vulnerable to weed establishment.
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2.2 Introduction

Many weed species have patchy distributions in arable fields that can be strongly
affected by their environments, in particular the soil (Radosevich et al., 2007). The
spatial variation of soil results from numerous processes operating at several spatial
scales, and so the variation in some soil properties can also be patchy though not
necessarily on the same scales as the weeds. As a consequence the relations between
the abundances of weeds and particular soil properties can change from one spatial
scale to another. This means that relations between the two variables found at the one
scale might not hold at another (Corstanje et al., 2007). In these circumstances, a small
absolute correlation coefficient between a weed count and a soil property calculated
from a simple random sample over a whole field, though statistically sound, could

obscure strong relations at particular scales and be misleading.

Several investigators (e.g. Gaston et al., 2001; Walter et al., 2002; Nordmeyer &
Hausler, 2004) have used grids for studying spatial variation in weeds. They have
assumed some prior knowledge of the spatial scales of variation in the field, and that
has led them to choose grid intervals that would capture the necessary spatial detail;
they would not have wished to risk missing such detail by having too coarse a grid.
However, sampling at fine scales would make sampling the whole of a large field very
expensive and, almost certainly, unnecessarily so if the aim is to understand the general
position of patches within the field rather than small changes in the location of patches.
These difficulties associated with the design of discrete sampling protocols for studying
weed patches, either as a tool for understanding weed ecology or mapping weeds to
guide patch spraying, have been thoroughly reviewed by Rew & Cousens (2001). They
highlighted the need to develop new analytical techniques to capture the effects of
scale on the dynamics of weed patches and to optimize sampling. Partly because of
the risk of discrete sampling at too coarse a resolution, they argued that ground-based
continuous sampling was more appropriate for practical site-specific weed management
applications. Whilst many mapping procedures can be done early in the season and used
for control in the current season, real-time detection and control is difficult. For many
grass weeds the current systems can only definitively identify the species of grass once it
is flowering. This will be too late for the application of selective herbicides (Murdoch et
al., 2010). It is therefore also necessary to consider the risk of seedlings establishing

outside the mapped patch when planning site-specific herbicide sprays in the following
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season. An understanding of the edaphic drivers of weed patch dynamics and the scales
at which they operate is both of theoretical interest to weed ecologists, and could allow
these “weed vulnerable zones” to be identified based on maps of soil properties. Here
we address these issues by applying sampling methodologies designed in the field of
soil science to optimize sampling effort to the study of weed patches and how they may

relate to environmental properties at multiple spatial scales.

We used the model system of Alopecurus myosuroides Huds. (black-grass) in winter
wheat (Triticum aestivum L.) to demonstrate the potential of these methods. The
distribution of A. myosuroides is patchy, and its density seems to depend to some degree
on the nature of the soil (Holm et al., 1997; Lutman et al., 2002). We assumed no prior
knowledge of the spatial scale(s) on which the weed varied in particular fields and so
we explored its distribution in one particular field by sampling with a nested design
followed by a hierarchical statistical analysis to partition the variance and covariances
with soil properties according to spatial scale. In principle, nested sampling schemes
allow the estimation of the components of variance for a variable across a wide range
of spatial scales and to quantify the covariation and correlation between variables over
that range. As we did not know beforehand what sizes of patches to expect or whether
to expect variation and causal relations with the soil at more than one spatial scale, we
designed a nested sampling scheme with a wide range of sampling intervals that we
hoped would reveal the spatial scale(s) of variation in the weed and of its covariation
with the soil. We used the method proposed by Lark (2011) to optimize our sampling
scheme. The aim of the optimization was to partition the sampling across the scales so
that the estimation errors for the components of variance were as small as possible with

the resources available.

Our primary objective was to develop and validate a generic method to examine the
relations between weed distributions and environmental properties at multiple spatial
scales. We wanted to demonstrate a way of identifying the relevant scale at which
the processes affecting weed patch dynamics operate. This could be a precursor to
the use of data on environmental heterogeneity to support patch spraying or to guide
the design of optimal sampling strategies for studying weed spatial dynamics. The
case study reported here demonstrates the use of this methodology in one field and
provides evidence to support the hypothesis that relations between soil variables and

weed patches are scale-dependent.
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2.3 Materials and Methods

2.3.1 Study Site

The field we chose for study is on a commercial farm in Harpenden, Hertfordshire,
UK. It has long been in arable cultivation and is infested with A. myosuroides. It
comprises two former fields from which the old boundary was removed some decades
ago. The southern part of the field is generally flat, whilst the northern part slopes
gently downwards towards the north. The soil is stony clay loam containing numerous
flints and overlies the Clay-with-Flints formation. The soil grades from Batcombe series
in the southern part to the somewhat more clay-rich Winchester series on the northern

slope (Hodge et al., 1984).

2.3.2 Sampling Scheme

To consider how the A. myosuroides patches vary in space and how that variation
relates to soil properties at multiple spatial scales we examined the spatial components
of variance and covariance. This allows us to express the patchiness of the weed’s
distribution in the field statistically. Estimates of the components of variance can
describe the infestation at several scales, and from them one should be able to design

better targeted sampling schemes for future surveys.

Youden & Mehlich (1937) first proposed a nested sampling design to discover the
spatial scales of variation in soil. They sampled the soil at locations that were organized
hierarchically into clusters separated by fixed distances. The nested sampling design
had several main stations separated across the region. These correspond to the top
level of the design (level 1). Within each main station they selected two substations
(Ievel 2) which were separated by a fixed distance (305 m) but with the vector joining
the substations oriented on a random bearing. Within each substation at level 2 they
selected a further two substations at level 3, this time separated by 30.5 m. The final
level of replication within their design, level 4, was with pairs of substations within each
level-3 substation, separated by 3.05 m. Soil samples were collected at each of the eight
level-4 substations within each main station. An analysis of variance allowed them to
partition the variance of each measured soil property into components associated with

each level of the nested design.
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This nested design used by Youden & Mehlich (1937) is said to be balanced because
any two substations at a given level have identical replication within them at lower
levels of the design (Figure 2.1 b). Such designs become prohibitively expensive for
more than a few levels, as the number of sample points doubles for every additional
level of the design. Furthermore, there are many more fine-scale comparisons than ones
at the coarser scales (Figure 2.1 a), and this is not necessarily an efficient distribution of
sampling effort. For example, in the design shown in Figure 2.1 there are four pairs of
points separated at the finest scale (level 4), whereas there are only two groups of points
separated at level 3 and only one pair of groups of points separated at the coarsest scale

within the design, level 2.

Several attempts have been made to economize on nested sampling without seriously
sacrificing precision (see Webster et al., 2006). Lark (2011) brought together the various
strands of that research and proposed designs that are optimal compromises in the
sense that they maximize the precision across all levels for given effort, based on the
assumption that there is prior knowledge as to how the variation is partitioned across

the levels. Here, we apply this approach, for the first time, to the study of weed patches.

The aim of the analysis of a nested sampling design is to estimate components of
variance, or covariance, for the sampled variables that correspond to each scale of the

hierarchy. As a basis for our study we adopted the following model:

k
Z' = xt'+) Mpn},
=1

k
Z° = xt'+» My, 2.1)
i=1

where Z" comprises n random variables by which we model our n observations of
variable v (which is an index, not a power), and similarly for variable v, and & is the
number of random effects in the model. In our case variable u is weed counts, and v
is a measured soil property. One may develop this model for any number of variables.
The term xt* equates to a vector of mean values for variable «. In our case the mean
is constant for any one variable and so comprises the design matrix x , which is an
n x 1 vector of 1s, and t* is the mean for variable u. The same applies for variable v.
The terms in the summation on the right-hand sides are random effects in the model.

There are k of these for each variable, each corresponding to one level of the nested
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a)

Level: 1 2 3 4

Figure 2.1. An example of a balanced nested sampling design; (a) the design as it might
appear on the ground with circles indicating sampling points, (b) the topological tree
from which the design is taken. The design is balanced in that there is equal replication

at each level below the first.
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sampling scheme, so & = 4 in the case shown in Figure 2.1. The matrix M; is a n x n;
design matrix for the ith level of the nested scheme; where n; is the number of sampling
stations at the ith level across the whole design. If the mth sample location belongs
to the m,th substation in the ith level of the design then M;[m,m;] = 1 and all other
elements in the mth row are zero. The term n is a n; x 1 random vector. The mean
of its elements is zero and their variance is o7, ;. This is the variance component for
variable u associated with the ith scale. Similarly the elements of n} have mean zero
and variance 012)71-. This extension of the nested spatial sampling scheme was proposed

by Lark (2005) and has been used since in soil science (e.g. Corstanje et al., 2007).

One novel aspect of our study was that at the outset we did not know the spatial
scale(s) on which A. myosuroides varied nor whether the variances differed substantially
from scale to scale. We therefore assumed the variances to be equal at all scales, and
designed a sampling scheme accordingly. Our design is as follows with five levels in the

hierarchy.

Nine main stations were spaced approximately 50 m apart across the field (Fig-
ure 2.2); this corresponds with level 1 of the hierarchy. Sampling sites were nested in
groups at each main station (Figure 2.3 a). The distances between sites at level 2 in the
design were 20.0 m, at level 3 the sites were spaced 7.3 m apart, those at level 4 were
2.7 m apart, and those at level 5 were spaced 1.0 m apart. The distances were fixed, but
the directional bearings were randomized independently to satisfy the requirements of
the model (Equation 2.1). Figure 2.3 b shows the structure as a topological tree, which
is evidently unbalanced in that the replication is not equal in all branches of the tree.
To improve our maps of A. myosuroides distribution and associated soil properties we
added ten more sampling points, to give a total of 136 sampling points across the field.
These additional points were added to fill the larger gaps in the coverage and thereby

enable us to diminish the errors in maps made by kriging (Figure 2.2).

The positions for the main stations at the 1st level of the design were located in
the field by GPS with subsidiary points located by their distance and orientation from
the main station by tape measure and compass. Square quadrats (0.5 m?) were placed
on the ground with their south-west vertices at the sampling point. All locations were
subsequently geo-referenced with an RTK GPS (Topcon Positioning Systems, Inc., 7400

National Drive, Livermore, CA USA 94550) with a quoted resolution of 5 cm.
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Figure 2.2. Location of sampling points within the field in Harpenden. The field is
marked by grey dots. The locations of the nine main stations are shown as crosses. The

ten extra sampling points are shown as closed discs.
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a)
5
1
4
b)
Level: 1

Figure 2.3. Nested sampling design used in the field in Harpenden. (a) The design as
one instance might appear on the ground with vertices labelled as the numbers 1-14.
The yellow disc indicates the main station of the motif. Red lines represent nodes spaced
20 m apart, blue lines indicate 7.3 m, purple lines link points 2.7 m apart and black
lines link those 1 m apart. (b) Topological tree of nested sampling design used in the
field in Harpenden. The design is unbalanced as replication is not equal at all branches

of the tree.
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Alopecurus myosuroides individuals within each quadrat were counted in late October
2013 while the plants were at the one- to two-leaf stage. No pre-emergence herbicide

had been used on the field.

2.3.3 Soil Analyses

Two cores of soil were taken from each quadrat with a half-cylindrical auger of diameter
3 cm to a depth of 28 cm on 21 January 2014 while the soil was at field capacity. The
depth at which the clay layer was first visible was noted in each of the two augers to
indicate the depth of cultivation. If the clay layer was not reached within the 28 cm then
a value of 30 cm was assigned. The average of the two replicates was then recorded.
The gravimetric water content was measured in layers 0-10 cm and 10-28 c¢m by loss on
oven-drying at 105°C. Other variables were measured on samples pooled from the two
cores within each quadrat. Organic matter was measured by loss on ignition. Available
phosphorus (P) was measured in a sodium bicarbonate extract at pH 8.2. The pH was
measured in water, and soil texture (particle-size distribution) was determined by laser
diffraction. Stone content by both volume and mass was measured on a core of 76 mm

diameter taken to depth 97 mm from the south west outside corner of each quadrat.

2.3.4 Statistical Analyses

A balanced design would lead to a straight forward analysis of variance (ANOVA)
from which the components of variance are readily estimated. Analysing data from an
unbalanced design is more complex. Gower (1962) provided formulae for computing
the components from an ANOVA. The method now favoured on theoretical grounds
is the residual maximum likelihood (REML) estimator due to Patterson & Thompson
(1971) and is the one we used. Within the REML model (Equation 2.1), the terms n}",
i=1,2,...,kandn},i =1, 2, ...,k are the random effects. The assumption is that
the concatenated 2n x 1 random vector [[Z“}T [Z”]T} ' has a joint multivariate normal

distribution with 2n x 2n covariance matrix:

v=Y" ou MM, G MM
= | C'MGMYT Ug,iMiM?

(2.2)
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where the superscript T denotes the transpose of a matrix. The variance and covariance
components for each scale are the random effects parameters which are estimated by
REML. We calculated Pearson correlation coefficients for all data to show correlations
when scale is ignored. Note, however, that this does not give an unbiased estimate of
the correlation because it ignores the dependency structure imposed by the sampling
and is therefore a somewhat arbitrarily weighted combination of the correlations at
different scales. Following partitioning of the components of variance at the different
spatial scales, estimates of the correlations (p) at each scale (i) between A. myosuroides

and the soil properties were calculated by

alu,v
. = (2.3)

i ==
Ou,iOu,i

where the variables v and v are A. myosuroides counts and the soil property, respectively,
and the terms with the hats are the REML estimates of their covariances (C) and
standard deviations (0). Where the estimated components of variance given by REML
were non-positive no associated correlation coefficient was calculated. Confidence
intervals for the correlations were calculated by Fisher’s z-transform, with degrees of
freedom appropriate to the number of sampled pairs at the corresponding level of the

design.

Variograms were estimated and modelled from all data points from both the sampling
design and the ten additional points to quantify the spatial structure in the variance of
the measured variables. We did this using GenStat (Payne, 2013). Semivariances were

calculated by the method of moments (Webster & Oliver, 2007):

F(h) = 3 {2 () — 2 (x5 + W)} 2.4)

where z (x;) and z (x; + h) are the observed values at two locations separated by lag h,
and m(h) is the number of pairs of points at that lag. By incrementing h we obtained
an ordered set of values to give the experimental variogram, which is a function of the
expected mean squared difference between two random variables, z (x) and z (x + h)
at locations x and x; + h . The variation appeared to be isotropic and so we treated the

lag as a scalar in distance only.

In the case of A. myosuroides counts, where the distribution was skewed, a log
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transformation was used before estimation of the variogram. However, the distribution
still did not conform to the assumption of normality, and so we used the method of
Cressie & Hawkins (1980) for a more robust estimation of the variogram for this type of

data. The computing formula is a modified version of Equation 2.4:

1 4

1 m(h
oty St 12 (x) = 2 G + )2
2 0.494  0.045
4 —— + —
0.457 + m(h) + m2(h)

(2.5)

where trend was present in the data, as it was for silt content, we incorporated it in
a mixed model of fixed and random effects in the REML estimation of the variogram

(Webster & Oliver, 2007).

We mapped the variables across the field by ordinary kriging at points on a 1 m grid
and then contoured the predictions in ArcMap (ESRI Inc.). For the variables in which
we identified trend and used REML to obtain the variogram we used universal kriging

to take the trend into account.

2.4 Results

Individuals of A. myosuroides were found in 95% of the 0.5 m? quadrats. In total,
3917 A. myosuroides seedlings were counted with a mean density of 28.8 per quadrat
(Table 2.1). However, the spatial distribution of A. myosuroides plants varied throughout
the field and had a strongly skewed distribution. A model was fitted to try and normalize
the data. The best fit was obtained for logarithms of the data with an offset of 0.6
added before logging. This removed the skew from the data, but revealed a bimodal
distribution. When the field was divided into two at the site of the old field boundary,
both populations then fitted a negative binomial distribution; a distribution associated
with aggregated populations (Gonzalez-Andujar & Saavedra, 2003). The soil properties

measured were all approximately normal in distribution.

The accumulated components of variance show clear spatial structure in both
A. myosuroides counts and the soil properties measured (Figure 2.4). At fine scales the

variance components estimated by REML analysis are similar to the expected variance
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Table 2.1. Summary statistics of species counts and environmental variables in the field

in Harpenden.

Standard
Variate Mean Minimum Maximum Skew
deviation

A. myosuroides (individuals

28.80 0 326 51.01 3.022
per quadrat)
Cultivation depth (cm) 24.90 17.1 30.0 2.74 0.132
Gravimetric water content in

25.63 21.8 30.0 1.86 0.582
top 10 cm (%)
Gravimetric water content

23.83 19.3 31.0 2.19 0.546
10-28 cm depth (%)
Organic matter (% wet weight) 4.53 3 6 0.65 0.452
Available phosphorus (mg1™!)  24.70 11 54.4 8.36 1.271
pH 6.90 6.13 7.79 0.28 0.245
Sand (% wet weight) 32.10 17 51 4.85 0.413
Silt (% wet weight) 39.51 25 50 4.27 0.0788
Clay (% wet weight) 28.39 23 39 3.00 0.846
Volume of Stones (%) 19.17 4.444 38.89 6.67 0.507
Mass of Stones (g) 172.5 20.3 387.0 75.43 0.131
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obtained from the variogram. However, in most cases the variogram reaches a sill at
lag distances greater than the maximum distance in the nested design. The functions
chosen as models for the variograms were those that best fitted in the least squares

sense (Table 2.2).

a) b)

Variance
Variance

120 4 0.10 4

0.08 4 [ ]

Variance

0.02 4

0.00 T T T T T T T 1

Variance

T T — T T T T 0.0 T T T T )
0O 10 20 30 40 50 60 70 8 0 20 40 60 80 100

Lag distance (m) Lag distance {m)

Figure 2.4. Figure legend on page 42.
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Figure 2.4. (Figure on page 41.) Accumulated components of variance with all negative
components of variance set to zero (closed discs) and variograms (open circles) for (a)
A. myosuroides, (b) gravimetric water content in the top 10 cm of soil, (c) available
phosphorus, (d) pH, (e) clay content, (f) organic matter. The lags have been binned over
all directions and incremented in steps of 6 m. The components of variance plotted at
50 m are calculated from the top level (1) of the design and so encompass all distances

greater than 50 m. The solid black line shows the models fitted.

Table 2.2. Variogram models fitted to describe the spatial structure in selected measured
variables. *For A. myosuroides logarithms of the data are used with an offset of 0.6

added before logging. **The stable model uses an exponent of 0.95.

Type of Distance Linear
Variate Nugget Range Sill Exponent

Model Parameter Term
A. myosuroides* Power 0.229 - - - 1.837 0.00101
Gravimetric
water content in  Stable** 1.110 - 20.23 2.367 - -
top 10 cm
Available

Power 13.95 - - - 1.837 0.0266
phosphorus
pH Spherical 0.02890  57.0 - 0.0333 - -
Clay Spherical 2.83 91.0 - 8.42 - -
Organic matter Spherical 0.0492  82.03 - 0.3742 - -

The map of A. myosuroides in Figure 2.5 was produced by combination of two
separate krigings, one for each half of the field thereby taking into account the bimodal
distribution of the weed counts. It shows a large concentration of weeds in the northern
part of the field with only a few seedlings in the southern part of the field. The kriged
maps of the soil properties (Figure 2.6) show each soil property has a unique spatial
distribution. Some of the maps, for example water content (Figure 2.6 a) and pH

(Figure 2.6 c), show some accord with A. myosuroides distribution (Figure 2.5).
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Meters

Figure 2.5. Kriged maps of A. myosuroides individuals (per 0.5 m?). The model fitted to

the experimental variogram of the data is used to provide the best unbiased predictions

at points that were not sampled.
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Figure 2.6. Figure legend on page 45.
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Figure 2.6. (Figure on page 44.) Kriged maps of (a) gravimetric water content in the
top 10 cm of soil (%), (b) available phosphorus (mg 171), (¢) pH, (d) clay content (%)
and (e) organic matter (%) in soil. In all cases the models fitted to the experimental
variograms of the data are used to provide the best unbiased predictions at unsampled

points.

The statistically significant REML model terms were generally found at the coarsest
scales studied here (Table 2.3) where the covariance terms (C’Z.“’”) for each scale (7 =
1,2,..., k) were set to zero in turn in the REML analysis to test for significance in their

contribution to the model.

Table 2.3. Estimated variance components for environmental variables at multiple
spatial scales together with the covariance component with A. myosuroides at those
scales. Covariances that contributed significantly to the model fitted by REML (P<0.05)
are marked *. Random terms are denoted by lv to signify the level of the hierarchical
design, with 1v 1 representing the highest level of the design (separate designs across
the field) and so corresponds to distances of greater than 50 m and Iv 2-5 correspond to
distances of 20 m, 7.3 m, 2.7 m and 1 m respectively. All negative estimates for variance

components were found not to be statistically significantly different from 0.

Estimated
Estimated Estimated
covariance
variance variance
Environmental Random component for
component for component for
Variable Term environmental
environmental ~A. myosuroides
property and
property counts
A. myosuroides
vl 3.603 1.995 2.480*
Ivl.lv2 0.1239 0.4850 0.1401
Gravimetric
Ivl.lv2.1v3 0.1481 0.1802 -0.1154
water content
Ivl.lv2.1lv3.1lv4 -0.2244 -0.00972 0.1387
in top 10 cm
Residual Variance:
Ivl.lv2.1lv3.1lv4.lv5 1.559 0.2620 -0.01321
vl 43.93 1.976 3.150
Ivl.lv2 12.88 0.4960 -1.803*
Available Ivl.lv2.1v3 2.008 0.1720 0.2699
phosphorus lvl.lv2.1v3.lv4 -1.638 -0.01731 -0.1812
Residual Variance:
Ivl.lv2.1v3.lv4.Iv5 13.98 0.2701 0.02844

Table 2.3 continued overleaf
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Table 2.3 continued

Estimated
Estimated Estimated
covariance
variance variance
Environmental Random component for
component for component for
Variable Term environmental
environmental A. myosuroides
property and
property counts
A. myosuroides
vl 0.03577 1.981 -0.2368*
lvl.lv2 0.005170 0.4940 -0.005534
u lvl.lv2.lv3 0.008005 0.1753 -0.01073
P lvl.lv2.lv3.lv4 -0.004391 -0.02287 -0.01073
Residual Variance:
lvl.lv2.lv3.lv4.lv5 0.03132 0.2748 0.02055
vl 3.692 1.952 2.294*
lvl.lv2 1.986 0.4936 0.2752
al lvl.lv2.lv3 0.2887 0.1690 0.1531
ay
lvl.lv2.lv3.lv4 -0.5752 -0.02259 0.005526
Residual Variance:
lvl.lv2.lv3.lv4.lv5 3.904 0.2765 -0.03997
vl 0.2749 1.963 0.728*
lvl.lv2 0.03782 0.493 0.00194
lvl.lv2.lv3 0.02876 0.1725 0.02713
Organic matter
lvl.lv2.lv3.lv4 -0.01191 -0.01379 0.008752
Residual Variance:
lvl.lv2.lv3.lv4.lv5 0.1193 0.2677 -0.00817

Pearson correlation coefficients between A. myosuroides counts and the soil properties
are generally weak (Table 2.4). These take all of the data into account without regard
to spatial scale. From these results we might conclude that there are only weak relations
between the density of A. myosuroides and the environmental properties measured.
However, once the correlations are calculated using the nested design structure stronger
relations are revealed at particular scales (Figure 2.7). Often, significant terms in the
REML model (Table 2.3) correspond with strong correlations between the A. myosuroides
count and the soil property (Figure 2.7), reiterating the likelihood of there being a

relation between the weed count and the soil property at that scale.
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Figure 2.7. Graphs of correlations at the various scales of the nested sampling design
between A. myosuroides and (a) water content in the top 10 cm of soil, (b) available
phosphorus, (c) pH, (d) clay content, and (e) organic matter. Correlations are shown
as discs with horizontal bars indicating 95% confidence intervals. The correlations
plotted at 50 m are calculated from the top level (1) of the design and so encompass all

distances greater than 50 m.
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Table 2.4. Pearson correlation coefficients between A. myosuroides counts and soil
properties measured taking all data into account. Two-sided tests of correlations

different from zero are marked * where significant (P<0.05).

Pearson correlation coefficient
Variate between A. myosuroides and the

measured variate

Cultivation depth -0.008
Gravimetric water content in top 10 cm 0.482*
Gravimetric water content 10-28 cm depth 0.491~
Organic matter 0.527*
Available phosphorus 0.023
pH -0.475*
Sand 0.135
Silt -0.384*
Clay 0.328*
Volume of stones 0.050
Mass of stones 0.031

2.4.1 Optimizing the Design

At the beginning of our study we had no prior information about the distribution of
the variance across scales. Therefore the nested design we used was based on the
assumption of equal variances at all scales. As we now know the components of variance
for A. myosuroides seedling counts at all scales (Table 2.5), the sampling design can
be optimized as described by Lark (2011). This allows sampling to be focused on the
scales that contribute most to the total variance. To achieve this all components of
variance must be positive, and so in this example the component of variance for the 4th
level is set equal to the minimum positive variance. The optimized design is shown in

Figure 2.8 a.

Because of the relations observed at the coarse scale between A. myosuroides and
most of the soil properties we investigated a wider set of scales increasing exponentially
from 1 m at level 5 to 40 m at level 2. This meant the use of distances of 1 m, 3.5 m,
11.5 m and 40 m within the design at each main station. Estimates of the components
of variance at each of these distances were taken from the model fitted to the variogram
for A. myosuroides counts. The component of variance for the top level of the design

was set so that the variances had the same sum as the original REML estimates for this

48



Chapter 2. Unbalanced Nested Sampling

Table 2.5. Results of REML analysis for log transformed A. myosuroides counts. Ran-
dom terms are denoted by lv to signify the level of the hierarchical design, with v 1
representing the highest level of the design (separate designs across the field) and so
corresponds to distances of greater than 50 m and lv2-5 correspond to distances of

20 m, 7.3 m, 2.7 m and 1 m respectively.

Estimated variance  Estimated standard Effective degrees of
Random term

component error freedom
vl 1.9759 1.0951 8
lvl.lv2 0.4916 0.2126 18
Iv1.1v2.1v3 0.1759 0.0816 34.22
lvl.lv2.lv3.lv4 -0.0176 0.0609 33.19
Residual variance:
lvl.lv2.1v3.lv4.lv5 0.2700 0.0679 31.6

field. The design was then optimized for these estimated components of variance. The

optimized design at the coarser scales is shown in Figure 2.8 b.

a) 6 8 b) 6

Figure 2.8. Optimized nested designs with sampling points at vertices (labelled 1-14)
as they would appear in the field for (a) the original scales as used in the field in
Harpenden (Red = 20 m, Blue = 7.3 m, Purple = 2.7 m, Black = 1 m) with optimized
topology according to the estimated components of variance from the REML analysis
of A. myosuroides counts, (b) the new coarser scales (Red = 40 m, Blue = 11.5 m,
Purple = 3.4 m, Black = 1 m) with optimized topology according to the estimated

components of variance from the model fitted to the variogram of A. myosuroides counts.
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2.5 Discussion and Conclusions

Both the hierarchical analysis and the estimated variogram of the A. myosuroides counts
revealed clear spatial structure in the data with observations at short separations
showing greater similarity than observations separated by larger distances. Each of
the soil variables we measured also had its unique spatial structure which was visible
in both the variograms and the components of variance (see Figure 2.4). This means
that we must recognize the importance of variation at several spatial scales. Within
the literature on weed patches, there is a lack of consistency in observed relations with
abiotic variables. For example Walter et al. (2002) found a weak negative relation
between Poa annua L. (annual meadow grass) and organic matter content, whereas
Andreasen et al. (1991) found a strong positive relation between the two. This lack of
consistency may be due to their different sampling scales. Walter et al. (2002) sampled
on a 20 m x 20 m grid whereas Andreasen et al. (1991) randomly selected sample
locations within a field. This illustrates the need for more rigorous statistical methods to

account for processes operating at different scales.

Despite weak Pearson correlations for all the data (Table 2.4), covariances and
correlations between A. myosuroides counts and soil properties showed some strong
correlations at various scales. In most instances the separations that significantly con-
tributed in the REML analyses were the largest of those studied here (>50 m) indicating
relations between soil properties and A. myosuroides counts occur across the whole field.
This is a potentially interesting result in terms of the practical management implications
(as we explain below) and warrants further investigation into the scale-dependent rela-
tions between A. myosuroides and soil properties. In terms of experimental and analytical
methodology it is particularly important to note how uncorrelated variation between two
variables at finer scales can obscure scientifically interesting, and practically important,
relations exhibited at coarser scales if one were only to examine the overall correlation
between variables. The nested sampling scheme and associated analysis set out in this
paper are necessary if this problem is to be avoided in experimental studies of the factors

affecting weed distribution.

However, other fine-scale relations not revealed by significant terms in the REML
model did appear in the correlations between the weed and soil properties. For ex-

ample, there are strong positive relations observed at the two coarsest scales between
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A. myosuroides and water content. However, at 7.3 m there is a negative relation be-
tween these two variables, indicating that a different process operates over these smaller
distances. So, although A. myosuroides establishes most readily in the wettest part of
the field, within that wet part establishment is better in the relatively dry parts of it.
Similarly for available phosphorus, despite the negligible Pearson correlation between
A. myosuroides and phosphorus, at 20 m there is a significant negative covariance in the
REML model, yet at the 7.3 m scale the correlation is positive. This may be explained
by depletion of available phosphorus in areas of high weed density (Webster & Oliver,
2007, pp. 220 and 227-228).

We have shown how by nested sampling and hierarchical analysis by REML one can
reveal the spatial scale(s) on which weed infestations vary and correlate with soil factors
in an economical way. We have also shown how, once one has estimates of components
of variance, one can improve a design for future survey without adding substantially to

the cost.

These estimates of the components of the variance could be estimated from other
more readily available sources of information. For example the farmer might know
something, in a qualitative way, of where and on what spatial scales weeds infest their
fields or the investigator might have access to aerial photography or satellite images that
show patchiness in crops or soil and which could guide them in designing a sampling
scheme. Our methodology is generic and can be used to look at relations between
any continuous variable assumed to be related to weed distribution and any weedy
variable, whether species distribution or total weed density. We should expect the spatial
dependency of soil and weed interactions revealed by the analysis to be context specific.
However, ongoing work is seeking to validate the robustness of the relations between

soil and A. myosuroides patches that emerged from our case study.

This paper has demonstrated how scale-dependent relations between weed density
and soil properties can be examined by appropriate sampling and analysis. The case
study shows that such scale-dependence can occur. It also shows that the nested method
may allow us to identify relations that occur at certain scales but which would be
obscured by uncorrelated variations at other scales if the variables were examined using
only the overall correlation for data on a simple random sample. This methodology
should be applied to a range of fields with contrasting soil conditions and management

strategies, over several seasons, in order to identify scale-dependent relations between
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soil and weeds which could form a basis for a robust strategy for controlling weeds

according to the spatial variation of the soil.

Identifying the soil properties that most consistently affect the distribution of
A. myosuroides in a field could have practical application if the scale at which the soil
and weeds are correlated is appropriate for site-specific management (as is suggested by
our results). Farmers often aim to minimize heterogeneity within individual fields so
that they can treat each field as if it were uniform. Nevertheless, they recognize that
there will be some variation within their fields and often have considerable knowledge
of that spatial variation (Heijting et al., 2007). Now, with modern technology they can
vary their treatment applications accordingly (Lutman et al., 2002). Patchy distributions
of weeds are particular examples of such heterogeneity. In principle, farmers should
be able to control the weeds with herbicide where the weeds occur and avoid using
herbicide where they are absent or too few to be of consequence. Although research
is being pursued into detection of weed seedlings (e.g. Giselsson et al., 2013), most
current systems, especially for grass weeds, rely on mapping weeds at maturity to guide
spraying decisions in the following crop. Knowing the relations between weeds and
soil could underpin these approaches by identifying “weed vulnerable zones”, based on
thresholds of soil variables, for example clay content, in the field where the weeds might
persist or spread. These areas could be sprayed as buffers around existing patches to
insure against individuals escaping control. Ultimately, if sufficiently robust models of
weed spatial distribution could be developed (incorporating thresholds of soil properties)
soil maps could be used as the basis for weed patch spraying decisions. Furthermore,
if the coarse-scale relations observed here are found to be common across additional
fields it is more likely that farmers would adopt variable management at these scales

than precision spraying at fine scales.
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In the previous chapter I described a nested sampling design which allows the study
of scale-dependent relationships between weed distributions and environmental proper-
ties. By using this sampling design I could partition the variance into scale-dependent
components, and so find strong scale-dependent correlations between A. myosuroides
and soil properties. Other researchers failed to identify such strong relationships due to
their failure to consider scale in their studies. In order to address my first hypothesis
that the within-field spatial distribution of A. myosuroides is associated with the spatial
distribution of environmental variables at scales appropriate for management, I imple-
mented the designs described in Chapter 2 in four additional fields: The initial design,
assuming equal variance at all scales, was used in the case-study field (Harpenden)

and one additional field (Radbrook), whilst the design optimised to focus sampling
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effort at the scales discovered to be of most importance in the field in Harpenden (as
described in Chapter 2) was implemented in a further three fields (Redbourn, Ivinghoe

and Haversham).

The following work is under review with Weed Research and was submitted in July
2017. It describes the implementation of the nested sampling design in five fields and
the results obtained. I describe the spatial variation in A. myosuroides and various
soil properties within the fields and explore scale-dependent relationships between
A. myosuroides and environmental properties following the methodology outlined in
Chapter 2. I also describe a general relationship across the five fields, determined
by a regression type analysis using REML. This allowed me to determine the suite
of environmental variables that best predict A. myosuroides counts across all fields.
These environmental variables, that I have found to be the most important within-field
determinants of the spatial distribution of A. myosuroides will be explored further in
Chapters 4 and 5 where I look at their effects on the life-cycle and the management of

this species.

3.1 Summary

The distribution of A. myosuroides in fields is patchy. The locations of these patches can be
influenced by the environment. This presents an opportunity for precision management
through patch spraying. We surveyed five fields on various types of soil using a nested
sampling design and recorded both A. myosuroides seedlings in autumn and heads in
summer. We also measured soil properties at those sampling locations. We found that
the patches of heads within a field were smaller than the seedling patches, suggesting
that techniques for patch spraying based on maps of heads in the previous season
could be inherently risky. We also found that the location of A. myosuroides patches
within fields can be predicted through their relation with environmental properties and
that these relations are consistent across fields on different soil types. This improved
understanding of the relations between soil properties and A. myosuroides seedlings
could allow farmers to use pre-existing, or suitably supplemented soil maps already
in use for the precision application of fertilizers as a starting point in the creation of

herbicide application maps.
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3.2 Introduction

Alopecurus myosuroides Huds. (black-grass) is one of the most common grass weeds of
winter cereals in north-west Europe (Holm et al., 1997) and is particularly problematic in
the UK. Alopecurus myosuroides has a high reproductive rate and competes strongly with
cereal crops (Maréchal et al., 2012). When mature, A. myosuroides plants produce large
amounts of seeds, and so small failures in control can lead to rapid population growth
and dense infestations. For many farmers, the main option for control of A. myosuroides
and other weeds in the UK is the application of herbicides. These are often heavily relied
upon as the sole method of control. In 2015, in the UK, 4,200 tonnes of herbicides were
applied to cereal crops (FERA, 2017). Many farmers apply herbicides uniformly across
individual fields and use on average six herbicidal active substances in a season for an
arable crop (Garthwaite et al., 2014). Despite this heavy reliance on multiple chemical
controls, many farmers are experiencing waning effectiveness owing to the evolution of
herbicide resistance (Heap, 2017). These farmers are seeking alternative methods of

weed management.

In addition to the need to delay or avoid the evolution of herbicide resistance,
there are two further reasons to reduce herbicide use. First, agrochemicals can have
negative impacts on the environment. Their inappropriate use can lead to contamination
of surface water, ground water and the atmosphere (Garibay et al., 2001), this may
contribute to loss of biodiversity, loss of ecosystem function, and contamination of
drinking water. Second, an increasing number of regulations are being placed on
herbicides, and so, by reducing their use, farmers would become less reliant on individual
active ingredients that could be withdrawn in the future. The benefits of minimizing
herbicide use are therefore multiple: selection pressure would be reduced, and the
effective life of some active ingredients would be prolonged, environmental concerns
would be reduced, and there would be less reliance on this singular method of control,
thereby encouraging greater adoption of integrated weed management programs. One
opportunity for reducing herbicide inputs is to spray only those areas of the field where

weeds are a problem (site-specific weed management).

Alopecurus myosuroides, like many weed species, grows in patches within fields.
These patches can vary in size and shape (Cardina et al., 1997; Dieleman et al., 2000;

Walter et al., 2002; Heijting et al., 2007), nevertheless these patches can be fairly stable,
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with core areas of A. myosuroides patches moving only 3-4 m over several years (Lutman
et al., 2002). Patchiness can lead to many inefficiencies in weed management, as often
farmers spray whole fields if average weed densities exceed some threshold, whereas
there may be large parts of their fields that do not require spraying. In this situation,
blanket spraying wastes time, energy and chemical (Cardina et al., 1997). Advances in
global positioning technology and precision sprayers now make it possible to manage
weeds at a much finer spatial resolution than was previously possible. There are two
methods through which such forms of patch management can be achieved (Walter et al.,
2002). The first is using treatment maps. These can be created from manually sampled
data on weed distributions. These maps can sometimes be of inadequate quality, often
because the sampling on which they are based was too sparse (Metcalfe et al., 2016
(Chapter 2)). The second approach is through real-time detection of weeds with optical
sensors—usually detecting mature weeds in the previous cropping season to inform
spraying decisions in the following year. This approach is still in development, and
whilst already feasible it is not yet at the stage of widespread commercialization (e.g.

Murdoch et al., 2010, 2014).

Despite the numerous benefits of introducing patch spraying as a form of weed
management, it is not being readily taken up as a standard management tool. There
may be several reasons for this, perhaps the most difficult to counter being the inherent
conservativeness of farmers when it comes to weed control. Given the consequences of
a control failure, the concept of leaving some areas of the field unsprayed is currently

seen as an unacceptable risk.

There is some indication that the patchy distribution of A. myosuroides is related
to the similar variation in the soil (Holm et al., 1997; Lutman et al., 2002, Murdoch
et al., 2014). The principle of the ecological niche tells us that a plant will thrive in
the environment most favourable to it, and so we expect that environmental variation
will play a role in the location of weed patches in the context of the spatial aggregation
that is an emergent property of random seed dispersal (Paice et al., 1998). Our lack of
understanding of what determines this field-scale habitat niche of this important species
is currently preventing the implementation of site-specific management based on that
knowledge. Understanding where weeds are in a field and what is determining their
spatial distribution might not only reduce input costs but also lead to the more accurate

application of other control practices where needed (Dieleman et al., 2000), including
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variable seed rates and fertilizer applications. If we can understand how patches relate
to soil, we might explain the observed distribution on A. myosuroides in each field but
also define the potential habitat into which it could spread. In so doing, we could build
insurance into any patch spraying protocol. This would also allow the use of existing or

supplemented soil maps.

Previous investigators who have attempted to link A. myosuroides density and soil
properties have limited their scope, only sampling at a single scale (e.g. Dunker &
Nordmeyer, 1999 and 2000; Lutman et al., 2002). This has led to discrepancies in
conclusions that can be drawn, with conflicting results from different studies. Metcalfe
et al. (2016 (Chapter 2)) proposed a solution to resolve discrepancies in field studies.
They found that relations that occur at certain scales could be obscured by uncorrelated
variations at other scales if only the overall correlation were calculated from all the
data from a simple random sample. They successfully demonstrated in one field that
relations between A. myosuroides and soil properties are dependent on the spatial scale

and different results can be obtained from different sampling scales.

We applied this approach to five winter wheat fields with contrasting soil types
over several seasons to investigate the relationships between soil properties and both

A. myosuroides seedling counts and head counts. We set out to test three hypotheses:

1. the response of counts of seedlings and heads are similar, which if true means
patch-spraying can be based on head counts recorded in the previous growing

season,

2. variance within fields of the distribution of A. myosuroides depends on relationships

with soil properties at specific spatial scales, and,

3. these relationships are similar from field to field.

By addressing these hypotheses, we hope to establish whether farmers could use soil
maps in the management of A. myosuroides and whether the scale of these relationships

is appropriate for precise management of the weed.
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3.3 Materials and Methods

3.3.1 Field Sites

We chose five sites with a range of soil types. Each site consisted of one field, which was
in commercial winter wheat production in the season of study. All fields were in the
south-east of England (the main centre of A. myosuroides distribution) and reported by
the farmers to have patchy A. myosuroides populations. The fields were separated by
a minimum distance of 5.3 km and maximum of 65.6 km. Here, we refer to the fields
by their location in Radbrook (Berkshire), Harpenden (Hertfordshire), Redbourn (Hert-
fordshire), Ivinghoe (Buckinghamshire) and Haversham (Buckinghamshire). Radbrook
was studied in the 2012-13 season, Harpenden in the 2013-14 season, Redbourn and

Ivinghoe in the 2014-15 season and Haversham in the 2015-16 season.

3.3.2 Nested Sampling

We used an unbalanced nested sampling scheme as described by Metcalfe et al. (2016
(Chapter 2)). The design is organized hierarchically with five levels. Each level cor-
responds to a specific scale of study with level 1 defining the coarsest scale in each
study and level 5 the finest (Figure 3.1). Figure 3.1 shows the organization of sample
sites associated with one main station of the nested design. The level-one variation
is represented by differences between the groups of sample sites associated with each
main station in each field. Note that while the distances between points are constrained
by the design the directions are randomized independently in each main station. We
sampled at nine such clusters in each field. Sampling sites were nested hierarchically in
groups associated with each main station per the distances indicated in Table 3.1. We
used an initial design with five scales (detailed in Table 3.1) in the first two fields at
Radbrook and Harpenden. Based on the results from these two fields we optimized the
design, as described by Metcalfe et al. (2016 (Chapter 2)), for use in the other three
fields. This optimized design used coarser scales (Table 3.1) to try to capture better
some of the coarse-scale variation in A. myosuroides observed in the first two fields.
To map the distribution of A. myosuroides and associated soil properties by kriging we
added ten more sampling points in each field to fill the larger gaps in the coverage and

thereby diminish the errors in prediction.
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13

Figure 3.1. Nested sampling designs used in (a) Harpenden and Radbrook, (b) Red-
bourn, Ivinghoe and Haversham. Vertices are labelled as the numbers 1-14. The yellow
disc indicates the main station of the motif. Designs were separated by distances from
level one. Red lines represent nodes spaced at level two of the design, blue lines indicate

level three, purple lines link points at level four and black lines represent level five.

Table 3.1. Scales used at each level of the nested sampling design in each field. The
nested design consists of five levels as described by Metcalfe et al. (2016 (Chapter 2)).
Level one represents the coarsest scales and with each subsequent level, the scale is
made finer. The design was refined after the first year’s results from Harpenden and

Radbrook, explaining the difference in the scales from the remaining study fields.

Level of nested Scale / m

sampling design  Harpenden Radbrook Redbourn Ivinghoe Haversham

1 50+ 50+ 60+ 60+ 60+
2 20 20 40 40 40
3 7.3 7.3 11.5 11.5 11.5
4 2.7 2.7 3.4 3.4 3.4
5 1 1 1 1 1
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We located the positions for each main station at level 1 of the design by GPS
(Topcon/Trimble, 2 cm accuracy). Each subsidiary sampling point was located by its
distance and orientation from the main station by tape measure and compass. To define
the sample support, we placed square quadrats (0.5 m?) on the ground with their

south-west vertices at the sampling point.

3.3.3 Weed Counts

We counted A. myosuroides seedlings within each quadrat in late autumn, while the
plants were at the one- to two-leaf stage. For fields where pre-emergence herbicides
were to be applied by the farmer, we placed plastic sheets over the sample quadrats
for up to 24 hours to prevent herbicide reaching the sampling area. Seedling counts
were obtained at Harpenden, Redbourn, Ivinghoe, and Haversham, but were not done

at Radbrook as the field was included in the study too late for seedlings to be assessed.

We counted A. myosuroides heads within the month prior to harvest of the wheat
crop. We included in the count any heads within the vertical area directly above the
quadrat. We disregarded any heads falling outside the quadrat irrespective of whether
the plant originated inside the quadrat. Head counts were obtained at Harpenden,
Radbrook, Redbourn, Ivinghoe. Because of very dense A. myosuroides at Haversham,

extensive lodging of the crop made heads counts inaccurate.

3.3.4 Soil Analyses

We sampled the soil in early winter, following prolonged rainfall, when we presumed
soil moisture to be at field capacity. We took two soil cores from each quadrat with a half-
cylindrical auger of diameter 3 cm to a depth of 28 cm. We measured the gravimetric
water content in layers 0-10 cm and 10-28 cm by loss on oven-drying at 105°C for
all sites except Radbrook. At Radbrook we calculated a measure of volumetric water
instead from theta probe measurements of the soil surface layers. Other variables were
analysed by SOYL (Newbury, UK) on samples pooled from the two cores within each
quadrat. Organic matter was measured by loss on ignition. Available phosphorus (P)
was measured in a sodium bicarbonate extract at pH 8.2. The pH was measured in

water, and soil texture (particle-size distribution) was determined by laser diffraction.
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We did not measure organic matter and available phosphorus at Radbrook.

3.3.5 Topography

Elevation data (LIDAR) were downloaded from data.gov.uk for each field (except
Ivinghoe where the data were unavailable) at a 1 m resolution. We converted this into
aspect and slope information using ArcGIS spatial analyst. To include these as one
variate in our analyses we computed the solar energy received throughout one year

following methods outlined by Frank & Lee (1966).

3.3.6 Analysis

We calculated summary statistics and Pearson correlation coefficients for all data. Note,
however, that due to the use of the nested sampling design this does not give an unbiased
estimate of the correlation because it ignores the dependency structure imposed by
the sampling. The first level of the analysis was done at the level of individual fields
(variograms and kriging, principal components analysis, and nested analysis). We then
tested the hypothesis that these relationships were consistent across fields using all the

data in a combined model (regression analysis).

Variograms and Kriging

To create maps of seedling densities, we estimated and modelled variograms from all
data points from both the sampling design and the ten additional points to quantify the
spatial structure in the variance of the measured variables. We did this using GenStat
(Payne, 2013). We used ordinary kriging to predict the variables of interest across the
field at points on a 1-m grid and then contoured the predictions in ArcMap (ESRI Inc.)

to make maps.

Principal Components Analysis

To obtain an overall appreciation of the correlations among the soil properties and

how the A. myosuroides counts fit into that structure we did principal components
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analyses, as follows. We standardized the soil variables to mean=0 and variance=1,
and effectively did the analysis on the correlation matrix, R , for each field separately.

We then computed the Pearson correlation coefficients between the component scores as

bij = aij\/ A /07 (3.1)
where a;; denotes the ith element of the jth eigenvector and \; is the jth eigenvalue
of matrix R , and o7 is the variance of the ith original soil variable. We plotted the
coefficients b for the two leading components in unit circles and then added to the graphs
the correlation coefficients between the A. myosuroides counts, sometimes regarded as

“passive variables”, and the two leading components as described by Abdi & Williams

(2010).

Nested Analysis

The nested design structure allows the partitioning of the components of variance for
both A. myosuroides and soil properties at each of the spatial scales studied. We did
this using the residual maximum likelihood (REML) estimator as described by Metcalfe
et al. (2016 (Chapter 2)). Following partitioning of the components of variance at
the different spatial scales, we estimated the correlations between A. myosuroides and
the soil properties at each scale where the estimated components of variance were
positive. We calculated confidence intervals (95%) for the correlations by Fisher’s
z-transform, with degrees of freedom appropriate to the number of sampled pairs at
the corresponding level of the design. Where the confidence intervals excluded zero we

determined the correlation to be statistically significantly different from zero.

Regression Analysis

We tested the hypothesis that the relationships between the variance in A. myosuroides
density and soil properties quantified at the individual field scale were consistent across
the five fields. In this type of analysis, it is important that all terms are independent.
As our three soil texture variables (sand, silt, and clay) sum to 100%, they cannot be
independent. We used the additive log-ratio transform (Aitchison, 1986) to create two

independent variables (the log of the ratio of silt to sand, and the log of the ratio of clay
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to sand). We also removed the soil moisture content below 10 cm from this analysis as
it was strongly correlated with surface soil moisture content, which is more likely to be

recorded in soil surveys.

We did a regression analysis using REML where the field was included as a random
term. We included all environmental properties as main effects. For this analysis, we
considered only the first-order model for soil properties to retain sufficient degrees of
freedom for the analysis. Terms were selected using backwards elimination according to
the largest P-value given by an F test when that term was dropped. The best model was
chosen when all remaining terms gave significant values (P<0.05) for an F test when

dropped from the model.

We also looked at incorporating the spatial autocorrelation in A. myosuroides numbers
into this regression analysis by including the field location and variogram parameters as
random effects. Again, terms were selected using backwards elimination according to
the largest P-value given by an F test when that term was dropped. We also considered
the possibility of using maximum likelihood in the place of REML as this method allows
us to compare AIC values across models with different fixed effects. For this model

backward elimination was also used for term selection.

3.4 Results

Alopecurus myosuroides was present in all five fields. Numbers of A. myosuroides seedlings
were highest in Haversham and lowest in Radbrook (Table 3.2). The fields spanned
a range of soil types and the soil properties we measured varied substantially from
one field to another. There were also different levels of within-field variation in soil
properties (Table 3.2). For example, pH was highest in Ivinghoe and lowest in Radbrook

but Redbourn showed the greatest variation.
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Table 3.2. Summary statistics for A. myosuroides counts and soil properties measured in

each field.* indicates missing data.

Standard
Variate Mean Minimum Maximum Skewness
Deviation
Harpenden
A. myosuroides seedling 28.8 0 326 51.0 3.022
counts (per 0.5 m? quadrat)
A. myosuroides head 18.6 0 266 48.4 3.361
counts (per 0.5 m? quadrat)
Gravimetric water content 25.63 21.8 30.0 1.86 0.5796
in top 10 cm (%)
Gravimetric water content 23.83 19.3 31.0 2.19 0.5529
10-28 cm depth (%)
Organic matter (% wet weight) 4.53 3.0 6.0 0.65 0.4515
Available phosphorus (mg1™!)  24.70 11.0 54.4 8.30 1.2711
pH 6.90 6.1 7.8 0.28 0.2452
Sand (% wet weight) 32.1 17 51 4.9 0.413
Silt (% wet weight) 39.5 25 50 4.3 0.079
Clay (% wet weight) 28.4 23 39 3.0 0.846
Radbrook
A. myosuroides seedling counts * *
counts (per 0.5 m? quadrat)
A. myosuroides head) 4.2 0 95 14.3 4.250
counts (per 0.5 m? quadrat)
Volumetric water content 18.02 12.6 271 2.98 0.4134
in top 10 cm (%)
Gravimetric water content * * * *
10-28 cm depth (%)
Organic matter (% wet weight) * * * * *
Available phosphorus (mg ') * * * * *
pH 5.87 4.9 6.9 0.45 0.1530
Sand (% wet weight) 33.5 15 53 7.9 0.137
Silt (% wet weight) 60.1 44 75 6.2 —-0.078
Clay (% wet weight) 6.4 3 12 2.1 0.306

Table 3.2 continued overleaf

67



Chapter 3. The habitat niche of A. myosuroides

Table 3.2 continued

Standard
Variate Mean Minimum Maximum Skewness
Deviation
Redbourn
A. myosuroides seedling ) 12.8 0 129 20.4 2.658
counts (per 0.5 m? quadrat)
A. myosuroides head 11.0 0 107 21.3 2.623
counts (per 0.5 m? quadrat)
Gravimetric water content 20.63 16.3 25.2 1.71 0.2640
in top 10 cm (%)
Gravimetric water content 20.80 16.8 25.0 1.96 0.3887
10-28 cm depth (%)
Organic matter (% wet weight) 4.67 3.4 6.9 0.73 0.6735
Available phosphorus (mg1™')  25.93 12.6 44.6 6.85 0.4422
pH 7.09 5.6 8.3 0.65 —0.1315
Sand (% wet weight) 28.4 9 46 5.5 0.175
Silt (% wet weight) 44.3 34 68 5.0 1.053
Clay (% wet weight) 27.3 15 38 4.2 0.537
Ivinghoe
A. myosuroides seedling 3.3 0 84 10.2 5.929
counts (per 0.5 m? quadrat)
A. myosuroides head ) 6.1 0 172 22.5 5.817
counts (per 0.5 m? quadrat)
Gravimetric water content 22.34 18.7 24.8 0.91 —0.6583
in top 10 cm (%)
Gravimetric water content 21.06 18.2 23.9 1.07 —0.0209
10-28 cm depth (%)
Organic matter (% wet weight) 4.73 3.6 5.7 0.43 0.0294
Available phosphorus (mg1™%)  14.29 9.6 23.4 2.58 0.6174
pH 8.11 7.7 8.5 0.14 0.0927
Sand (% wet weight) 22.1 11 47 8.2 1.335
Silt (% wet weight) 28.8 11 38 4.2 —0.720
Clay (% wet weight) 49.1 33 63 5.7 —0.632

Table 3.2 continued overleaf
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Table 3.2 continued

Standard
Variate Mean Minimum Maximum Skewness
Deviation
Haversham
A. myosuroides seedling 63.6 0 488 111.9 2.030
counts (per 0.5 m? quadrat)
A. myosuroides head * * * * *
counts (per 0.5 m? quadrat)
Gravimetric water content 22.49 17.4 28.2 2.13 0.3929
in top 10 cm (%)
Gravimetric water content 20.92 15.9 26.0 1.93 0.1560
10-28 cm depth (%)
Organic matter (% wet weight) 4.26 3.1 5.8 0.53 0.3124
Available phosphorus (mg 17) 9.07 4.8 16.0 2.43 0.7981
pH 7.21 6.5 7.9 0.29 —0.3882
Sand (% wet weight) 44.9 23 62 8.6 —0.508
Silt (% wet weight) 29.6 22 38 3.7 —0.039
Clay (% wet weight) 25.5 16 40 5.4 0.952

The relationships between A. myosuroides and soil properties as expressed by
Pearson correlations were strong for water, organic matter and texture (Table 3.3).
Other soil properties, such as available phosphorus, were only weakly correlated with
A. myosuroides (Table 3.3). The relationships between A. myosuroides seedling counts
and soil properties were stronger and more consistent across fields than between soil

properties and head counts.

3.4.1 Variograms and Kriging

Generally, the distribution of A. myosuroides heads within the fields showed the same
pattern as for seedlings, but in many instances the patches were smaller (Figure 3.2).
The distribution in all fields was patchy (Figure 3.2) with all fields having some quadrats

free of A. myosuroides.
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Figure 3.2. Figure legend on page 72.
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Table 3.3. Pearson correlation coefficients between A. myosuroides seedling and head counts and soil properties in each field. This analysis takes
all data into account, ignoring the nested sampling structure. Two-sided tests of correlations different from zero are marked * where significant

(P<0.05). tGravimetric water content was measured except for Radbrook where we measured volumetric water content). findicates missing data.

| Harpenden Radbrook Redbourn Ivinghoe Haversham
Soil Property
Seedlings Heads Seedlings Heads Seedlings Heads Seedlings Heads Seedlings Heads

Gravimetric water content

0.482* 0.279* i 0.292* 0.321* 0.172 0.101 0.080 0.616* i
in top 10 cm (%)}
Gravimetric water content

0.491* 0.342* i i 0.519* 0.280* -0.172 -0.051 0.448* i
10-28 cm depth (%)
Organic matter (% wet

0.527% 0.309* i i 0.462* 0.269* -0.080 0.108 0.349* i
weight)
Available phosphorus

0.023 0.041 i i -0.132 -0.184* -0.132 -0.011 0.029 i
(mg1™")
pH -0.475* -0.310% T 0.337* 0.017 -0.062 -0.001 -0.094 0.112 i
Sand (% wet weight) 0.135 0.139 i -0.189* 0.049 0.007 -0.235% -0.157 -0.253* i
Silt (% wet weight) -0.384* -0.264* i 0.124 -0.320* -0.144 0.034 0.061 0.176* i
Clay (% wet weight) 0.328* 0.152 i 0.348* 0.324* 0.165 0.326* 0.188* 0.280* i
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Figure 3.2. (Figure on page 70.) Maps showing the sampling locations (circles) in each
of the five fields: a) Radbrook b) Haversham, ¢) Harpenden, d) Redbourn, e) Ivinghoe.
Where the circles are filled, the colour indicates the number of heads counted in a
0.5 m? quadrat at that sampling location. Where the field is filled, the colour represents
the kriged values for log (seedling counts + 0.1) in a 0.5 m? quadrat at each sampling
location. The kriging was conducted using ordinary kriging based on the variogram

fitted for that field.

We can see in the kriged maps that there is some accord between A. myosuroides
distribution (Figure 3.2) and soil moisture (Supplementary Figure S3.1), organic matter
(Supplementary Figure S3.2), clay content (Supplementary Figure S3.3) and pH (Sup-
plementary Figure S3.4). It is also notable that in Radbrook and Ivinghoe, where we see
the fewest A. myosuroides (Table 3.2) we also find the driest soil, and the most extreme

values of soil pH (Supplementary Figures S3.3 and S3.4).

3.4.2 Principal Components Analysis

Within each field, we observed consistent covariation in soil properties (Figure 3.3). The
largest amount of variation (PC1) in soil properties within a field was accounted for by
soil texture and water. Soil pH explained an additional source of variation and generally

corresponds with PC2 (Figure 3.3).

3.4.3 Nested Analysis

The scale-dependent analysis of the nested design revealed much stronger correlations
between A. myosuroides and particular soil properties than did the Pearson correlation.
At medium to coarse scales, there are significant positive correlations between organic
matter and the number of A. myosuroides seedlings in all fields except for Ivinghoe,
which also had the least intra-field variance for this soil property (Table 3.4). These
relationships are particularly strong at coarse scales. Relationships were weaker for
heads, and the only significant correlation between organic matter and heads was found
in Harpenden at level 2 of the design (Table 3.4). The patterns observed relating organic

matter and A. myosuroides at Ivinghoe differ from the other four fields. In this field, the
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oM

o OM Seedlings
°

®Heads
° Clay
pH °

P Seedlings
Water

Solar Energy
'y

© Heads

oP Solar Energy

°
Solar Energy

pH
Seedlings Clay

° o

Silt

.Heads

d d

Figure 3.3. Principal component analysis on soil properties measured in four study
sites (Radbrook did not have sufficient soil properties measured to warrant analysis by
PCA): (a) Harpenden, (b) Redbourn, (c) Ivinghoe, and (d) Haversham. The first two
principal components are shown here in unit circles with the correlation coefficient for
each soil property shown with a red disc. The correlations for the A. myosuroides counts
are passively projected onto the principal component plot (without being included in

the analysis) to show how they relate to the soil properties.
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Table 3.4. Scale-dependent correlations between A. myosuroides counts and soil properties. Correlation coefficients shown in bold are significantly
different from zerofindicates where a negative variance component was fitted using REML as part of the nested analysis, these were found to be not

significantly different from zero. findicates that no model could be fitted using REML. *Indicates missing data.

| Harpenden Radbrook Redbourn Ivinghoe Haversham
Scale
Seedlings Heads Seedlings Heads Seedlings Heads Seedlings Heads Seedlings Heads

Soil Organic Matter

1 0.99 t * 0.69 t -0.08 0.21 0.90 *
2 0.01 -0.62 0.68 i t T 0.22
3 0.39 -0.05 * 0.28 i -0.32 0.03 0.62 *
4 t t t i -0.34  -0.05 0.06
5 -0.05 -0.12 * * t i t 0.19 t *

Soil water content in the top 10 cm (gravimetric water content was measured except for Radbrook where we measured

volumetric water content)

1 0.93 0.91 0.54 0.55 0.92 0.44 0.73 0.65
2 0.57 0.07 * t t t t t 0.71
3 -0.71 0.33 t t t T T 0.84
4 t t * t t 0.32 -0.22 0.21 0.99
5 0.93 0.91 0.54 0.55 0.92 0.44 0.73 0.65

Table 3.4 continued overleaf
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Table 3.4 continued

Seale Harpenden Radbrook Redbourn Ivinghoe Haversham
Seedlings Heads Seedlings Heads Seedlings Heads Seedlings Heads Seedlings Heads

Soil pH

1 -0.89 I 0.80 0.03 -0.32 -0.17 -0.88 I

2 -0.11 i i T 0.25 -0.02 1 1 i *

3 -0.49 i t -0.21 t t T 1 -

4 i I * -0.17 il 0.79 -0.34 1 i *

5 0.22 i -0.12 T T 1 -0.36 i *

Soil clay content

1 0.85 0.83 0.61 0.71 I 0.45 0.44 0.55

2 0.28 0.05 1 0.32 I 1 t 0.22 *

3 0.69 0.25 0.96 0.46 I t 1 0.24

4 1 1 0.52 -0.88 I 0.36 -0.06 0.08 *

5 -0.04 -0.18 -0.35 il I t 0.25 t

sapro.ansoAus "y Jo aydru Jeliqey 3y, "¢ 1deyn
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overall variation in organic matter was smaller than in the other fields.

Across all fields, we see a broad correspondence between A. myosuroides seedling
and head numbers and moisture content (Figures 3.2 and S3.1, and Table 3.3). This
is confirmed by significant correlations at multiple scales for both seedlings and heads

(Table 3.4).

In Harpenden, we found a significantly strong negative correlation between
A. myosuroides seedlings and pH at coarse and medium scales (Table 3.4). Ivinghoe,
where the pH was similar showed a significant negative relationship at the 3.4-11.5 m
scale as well as a coarse-scale negative relationship with A. myosuroides heads (Ta-
ble 3.4). However, in Radbrook and Redbourn, where the soil is generally more acid we
observe significant positive correlations (Table 3.4). These results suggest a non-linear,
unimodal, relationship between pH and A. myosuroides and that a slightly acidic pH is

the most favourable for A. myosuroides.

Soil texture is reported to be an important influence on the presence of A. myosuroides
(Lutman et al., 2002), and our data supported this. There were significant positive
correlations between clay and A. myosuroides at all sites with larger positive correlations
tending to be at coarse scales (Table 3.4). The compositional nature of the relationship
between the three texture variables means that we observed negative counterparts in
silt and sand. We observed similar relationships emerging for heads, yet these tended
to be much smaller correlation coefficients indicating the link between soil texture and

A. myosuroides was weaker for heads than for seedlings (Table 3.4).

3.4.4 Regression analysis

When we considered all study sites together, as part of the regression analysis, a suite of
soil properties including texture, water, and topography (as defined by solar energy)
(Table 3.5) provided a good prediction of A. myosuroides seedling densities (Figure 3.4 a).
If we account for the autocorrelation in A. myosuroides seedling densities by fitting a
spherical variogram with a nugget of 2.207, range 105.4 m and a sill of 1.298 then our
predictive capability was further improved (Figure 3.4 b). Despite the autocorrelation
giving us improved predictive power, there is still scope for soil properties to be used to

improve the prediction with soil pH, water and topography significantly contributing
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Table 3.5.
A. myosuroides seedling densities from soil properties. The non-spatial model has

only field location as a random effect, whereas the spatial model allows the estimation

Chapter 3. The habitat niche of A. myosuroides

Terms selected in a regression type analysis using REML to predict

of a variogram as a random effect. Here a spherical variogram with a nugget of 2.207,

range of 105.4 m and a sill of 1.298 was fitted.

Term Effect S.E.
Non-spatial model

Constant 0.9030 1.04080
Log(clay:sand) 2.131 0.6132
Log(silt:sand) -1.524 0.6082
Gravimetric water content — top 10 cm 0.3806 0.06015
Solar energy -0.002344  0.0004427
Spatial model

Constant 0.5675 0.62214
pH 0.6692 0.28583
Gravimetric water content — top 10 cm 0.2429 0.05839
Solar energy -0.001669  0.0007076

to this model (Table 3.5), the same soil property terms were selected by the maximum

likelihood approach, albeit with different effects due to the different type of model

fitted.

Fitted Values from Model

0.0

Fitted Values from Model

0.01

2.5

0.0 25 5.0
In (Observed number of A. myosuroides seedlings +0.1)

a

25 0.0 25 50

In (Observed number of A. myosuroides seedlings +0.1)

b

Figure 3.4. Scatter plots showing the relationship between the observed A. myosuroides

seedling densities and the values predicted by the regression model. The non-spatial

model (a) incorporates the fixed effects as listed in Table 3.5 and field location as a

random effect. The spatial model (b) also incorporates an estimation of the variogram

to describe spatial auto-correlation in the A. myosuroides seedling counts.
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Despite our ability to predict the density of A. myosuroides seedling populations from
soil properties fairly accurately, our experience for heads was less promising (Figure 3.5).
Again, the addition of information on the autocorrelation in head numbers (spherical
model, nugget = 2.470, range = 122.3 m, sill = 1.136) reduces the need for as many soil
properties to be considered (Supplementary Table S3.1). However, the predictive power
is still poorer than for seedling densities (Compare Figure 3.5 with Figure 3.4) and the
model fitted using maximum likelihood incorporates different terms. The discrepancy
between these two approaches indicates the lack of fit in these models and brings doubt

as to the usefulness of using soil properties in the prediction of head densities.

Fitted Values from Model
Fitted Values from Model
<

2 0 2 4 6 2 ] 2 4 6
In (Observed number of A. myosuroides heads +0.1) a In (Observed number of A. myosuroides heads +0.1) b

Figure 3.5. Scatter plots showing the relationship between the observed A. myosuroides
head counts and the values predicted by the regression model. The non-spatial model (a)
incorporates the fixed effects as listed in Supplementary Table S3.1 and field location as
a random effect. The spatial model (b) also incorporates an estimation of the variogram

to describe spatial auto-correlation in the A. myosuroides seedling counts.

3.5 Discussion

Our results confirm that the distribution of A. myosuroides seedlings in the autumn can
be patchy in fields growing winter wheat for commercial purposes (Figure 3.2). We also
found that the distribution of seed heads in the summer is a contraction of the initial
A. myosuroides patch (Figure 3.2). This observation is contrary to our first hypothesis
and so highlights a problem associated with current methods of patch spraying, which
map A. myosuroides heads in the summer to guide herbicide application of seedlings in

the following season (Walter et al., 2002). If the contraction of patches is due to the
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environment, then this does not pose a risk to the farmer. However, if the contraction
of patches during the growing season is due to effective management measures in the
intervening period then there is a risk the patches could expand again if those same

measures are not implemented in the following season.

We have shown that, generally, there are strong correlations between A. myosuroides
and soil properties that are associated with the first principal component of soil variation,
namely soil texture, organic matter and water (Figure 3.3, Table 3.3). These primary
sources of variation could be linked to A. myosuroides seedling numbers by correlation
at multiple spatial scales (Table 3.4) and so may be useful predictors of patch location.
In addition, pH, a secondary source of within-field variation in soil (Figure 3.3), could
also be linked to A. myosuroides seedling counts, and so measurement of this in the field
is likely to provide more information than measurement of additional soil properties

linked to the main source of variation (PC1 in Figure 3.3).

When trying to predict A. myosuroides densities from soil properties we found that
the best predictors came from a regression model that considered the underlying auto-
correlation in A. myosuroides seedling numbers (Figure 3.4). In this model, information
about soil improved that prediction with soil moisture and pH being of importance
(Table 3.5). These two soil properties represent the two main sources of variation in
soil within the five fields (Figure 3.3). Solar energy was also important indicating that
the topography of the fields is important for the distribution of A. myosuroides seedlings
(Table 3.5). Areas of the fields with consistently dense A. myosuroides were characterised
by large clay and organic matter content with a slightly acid pH and received little solar

energy (meaning they were less prone to drying out).

Our findings were reasonably consistent across all five fields, which covered a few
growing seasons and soil types. This provides some support for our third hypothesis and
indicates that the patterns observed here may be general. The strongest relationships
between soil properties and A. myosuroides we found were in Redbourn and Harpenden,
the fields with intermediate infestation. Where infestation was highest (Haversham)
and particularly low (Ivinghoe and Radbrook) there were weaker correlations between
A. myosuroides numbers and soil properties. This indicates that the relationship between
A. myosuroides and soil properties might depend on plant density. Where A. myosuroides
densities are low the relationship with the soil was weak as the patch may not have

reached all areas suitable for growth. Where densities are high there might be spill over

79



Chapter 3. The habitat niche of A. myosuroides

out of the optimal parts of the field as seed production is so great it is likely that some
seed will germinate and the plants will grow even outside their optimal environment. In
this outcome, it is unlikely that patch spraying would be recommended as more effective

field scale weed management is required.

The use of soil properties in the prediction of patch locations looks promising as
it is fairly consistent across fields and seasons, particularly if we consider the incor-
poration of spatial autocorrelation in the prediction of seedling numbers. Where our
predictive power is poorest seems to be in the prediction of areas with no A. myosuroides
seedlings (Figure 3.4). However, our model is more likely to predict that there will be
A. myosuroides present when there is none—making it risk averse and so more likely to

be useful to farmers.

The scale-dependent correlations that provide the strongest links between
A. myosuroides counts and soil properties are most often at coarse scales (Table 3.4).
This is particularly pertinent for weed management as it is a scale that is useful for
the farmer. Most machinery currently available on farm operates at scales of 20 m or
greater and so it is helpful to know that this is a relevant scale for management, if patch

spraying were to be implemented based on soil maps.

3.5.1 Conclusions

We have shown that it is more important for farmers to be able to target patches of
A. myosuroides seedlings than the mature plants as the seedlings cover a greater part
of the field. Seedling patches can be predicted by relationships with soil properties,
and these relationships are consistent across fields. This improved understanding of
the relationship between soil and A. myosuroides seedlings could allow pre-existing, or
supplemented soil maps already in use for the precision application of fertilisers to be a

useful starting point in the creation of herbicide application maps.
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In the field, I observed associations between A. myosuroides and several soil proper-
ties (Chapters 2 and 3). I have shown that these associations are scale-dependent and
are relatively consistent across fields (Table 3.4 in Chapter 3). There could be many
reasons for these associations between A. myosuroides distributions and soil properties.
The soil may have both direct and indirect effects on the weed itself, as well as the
herbicides used to control the weed. In this chapter I consider the direct effects of the
environment on the weed, whilst Chapter 5 focuses on the effect of soil properties on
pre-emergence herbicide efficacy. Here I test my second hypothesis that soil organic
matter, moisture and pH affect the life-cycle of A. myosuroides from germination to seed

return. These soil properties represent some of the main components of the within-field
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soil variation identified as important in Chapter 3. I studied the effect of changing
these soil properties in pot experiments on the life-cycle of A. myosuroides. 1 studied
several processes within the A. myosuroides life-cycle, including germination, phenology,
biomass production and seed production. I also included crop competition in one of my
experiments. Some parts of what is written below, namely those concerning soil pH,

were published in Aspects of Applied Biology 134 145-150 in February 2017.

4.1 Summary

In-field studies have identified associations between A. myosuroides and soil properties
particularly organic matter, texture and soil moisture content with a secondary relation-
ship with pH. To give an insight into the mechanisms underlying these correlations, we
explored these relationships further through pot experiments to investigate the effect
of these three soil properties on various aspect of the life-cycle of A. myosuroides when

grown in isolation and in competition with winter wheat (Triticum aestivum L.).

Soil organic matter had a significant impact on A. myosuroides germination and seed
production, whilst few aspects of the A. myosuroides life-cycle were affected by altering
soil pH in the pot experiment, suggesting that the results in the field may not be due to
the change in pH alone but rather the interaction with other aspects of changing soil
chemistry or structure. However, there was a small effect of soil pH on weed competitive
ability when grown together with winter wheat. This may indicate that soil pH alone
can have some influence on the location of A. myosuroides patches through an indirect
effect of changing the competitive balance between the crop and the weed. These
results indicate that the local soil environment can influence aspects of the life-cycle of
A. myosuroides and as such may play an important role in determining the within-field

distribution of this species.

This work also highlights the potential for the implementation of cultural control
methods aimed at targeting different stages of the A. myosuroides life-cycle through
changing soil husbandry or the use of crop cultivars that are more competitive over a

range of soil conditions.
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4.2 Introduction

Like any plant, the environment in which a weed is growing can be very important in
determining its growth. The soil is a large component of the environmental variation
experienced by the weed and it can have both direct and indirect effects on the growth
and performance of the weed. Direct effects of the soil on the plant can be through
changing the below-ground environment, where processes such as germination take
place as well as affecting the uptake of resources from the soil which will, in turn, affect
plant growth. The soil can also have indirect effects on the weed through changing

competitive performance with the crop.

One aspect of a plant’s life-cycle considered particularly susceptible to changes in
environmental conditions is germination. A non-dormant seed has the capacity to
germinate over a range of conditions when the temperature and light requirements of
the species match with ambient conditions for sufficient time to allow the completion
of germination. If just one environmental factor required for germination is unfulfilled
germination will not occur (Finch-Savage & Leubner-Metzger, 2006). As germination
is heavily associated with water availability it could be expected that on soil with high
water storage capacity there may be greater levels of germination as the conditions
would be more consistently favourable. Other factors associated with soil can also affect
germination and seedling survival, such as fertility, salinity, compaction, tillage and
surface residue (Forcella et al., 2000). These changes in germination and seedling vigour
have the potential to impose a large effect on competition with the crop (Weiner, 1986)

and therefore the resulting population sizes.

Soil humidity and temperature are important in the early stages of Alopecurus
myosuroides Huds. (black-grass) growth (Maréchal et al., 2012). Soil conditions can
affect competition between the weed and the crop for inorganic nutrients and other
abiotic factors (Oerke, 2006) the intensity of this competition between crops and weed
can depend on how resources are partitioned and how the niches of the crop and
weed are differentiated. (Smith et al., 2010). Given the shallow rooting structure of
A. myosuroides it has been shown that it is more susceptible to droughting than wheat
(Stratonovitch et al., 2012) and that the magnitude of this effect is dependent on soil
type, therefore we would expect that in areas more prone to droughting the wheat

would have a competitive advantage.
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In-field studies have identified associations between A. myosuroides and particular
soil properties including organic matter and soil moisture content (e.g. Lutman et al.,
2002; Metcalfe et al., 2016 (Chapter 2) and 2017 (Chapter 3)). Associations like these
can often be explained by variation in the plant’s strategy for water use, nutrient use
or stress response. For example, Avena fatua L. (wild-oat) has a higher nitrogen use
efficiency than wheat (Carlson & Hill, 1986), so in areas with higher soil nitrogen, its
competitive effect is increased. Again, the different rooting structures of A. myosuroides
and wheat allow them to exploit different pools of resource and may go some way to

explaining the relationships observed in the field.

Some studies have observed an association between A. myosuroides and pH (e.g.
Dunker & Nordmeyer, 2000; Metcalfe et al., 2016 (Chapter 2), 2017 (Chapter 3)).
Metcalfe et al. (2016, Chapter 2) found a modest correlation (R? = —0.475) between
pH and A. myosuroides seedling densities observed in 0.5 m? quadrats within a field in a
nested sampling design separated by between 1 m and 50 m. However, an even stronger
correlation was found (R? = —0.89) when the data were analysed such that only the
coarse scale correlations within the field were considered. This relationship could not
be explained entirely through relations with other soil properties, indicating that pH
may be independently affecting the within-field distribution of A. myosuroides. It is
possible that the distribution of A. myosuroides within the field is partly determined by
the influence of soil pH on the availability of many soil nutrients (Lucas & Davis, 1961).
If the increased availability of certain nutrients provides a benefit for A. myosuroides
plants, then these may have a competitive advantage relative to neighbouring plants

such as winter wheat.

In-field studies, such as that by Metcalfe et al. (2017, Chapter 3) allow a comprehen-
sive look at the effect of the soil on A. myosuroides distributions. However, separating
out the effect of any individual soil property is extremely difficult due to the colocation
of particular soil properties in space (Figure 2.6 in Chapter 2). Here we investigate the
effect of changing soil properties on the growth of A. myosuroides in pots. We investi-
gated the effect of soil organic matter, moisture, and pH, as well as crop competition on
various stages of the life-cycle from germination to seed return (Figure 4.1). Through an
increased understanding of how these soil properties affect the growth and competitive
ability of A. myosuroides we aim to understand better the role played by variation in the

soil in determining the within-field distribution of this species.
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Figure 4.1. The life-cycle of A. myosuroides. Biological processes are shown in green
and chemical interventions in orange. *Represents aspects of the life-cycle that may be
influenced by soil properties that are examined in this chapter (Chapter 4), whilst the

impact of soil on pre-emergence herbicide efficacy (}) is examined in Chapter 5.
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4.3 Methods

We ran three experiments in an outdoor hard standing area. For all experiments we used
25-cm pots placed on individual plastic saucers to prevent run off to neighbouring pots.
We filled each pot with soil per the experimental design, outlined below. The area was
netted and roofed to allow control over water input and protection from frost, whilst

maintaining natural variation in temperature.

4.3.1 Plant material

We used seeds of A. myosuroides from a plot on the Broadbalk long-term experiment
established at Rothamsted Research (Harpenden, UK) in 1843 that had never received
any herbicides (Moss et al., 2004). This population has been shown to be free of any
evolved herbicide resistance. The seed was collected in 2012 and had been stored in

darkness until use.

4.3.2 Experiment 1: Soil Organic Matter and Water Input

We studied the effect of changing soil organic matter (3 levels) and water input (2
levels) on the A. myosuroides life-cycle in the 2014-15 season. We had seven replicates
of each treatment combination arranged in a randomized complete block design (a total
of 42 pots). We mixed A. myosuroides seed (0.33 + 0.005 g) into the top 2 cm of soil of
each pot on the 24th October 2014 and assessed emergence as described below. In the
winter (15th-18th January 2015), we thinned out each pot so that one A. myosuroides
individual was left in the centre. We transplanted three wheat plants (2-3 leaf stage)
into each pot spaced evenly around the centre (19th-22nd January 2015). We then
allowed the plants to grow to maturity whilst maintaining the established watering
treatments. No additional inputs were added to the soil to maintain the differences

established by soil type. However, fungicides and insecticides were applied as required.
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Soils

We created three soils with varying organic matters, whilst maintaining other soil
properties at relatively constant values by mixing sand, loam, and composted bark in
different ratios. Samples of each soil mixture were tested by the laboratories at SOYL

(Newbury, UK) to establish the amount of organic matter and pH (Table 4.1).

Water Input

The second treatment was the amount of water input. There were two levels for this
treatment: high (non-limiting) and low (limiting). We watered the pots at the high
water input from above as required and by adding water to each saucer so that water
availability was not limiting. In the low water treatment, we only watered intermittently

at the first sign of wilting.

Assessment

We recorded the number of emerged shoots every 2—4 days for four weeks until emer-
gence had plateaued. We also measured the electrical conductivity of the soil using a
theta probe to allow us to calculate the volumetric water content of each soil. Weather
data were obtained from the meteorological station local to the experimental site. These

two sets of data allowed the calculation of accumulated hydrothermal time:

Our = > (¥ — ) (T — T)] (4.1

when the daily water potential (1) and temperature (1) were greater than the base
water potential (¢, = —1.53) and temperature (7}, = 0) for A. myosuroides respectively.
The values for these were taken from Colbach et al. (2002a and b) and were assumed
to be constant, although for some species it has been shown that 7} can vary with v

(Kebreab & Murdoch, 1999) .

We recorded the day of first flowering for each A. myosuroides plant. In mid-July,
once all plants had flowered, we measured the height of the tallest tiller and the number

of seed heads produced by the A. myosuroides plant in each pot. Once a seed head
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was fully ripe we removed it from the plant to retain all seed before it was shed. In
mid-August (13th-14th), we cut all biomass at ground level and separately recorded the
dry weight of straw and seeds. We also calculated the proportion of the total biomass

accounted for by seed.

4.3.3 Experiment 2: pH

We studied the effect of changing soil pH (2 levels) on A. myosuroides germination in
late 2015. The experiment comprised a randomized block design with three pots for
each pH treatment in each of seven replicate blocks (a total of 42 pots). We spread
0.334+0.005 g (approx. 150) seed evenly across the surface of each pot (3rd September

2015). Pots were watered as required.

Soils

We created two soils with contrasting pH, whilst maintaining other soil properties at
relatively constant values. We chose to use a relatively acidic compost mixture as
a starting point for the lower pH treatment (pH = 5.09). To create the higher pH
treatment, we mixed lime into the soil at a rate equivalent to 15 t ha—! to raise the pH
to 6.95. Samples of each soil mixture were tested by the laboratories at SOYL (Newbury,
UK) to establish the pH of each soil.

Assessment

We recorded the number of emerged shoots every 2-4 days for three weeks until

emergence had plateaued.

4.3.4 Experiment 3: pH and Crop Competition

In Experiment 1 there were no pots with A. myosuroides growing in isolation, so we
were unable to separate the direct effects of soil organic matter and watering on the
weed life-cycle from the indirect effect of changing competitive performance with the

crop. To address this in this pH study, we included an additional treatment of + / -

92



Chapter 4. A. myosuroides and the abiotic environment

competition. We germinated A. myosuroides and winter wheat seeds and grew plants to
the 3-4 leaf stage in the glass-house before transplanting them (8th March 2015) into
pots containing compost at the two different pH levels (as in Experiment 2). Treatments
included all six combinations of two soil pH levels, and each species individually or
in competition. For the competition treatment, we grew A. myosuroides and wheat
together in competition, and each species was also grown on its own. The plants were
located within the pot as shown in Figure 4.2. The experiment comprised a randomized
complete block design with one pot for each treatment combination in each of seven
replicate blocks (a total of 42 pots). We then allowed the plants to grow to maturity. No
additional inputs were added to the soil to maintain the differences established by soil

type. However, fungicides and insecticides were applied as required.

Figure 4.2. Configuration of plants within pots. Alopecurus myosuroides is represented
by the cross and wheat by the triangles. The position and number of plants of each

species was consistent irrespective of whether they were grown in competition or alone.

Assessment

We recorded the day of first flowering for each A. myosuroides plant and for the first
wheat plant to flower in each pot. Once all plants had flowered, we measured the height
of the tallest tiller and the number of seed heads produced for each plant of both species
(25th July 2016). On the 22nd August 2016, we cut all biomass at ground level and
separately recorded the dry weight of straw and heads for each species separately. We
also calculated the proportion of the total biomass accounted for by seed. We calculated
competitive performance of each species for each replicate by taking the total above-
ground biomass of the plant grown in competition and dividing by the total biomass

when grown in isolation on the same soil.
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4.3.5 Data Analysis

For Experiments 1 and 2, we analysed the germination data by fitting a Gompertz curve
(Equation 4.2) to all data from that trial. We restricted the origin to zero (4 = 0) but
the B, C, and M parameters could vary. We then looked at the change in fit when
different curves were fitted for each treatment within the experiment (organic matter
and water input in Experiment 1, and pH in Experiment 2) using an incremental F test

(see supplementary material for tables).

—B(z—M)

y=A+Ce ¢ (4.2)

For Experiment 1 a two-way Analysis of Variance (ANOVA) was done to look at the
influence of soil organic matter and watering on each life history trait measured. Soil
organic matter included three levels (Low, medium and high) and water input consisted
of two levels (low and high). For Experiment 2 a one way ANOVA was done to look at
the effect of soil pH on total germination with two levels of pH (low and high). Finally,
in Experiment 3 a general ANOVA was done to look at the effect of pH, competition
and species on all life history traits measured. Again, pH had two levels (low and high),
competition had two levels (with competition and without competition) and nested
within each level of competition was species which also had two levels (A. myosuroides
and wheat). All analyses were conducted in GenStat (Payne, 2013) and all ANOVA

tables can be found in the supplementary material.

4.4 Results

4.4.1 Experiment 1: Soil organic matter and water input

Germination

There was a significant effect of both organic matter (F5 30=9.25, P<0.001) and water
input (F; 30=63.91, P<0.001) on the total number of A. myosuroides seeds germinating

(see Supplementary Table S4.1) with fewest seeds germinating on high organic matter

soil and the most on low organic matter soil. Increasing water input increased the
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Table 4.2. Parameters and their standard errors of the Gompertz model (Equation 4.2)
when fitted to germination data across Experiment 1 and to each treatment separately.

In each case, the parameter A was fixed at zero.

Curve Parameter: B C M

Estimate SE Estimate SE  Estimate SE

All data 0.2211  0.023 50.47 1.1 1.655 0.28
Low organic matter, low water input 0.5200 0.102 49.20 1.1 0.658 0.25
Low organic matter, high water input 0.2895  0.039 63.82 1.4 0.961 0.30

Medium organic matter, low water input 0.3032  0.064 43.12 1.4 0.637 0.45
Medium organic matter, high water input  0.1535  0.019 69.31 2.8 4.452 0.46
High organic matter, low water input 0.2275  0.063 28.74 1.7 2.063 0.75
High organic matter, high water input 0.1731  0.025 54.06 2.4 4.104 0.51

number of seeds germinating. There was no significant interaction between organic

matter and water input on the total number of seeds germinating.

When we fit a single Gompertz curve (Equation 4.2) to the germination counts we
account for 45.1% of the variance in the data set. By fitting a separate curve to each
treatment we see a significant improvement (P<0.001, see Supplementary Table S4.2)
with this model accounting for 76.1% of the variance in the data set (Table 4.2). We see
different shaped curves for each water input and different asymptotes for each organic

matter indicating there is some interaction between the two (Figure 4.3).
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Figure 4.3. Germination data with separate curves fitted for each level of organic matter
and water treatment. (a) shows the data for low water input, (b) shows the data for
high water input. Data points are shown as circles. The fitted curve is a solid line. Grey

is low organic matter; Yellow is medium organic matter and blue is high organic matter.
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When we fitted germination counts from Experiment 1 against hydrothermal time
(Figure 4.4), the curves were much more similar in appearance across the three soil types
indicating that the different levels of organic matter in each soil were allowing different
levels of water retention and so accumulated hydrothermal time at different rates. At the
low level of water input, the curves fitted for the low and medium organic matter were
similar (Figure 4.4 a) with the germination counts and hydrothermal time not reaching
as high a level as in the high watering treatment (Figure 4.4 b). However, on the high
organic matter soil with low water input (Figure 4.4 a, blue line) the accumulation
of hydrothermal time was particularly slow and germination seemed to exceed the
expectation according to the accumulation of hydrothermal time. This may be because
of the artificial nature of the soil used here. The calculations used to convert the theta
probe measurements to water content were based on reference values for mineral soil
and so the combination of a particularly dry watering regime with an artificial soil may

have led to inaccurate estimates of the soil moisture in this case.

80+ 804

[=r]
o
L
[=2]
o
L

Seedling Count
&
Seedling Count
&

[~

o
1

]

o
L

0 200 400 600 0 200 400 600
Accumulated Hydrothermal Time a Accumulated Hydrothermal Time b

Figure 4.4. Germination data plotted against hydrothermal time with separate curves
fitted for each level of organic matter. (a) shows the low water input, (b) shows the high
water input. Data points are averages for each treatment. Grey is low organic matter;

Yellow is medium organic matter and blue is high organic matter.

Phenology

There was no significant effect (see Supplementary Table S4.3) of either soil organic

matter or water input on the day of first flowering (Table 4.3).
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Table 4.3. Summary of data for the day of first flowering. Means and their standard

errors are shown for each treatment combination in Experiment 1.

Mean (Julian day) SEM

All data 123.1 0.821
Low organic matter, low water input 123.0 2.000
Low organic matter, high water input 125.0 3.367
Medium organic matter, low water input 122.6 1.571
Medium organic matter, high water input 124.0 2.082
High organic matter, low water input 121.0 1.528
High organic matter, high water input 123.0 12.292

Plant Height

There was a significant effect of both water input (F; 30=21.45, P<0.001) and its
interaction with soil organic matter (Fg 30=9.74, P<0.001) on the height of the plant at
maturity (see Supplementary Table S4.4). When water input is high the A. myosuroides
plants were significantly taller than when water input was low. The interaction between
soil organic matter and water input is particularly interesting because at low water input
there is a tendency for plant height to decrease as organic matter increases whereas
at high water input this trend is reversed and the shortest plants are found on the low

organic matter soil (Figure 4.5).

Seed Production

The total number of A. myosuroides seed heads was significantly affected by soil organic
matter (F230=15.54, P<0.001, Figure 4.6) but not water input (see Supplementary
Table S4.5). However, the dry weight of seed remained unaffected by soil organic matter

or water input (see Supplementary Table S4.6).

Biomass
Organic matter affected the dry weight of straw (F3 30=32.15, P<0.001, low organic

matter = 12.9, medium organic matter = 23.6, high organic matter = 32.6). There

was no effect of water input on the dry weight of straw (see Supplementary Table S4.7).
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Figure 4.5. The height of A. myosuroides plants grown in trial one at two different
levels of water input. Plants were grown on soil with three different levels of organic
matter; low organic matter is shown in grey, medium organic matter shown in yellow
and high organic matter shown in blue. The means of all pots are presented with error
bars indicating + 1 SEM. Bars labelled with the same letter are not significantly different

from one another (P<0.05).
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Figure 4.6. The number of seed heads per A. myosuroides plant grown in trial one
at two different levels of water input. Plants were grown on soil with three different
levels of organic matter; low organic matter is shown in grey, medium organic matter
shown in yellow and high organic matter shown in blue. The means of all seven pots
are presented with error bars indicating + 1 SEM. Bars labelled with the same letter are

not significantly different from one another (P=0.05).
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Table 4.4. Parameters and their standard errors of the Gompertz model (Equation 4.2)
when fitted to germination data across Experiment 2 and to each pH treatment separately.

In each case, the parameter A was fixed at zero.

Curve Parameter: B C M

Estimate SE Estimate SE  Estimate SE

All data 0.3452  0.053 38.86 1.6 7.833 0.33
Low pH 0.3781 0.084 40.92 2.2 8.002 0.42
High pH 0.3243  0.073 36.72 2.4 7.730 0.50

Similarly, total plant biomass was significantly affected by organic matter (F 30=29.40,
P<0.001, low organic matter = 15.2, medium organic matter = 27.8, high organic

matter = 36.6) but not water input (see Supplementary Table S4.8).

4.4.2 Experiment 2: pH

Germination

There was no significant effect of soil pH on the total number of seeds germinating (see

Supplementary Table S4.9).

When we fit a single Gompertz curve (Equation 4.2) to the germination counts we
account for 66.7% of the variance in the data set. By fitting a separate curve to each soil
pH we see a marginal improvement (P=0.058, see Supplementary Table S4.10) with
this model accounting for 67.1% of the variance in the data set (Table 4.4). These fitted

curves indicate that a greater number of seeds germinate at lower pH (Figure 4.7).

4.4.3 Experiment 3: pH and crop competition

Phenology

There was no significant effect of any treatment on the day of first flowering (Table 4.5,

see Supplementary Table S4.11).
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Figure 4.7. Germination data with separate curves fitted for each soil pH. Data points
are shown as circles. The fitted curve is a solid line. Red symbolizes low pH and blue is

higher pH.

Table 4.5. Summary of data for the day of first flowering in Experiment 2. Means and

their standard errors are shown for each treatment combination.

Mean (Julian day) = SEM

All data 168.1 1.630
Lower pH, A. myosuroides alone 166.1 5.347
Higher pH, A. myosuroides alone 167.7 6.058
Lower pH, A. myosuroides in competition 164.0 6.870
Higher pH, A. myosuroides in competition 162.4 9.458
Lower pH, wheat alone 171.9 0.404
Higher pH, wheat alone 169.6 0.782
Lower pH, wheat in competition 171.2 0.917
Higher pH, wheat in competition 170.2 0.600
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Table 4.6. Summary of data for the height of the tallest tiller. Means and their standard

errors are shown for each treatment combination.

Low pH High pH
Mean (cm) SEM Mean (cm) SEM

A. myosuroides alone 79.0 7.97 69.7 5.30
A. myosuroides in competition 91.0 4.75 78.3 9.65
Wheat alone 79.5 1.59 76.6 1.19
Wheat in competition 78.0 1.64 75.0 0.71

Plant Height

A small effect of pH (F; 3;=3.83, P=0.060) was observed on plant height (see Sup-
plementary Table S4.12) with both A. myosuroides and wheat growing taller at lower
pH, both when grown alone and in competition (Table 4.6). Interestingly, a much
larger shade avoidance response (increased height in competition) was observed for
A. myosuroides than the crop, which is constrained by the dwarfing genes bred into

modern crop varieties.

Seed Production

There was a significant effect of competition (F; 34=6.92, P=0.013) but not of pH on
the number of seed heads produced (see Supplementary Table S4.13). However, there
was no effect of any treatment on the dry weight of heads (see Supplementary Table

S4.14).

Biomass

The total plant biomass remained unaffected by pH or competition (see Supplementary
Table S4.15). Interestingly when we consider the competitive performance of plants
measured as relative biomass in competition compared to isolation there was some
indication that the effect of pH interacts with species (F; 12=3.37, P=0.091, see Supple-
mentary Table S4.16). Generally, the biomass of wheat was not reduced by competition
to the same extent as occurs in A. myosuroides, but this competitive balance appears to

be altered by pH (Figure 4.8). At higher pH, there was a relatively small reduction in
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wheat biomass compared with the much greater reduction in A. myosuroides biomass.
However, at lower pH, the differences in the relative reductions in biomass of the two
species are smaller, with a smaller reduction in the A. myosuroides biomass and a greater

reduction in wheat biomass relative to the responses recorded at the higher pH.

0.25 1

Relative Biomass when grown in competition

0.00

A. myosuroides T. aestivum
Species

Figure 4.8. The relative biomass of wheat and A. myosuroides plants grown in competi-
tion compared to when grown in isolation. A value of one would indicate that there is
an equal biomass produced when grown in competition as when grown in isolation. The
means of seven pots are presented with error bars indicating +1 SEM. Data for lower

pH are shown in red and for higher pH are shown in blue.

4.5 Discussion

As germination is a function of hydrothermal time (Bradford, 1995) we would expect
it to change with water input. We would also expect increasing organic matter to
improve the water retention capacity of the soil and so too to lead to an increased rate
of germination. However, the results were somewhat contrary to this expectation. We
did observe higher levels of germination when water input was high, yet the medium
organic matter soil allowed more seeds to germinate than the high organic matter soil.
We speculate this may be due to mulching from the compost used to elevate the soil

organic matter. The change in germination with pH may also be due to the altered
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chemistry of the soil affecting water uptake. These impacts of environmental properties
on germination could have an impact in terms of management practices as delayed
drilling is a common method of cultural control. However, if the timing of germination
can be affected by environmental processes then perhaps this needs to be taken into

consideration when developing management programs.

As plant height was affected by various soil properties this too could have important
implications for management practices as the taller a plant is at maturity, the greater
the opportunity for seed dispersal over longer distances meaning patches may expand
in the following season (Howard et al., 1991). However, this needs to be interpreted in
the context of the trade-off between fewer, taller tillers and a greater number of shorter

tillers with greater seed production.

The competitive balance between wheat and A. myosuroides was affected by soil pH
with A. myosuroides having a greater relative growth at lower pH. This indicates that soil
pH may have some influence on the location of A. myosuroides patches. It is likely this
effect is related to the availability of nutrients at varying soil pH; for example, nitrogen,
phosphorus, and potassium are all limited in availability in acid soil, whilst iron, zinc,
and copper become limited in more alkaline soil (Brady, 1984). The contrasting rooting
structure and function of A. myosuroides and wheat have been suggested as a possible
reason for the current distribution of A. myosuroides in relation to variation in soil

properties (Stratonovitch et al., 2012).

When we compare these results to field observations obtained in a previous study
(Metcalfe et al., 2016, Chapter 2) they support the conclusion that pH may have some
controlling influence over the within-field distribution of A. myosuroides. In the field,
we found higher densities of A. myosuroides at lower pH. If, as indicated here, more
A. myosuroides seeds germinate on acidic soil and it is better able to compete with wheat
then this could explain the higher densities of A. myosuroides observed on more acidic

soil.

Some of the responses to increased organic matter observed here may not have been
due to the changes in soil function, but rather due to the increased fertility owing to
the compost addition. On farm, an increase in soil organic matter could also lead to
increased fertility and so it is not always possible to separate these effects. However,

if a farmer is selectively applying fertiliser to parts of the field to account for this then
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it may be necessary to investigate the effects of organic matter further, independently
of soil fertility, through the addition of inorganic nutrients to the low organic matter
treatments. This would then allow the study of changing soil function with organic
matter and its effects on the life-cycle of the weed, independently from the effects of

increased fertility.

These results raise some interesting questions in terms of management of
A. myosuroides and whether management options should be tailored to within-field
environmental gradients. We have presented evidence that high organic matter soil is
favourable to A. myosuroides seed production, but perhaps less so for germination. We
have also found further evidence that there is a subtle difference in the optimum pH
for wheat and A. myosuroides. Combining our experience in field and pot experiments,
we suggest soil above a pH of 6, is less favourable to A. myosuroides but still optimal
for wheat. However further research would be needed to understand how the system

responds to a wider range of soil organic matter contents, watering, and pH.

These results indicate a potential trade-off between increasing organic matter in
the soil for crop growth and reducing it for A. myosuroides control as the number of
seed heads can be significantly reduced by lowering soil organic matter. This raises
questions about the suitability of popular management techniques such as minimum
tillage in a high A. myosuroides situation. Potential management options for further
exploration could be the use of liming where pH is particularly low as part of a suite
of measures (including improving soil structure and drainage) designed to manipulate
habitat suitability for A. myosuroides. The use of competitive crop cultivars could also
be investigated to determine if cultivars can remain competitive on low soil pH or high
organic matter and so would be better able to suppress A. myosuroides growth under

these conditions.

4.6 Conclusions

We have shown that soil organic matter, moisture, and pH can affect various aspects of
the life-cycle of A. myosuroides. The influence of each of these soil properties is varied
but each may contribute to the determinants of patch locations in the field. These effects

of soil properties on the life-cycle may present opportunities for tailoring management
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to site conditions or even within-field environmental gradients.
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In addition to my experiments on the direct and indirect effects the soil has on the life-
cycle of A. myosuroides (Chapter 4), I investigated how the soil can mediate the efficacy
of control measures implemented by the farmer. My third hypothesis that soil organic
matter affects the efficacy of flufenacet and pendimethalin against A. myosuroides and
the ability of the weed to withstand sub-lethal doses of those herbicides, addresses the
idea that changes in control levels due to soil properties may influence the within-field
distribution of A. myosuroides in similar ways to the direct influence of the soil on the

A. myosuroides life-cycle.

Initially, I did a preliminary investigation to see if pre-emergence control could be
influenced by changing soil organic matter and water input. This preliminary study is

detailed below in Sections 5.i and 5.1ii.
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Following on from the preliminary investigation I went on to look at some of the
most interesting results in more detail by focussing on the effect of soil organic matter. I
considered a full dose-response to flufenacet and pendimethalin on soil with varying
levels of organic matter. I also grew the plants on to maturity in order to look at the
sub-lethal effects of the herbicides and how these varied depending on the amount of
organic matter in the soil. In addition to these experiments I analysed the data further by
using it to parameterise a crop competition model to see if the difference in control and
sub-lethal effects observed on the different soils would lead to a substantial reduction in
seed return under competition. This work is detailed in Sections 5.1-5.7 and is under

revision following review with Pest Management Science.

5.i Preliminary Methods

I studied the effect of changing soil organic matter (3 levels) and water input (2 levels)
on the efficacy of flufenacet and pendimethalin (no herbicide, low, and high doses)
against Alopecurus myosuroides Huds. (black-grass) seedling survival and growth in
winter 2014-15. The experimental design was a randomized complete block design with
10 replicates of each treatment combination. I assigned an extra 6 replicates to each
treatment that received no herbicide as additional controls. I germinated A. myosuroides
seeds from the Broadbalk experiment in Petri dishes in a Sanyo MLR-350 environmental
test chamber providing a 17°C 14-hour day, 11°C 10-hour night for seven days. I
transplanted eight seedlings into each 10-cm diameter pot on 9th December 2014. The
following day I sprayed the pots with the required dose of herbicide per the treatment
structure outlined below. I placed the pots in an unheated glasshouse and allowed the

plants to grow for eight weeks prior to assessment (2nd February 2015).

Soils

I created three soils with varying organic matters, whilst maintaining other soil properties
at relatively constant values by mixing sand, loam, and composted bark in different

ratios as described for Experiment 1 in Chapter 4.
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Table 5.i. Application rates of two pre-emergence herbicides in the preliminary investi-

gation.

Flufenacet Pendimethalin

Dose

(g a.i./ha) (g a.i./ha)
None 0 0
Low 7.5 200
High 60 1000

Water Input

I established two watering regimes with half of the pots receiving just enough water to
prevent any signs of wilting (water limited). The other half received twice this amount

of water (sufficient water).

Herbicides

For each herbicide, I chose a low dose known to achieve poor efficacy under glasshouse
conditions and a high dose known to achieve good efficacy under glasshouse conditions

(Table 5.1).

Assessment

I assessed survival as the proportion of individuals that remained alive eight weeks after

the application of the herbicide.

Data Analysis

I analysed the data in GenStat (Payne, 2013) using a generalized linear model to
determine statistically significant differences between treatments. As the data are
proportions I assumed they followed a binomial distribution and so used a logit link

function.

110



Chapter 5. Spatially variable pre-emergence herbicide efficacy

5.ii Preliminary Results

The proportion of seedlings surviving eight weeks after spraying was significantly
affected by both soil organic matter and water input (Figure 5.i). Survival without
herbicide was generally greatest on the medium organic matter soil. However, at high
water input in the presence of high doses of either herbicide, survival on the high organic
matter soil was greater (Figure 5.i ¢ and 5.i d). For flufenacet, the herbicide efficacy
was generally poor at the chosen doses (Figure 5.i a and 5.i ¢) and effective control
of A. myosuroides was only observed at the high dose on the low organic matter soil
when water input was high. Pendimethalin had a greater efficacy across all treatments
(Figure 5.i b and 5.i d) but again, the greatest reduction in survival was seen on the low

organic matter soil.

These results indicate that the efficacy of pre-emergence herbicides is affected by
soil conditions. Based on these preliminary data I decided that the change in herbicide
efficacy in response to organic matter was of the most interest. I continued with the
use of two pre-emergence herbicides but did not include different levels of watering.
I also decided that it would be interesting to consider a full dose-response to ensure
I covered a range of efficacies. I wanted to incorporate higher doses up to field rate
and above, as I saw little effect of the low doses used here and even at the high doses
(which corresponded to only 25% of field rate for flufenacet and 83% of field rate for
pendimethalin) the reduction in survival was small. As well as investigating survival rate
following the application of pre-emergence herbicides, this full study looks at sub-lethal
effects; addressing the second part of my hypothesis that soil organic matter affects the
ability of A. myosuroides to withstand sub-lethal doses of pre-emergence herbicides. The

following is under revision following review with Pest Management Science.

Although I did not go on to further investigate the effect of water input, these
preliminary results indicate that water input does interact with soil organic matter to
impact on control. This supports the findings of Blair et al. (1994), Orson et al. (1998)
and Collings et al. (2003) that water stress and weather play important roles in the
efficacy of pre-emergence herbicides. Further studies could provide useful insights
into the interaction between stable soil variables such as organic matter and dynamic

weather factors such as rainfall on the efficacy of pre-emergence herbicides.
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Figure 5.i. Proportion of seedlings surviving eight weeks after the application of pre-

emergence herbicides. Means + SEM are shown for each dose tested. In each panel, the

low organic matter is shown in grey, medium organic matter in yellow and high organic

matter in blue. Watering treatments and herbicides are shown in separate panels, (a)

Flufenacet, low water input, (b) Pendimethalin, low water input, (c) Flufenacet, high

water input (d) Pendimethalin, high water input.
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5.1 Summary

The efficacy of pre-emergence herbicides within fields is known to be spatially variable
because of heterogeneous soil properties, partly explaining why weed distribution is
patchy. Here we quantified this variability for two widely used pre-emergence herbicides,
flufenacet and pendimethalin, in controlling A. myosuroides, on soil with varying levels
of soil organic matter using pot experiments. The implications of this variability for
weed management was then investigated using a crop / weed competition simulation
model that predicted the combined effects of the observed variable weed mortality and

sub-lethal effects on weed seed production.

The level of soil organic matter played a critical role in determining the level of
control achieved: in the pot experiments, the two high organic matter treatments
consistently had more surviving weed plants with higher biomass than the low organic
matter soil. Where there were survivors, even when high doses of herbicide were
applied, the plants had the ability to recover to produce the same amount of seed as
if no herbicide were applied, in the absence of competition. The competition model
predicted that weeds surviving pre-emergence herbicides were able to compensate
for sub-lethal effects even when competing with a crop. As a result, the ED50 was
consistently higher for weed seed production than either seedling mortality or biomass

and this difference was greatest on high organic matter soil.

These results could have important implications for the precision management of
A. myosuroides as our improved understanding of the variation in levels of control
achieved by pre-emergence herbicides on soil with contrasting organic matter would
allow adjustment of the application rate of the herbicide to account for within-field
gradients of soil organic matter. However, the results from the modelling also emphasised
the importance of crop competition in limiting the capacity of weeds surviving pre-
emergence herbicides to compensate and replenish the seedbank, particularly where
there is resistance to contact herbicides. This new knowledge needs to be integrated
within the wider context of the impact of variable soil on weed growth and competition

across the whole weed life-cycle.
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5.2 Introduction

Herbicides are an important component of weed control programmes and soil-applied
herbicides are particularly important for controlling germinating weeds in the context of
the rapid evolution of resistance to contact herbicides. Generally, these pre-emergence
herbicides are applied uniformly across the field at doses recommended by the manufac-
turer. These recommended doses are given irrespective of variation in soil properties
and for many pre-emergence herbicides the only advice, with regards to soil, is that
they should only be used on soil with organic matter up to 10%. In Great Britain, this is
seldom problematic, given that the average amount of soil organic matter (0-15 cm) in

arable and horticultural land is 3.07% (Emmett et al., 2010).

Alopecurus myosuroides Huds. (black-grass) is a particularly problematic weed of
winter wheat (Triticum aestivum L.) in the UK and so its control is of concern. Given
increasing problems of evolving resistance to contact herbicides (Moss et al., 2007), and
the decreasing number of options available for chemical control, the currently available
pre-emergence herbicides (based largely on flufenacet and pendimethalin) are an im-
portant tool in the arsenal against this pernicious weed. Alopecurus myosuroides exhibits
patchy distributions within fields, yet its control is often through uniform application of
herbicides. As with many species, it is thought that these patchy distributions in arable
fields are strongly affected by their environment, in particular, the soil (Radosevich et

al., 2007; Metcalfe et al., 2016 (Chapter 2)).

Soil properties not only affect the life-cycle of the weeds of weeds directly (Metcalfe
et al., 2017 (Chapter 4)) but they can also have an indirect effect by altering the
efficacy of some herbicides (Pedersen et al., 1995). Organic matter in the soil can lead
to adsorption of herbicide (Farenhorst, 2006). Different herbicides may be more, or
less, adsorbed by organic matter, dependent on their physical and chemical properties
(Nordmeyer, 2015) with flufenacet and pendimethalin both adsorbing highly to the
soil (pendimethalin Kd: 2.23 to 168 (Shaner, 2012) and flufenacet Kd = 0.77 to 4.52
(Gajbhiye & Gupta, 2001). If the amount of soil organic matter varies across the field,
there may be parts of the field where these pre-emergence herbicides are less available to
the plant. This, in turn, may lead to differential control across the field and so increases

the chance of the establishment of weed patches where herbicide control is reduced.

As pre-emergence herbicides are applied directly to the soil, it is particularly impor-
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tant to understand how varying soil properties within fields may affect their efficacy.
Some studies have considered this and shown that organic matter influences herbi-
cide efficacy. For example, Nordmeyer (2015) showed that a relatively small increase
in organic matter from 2.2 to 3.5% can impact the efficacy of chlortoluron against
A. myosuroides. Blumhorst et al. (1990) also demonstrated a strong correlation between
soil properties and the herbicidal activity of five different herbicides against Abutilon
theophrasti Medik. (velvetleaf) and Setaria viridis L. (green foxtail). Despite this pre-
vious research indicating that varying organic matter in the soil can lead to reduced
weed control, little has been done to understand the response of two key pre-emergence
herbicides in the control of A. myosuroides to such changes in soil organic matter and

the implications for weed management in terms of potential weed seed return.

Given that in a field with spatially heterogeneous organic matter we would expect
different levels of control, it is also important to consider any sub-lethal effects on the
survivors and their impact through the rest of the growing season. When implementing
weed control strategies, the focus is often on diminishing seed return. Modelling
is frequently used to investigate the effects of different management practices (e.g.
cultivation (Cousens & Moss, 1990; Grundy et al., 1999), crop rotations (Garrison et
al., 2014), patch spraying (Paice et al., 1998)). Where these models include the use of
herbicide, however, they generally model the effect of herbicide simply as a proportional
kill of weed seedlings with the implicit assumption that the survivors remain unaffected
(Holst et al., 2007). Sub-lethal effects have been shown to be important in many species,
for example, Rotchés-Ribalta et al. (2015) showed that some species show no decrease
in biomass at harvest irrespective of the dose of herbicide received and Riemens et al.
(2009) showed that with increasing dose the number of seeds per gram of fresh weight
can decrease. Often when field data are collected on herbicide efficacy there is a marked
difference between the level of control achieved at the seedling stage and the head stage
(e.g. Moss et al., 2016). It cannot, therefore, be assumed that pre-emergence efficacy at
the seedling stage is equivalent to a proportional decrease in seed return in the absence
of subsequent herbicide activity. Variability in pre-emergence herbicide activity needs to
be understood in the context of the effect of soil heterogeneity on the rest of the weed

life-cycle.

Our aim was to quantify the effect of variable soil organic matter on the seed return

of A. myosuroides following the application of flufenacet or pendimethalin at a range
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of doses. We examined both the level of control achieved by those two herbicides
on soil with different amounts of organic matter as well as sub-lethal effects of the
herbicide, and the ability of plants to recover and produce viable seed in the context of
crop competition. To investigate this, we considered three different levels of organic
matter, typical of arable fields in the UK, and a range of herbicide dose rates applied to
A. myosuroides seedlings in pots. We hypothesized that increasing organic matter would
lead to decreased efficacy of both herbicides in the control of A. myosuroides and that
sub-lethal doses would lead to fitness costs causing reduced growth and fecundity (the
fitness cost also being determined by soil properties). We used regression analyses to
determine whether soil organic matter impacts the shape of the dose-response curves for
these two herbicides observed in pots and used the results from the pot experiment to
parameterise a simulation model of crop / weed competition and weed seed production
in the field. An increased understanding of how local soil conditions affect the efficacy of
pre-emergence herbicides and the implications for A. myosuroides population dynamics
will increase our ability to properly manage this prolific agricultural weed, particularly

in the context of precision weed control and integrated weed management strategies.

5.3 Methods

5.3.1 Soils

To isolate the effects of soil organic matter from the many covarying soil properties we
created three artificial soils with varying amounts of organic matter, whilst maintaining
other soil properties at relatively constant values by mixing sand, loam, and composted
bark in different ratios (Table 5.1). Composted bark is homogeneous in its organic matter
content and so allowed fine adjustment of soil organic matter whilst adding minimal
additional nutrients. Samples of each soil mixture were tested by the laboratories at
SOYL (Newbury UK) using loss on ignition to establish the amount of organic matter
(Table 5.1) The range of organic matters achieved was typical of UK arable land. We
created two soils with organic matter less than 3% (typical of British arable soil) and
one soil representing particularly high levels but still within the 10% level quoted on
many herbicide labels. Each soil type was used to fill 180 10-cm diameter pots and 90
25-cm diameter pots giving a total of 540 10-cm diameter pots and 270 25-cm diameter

pots.
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5.3.2 Plant Material

We used A. myosuroides seed from a plot on the Broadbalk long-term experiment
established at Rothamsted Research (Harpenden, UK) in 1843 that had never received
any herbicides (Moss et al., 2004). This population has been shown to be free of any
evolved herbicide resistance. The seed was collected in 2014 and had been stored in
darkness from harvest until the start of this experiment. We germinated A. myosuroides
seeds in Petri dishes in a Sanyo MLR-350 environmental test chamber providing a 17°C
14-hour day, 11°C 10-hour night for seven days. Seeds were germinated in Petri dishes
lined with three Whatman No.1 90 mm diameter qualitative filter papers and 5 ml of
KNOj3 (2 g I"1). We transplanted eight germinated seeds (radicle just emerged) into
each 10-cm diameter pot on 23rd February 2016. We placed the pots in an unheated
glasshouse and allowed the plants to grow for six weeks prior to assessment. All plants

received water as required.

5.3.3 Pre-emergence Herbicides

Flufenacet (Bayer CropScience Ltd) and pendimethalin (BASF plc) are two active
ingredients present in pre-emergence herbicide products and are widely used in UK
cereals. They are registered in several countries for the control of most annual grasses
and common weeds in cereals, fruit, and vegetables. Here we tested their efficacy
against A. myosuroides. Pendimethalin is a residual dinitroaniline herbicide (HRAC: K1)
and flufenacet is an oxyacetamide herbicide (HRAC: K3). We applied each herbicidal
active ingredient separately pre-emergence, (one day post sowing before any shoots had
emerged) using a laboratory track sprayer delivering 222 L ha~! at 210 kPa through a
Teejet 110015VK ceramic nozzle, 50 cm above the soil surface. We applied a full range
of doses with rates of 0, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1x and 2x recommended field
rates (UK) of 240 and 1200 g a.i. ha~! for flufenacet and pendimethalin, respectively.
For each herbicide each dose was applied to 10 pots of each soil type. The experimental
design was a randomized complete block design with 10 replicates of each treatment

combination (each herbicide at each dose on each soil, 540 pots in total).
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5.3.4 Herbicide Efficacy

Six weeks after the application of the pre-emergence herbicides we assessed survival as
the proportion of individuals that remained alive in each pot. We assessed the average
size of surviving plants by counting the number of tillers present in each pot and dividing
that by the number of survivors to give an indication of the growth stage of the plants.
We measured biomass on five randomly selected replicates by cutting all plant material

at the ground level and taking a total dry weight per pot.

5.3.5 Sub-lethal Effects

To consider the sub-lethal effects of flufenacet and pendimethalin and how these are
affected by soil organic matter as the plant matures we kept five replicates of each
soil-herbicide-dose combination. These were not destructively assessed for biomass.
Where there were survivors, we selected the median sized plant from each pot and
transplanted it into a 25-cm diameter pot containing the same soil mixture. These plants
were grown outside under netting. The same randomization as in the glasshouse was
maintained. Plants were watered as required. No additional inputs were added to the

soil; however, fungicides and insecticides were applied as required.

We recorded the Julian day of first flowering for each of these plants. Once all plants
had flowered, we measured the height of the tallest tiller and the number of seed heads
produced (27th July 2016). On the 24th August 2016, we cut all biomass at ground level
and measured the total dry straw biomass. To assess the effect of soil organic matter
on fecundity we measured the total fresh weight of the seed heads and calculated total
dry weight from a subsample of seed. We also measured the viability of the produced
seed by germination assay: following three months’ storage in darkness at 18°C and
35% humidity, we assessed the viability of the seed produced by assessing germination
in Petri dishes. We set up three Petri dishes for each sample with three Whatman No.1
90 mm diameter qualitative filter papers per dish. We put 50 seeds, representative of the
uncleaned sample, and 5 ml of KNO3 (2 g 1=!, Riedel-deHaen analytical grade) into each
dish and then incubated the dishes in a Sanyo MLR-350 environmental test chamber
delivering 17°C 14-hour day, 11°C 10-hour night for 14 days. Following incubation, we

counted the number of seeds that had germinated (visible radicle).
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5.3.6 Data Analysis

We used the drc package in R (Ritz et al., 2015) to find the best model to describe
the dose-response relationships investigated in our experiments (ignoring treatment
structure). We chose from log-logistic (3, 4, and 5 parameters), Weibull (type 1 and
2, with 3 and 4 parameters) and Cedergreen-Ritz-Streibig (4 parameters; A, B, and C
types, in all types the lower limit is fixed to 0) (Table 5.2), as well as linear, quadratic
and cubic models to capture any departures from these typical dose-response functions.
Using the chosen best-fit model for a given data set, we assessed the significance of
each treatment. First, we allowed the parameters of the model to depend on herbicide
to test the hypothesis that the dose-response curves for flufenacet and pendimethalin
were different from one another. We then allowed the parameters of the model to
depend on soil type to test the hypothesis that the amount of organic matter in the soil
affects the dose-response. If allowing the parameters to depend on both herbicide and
soil type significantly improved the model (P<0.05), we then assessed the significance
of including an interaction term. For the resulting best fit model, we checked each
parameter for its importance by setting it to a common value across treatments and
testing if the residual sum of squares was significantly altered. If not, the parameter was
fixed and the next parameter assessed. We assessed parameters sequentially, beginning

with the asymptotes before considering any gradient and timing parameters.

5.3.7 Modelling

In our experiments, the potential for seedlings surviving sub-lethal effects of pre-
emergence herbicides to mature and produce fresh seed was quantified. However,
the experiment did not include competition with the crop to avoid confounding the
effects of soil organic matter on competitive ability and the ability to recover from
sub-lethal doses. However, without including competition the experiment did not fully
capture the potential fitness penalty of reduced seedling size and the capacity of weeds
to compensate for sub-lethal herbicide effects when competing with a crop. Given
that inter-specific competition is asymmetric, we would hypothesise that survivors will
be disproportionately impacted by competition from the crop and this effect would
increase disproportionately with greater herbicide efficacy. To challenge this hypothesis,

we combined data from the pot experiment with a simulation model of crop—-weed
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competition that has been parameterised and validated for A. myosuroides in winter
wheat (Storkey & Cussans, 2007). The model is weather driven and operates on a daily
time step. Before the onset of competition at canopy closure, weed growth is modelled
as an exponential function of effective day degrees (Storkey et al., 2003) after which
competition for resources are modelled using functions developed in the INTERCOM
model (Kropff & Spitters, 1992). Weed seed production is calculated from the allometric

relationship with mature weed biomass.

The model was initialised with a weed seedbank density of 5000 seeds m~2, 20% of
which were in the upper soil layer, from which all seeds are available for germination, the
remaining seeds have a smaller chance of germination according to a linear relationship
with soil depth. Wheat density was set to 300 plants m~2. Crop and weed emergence
was set to 31st September—typical of agronomic practice for the UK. The number of
emerged weed seedlings was calculated using a proportion sampled from a distribution
function parameterised from a series of field experiments (Stratonovitch et al., 2012). A
proportion of these seedlings were killed using the mortality figure given by the best
model fit for each treatment combination observed in the pot experiments. The mature
biomass and seed production of the surviving weed plants was simulated using ten
years of weather data measured at Rothamsted Research (Hertfordshire, UK) between
2006 and 2015 so capturing seasonal variability in the competitive balance between the
crop and weed (Storkey & Cussans, 2007). For each year, the model was run 100 times
using a new value for proportional germination sampled from the Weibull probability
distribution (skewed towards lower emergence) to introduce stochasticity to do with

variability in establishment.

The model was used to run two scenarios for each soil-herbicide-dose combination
included in the pot experiments: (i) with crop competition, and (ii) without crop
competition. Sub-lethal effects were included in the simulation by reducing weed
seedling biomass and green area at the end of the exponential growth phase by the
proportion predicted using the dose-response model that fitted the data from the pot
experiments best. The output seed production from the simulation model was than
analysed in the same way as the data from the experiments and a dose-response curve
fitted to see if the different levels of survival and sub-lethal effects experienced on
different soil and following the application of different herbicides at a range of doses

can affect the resulting seed production.
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Table 5.3. Fitted parameter values for the Cedergreen-Ritz-Streibig model used to
describe the dose-response of the proportion of A. myosuroides seedlings surviving six
weeks after the application of two pre-emergence herbicides on three levels of soil

organic matter. Common parameters were fitted for both herbicides.

Parameter Estimate  Standard error
b 1.777 0.2258
d 0.773 0.0451
1 — low organic matter 0.097 0.0170
n — medium organic matter 0.234 0.0500
n — high organic matter 0.374 0.0850
v 1.187 0.5743

5.4 Results

A Cedergreen-Ritz-Streibig model (type C) best described the survival data. The fit of
the model was significantly improved by incorporating soil organic matter but there
was no improvement in the model when two separate curves were fitted for each active
ingredient. In the model incorporating soil organic matter, parameters b, d and  could
be fixed to be common for all soil types. However, fixing the n parameter caused a
significant change in the model and so this was allowed to depend on soil organic matter
(Table 5.3). There is not a direct biological correspondence for the n parameter in the
Cedergree-Ritz-Streigbig model but it does provide a lower bound on the ED50 level and
so relates to the placement of the curve on the dose axis. This type of model accounts
for hormesis: there were more survivors at low doses of herbicide than in the controls

that received no herbicide (Figure 5.1).
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Figure 5.1. Figure legend on page 125.
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Figure 5.1. (Figure on page 124.) The proportion of seedlings surviving six weeks after
the application of two pre-emergence herbicides on soil with varying levels of organic
matter: (a) low, (b) medium, and (c) high. Points indicate the response of each sample
(flufenacet in blue, pendimethalin in red) and the fitted model is shown by a solid black
line (Fitting separate lines to each soil type significantly improved the fit of the model
but there was no significant difference between the two herbicides so a single line was

fitted across both). Dose is given as a proportion of recommended field rate.

The relative growth stage, as indicated by the number of tillers, at six weeks after
spraying showed a 3-parameter log-logistic response to the dose of herbicide applied.
The fit of this model was significantly improved by fitting separate curves to each soil
organic matter and herbicide and so their interaction was also assessed. Allowing
an interaction between the two herbicides and soil organic matter also significantly
improved the fit of the model. All parameters except n could be fixed to be common
across treatments without significantly reducing the goodness of fit (Supplementary
Table S5.1). The plants grown in the lowest organic matter soil showed a reduction in
the number of tillers at lower doses of herbicide than was observed for medium or high
levels of soil organic matter. Flufenacet reduced the number of tillers by 50% at lower
doses than was seen for pendimethalin (Supplementary Table S5.1, n represents ED50
value) but this difference was less marked on high organic matter soil (Supplementary

Figure S5.1).

The size of the seedlings as indicated by dry biomass measurements (natural loga-
rithms) showed a 4-parameter log-logistic response to dose. Allowing separate curves to
be fitted for each soil type and each herbicide significantly improved the model (P<0.05)
so we tested for an interaction between them. This again significantly improved the
fit of the model. The b, ¢ and d parameters of the logistic curve could be fixed to be
common across all soil types and both herbicides, leaving only the n parameter to vary
(Table 5.4). For the logistic curve, the n parameter signifies the ED50 value indicating
that the positioning of the curves on the dose axis is affected by soil and herbicide.
For both herbicides, the ED50 is lowest on low organic matter soil and increases with
organic matter. For pendimethalin the ED50 is higher than it is for flufenacet, across all
soil types. However, this difference is less marked on the highest organic matter soil

(Figure 5.2).

125



Natural log seedling dry weight g Natural log seedling dry weight g

Natural log seedling dry weight g

Chapter 5. Spatially variable pre-emergence herbicide efficacy

0.1 1.0
Dose
a
0.1 1.0
Dose b

P
01s & 1
* *
_1-
r
01 1.0

Dose

Figure 5.2. Figure legend on page 127.

126



Chapter 5. Spatially variable pre-emergence herbicide efficacy

Figure 5.2. (Figure on page 126.) The log dry weight of seedlings surviving six weeks
after the application of two pre-emergence herbicides on soil with varying levels of
organic matter: (a) low, (b) medium and (c) high. Points indicate the response of each
sample) and the fitted model is shown by a solid line (flufenacet in blue, pendimethalin

in red). Dose is given as a proportion of recommended field rate.

Despite significant effects of the herbicide used, the dose applied, and the amount of
soil organic matter on plant numbers, growth stage, and size at six weeks, these effects
were diminished as the plants were grown on to maturity. There were few survivors at
the higher doses used, particularly on the low organic matter treatment, and so there
was less replication in this part of the experiment looking at sub-lethal effects. There
was no significant change in the Julian day of flowering (P<0.05) with herbicide or

dose, nor a response to soil organic matter.

The number of seed heads and the dry weight of seed produced by each plant was
conserved across the full range of doses and there was no significant effect of dose or
herbicide in any model. However, a significant response to soil organic matter was
detected (P<0.001, ANOVA) with the number of heads per plant increasing with organic
matter (Table 5.5). It is likely that this is a result of a “fertilising” effect of the additional

organic matter on weed growth.

The total dry weight of the mature plants was, however, affected by dose as well

Table 5.4. Fitted parameter values for the log-logistic model used to describe the dose-
response of the log dry biomass of A. myosuroides seedlings surviving six weeks after the

application of two pre-emergence herbicides on three levels of soil organic matter.

Parameter Estimate Standard error
b 3.895 0.5442
c —2.242 0.0402
d —0.204 0.0287
1 — low organic matter, flufenacet 0.071 0.0056
1 — low organic matter, pendimethalin 0.124 0.0088
n — medium organic matter, flufenacet 0.200 0.0125
1 — medium organic matter, pendimethalin 0.393 0.0315
1 — high organic matter, flufenacet 0.437 0.0319
n — high organic matter, pendimethalin 0.514 0.0487
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Table 5.5. The number of seed heads and the dry weight of that seed for plants subjected

to all doses of flufenacet and pendimethalin at the pre-emergence stage on soil with

varying levels of organic matter.

Number of seed heads Dry weight of seed / g
Soil organic matter

Mean SEM Mean SEM
Low 61.38 4.343 4.637 0.357
Medium 106.7 8.051 8.251 0.587
High 145.2 8.126 12.330 0.811

as soil organic matter and was best described by a linear model with parallel lines and

different intercepts for each soil (Figure 5.3). The greater the herbicide dose at the pre-

emergence stage, the lower the total plant biomass at maturity, irrespective of the active

herbicidal ingredient. The soil on which it was grown, however, caused a difference in

the overall size of those plants with the largest plants growing on high organic matter

soil (Figure 5.3). The fact that a dose-response of total biomass was observed but with

no significant effect on seed production indicates variability in partitioning of assimilate

between the treatments.
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Figure 5.3. (Figure on page 129.) The total dry weight of mature plants after the
application of two pre-emergence herbicides on soil with varying levels of organic
matter: (a) low, (b) medium and (c) high. Points indicate the response of each sample
(flufenacet in blue, pendimethalin in red) and the fitted model is shown by a solid
black line (The fit of the model was significantly improved by allowing separate lines
to be fitted to each soil type yet there was no significant difference between the two
active ingredients so a single line was fitted across both herbicides). Dose is given as a

proportion of recommended field rate.

Seed viability was not affected by the active ingredient or dose received by the parent
plant. However, a significant response to soil organic matter was detected (P<0.001,
ANOVA) with plants grown on low organic matter soil producing seed with a lower
percentage of seeds germinating (44.7 + 0.14%) than those on medium (52.4 + 1.18%)
or high organic matter soil (54.8 + 1.04%).

5.4.1 Modelling

To predict the seed production under each treatment scenario included in our experi-
ments (three levels of soil organic matter, two herbicides at nine doses) we used the
predictions from the statistical models fitted to the survival data and the size of the
seedlings at six weeks as inputs into a crop / weed competition model. As survival was
not significantly affected by the choice of herbicide we adjusted survival by organic mat-
ter and dose. However, the log-logistic model describing the dose-response of seedling
biomass did significantly differ according to the herbicide used and so we were able to
use different inputs for flufenacet and pendimethalin here. In each case the seedling size
at zero dose on each soil was used as a baseline for that soil and adjustments were made
in terms of percentage size reduction. We were therefore able to simulate all three soils,
both herbicides and the full range of doses, both with and without competition. The
survival rates and the size reduction of individuals compared to the unsprayed plants

are shown in Table 5.6.

In each case, the multiple simulations for each year generated a classic hyperbolic
response curve when seed production was plotted against weed density. When crop

competition was excluded there were large levels of seed production across all treatments
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Table 5.6. The predicted proportion of seedlings surviving and the dry weight of
those seedlings (as a proportion of the predicted dry weight for those that received
no herbicide on the same soil type) surviving six weeks after the application of either
flufenacet or pendimethalin on soil with varying levels of organic matter. Predictions for
seedling survival come from a Cedergren-Ritz-Streibig model fitted to experimental data.
Fitting separate lines to each soil type significantly improved the fit of the model but
there was no significant difference between the two herbicides so a single line was fitted
across both. Predictions for seedling dry weight come from a 4-parameter log-logistic
model fitted to experimental data. Fitting separate lines to each soil type and to each
herbicide significantly improved the fit of the model so separate lines were fitted to each

soil x herbicide combination. Dose is given as a proportion of recommended field rate.

Low Organic Matter =~ Medium Organic Matter =~ High Organic Matter
Herbicide Dose
Survival Dry weight Survival  Dry weight  Survival Dry weight

Flufenacet:

0 0.773 1.000 0.773 1.000 0.773 1.000
1/64 0.812 0.994 0.837 1.000 0.841 1.000
1/32 0.780 0.924 0.860 0.999 0.873 1.000
1/16 0.642 0.464 0.853 0.978 0.897 0.999
1/8 0.389 0.160 0.749 0.754 0.870 0.985
1/4 0.168 0.132 0.500 0.237 0.714 0.813
1/2 0.059 0.130 0.234 0.138 0.425 0.278
1 0.019 0.130 0.085 0.131 0.180 0.141
2 0.006 0.130 0.028 0.130 0.062 0.131
Pendimethalin:

0 0.773 1.000 0.773 1.000 0.773 1.000
1/64 0.812 0.999 0.837 1.000 0.841 1.000
1/32 0.780 0.991 0.860 1.000 0.873 1.000
1/16 0.642 0.876 0.853 0.998 0.897 0.999
1/8 0.389 0.354 0.749 0.977 0.870 0.992
1/4 0.168 0.147 0.500 0.742 0.714 0.890
1/2 0.059 0.131 0.234 0.231 0.425 0.381
1 0.019 0.130 0.085 0.137 0.180 0.150
2 0.006 0.130 0.028 0.131 0.062 0.132
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and we saw a clearly defined asymptote in seed production. Where crop competition
was included in the model, weed densities were much lower and so we only observed the
initial phase of this response curve and there was no asymptote in weed seed production

(Supplementary Figure S5.2).

There were large inter-annual differences in the balance between crop and weed
competition, which reflect the behaviour of the system in the field (Storkey & Cussans,
2007). For both the absence and presence of competition, a Cedergreen-Ritz-Streibig
model (type C) best described the weed seed production. This reflects the type of model
that was used for the input survival data — showing the importance of herbicide survival
in the resultant seed return. The fit of the model was significantly improved in both
cases (with and without crop competition) by allowing it to vary with both soil type and
herbicide. This shows that sub-lethal effects of a reduced seedling size are important
in determining seed return as mortality was fixed across both herbicides and so the

differences seen here are only to do with sub-lethal effects.

In the model output, we observe a reduction in seed return at high doses in the
absence of competition (Figure 5.4 a—c). However, the spread of the predictions from the
model becomes particularly wide as the dose increases. At low doses seed production
reaches an asymptote, this is particularly clear on soil with high organic matter as it is
only once doses reach 1/2x field rate that we begin to see any reduction in seed return

in the absence of competition (Figure 5.4 c).

When we include crop competition in the simulation model (Figure 5.4 d-f), seed
production is generally much lower and we see more of a decline across a wider range
of doses. It is on low organic matter soil that we observe the lowest seed production
with flufenacet providing the greatest level of control. As we increase the organic matter,
seed production increases and the difference between the two herbicides becomes less.
When we consider the seed production at a field rate dose of herbicide we can see that
whilst on low and medium organic matter soil it is fairly close to its lower asymptote,

on high organic matter soil there is still a high level of seed production.

The difference in ED50s between the pot experiment and predicted seed return
(Table 5.7) can be considered to be indicative of the capacity of A. myosuroides to
compensate for the combined lethal and sub-lethal effects of the herbicides. The

ED50 was generally higher for seed production than survival or seedling dry weight,
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Figure 5.4. (Figure on page 133.) Weed seed production in the absence (a-c) and
presence (d-f) of crop competition - outputs from 100 simulations for each of 10
years of weather data from the INTERCOM model across a full range of doses of
herbicide application from 0 to 2x field rate on soil with varying amounts of soil organic
matter: (a,d) low, (b,e) medium and (c,f) high. Points indicate the response of each
model simulation and the fitted model is shown by a solid line (flufenacet in blue,
pendimethalin in red). Dose is given as a proportion of recommended field rate. Seed

production is on a square root scale where crop competition is included (d-f).
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emphasising the importance of managing a suppressive crop canopy to support herbicide
use. The lower sub-lethal effects observed on soil with high organic matter were reflected
in a disproportionally greater capacity of the weeds to compensate for herbicide activity,
reflecting asymmetric crop / weed competition as size differences at canopy closure are

magnified through the season.

These results in combination, show us that soil with greater organic matter content
generally leads to poorer control with flufenacet and pendimethalin than can be achieved
on soil with less organic matter. For traits that are affected by the choice of herbicide,
namely those relating to early growth, there is a greater level of efficacy achieved by
flufenacet than pendimethalin, particularly on soil with lower organic matter. In the
absence of competition, survivors can recover to produce large amounts of seed, in some
cases (as we observed in our experiment) the same amount of seed as if no herbicide
were applied. However, the simulation model showed that the reduction in size of
seedlings following the application of pre-emergence herbicides leads to increased
competition by the crop. Whilst this indicates that in the presence of competition the
lack of sub-lethal effects observed in our experiments do not hold, it does indicate that
on high organic matter soil where A. myosuroides seedlings can survive field-rate doses
of pre-emergence herbicide it is possible for them to recover and produce non-negligible

amounts of seed.

5.5 Discussion

Our results show that soil organic matter plays an important role in the control of
A. myosuroides achieved by flufenacet and pendimethalin. The artificial soils used in the
pot experiments reflected typical ranges of soil organic matter in UK arable fields and,
although the results cannot be extrapolated directly to the field, the range of efficacies
generated for the model simulations represented a realistic range for assessing the

implications of variable pre-emergence herbicide activity for weed seed production.

As far as seedling survival is concerned the placement of the curve on the dose axis
is altered significantly depending on the levels of organic matter in the soil. Soil with
a greater concentration of organic matter shifts the dose-response curve to the right

meaning a higher dose of herbicide is required to achieve the same reduction in survival.
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Similarly, the size of the plants after six weeks is also strongly affected by soil organic
matter with surviving plants grown in soil with much organic matter typically being
larger than those grown in soil with less organic matter. This would indicate that on
higher organic matter soil, where pre-emergence herbicides are used for A. myosuroides
control there are likely to be more survivors than on lower organic matter soil and those
surviving individuals will be larger and so more likely to be able to compete well with
the crop plants. It is also likely that soil with high organic matter is better suited for
A. myosuroides growth and competition as they have a higher capacity for moisture
retention (Stratonovitch et al., 2012). We would, therefore, expect an additive effect
leading to enhanced weed fitness on such a soil. Further development of the model to
simulate these effects of soil heterogeneity on weed growth (and also on the relationship
between mature biomass and seed production) would give additional insight into the
final impact of variable herbicide efficacy on weed seed production. However, we
hypothesise that incorporating these processes will only further decrease the fitness
penalty of sub-lethal herbicide effects for weeds growing on soils with relatively high
organic matter, further emphasising the need to consider enhanced weed management

on these areas of the field.

This size benefit conferred by high organic matter soil appears to hold true through-
out the plants’ life-cycle with plants grown in soil with higher organic matter reaching
greater mature biomasses and producing more seed. In addition to this, there were
few sub-lethal effects of the herbicide dose, amongst the variables we measured here
in the absence of competition. Whilst soil organic matter still plays an important role
we observe no cost in terms of seed production and only a small cost in terms of total
biomass production to having received a higher dose of either pre-emergence herbicide.
The seed produced by plants that received high doses of either pre-emergence herbicide
also shows similar viability to unsprayed plants, implying that plants adjust partitioning
of resources such that fecundity is not compromised. In a crop-free environment, this

has no cost but would reduce competition when growing with a crop.

It is possible that sub-lethal effects of high doses of herbicides could be masked in
this situation due to the use of pots rather than field studies. However, the magnitude of
differences observed between the soil organic matter levels indicates that it is unlikely, at
least in the low organic matter treatment, that the pots were limiting. However, further

field trials could confirm this. Our modelling study shows that when competing with
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a crop the reduction in biomass at the seedling stage could have severe consequences
for A. myosuroides seed production, yet even at field-rate application of herbicide seed
production is non-negligible with most seed return on high organic matter soil. Our
results also indicate that this reduction in seed production across different soil types is
not only due to increased competition with the crop on the different soil types but it

also varies with herbicide choice as sub-lethal effects come into play.

The work we present here supports the claims of others (Blumhorst et al., 1990;
Nordmeyer, 2015) that pre-emergence herbicidal control is affected by soil organic
matter, even within the small range of organic matters typical of the UK arable landscape.
Despite this, the label recommendation for many of these herbicides suggests they remain
effective up to 10% organic matter. This may have strong implications for minimal- and
no-tillage systems where the aim is to increase the levels of organic matter in the topsoil

as this could mean decreased levels of control by pre-emergence herbicides.

We have established here that the control of A. myosuroides by pre-emergence
herbicides can be impacted strongly by soil organic matter, in the absence of competition.
This highlights an opportunity for further research into whether these results hold true
in a field situation. It also raises questions about the efficacy of other active ingredients
applied to the soil as well as mixtures of multiple active ingredients across a range of
soil properties. Soil moisture can also play an important role in determining the efficacy
of certain herbicides. Orson et al. (1998) showed that Lolium perenne L. (perennial
ryegrass) grown in pot experiments under moisture stress required a higher dose of
diclofop-methyl to cause the same damage, than those with sufficient water. Blair et
al. (1994) showed that isoproturon can give better control of Bromus sterilis L. (barren
brome) in the fields when applied to moist soil compared with dry. The effect of weather
on herbicide efficacy can also be important, however, results linking weather to efficacy
can be inconsistent across years (Collings et al., 2003) and so the effect of this variation
on our results is something that should be considered when implementing control

strategies.

In terms of impacts on A. myosuroides management, herbicide application by soil type
is possible as many farmers have soil maps of their farms and the uptake of precision
agriculture is advancing. So, in fields where there are within-field gradients of organic
matter, it should be possible to adjust the application rate of the herbicide to account for

this. However, it may be that further work is required to determine active ingredients
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or mixtures thereof that are less impacted by soil organic matter and perhaps tailor
herbicide programs to the soil properties within fields. We have also demonstrated the
importance of crop competition in supporting pre-emergence herbicides in the context
of a variable soil environment. This effect could be further enhanced (so reducing
the capacity of weeds to compensate for sub-lethal herbicide effects) through cultural
control options such as increased seed rate and the use of competitive cultivars (Andrew
et al., 2015). The effective combination of integrated weed management and precision
weed management, therefore, cannot be achieved by studied chemical and agronomic
weed control options in isolation but will require an assessment of their combined

impacts across the whole growing season of the type presented in this study.

Our results supported our first hypothesis that increasing soil organic matter would
lead to decreased efficacy of both flufenacet and pendimethalin in the control of
A. myosuroides. We expect that this is due to adsorption of herbicide (Farenhorst,
2006). The differences between the two herbicides could be due to different levels of
adsorption, as was described by Nordmeyer (2015) for pendimethalin and chlortoluron.
Our second hypothesis was that sub-lethal doses would lead to fitness costs causing
reduced growth and fecundity. We observed very little evidence of this in the exper-
iments with only a small effect of dose on total biomass but no observable effect on
seed return. However, the reduction in size at six weeks following spraying suggests
that in the presence of competition we may have seen some fitness costs as the smaller

seedlings may have been outcompeted in the early stages of their growth.

5.6 Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biologi-
cal Sciences Research Council (BBSRC) of the United Kingdom. The project is funded
by a BBSRC Doctoral Training Partnership in Food Security and the Lawes Agricultural
Trust. We thank the glasshouse staff for their care and attention in maintaining the pot
trials, Laura Crook for her help in the application of the herbicides and Stephen Moss

for consultation on appropriate dose ranges for application to pot trials.

138



Chapter 5. Spatially variable pre-emergence herbicide efficacy

5.7 References

Andrew IKS, Storkey J, Sparkes DL, 2015. A review of the potential for competitive cereal

cultivars as a tool in integrated weed management. Weed Research, 55 (3) 239-248.

Blair AM, Caseley JC, Davies DHK, 1994. The influence of soil moisture at spraying on
the activity of herbicide on Bromus sterilis growing in pots in a controlled environment
and in the field. In: Proceedings of an International symposium, Canterbury, UK, BCPC
Monograph 59 227-232.

Blumhorst MR, Weber JB, Swain LR, 1990. Efficacy of selected herbicides as influenced
by soil properties. Weed Technology 4 (2) 279-283.

Collings 1V, Blair AM, Gay AP, Dyer CJ, Mackay N, 2003. The effect of weather factors
on the performance of herbicides to control Alopecurus myosuroides in winter wheat.

Weed Research 43 (2) 146-153.

Cousens R, Moss SR, 1990. A model of the effects of cultivation on the vertical distribu-

tion of weed seeds within the soil. Weed Research 30 (1) 61-70.

Emmett BA, Reynolds B, Chamberlain PM, Rowe E, Spurgeon D, Brittain SA, Frogbrook
Z, Hughes S, Lawlor AJ, Poskitt J, Potter E, Robinson DA, Scott A, Wood C, Woods C,
2010. Countryside Survey: Soils Report from 2007. Technical Report No. 9/07. NERC
Centre for Ecology & Hydrology.

Farenhorst A, 2006. Importance of soil organic matter fractions in soil-landscape and
regional assessments of pesticide sorption and leaching in soil. Soil Science Society of

America Journal 70 (3) 1005.

Gajbhiye VT, Gupta S, 2001. Adsorption-desorption behaviour of flufenacet in five
different soils of India. Pest Management Science 57 (7) 633-639.

Garrison AJ, Miller AD, Ryan MR, Roxburgh SH, Shea K, 2014. Stacked crop rotations
exploit weed-weed competition for sustainable weed management. Weed Science 62 (1)

166-176.

Grundy AC, Mead A, Burston S, 1999. Modelling the effect of cultivation on seed

movement with application to the prediction of weed seedling emergence. Journal of

139



Chapter 5. Spatially variable pre-emergence herbicide efficacy

Applied Ecology 36 (5) 663-678.

Holst N, Rasmussen IA, Bastiaans L, 2007. Field weed population dynamics: a review of

model approaches and applications. Weed Research, 47 (1) 1-14.

Kropff MJ, Spitters CJT, 1992. An eco-physiological model for interspecific competition,
applied to the influence of Chenopodium album L. on sugar beet. I. Model description

and parameterization. Weed Research 32 (6) 437-450.

Metcalfe H, Milne AE, Webster R, Lark RM, Murdoch AJ, Storkey J, 2016. Designing a
sampling scheme to reveal correlations between weeds and soil properties at multiple

spatial scales. Weed Research, 56 (1) 1-13.

Metcalfe H, Milne AE, Murdoch AJ, Storkey J, 2017. Does variable soil pH have an
effect on the within-field distribution of A. myosuroides? Aspects of Applied Biology 134
145-150.

Moss SR, Storkey J, Cussans JW, Perryman SAM, Hewitt MV, 2004. The Broadbalk
long-term experiment at Rothamsted: what has it told us about weeds? Weed Science,

52 864-873.

Moss SR, Perryman SAM, Tatnell IV, 2007. Managing herbicide-resistant blackgrass
(Alopecurus myosuroides): Theory and practice. Weed Technology, 21 300-309.

Moss SR, Hull R, Knight S, Cussans J, 2016. Sustaining winter cropping under threat

from herbicide-resistant black-grass (Alopecurus myosuroides). AHDB project report 560.

Nordmeyer H, 2015. Herbicide application in precision farming based on soil organic

matter. American Journal of Experimental Agriculture, 8 (3) 144-151.

Orson JH, Peters NCB, Blair AM, 1998. Defining factors which affect the cultural and
chemical control of brome species in winter cereals. HGCA Project Report, United

Kingdom.

Paice MER, Day W, Rew LJ, Howard A, 1998. A stochastic simulation model for

evaluating the concept of patch spraying. Weed Research, 38 373-388.

Payne RW (ed.), 2013. The Guide to GenStat Release 16 - Part 2: Statistics. VSN

International, Hemel Hempstead.

140



Chapter 5. Spatially variable pre-emergence herbicide efficacy

Pedersen HJ, Kudsk P, Helweg A, 1995. Adsorption and ED 50 values of five soil-applied
herbicides. Pesticide Science 44 (2) 131-136.

Radosevich SR, Holt JS, Ghersa CM, 2007. Ecology of weeds and invasive plants: relation-
ship to agriculture and natural resource management. John Wiley & Sons. Hoboken, New

Jersey, USA.

Riemens MM, Dueck T, Kempenaar C, Lotz LA, Kropff MJ, 2009. Sublethal effects of
herbicides on the biomass and seed production of terrestrial non-crop plant species,
influenced by environment, development stage and assessment date. Environmental

Pollution 157 (8) 2306-2313.

Ritz C, Baty F, Streibig JC, Gerhard D, 2015. Dose-response analysis using R. PLoS One
10 (12), e0146021.

Rotchés-Ribalta R, Boutin C, Blanco-Moreno JM, Carpenter D, Sans FX, 2015. Herbicide
impact on the growth and reproduction of characteristic and rare arable weeds of winter

cereal fields. Ecotoxicology 24 (5), 991-1003.

Shaner DL, 2012. Field Dissipation of Sulfentrazone and Pendimethalin in Colorado.

Weed Technology 26 633-637.

Storkey J, Cussans JW, Lutman PJW, Blair AM, 2003. The combination of a simulation
and an empirical model of crop/weed competition to estimate yield loss from Alopecurus

myosuroides in winter wheat. Field Crop Research, 84 (3) 291-301.

Storkey J, Cussans JW, 2007. Reconciling the conservation of in-field biodiversity with
crop production using a simulation model of weed growth and competition. Agriculture,

Ecosystems, and Environment 122 (2) 173-182.

Stratonovitch P, Storkey J, Semenov MA, 2012. A process-based approach to modelling
impacts of climate change on the damage niche of an agricultural weed. Global Change

Biology 18 2071-2080.

141



Chapter 6

Modelling the Spatial Variation in
Black-grass (Alopecurus

myosuroides) due to Soil Properties

H METCALFE*{, A E MILNE*, A J MURDOCHY{, & J STORKEY*

*Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK, and {School of Agriculture,
Policy and Development, University of Reading, Earley Gate, PO Box 237, Reading RG6
6AR, UK

In Chapter 3, I reported on scale-dependent relationships between A. myosuroides
and soil properties observed in the field. These relationships were explored further with
a series of pot experiments (Chapter 4 and 5) where I determined that soil organic
matter, water and pH can alter the life-cycle of A. myosuroides, and that soil organic
matter also affects the efficacy of two pre-emergence herbicides and the sub-lethal
effects experienced by the plant. In Chapters 4 and 5, I demonstrated that there can be
small changes to different stages of the life-cycle of A. myosuroides according to the soil
in which it is growing. In this chapter, I initially review current approaches to modelling
weed population dynamics and then describe how I developed a mechanistic model of
the life-cycle of A. myosuroides which includes the effects of soil on the different stages of
the A. myosuroides life-cycle that I observed in the pot experiments. The model is based

on the work of Moss (1990), Paice et al. (1998), and Colbach et al. (2006a). Using
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the model I tested my final hypothesis: the scale-dependent relationships between soil
properties and the density of A. myosuroides observed in fields is an emergent property
of the effect of soil on the various aspects of the weed’s life-cycle. I compared simulated
weed distributions to those observed in the field (Figure 3.2 in Chapter 3). I also
compared the scale-dependent correlations between A. myosuroides and soil properties
in the field (Table 3.4 in Chapter 3) with the corresponding analysis of the simulated
model output. This chapter allowed me to draw together the work from all the previous
chapters to address my main aim of identifying weed vulnerable zones within fields

according to variation in soil properties.

The full code for the model can be found in the supplementary material.

6.1 Summary

The patchy nature of A. myosuroides distributions within fields make it an ideal candidate
for site-specific weed management. However, this form of management has not been
readily taken up, likely due to the risk of missing individuals that fall outside of currently
mapped areas. One means by which this concern can be addressed is through the
identification of “weed vulnerable zones” or areas of a field that are at risk of invasion
by the weed. This can be done through the identification of associations between the
weed and certain environmental properties. We have developed a spatially-explicit
mechanistic model of the life-cycle of A. myosuroides. Soil properties vary across the
field and so the response of the A. myosuroides life-cycle to these conditions also varies.
The model was validated using data on the within-field distribution of A. myosuroides

on commercial farms and its co-location with soil properties.

6.2 Modelling weed population dynamics

Field trials, monitoring and experimental data are useful for making predictions about
short-term weed control or the influence of a few experimental variables. However,
these are generally only applicable to a given location or time period for which they
were derived and so it is often necessary to base predictions on models that capture

the biological mechanisms of interest (Holst et al., 2007; Freckleton & Stephens 2009).
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Holst et al. (2007) made a comprehensive study of models of agricultural weeds. This
covered 134 publications encompassing 60 weed species in 40 crops. The extent of this
review demonstrates how important modelling is as a tool in weed ecology. However,
they demonstrated that there are still limitations and limited use for the models that
exist given that the majority of models reviewed were theoretical investigations or
had only been designed to provide general guidelines. There are many advantages
to taking a modelling approach when studying agricultural weeds, not only do they
allow long-term predictions that would be unrealistic to obtain from field studies due
to limited resources but they also allow for high levels of ecological complexity and

uncertainty (Freckleton & Stephens, 2009).

There are different types of models and each will be useful for a different purpose.
Empirical models are data driven and are often purely descriptive. They can support
prediction but include no understanding of mechanisms and causality and so are often
described as black-box models. Mechanistic models simulate processes and try to focus
on causal relationships rather than correlations. Each of these types of model can be
either deterministic or stochastic. A deterministic model makes definite predictions
without any associated probability distributions, whereas stochastic models contain
random elements or probability distributions. Stochastic models can account for uncer-
tainties whereas the average expectation given by a deterministic model may not be the
same as the average prediction from a stochastic model due to the skewed distributions
for many model parameters (Freckleton & Watkinson, 1998). By modelling processes
stochastically it is also possible to reduce the data requirements for model validation.
Many weed models give little attention to model validation (Holst et al., 2007). This is
likely to be due to the large data sets required to be able to validate a model, however,
it is possible to validate stochastic models with only a few data by demonstrating that

they lie reasonably well within the predicted boundaries (Holst et al., 2007).

We can model changes in population numbers by both deterministic and stochastic
processes. Whilst all processes are ultimately deterministic, we cannot and do not
need to understand them all in depth and so can model many of them stochastically.
Deterministic components of weed population dynamics include predictable ecological
processes whilst the stochastic components include random variations in birth and death
rates as well as direct effects of environmental perturbations (Freckleton & Watkinson,

2002). It has been suggested that some weed populations may exhibit chaotic behaviour
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(e.g. Wallinga & van Oijen, 1997; Gonzalez-Andujar & Hughes, 2000), if this is true
then modelling them may not be able to provide useful predictions of weed abundance
at the field scale; reducing or even removing their practical use (Gonzalez-Andujar &
Hughes, 2000). However, Freckleton & Watkinson (2002) argued that for many weed
populations this would not be the case as the system functionality required to produce
this type of behaviour is not present in weed systems. They used data from the Broadbalk
long-term experiment at Rothamsted Research (Thurston, 1968) to demonstrate that
many weed species can persist at stable population levels and so do not demonstrate
chaotic population dynamics. They also argued that if the purpose of weed models is
to aid the development of control programmes then population behaviour of this kind
will not affect the outcome as accurate prediction of numbers at very local scales is
not necessary, rather relative changes under different management strategies are the

important output.

The quantification of error in parameter estimates is often ignored in weed modelling
(Freckleton et al., 2008). If a weed population is close to an extinction boundary, as
may be the case in a well-controlled weed population, then population densities will be
highly sensitive to errors in parameter estimates making the predictions from the model
considerably weaker (Freckleton et al., 2008). Given a simple model of population
dynamics for an arable weed, taking only seed production, germination rate, control, and
density dependence into consideration, Freckleton et al. (2008) demonstrated that there
is considerable margin for error given the error associated with any given parameter in
the model. For example, if the finite rate of increase under given management conditions
is determined with an error of 5% then densities can be overestimated up to threefold.
Even when the estimates are unbiased and are true to the mean for the population there

will be some deviation from the population mean for any given estimate.

For some given purposes of model development, errors in the estimation of model
parameters may not be of particular consequence, particularly if a given management
option produces drastic differences in population size, making small changes in absolute
densities irrelevant to management decisions (Freckleton et al., 2008). The problems
associated with input error is also discussed by Gressel (2005), he outlines how incorrect
assumptions in model building can lead to false conclusions being drawn and again

highlights the need for model validation with field data.

There are many possible applications for weed models. One common application
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is theoretical research including investigating different scenarios before the design of
experiments and in order to get a deeper understanding of a system. Another common
application is decision support; encompassing both general guidelines for practical
weed management or specific predictions for given fields (e.g. Benjamin et al., 2009
and 2010). For modelling the effect of management practices, models tend to focus
on predicting the likely persistence of weeds rather than quantitative predictions of
densities (Freckleton & Stephens, 2009). Often the purpose of many models is to allow
the investigator to look further to the future than would be possible to predict from
the outcome of field trials, this is often the case when looking at the impacts of climate
change (e.g. Stratonovitch et al.; Garcia de Leon et al., 2014) or herbicide resistance

(reviewed by Renton et al., 2014).

6.2.1 Life-cycle Models

The purpose for which a model is to be built often dictates its complexity and so many
models are structured around a simple description of the weed life-cycle (Holst et al.,
2007). These are often based on seedbank numbers updated on a one-year time step
by adding the new seeds and subtracting those that germinated or died. Moss (1990)
constructed a basic model of this kind for Alopecurus myosuroides Huds. (black-grass)
considering the life-cycle of the species and some simple descriptions of biological and
ecological processes. The model is empirical and deterministic and is parameterised from
various data sets from the literature. As is often the case with this type of deterministic
life-cycle model based on empirical data, there are necessary assumptions about, and
simplifications of the weed biology. Moss, (1990) had limited field data, particularly
concerning the fate of seeds after shedding and so included germination, predation and
decay within one parameter. However, this is common across many weed models, with
fecundity being fixed despite its dependence on weather, weed density, crop, harvest

time, and other factors (Holst et al., 2007).

As with other simple weed life-cycle models, Moss (1990) ignores temporal variation
(e.g due to weather), which has been shown to affect predictions of population size in
a non-random way. Temporal variability in some aspects of the life-cycle, particularly
fecundity, germination and survivorship leads to smaller populations than would other-
wise be predicted, whilst temporal variability in weed control and competitive effects

leads to larger populations than might be predicted (Freckleton & Watkinson, 1998).
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To make a model fit for its intended purpose it is sometimes necessary to add
complexity to this basic life-cycle model. However added complexity often comes at a
trade-off with tractability of the model (Thuiller et al., 2008), generally this is done by
adding more detailed biology either through the inclusion of more data in empirical
relationships or by detailed mechanistic modelling of biological processes and their
response to the environment. Colbach and Debaeke (1998) cautioned against the black-
box approach of many weed models. They argued the need for greater transparency in
this type of model and suggested the life-cycle could be split into its component parts
with functions considering biological and physical effects of the crop, environment and

weeds.

Many models choose to concentrate on one component of the life-cycle and model it
in detail, sometimes these models are generic across all weed species, specific to annuals,
or will focus in on a single species. Examples of this type of model include those by
Forcella et al. (2000) which focuses particularly on weed emergence, Benech-Arnold
et al. (1990) on dormancy evolution, and Storkey (2004) on growth rates. However,
Colbach et al. (2006a) were the first to incorporate all of these processes into one
model: ALOMYSYS. They largely used pre-existing models and knowledge from the
literature to construct their detailed model focussing on germination and emergence.
Some additional experiments were done to parameterise parts of the model with further
data. Their model provides a comprehensive study of the early stages of A. myosuroides
growth and the effect of the cropping system on on the A. myosuroides seed bank. They
validated the model in a field trial where A. myosuroides seeds were introduced to a field
that was known to be free of A. myosuroides (Colbach et al., 2006b). Emergence and seed
survival were measured and compared to model predictions. Emergence predictions
were generally accurate both in terms of timing and magnitude of the flushes. However,
seedling mortality was often underestimated, particularly in compacted plots, and seed
survival at shallow depths was generally over predicted. The ALOMYSYS model was
later updated to include further submodels detailing the life-cycle from seedling to
seed production using data from glasshouse experiments and field trials (Colbach et al.,
2007). The model was shown to accurately simulate seedling densities from a field trial
and accurately ranked different cropping systems in terms of their capacity for weed

control.
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6.2.2 Spatial Structure in population dynamics

Most weed population dynamics models ignore the within-field distribution of the weed
and generally simulate the average density per area (Holst et al., 2007). However, some
studies include the spatial distribution of weeds. Developing spatially explicit models
is difficult due to the necessity of obtaining dispersal data and data on the impact of
environmental heterogeneity on individual performance (Freckleton et al., 2008) yet, as
many weed species are patchy, it is often desirable to include their spatial distribution
in models of their population dynamics. These models often only include intrinsic
demographic parameters and dispersal. These features alone are often not sufficient to
describe the degree of patchiness observed. It is thought that this may be due to the
omission of soil variables (Paice et al., 1998; Rew & Cousens, 2001). Also, dispersal
models are often weak predictors as it is difficult to determine the exact shape of the

dispersal kernel; an important part of modelling patch spread (Rew & Cousens, 2001).

The incorporation of spatial structure into weed population dynamics models can
also have an important stabilizing effect, yet it is often ignored (Freckleton et al., 2008).
The densities within individual patches can be relatively high despite low densities across
the whole field. This makes the error in estimation of model parameters becomes less
problematic as the problems associated with small errors in parameter estimates when a
population is close to an extinction boundary will be buffered by the high population

densities in the centre of patches and so stability is maintained (Freckleton et al., 2008).

Paice et al. (1998), considered the need for a spatial component to models of
A. myosuroides population dynamics. Building on basic models of the A. myosuroides
life-cycle they incorporated elements of stochasticity into the life-cycle processes as
well as binomial probability of herbicide survival. They included both isotropic and
anisotropic dispersal processes derived from Howard et al. (1991) and modelled this in
a rectangular area of a field defined by square cells scalable to real units of distance.
They showed that when dispersal only occurs over short distances, patchiness can be
maintained and even if the field is initialised with a uniform seed bank the population

will develop toward a more patchy distribution.

Gonzalez-Andujar et al. (1999) also considered spatial patterns in the modelling
of A. myosuroides in an array of hexagons representing part of a field. The centre of

each cell was spaced 1 m from its neighbours. Dispersal was assumed to be isotropic
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and followed an exponential distribution truncated at 2.5 m. Isotropic dispersal by the
combine was also considered. They demonstrated through simulations that there was
some evidence for patch longevity (<10 years) under these conditions but that without

further intervention a uniform distribution would be reached eventually.

6.2.3 Environment

The abiotic environment is often ignored in weed population models, despite the
importance of factors such as light, water and nutrients, and intra- and interspecific
competition (Holst et al., 2007). Often, the importance of the environment is outweighed
by its complexity. Models usually operate on a yearly time-step. This precludes much

environmental variation, which generally operates at shorter time steps.

Dunker et al. (2002) took steps toward including soil in a spatial model of
A. myosuroides population dynamics. They included nutrients, soil pH and particle
size in their model, based on the results of a pot experiment where these were manipu-
lated in artificial soils. They verified this model in one field where A. myosuroides counts
and soil properties were measured on a 50 x 50 m grid. Their model was based on the
demographic data from Moss (1990). Only germination probability and probability of
survival were affected by soil in their model as their experiment on which these were
based was only conducted for 5 weeks post germination. The model arena consisted of
a 20 x 20 m grid and the population dynamics continued independently in each cell.
One percent of seeds from each cell were dispersed equally into the 4 adjoining cells.
They found their simulations to be only weakly correlated with the real data and only 4
out of 20 showed a significant correlation, yet 18 out of the 20 simulations produced

stronger correlations when soil properties were included.

6.3 Introduction

Alopecurus myosuroides Huds. (black-grass), is a common grass weed of winter cereals
in north-west Europe (Holm et al., 1997). It is particularly problematic in the UK due
to its fast reproductive rate and strong competitive ability with the crop (Maréchal et
al., 2012). Its life-cycle is largely synchronised with that of winter cereals allowing it to

compete at all stages of growth (Maréchal et al., 2012). Alopecurus myosuroides plants
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can produce vast amounts of seeds (Moss, 1980) meaning small failures in control
can lead to rapid population growth and dense infestations within some fields. As
such, control of the population is of great importance to farmers. Currently, the main
means by which farmers choose to control this pernicious weed is through broadcast
application of herbicides. However, many farmers have seen a decline in the levels of
control achieved because of the evolution of herbicide resistance. This together with
the decreasing number of chemical products available for use and increasing economic
and environmental pressures to reduce herbicide use puts a growing emphasis on the

optimisation of current techniques and finding alternative approaches (Grundy, 2003).

Approaches for reducing the amount of herbicide on farm are wide ranging, from the
introduction of additional cultural control methods focussing on the species’ biology and
ecology, to the introduction of economic thresholds or particular densities of weeds below
which there is little economic reason to spray herbicides as the cost of inputs will exceed
yield losses. Another option, which is gathering interest, is precision management,

including the spatially variable application of herbicides, or patch spraying.

The within-field distribution of A. myosuroides is patchy (Wilson & Brain, 1991;
Krohmann et al., 2006; Metcalfe et al., 2016 and 2017c (Chapters 2 and 3)) and as
such this presents an opportunity for site-specific management. There are currently two
main approaches to patch management: real-time detection of weeds and treatment
maps. Each of these approaches has merit but also associated problems. The use of
real-time sensors is an approach that is still in development, and whilst already feasible
it is not yet at the stage of widespread commercialization (e.g. Murdoch et al., 2010 and
2014), whereas treatment maps can be created more easily from manually sampled data
on weed distributions, but can sometimes be of inadequate quality, often because the
sampling on which they are based was too sparse (Metcalfe et al., 2016 (Chapter 2)).
Both approaches are based on the mapping of easily detectable seed heads in the summer.
However, Metcalfe et al. (2017c (Chapter 3)) showed that the distribution of seed heads
in the summer is a contraction of the initial A. myosuroides patch and so spray maps
based upon these distributions present a risk of missing the true extent of the seedling
patch. This risk of missing individuals that fall outside of mapped zones is perhaps the
biggest hurdle in the implementation of patch spraying on farms due to the inherent
and understandable conservativeness of farmers when it comes to weed control. Given

the consequences of a control failure, the concept of leaving some areas of the field
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unsprayed is currently seen as an unacceptable risk.

A possible extension to current techniques which addresses concerns about indi-
viduals establishing outside of mapped patches is to identify parts of the field that are
vulnerable to A. myosuroides. These “weed vulnerable zones”, once identified could be
used in the creation of spray maps to guide the precision application of herbicides. As
there is some indication that the patchy distribution of A. myosuroides in fields is related
to variation in soil properties (Holm et al., 1997; Lutman et al., 2002, Murdoch et al.,
2014, Metcalfe et al., 2016 and 2017c (Chapters 2 and 3)). This may provide a basis
upon which to identify weed vulnerable zones within fields. If it is possible to identify
a deterministic link between the soil and the location of A. myosuroides patches then
soil maps could be used as a basis for patch spraying. Many farmers will already have
soil maps for their farms and may already be using these in other forms of precision

management such as the variable application of fertiliser within-field.

6.3.1 Objectives

Our aim was to develop a spatially explicit model of the life-cycle model of A. myosuroides.
The model was based on the work of Moss (1990), Colbach et al. (2006a) and Paice
et al. (1998) but extended to include the direct and indirect effect of soil on the weed
based on experimental data. By modifying the life-cycle of the plant according to known
responses to variation in soil properties we tested the hypothesis that scale-dependent
relationships between soil properties and the density of A. myosuroides observed in fields
by Metcalfe et al. (2017c (Chapter 3)) can be modelled according to the changes to

each aspect of the weed’s life-cycle caused by different soil properties.

6.4 Model Implementation
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Table 6.1. Nomenclature used in Chapter 6.

Parameter Description

Soil properties

Dy Bulk density

ScClay Soil clay content

Sawc Soil gravimetric water content
Ssite Soil silt content

Ssom Soil organic matter

Svwc Soil volumetric water content

A. myosuroides Emergence

a Lag phase of germination

A Age of the seed

c Germination shape parameter

D Depth of seed

G Proportion of seeds that germinate

M Maximum level of germination

Ms Mean seed mass

N Total available nitrogen

T Daily temperature

tq Germination lag phase offset

Ty Base temperature

toH Hydrothermal time spent in darkness prior to tillage
tam Time from germination to maturity of the mother plants
Wet Water deficit between flowering and maturity

50 Time to 50% germination

Ou Hydro time

Our Hydrothermal time

O Thermal time

P Daily water potential

Uy Base water potential

Herbicide Mortality

P Probability of surviving pre-emergence herbicide application

P(i) Probability of ¢ plants surviving pre-emergence herbicide application
t Initial number of plants in a cell

¢ Parameter in relationship between soil organic matter and survival
n Parameter in relationship between soil organic matter and survival
T Parameter in relationship between soil organic matter and survival

Table 6.1 continued overleaf
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Table 6.1 continued

Parameter

Description

Seed Production

DHeads
DPlants
Frsw
H,y
TA:P

Density of heads

Density of plants

Fraction of transpirable soil water

Number of heads when there is one plant

Ratio of actual to potential soil transpiration

Parameter in relationship between plant and head densities

Parameter in relationship between plant and head densities

Parameter in relationship between soil organic matter and the number of heads

per plant

Parameter in relationship between the fraction of transpirable soil water and the ratio
of actual to potential soil transpiration

Parameter in relationship between soil organic matter and the number of heads

per plant

Parameter in relationship between soil organic matter and the number of heads

per plant

Parameter in relationship between the fraction of transpirable soil water and the ratio

of actual to potential soil transpiration

Seed Dispersal

Ct

f(z,y)
P(m,n)

2

T > O

g

Transition point between Gaussian and exponential components of dispersal by the
combine and cultivation

Dispersal probability function

Probability of a seed falling into a cell at the distance from the source z =m, y =n
side length of the cell (m)

Distance from the starting plant

Parameter in distribution for dispersal by combine and cultivation

Parameter in distribution for dispersal by combine and cultivation

Parameter in distribution for dispersal by combine and cultivation

Mean of distribution used for natural dispersal

Standard deviation of distribution used for natural dispersal

Table 6.1 continued overleaf
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Table 6.1 continued

Parameter Description

Scale-dependent correlations
g standard normal distribution
L Lower triangular matrix obtained from the decomposition of the covariance matrix

for the simulated field

m Mean of all simulated soil values for a given soil property

Mobs Mean of the observed data for a given soil property

R Conditioning data for soil simulation

s Standard deviation of all simulated soil values for a given soil property
S Unsampled positions for soil simulation

Sobs Standard deviation of the observed data for a given soil property

x A simulated soil value

y Vector of conditionally simulated values

z Standard normal form of the conditioning data for soil simulation

We developed a spatially explicit model of A. myosuroides population densities within
a field incorporating various processes throughout the plant’s life-cycle (Figure 6.1).
There are four main stages to the life-cycle: seedlings, mature plants, viable seed and
the seed bank, these are connected by various processes relating each stage to the next
(see Figure 6.1). The modelled field is described by a grid of square cells, the side length
of which can be defined in real units of distance. We define the relative position of these
cells in Cartesian coordinates and so a rectangular area of defined size can be simulated
allowing spatial processes, such as dispersal, between cells. The life-cycle component of
the model follows Moss (1990), and uses the parameterisation for various aspects of
the life-cycle from that original work, with stochastic components added. The life-cycle
runs independently in each grid cell with various processes being affected by the soil
properties associated with that cell adjusted according to the results of the experiments
in Chapters 4 and 5. In each iteration of the model (on a yearly time step) there are two
cohorts of seeds in each of two soil layers; new seeds (shed in the previous year) and

old seeds (shed in any year prior).

We initiate the model with weather data from Rothamsted met station (Hertford-
shire, UK) beginning with data from 1966 and load subsequent yearly weather data in
chronological order. Each weather set contains daily measurements for solar irradia-

tion (kJ m~2 d~!), minimum and maximum temperatures (°C), wind speed (m s™'),
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SEEDLINGS | -» Herbicide mortality »{ MATURE PLANTS \

Seed production

v

Seed losses

Emergence
VIALBLE SEED

Natural dispersal

| | 4“/ Soil Surface Layer (0-5 cm)
QLD SEEDS |« NEW SEEDS

7y Seed movement 7y

v by cultivation v Deep Soil (>5 cm)

OLD SEEDS = NEW SEEDS

Figure 6.1. Basic component structure of the spatially explicit life-cycle model of
within-field A. myosuroides population dynamics. Processes are shown in italics and

components of the A. myosuroides life-cycle are boxed and capitalised.

precipitation (mm d~!) and sunlight (hours).

6.4.1 Soil Properties

For each grid cell we set values for clay content (%), silt content (%), pH, organic matter
(%), gravimetric water content (%), slope, and aspect, at a resolution consistent with
the chosen grid size. We then calculate sand content (clay, silt and sand sum to 100%)
and bulk density. The bulk density (g cm~3, D) was calculated using the pedotransfer

function:

Dy, = 0.80806 + 0.823844 exp (—0.27993 Ssom)

+0.0014065 (1 — Sciay — Ssiit) — 0.0010299 Sciay (6.1)

derived by Hollis et al., (2012) for cultivated topsoil, where Sson is the soil organic

matter (%), Sciay is the soil clay content (%) and Sg;;; is the soil silt content (%).

Initial values of soil gravimetric water content (Scwc) were then converted to
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volumetric water content (Sywc) by

S x D,
Svwc = 7(;“]1%0 b, (6.2)

We modelled the change in volumetric water content of the soil on a daily time step with
additions from daily precipitation and losses from evapotranspiration. Evapotranspira-
tion was calculated for a bare soil surface in the autumn, and a crop canopy at other
times of the year. For these calculations we followed the analysis by Penman (Frere &
Popov, 1979; Penman, 1948, 1956, and 1963). The Penman formulae are dependent on
the evaporative demand of the atmosphere and the net absorbed radiation, which are
calculated using temperature, irradiation and wind speed from the daily weather data
sets. Other required values including reference values for albedo and constants used in
the formulae were taken from FAO guidelines for computing crop water requirements

(Allen et al., 1998).

In order to use the inputted topography data to compute solar irradiation (shown to
be an important determinant of A. myosuroides patch location in Chapter 3) we first split
the daily irradiation into its direct and diffuse component parts according to the latitude
(Kropff, 1993; Kropff et al., 1993). Each cell, irrespective of topography, received the
full amount of diffuse irradiation, but the direct component was modified according
to the slope and aspect of the field in each cell by scaling it up or down relative to a
reference value for a flat field so that steep south facing slopes received more direct

radiation than shallow or north facing slopes (Frank & Lee, 1966).

Water potential of the soil varies with soil type. We calculate this using the van
Genuchten pedotransfer function (van Genuchten, 1980), which uses known soil proper-
ties to calculate the water potential. If the water potential exceeds 15000 mbar then we
assume the field has reached wilting point and no more water can be lost. Conversely if
the water potential drops below 50 mbar then the field is at capacity and any additional

water input will drain through and so the water content of the soil does not increase.

6.4.2 Management

We implemented the option to add a break crop in any chosen years. This prevents

any plants from growing in that year and so prevents seed return, seeds are still moved
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within the soil due to cultivation. The type of cultivation used each year can also be
changed between ploughing and tining to <5, 10 or 20 cm. This affects the proportions

of seeds moved between soil layers at cultivation, as explained below.

The Julian day of cultivation, A. myosuroides flowering and harvest are chosen
each year by sampling from a normal distributions with means 258, 150, and 206 and

variances 8, 3, and 6 respectively (data from Storkey & Cussans, 2007).

6.4.3 A. myosuroides Emergence

Colbach et al. (2006a) model the proportion of seeds that germinate (&) using infor-
mation about the seeds, such as the age of the seed (days, A), time from germination
to maturity of the mother plants (days, tqn), water deficit between flowering and
maturity (mm, W), depth of seed (cm, D), hydrothermal time spent in darkness prior
to tillage (tpy), mean seed mass (g, Ms), and total available nitrogen (kg ha=!, N).

They describe G as a function of hydrothermal time (fy1):

—k(0gr—a)*

G:Mll—e( re0Te )] when Ot > a

G =0 otherwise (6.3)

where M, the maximum level of germination, is given by

_ 0.5311 — 0.00947 D

M = M, —0.00115 t5121 6.
0 0.5311 exp( bii ) 64

where
My = 0.924 — 0.000149 tv + 0.391e 700334

—0.00380 tan e %0334 1+ 0.00077 Wi - (6.5)

The parameter a, which is the lag phase of germination, is given by
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1
a = 0.95664 e (6.6)

m

where

ag = 49.78 — 66.43 000864 _ () 0022t

+0.358 gy - e 000864 (6.7)
and
o — 0.5311 — 0.00947 D 6.8)
0.5311

The shape parameter c is given by

c = 0.95664 v, cg (6.9)
where
co = 0.125 — 1.997 e ~%9634 L 0.00676 tan + 0.0199 Ly e 00034

+ 0.0101 Wyer + 246.9 Ms — 0.00702 N (6.10)

and the time to 50% germination, x5, is given by

1.04 .
T50 = 04533 Zo (60'2121‘/]13%121 — 1) (6.11)
Um
where
— —0.044A
xo = 65.72 + 200.99 e + 0.0968 tanm — 1.086 Waet (6.12)

We used information about the seeds from Experiment 1 in Chapter 4 (Table 6.2) to see

if this model fitted our data.

Using Colbach et al.’s parameterisation (2006a) as described above, Equation 6.3
accurately recreated the shape of the curve for our data (Figure 6.2) but the lag phase
was not large enough. In order for the lag phase to match our data we added an offset

(te = 49.169) into Equation 6.3 giving

158



Chapter 6. Modelling the A. myosuroides life-cycle

Table 6.2. Starting conditions used to check suitability of equations in Section 6.4.3
for modelling germination rates. These conditions are estimated for the seeds used in

Experiment 1 in Chapter 4.

Estimate for seed

Seed characteristic/environmental condition Parameter
used in experiment

Age of the seed (days) A 817.5

Time from germination to maturity of the mother plants (days) toMm 297.5

Water deficit between flowering and maturity (mm) Waet 0.0

Depth of seed (cm) D 1.5
Hydrothermal time spent in darkness prior to tillage tpu 425.0

Mean seed mass (g) Ms 0.0014
Total available nitrogen (kg/ha) N 25.0

—k(z—ta—a))“

G=M 1—e< 50— @ when = >a-+1t,

G =0 otherwise (6.13)

The offset increased the delay before the commencement of germination to match the
mean delay for the four treatments that acted in a similar manner (Figure 6.2). This did
not include the highest organic matter soil (shown in blue), as we believe that due to
the artificial nature of this soil we were not able to accurately measure the soil moisture
content and so the plotted accumulation of hydrothermal time is likely to be incorrect

(Figure 6.2).

As our experimental data supported the use of this model (Equation 6.13 parame-
terised by Equations 6.4-6.12) we used it to model seedling emergence. We assumed
the age (A) of the old cohort of seeds was 818 days and the new cohort was 60 days.
Changing this parameter allowed the germination of seeds to occur at different rates.
We calculate the water deficit (Wy.r) experienced by the parent plants from the previous
flowering to previous harvest by taking the difference between the daily evapotranspi-
ration and the sum of the soil water content and daily precipitation. If more water is
lost to evapotranspiration than is available then this difference is added on to the water

deficit.

Hydrothermal time (fyr) is accumulated from the day of cultivation on a daily time

step by
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207
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Figure 6.2. Germination data plotted against hydrothermal time for data obtained from
Experiment 1 in Chapter 4. Grey is low organic matter, Yellow is medium organic matter
and blue is high organic matter. Solid lines show high water input data and dashed lines
are low water input. The solid black line shows the resulting germination counts from

Equation 6.13 when parameterised as described in Table 6.2.
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Ot = O O (6.14)
where
Ou=v¢—vp if >y
0y = 0 otherwise (6.15)
and

Or =T 1Ty, if T>T,

Or =0 otherwise (6.16)

1) is the daily water potential and T is the daily temperature. 1, and T, are the base
water potential and temperatures required for germination respectively. Following
Colbach et al. (2002a and b) we set these to v, = —1.53 and T}, = 0. The accumulation
of hydrothermal time from cultivation continues until either the green area index of
the wheat (GAI) reaches 0.5 or for a maximum of 50 days. GAI is calculated using a
function from Storkey & Cussans (2000) which uses empirically derived information

about the growth rate of wheat plants.

Germination data on different levels of soil pH (Metcalfe et al., 2017b (Experiment 2
in Chapter 4)) indicate that the asymptote for germination is higher when soil pH is
low. As we only had data for two different pH we included a pH threshold of 6.5 below
which M (Equation 6.3) is multiplied by the ratio of the values for the asymptote for
the fitted curve for the low and high pH treatment respectively (40.92/36.72) (Metcalfe
et al., 2017b (Table 4.4 in Chapter 4)).

We calculate the number of seedlings by taking the number of new seeds in the soil
surface layer and multiply this by the proportion of new seeds germinating and adding
this to the number of old seeds in the same layer multiplied by the proportion of old

seeds germinating).

6.4.4 Herbicide Mortality

We modelled the survival rate of A. myosuroides after the application of pre-emergence
herbicides using data from Metcalfe et al. (2017a (Chapter 5)). We took the data

points for the proportion of seedlings surviving either herbicide tested (flufenacet or
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pendimethalin) when a dose equivalent to field rate was applied. We then plotted this

against the organic matter (%) in the soil and fitted the equation

1 Ssom

survival = ———————
1+ ¢ Ssom

+ 7, (6.17)

where Ssoy is the percentage soil organic matter and 7, ¢ and 7 are parameters to be

fitted. The fitted values were n = 4.9, ¢ = 3.8252, and 7 = —1.0890 (Figure 6.3).

0.3
o
0.2
©
=2
Z
2 oo °
0.14
0.0 1 @ @ o
2.5 5.0 7.5 10.0

Soil Organic Matter %

Figure 6.3. Relationship between soil organic matter and survival after the application
of pre-emergence herbicide. The discs are data from Chapter 5 and the blue fitted curve

is the optimised form of Equation 6.17.

In the model, the probability of survival (p) is then taken from this fitted curve for a
given soil organic matter and the number of plants surviving is drawn from a binomial

distribution:

p'(L—p)" (6.18)

Pl =(0)

where P(i) is the probability of i plants surviving from an initial number of ¢ plants in

the cell.

Similarly, we also draw the number of plants surviving application of post-emergence
herbicides from a binomial distribution of the same form with a 0.3 probability of survival

(Bayer CropScience, 2017) — this is independent of soil properties.
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6.4.5 Seed Production

Seed-head production has been shown to be dependent on plant density (Moss et al.,
2010). At high plant densities, the number of heads (m~2, Dyc.qs) reaches an asymptote

despite increasing plant numbers (Dpjants):

/B D Plants
D B — 6. 1
Heads 1 D lants ( 9)

Moss et al., (2010) parameterised this equation with data from 462 plots in 16 field
experiments to give values of 8 = 8.71 and o = 0.005741. In our experiment looking at
the effect of soil organic matter on head production (Experiment 1 in Chapter 4) we
only had one plant and so we would not expect this to be representative of the number
of heads produced under field conditions. However, we can still consider the relative
differences in head production on contrasting soil types. We compared the average
number of heads per plant for each treatment to the average value across the whole
experiment to give a scaling factor. We then scaled the value produced by Equation 6.19
for one plant by this value to give the expected number of heads for each treatment
under field conditions. We then parameterised the equation for each of our experimental
soil types. We had no reason to assume that the asymptote might change with soil and

so we kept this constant at

asymptote = s = 1517.157 (6.20)
«

We then rearranged to find « and 3 by substituting in the number of heads when there

is one plant (H1)

Hy
. o N 6.21
“ T 1517157 — H, (6.21)
8 =1517.157a 6.22)

When we parameterised the curve in this manner for the scaled mean value at one plant
for each of the three soil properties in our experiment (Chapter 4) we got different
curves for each organic matter all reaching the same asymptote but with different slopes

(Figure 6.4). On the highest organic matter the number of heads increased rapidly with
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the number of plants, whereas on low organic matter the number of heads increased
more steadily as plant numbers increase. On the medium organic matter, we saw a
response very like that observed by Moss et al. (2010), for which they provided the

original parameterisation of the equation.
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Figure 6.4. Density dependent relationship between plants and heads (m~2) with curve
parameters 5 and « adjusted according to soil organic matter. The relationship and
parameterisation described by Moss et al. (2010) is shown by a dashed black line, grey

is low organic matter; yellow is medium organic matter and blue is high organic matter.

To make this relationship more general across a range of soil organic matter contents
we plotted all the original data values for the number of heads per plant at the three

levels of organic matter (Figure 6.5) and fitted a curve

Hy = § Ssom

= > 6.23
1+ w Ssom ( )

where Sson is the percentage soil organic matter, and &, w, and ¢ are the parameters
fitted to the data. The fitted values were £ = 844.4883, w = 6.9542, and ¢ = —106.7242
(Figure 6.5).

We used this relationship to find « and S (Equations 6.21 and 6.22) and then used
Equation 6.19 to give a density dependent relationship between plants and heads (m~2)

on any given amount of soil organic matter.
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Figure 6.5. Relationship between soil organic matter and the number of heads per
plant. The black discs are data from Chapter 5 and the blue line is the curve fitted is

from Equation 6.23.

Water stress is known to affect plant yield (Osakabe et al., 2014) and so we reduced
the number of heads produced by the process described above according to the ratio of

actual to potential soil transpiration (74.p) over the growing season. This is given by

1
Trp= 6.24
AP T eexp(p x Frsw) ©29

where € and p are parameters derived for A. myosuroides from a series of glasshouse
experiments (Storkey & Cussans, 2007). We calculated the fraction of transpirable soil
water (Frsw) by taking the average of the daily soil volumetric water contents from
germination to flowering and calculating this as a proportion of the difference between

field capacity and wilting point for that soil type.

The number of seeds produced per head is sampled from a log-normal distribution
with mean=4.5779 and standard deviation=0.2337. The mean and standard deviation
of this distribution are estimated from the data provided by Moss (1990). A proportion
of this total seed production will be non-viable, this proportion is sampled from a normal
distribution: N(0.55,0.126), the mean and standard deviation are again estimated from

the data provided by Moss (1990).
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6.4.6 Seed Losses

The amount of seed lost is sampled from a the distribution: Lognormal(—0.8070,0.1303),
and seed survival in the soil follows the distribution: N (0.3,0.077). The means and
standard deviation of these distributions are estimated from data obtained by Moss

(1990).

6.4.7 Seed Dispersal

We modelled both natural A. myosuroides seed dispersal and dispersal of seed by the
combine and cultivation. The probability distribution for each dispersal process was

calculated by numerical integration as:

S (n—0.5) S (m—0.5)

P(m,n) = / / f(z,y) dzdy (6.25)
S (n—0.5))S (m—0.5))

where S is the side length of the cell, P(m,n) is the probability of a seed falling into a
cell at the distance from the source x = m, y = n and f(x,y) is the dispersal probability

function.

The natural dispersal of A. myosuroides seed is assumed to be isotropic and to follow

the rotated Gaussian distribution

Fz,y) = 27:02 exp [—0.5 [<x - “>2 + <3°:“>2” (6.26)

described by Paice et al. (1998). Each type of nearby cell is assessed in turn by

integration as described above following the order indicated in Figure 6.6 until a total
proportion of 0.999 has been accounted for. As was described by Paice et al. (1998),
the mean (u) of the distribution is set at 0 and the standard deviation (o) at 0.3. If any
seeds remain these are dispersed to a randomly allocated cell to represent other sources
of seed dispersal not accounted for here. The resulting list of proportions are stored and
used throughout each yearly cycle of the model to move seeds from one cell to nearby

cells

Dispersal by the combine and cultivation is anisotropic with seeds being dispersed
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Figure 6.6. Numerical order of assessment of nearby squares for the dispersal of seeds
from a plant in the centre square (labelled “1”). Cells with the same number all receive
the same proportion of seed from the starting cell. If required, the pattern continues in

the same manner expanding outwards.

in the direction of travel (Lutman et al., 2002). In order to model the way in which
seeds were moved by the combine, we considered two further Equations (6.27 and
6.28) defined by Paice et al. (1998), where z is the distance from the starting plant
and ¢, is the transition point between the Gaussian (Equation 6.27) and exponential

(Equation 6.28) components.

1 N2
z(x) = W exp (—0.5 (ac 3 E) > for z<¢ (6.27)
z(x) =bexp(—bx) for z>¢ (6.28)

However, to be able to use this function in the same way as described above for
natural dispersal we need to be able to integrate the area under the curve. As this is a
combination of two functions it does not integrate to 1 and so we used an exponentially
modified Gaussian distribution instead (Equation 6.29) and estimated the parameters
v =10/3, A = 0.1 and € = —0.15 to best represent the distribution described by Paice et
al. (1998).

fy
—(2e4+y\2—2z 2 _
g (BetoXi=2e) o (M> (6.29)

Ve
fla,y) = J exp o
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In this case the distribution is integrated and the area under the curve above each
grid cell assessed in turn for a maximum of five grid cells in the direction opposite to the
direction of travel and then towards the direction of travel until a total proportion of
0.999 is accounted for. Any remaining seeds are randomly allocated to a grid cell, in the
direction of travel, up to a maximum dispersal distance of 20 m. The direction of travel
is set up along the x axis of the grid from west to east for the first set of rows up to the
width of the cultivator (40 m). It is then switched to travel east to west. The direction

changes every time the number of rows reaches a multiple of the cultivator width.

For both natural dispersal and the seed movement by combine and cultivation, if
seeds are to be moved into a cell that lies outside of the model arena the process is
reflected off the arena boundary and back into the field. This simulates the idea that
the modelled area is representative of a real field and boundaries are a source of seed
(Marshall, 1989) and so rather than have seed loss at boundaries, any weeds present in

margins could enter the cropped area.

6.4.8 Vertical Movement of Seed in the Soil

Seeds are also moved vertically between the shallow and deep soil layers according
to the type of cultivation used. In years when the cultivation type is set to “plough” a
proportion of seeds from the shallow soil layer are buried into the deep soil layer drawn
from a log-normal distribution with mean=-—0.0515 and standard deviation=0.0191),
conversely some seeds are brought up to the shallow soil layer — this proportion is drawn
from a log-normal distribution with mean=-1.0570 and standard deviation=0.1199.
For all other cultivation types there is no upward movement of seed (from the deep soil
layer to the shallow soil layer). For tine cultivation at 10 cm the proportion of seeds that
are buried (taken from the shallow soil layer and moved to the deep soil layer) is taken
from the distribution N'(0.2,0.051) and for tining at 20 cm the proportion is taken from
the distribution A (0.4,0.101). In years where a shallow cultivation is chosen (<5 cm
tine) no seeds move vertically, in either direction. The parameters for these distributions

are estimated from the data given by Moss (1990).
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6.5 Model Validation

6.5.1 Patch Location

To validate the model, we simulated three fields for which A. myosuroides counts and all
environmental inputs (soil texture, organic matter, pH, water, and topography) were
available. The three fields were Harpenden, Redbourn and Haversham as detailed by
Metcalfe et al. (2017c (Chapter 3)). As an initial investigation, we used the kriged maps
of soil properties, which provides the best unbiased estimate at all unsampled locations.
We kriged at a 1-m grid resolution and set our model grid-cell size to match this. As the
model requires a rectangular grid input we kriged the data to the extent of the smallest
rectangle that completely covers the whole field. We also input the day on which the
gravimetric water content measurement was taken (Julian day). We simulated 40 years
of growth starting with an initial seed bed of 10,000 seeds per cell, 20% of which were
in the top soil layer. We chose three typical cultivation systems in use on arable land: (i)
rotational cultivation with three years of tillage at <5 cm followed by one year using

the plough, (ii) tillage at 10 cm, and (iii) tillage at <5 cm.

We took the output of the model only for years 11-40 from each simulation to
allow for the location of patches to stabilise following the initial seeding at all locations.
We recorded and mapped the average number of plants at each location in the field
(I m x 1 m grid cell) across these years and for 10 different simulations of the model
(a total of 300 realisations of the field), we then compared these maps with the kriged
distribution of A. myosuroides plants for that field. We calculated Pearson correlation
coefficients between the density of seedlings in each cell and the kriged data from
the field for each realisation of the field produced. We plotted a histogram of the
resulting correlation coefficients for each cultivation type in each field to see the resulting

distribution of correlations.

6.5.2 Scale-dependent Correlations

We wanted to see if the scale-dependent relationships found by Metcalfe et al., (2017c
(Chapter 3)) were an emergent property of the model. To do this we needed to simulate
soil realistic of that found in the fields, but that maintained fine-scale variation which

is lost in the kriged maps. We created the covariance matrix for each soil property in
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each field from the covariance function corresponding to the variogram fitted to the soil
data. To simplify the simulation we used the spherical model for the variogram in all
cases. To simulate soil with realistic variation in soil properties, we used lower upper
decomposition of the covariance matrix (Webster & Oliver, 2007, chapter 12). This
simulates soil with realistic variation based on a vector of random numbers drawn from a
normal distribution. In our case, however, we wanted to maintain the distribution of soil
observed in the fields to see if the same distribution of A. myosuroides could be observed.
To do this we conditioned the simulation to include our measured soil properties at
the location where they were measured. The R conditioning data are transformed to
standard normal form (denoted by the vector z) and the values at S unsampled positions
are drawn independently at random from a standard normal distribution (vector g). To

obtain the vector of conditionally simulated values (y) we use

y = “n (6.30)

LsgLge + Lrrgs
where L is the lower triangular matrix obtained from the decomposition of the covari-
ance matrix for the field. To reduce the computational intensity only data within the
field boundary were simulated in this way. As the model requires a rectangular grid
input we used the kriged data for all points lying outside of the field boundary up to the

extent of the smallest rectangle that completely covers the whole field.

Following the simulation of the soil, we scaled the simulated values to match the

mean and range of the original data values:

r—1m

y= X Sobs + Mobs (6.31)
where x is a simulated value, m and s are the mean and standard deviation respectively
of all the simulated values for that soil property and mqps and sqps are the mean and
standard deviation respectively for the observed data. Ideally we would have simulated
all soil properties based on their covariances. However, due to the size of the field and
the spatial scale of simulation this was not possible and so we performed a number
of checks to prevent the simulation of impossible soil distributions. We checked that
the scaled simulated values did not exceed realistic ranges for these soil properties:

We limited clay, silt, organic matter, and soil moisture to being positive, and pH to
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values between 1 and 14. Any simulations that fell outside of these acceptable ranges
were discarded. We also checked that the simulated clay and silt values did not sum
to values greater than 100 and so we paired simulations accordingly. We produced 35
suitable simulations for each soil property for the Harpenden and Haversham fields (the

Redbourn field was too large to simulate in this way).

We simulated 40 years of growth starting with an initial seed bed of 10,000 seeds
per cell, 20% of which were in the top soil layer. We implemented rotational cultivation
with three years of tillage at <5 cm followed by one year using the plough as this is a

typical recommendation to farmers for A. myosuroides control.

We took the output of the model only for years 11-40 from each simulation to allow
for the location of patches to stabilise following the initial seeding at all locations. We
extracted the number of A. myosuroides plants at each of the sampling locations from
the original study (Metcalfe et al., 2017c (Chapter 3)) from the model output and did
the same analysis of the nested sampling design as described by Metcalfe et al. (2016
(Chapter 2)) to give scale-dependent correlation coefficients between the A. myosuroides
counts and each soil property present in the model (clay, organic matter, pH and water)
for each of the 1050 realisations of the field. We plotted a histogram to look at the
frequency of these correlations across all 1050 realisations of the field given by the
model and compared this distribution to the value obtained in the field data for each

spatial scale and each soil property (Metcalfe et al., 2017c (Chapter 3)).

6.6 Results

6.6.1 Patch Location

The locations of the patches predicted by the model were broadly similar to those
observed (Figure 6.7). At a coarse scale there are broad similarities between the
distribution of A. myosuroides observed in the field and the predicted distributions from
the model for all fields. In Harpenden, the rotational ploughing system led to very
similar distributions, whereas the other two cultivation systems (10 cm tine, and <5 cm
tine) showed much more uniform distributions across the field (Figure 6.7 a—d), this
was also shown by the weaker correlations observed between the kriged A. myosuroides

counts and the model predictions (Figure 6.8 a—c). For the field in Redbourn the high
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A. myosuroides counts in the eastern part of the field were reflected in the predictions, as
were the low counts in the southern part of the field. However, in the west the observed
and predicted distributions differ (Figure 6.7 i-1). Again, the strongest correlation
between the kriged data and the model prediction we found was when we implemented
the rotational ploughing cultivation system (Figure 6.8 g-i). Finally, in Haversham the
western part of the field shows similar patch locations to those observed in the field
(Figure 6.7 e-h, Figure 6.8 d-f). In all cases the predicted seedling densities are larger

than were observed in the field and the patches more extensive.
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Figure 6.7. (Figure on page 173.) Maps of Harpenden (top row: a—-d), Haversham
(middle row: e-h) and Redbourn (bottom row: i-1) showing the kriged log seedling
counts (first column: a, e and i) and model outputs (columns 2-4: b—d, f-h, and j-1).
Each model output shows the average log seedling density in each cell across 300
realisations of the field. The simulations in the second column (b, f, and j) are the
output from the model simulations with rotational ploughing as the cultivation type
— ploughing every fourth year with tining at <5 cm in the intermediate years. The
simulations in the third column (c, g, and k) used 10 cm tining each year, and the
simulations in the fourth column (d, h, and 1) used <5 cm tining. Colour scales are

maintained within columns and are applicable to each cultivation type separately.

Figure 6.8. (Figure on page 174.) Frequency distribution of correlation coefficients
between model simulations and kriged log seedling counts for Harpenden (top row: a—
¢), Haversham (middle row: d—f) and Redbourn (bottom row: g—i). For each of the
300 realisations a correlation coefficient was calculated, the mean of these correlation
coefficients is shown as a dashed line. The simulations in the first column (a, d, and g)
are the output from the model simulations with rotational ploughing as the cultivation
type — ploughing every fourth year with tining at <5 cm in the intermediate years. The
simulations in the second column (b, e, and h) used 10 cm tining each year, and the

simulations in the third column (c, f, and i) used <5 cm tining.

Figure 6.9. (Figure on page 175.) Frequency distribution of P values associated with
correlation coefficients shown in Figure 6.8 between model simulations and kriged log
seedling

bourn (bottom row: g-i). For each of the 300 realisations a correlation coefficient was
calculated. Values to the left of the dotted line (P=0.05) are statistically significant. The
simulations in the first column (a, d, and g) are the output from the model simulations
with rotational ploughing as the cultivation type—ploughing every fourth year with
tining at <5 cm in the intermediate years. The simulations in the second column (b, e,
and h) used 10 cm tining each year, and the simulations in the third column (c, f, and i)

used <5 cm tining.
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6.6.2 Scale-dependent Correlations

When we sampled the model output (with simulated soil) for the Harpenden and
Haversham fields with the nested sampling design we observed the scale-dependent

correlations between certain soil properties and the predicted A. myosuroides densities.

The scale-dependent correlations between A. myosuroides and clay were fairly con-
sistent with those observed in the field by Metcalfe et al. (2017c (Chapter 3)). At coarse
scales the model simulations largely resulted in large positive correlations (Figure 6.10 a
and 6.11 a). For Harpenden, this was close to the observed correlation in the field of
0.85 and for Haversham the simulated correlations were often larger than that observed
in the field (0.55), whereas at intermediate scales (Figure 6.10 b—d and 6.11 b-d) where
the observed correlation in the field were weaker the prediction from the models were
less conclusive with a range of correlation coefficients provided by the simulated data
including both positive and negative correlations. At the finest scale included in the
nested sampling all correlations between clay content and the simulated A. myosuroides
seedling densities were small and often close to zero. This reflects the non-significant
correlation of —0.04 observed in the Harpenden field (A negative variance component
was fitted in the Haversham field — this was not significantly different from zero— and

so no correlation coefficient was calculated).

The results were similar for the relationships predicted between soil organic matter
and A. myosuroides seedling densities with the model predicting large positive relation-
ships with organic matter at coarse scales (Figure 6.10 f and 6.11 f), albeit often smaller
than the correlation coefficients of 0.99 and 0.90 obtained from the field observations.
There was no distinct pattern in the correlation coefficients at intermediate scales in
Harpenden (Figure 6.10 g-i) and only small positive correlations at intermediate scales
in Haversham (Figure 6.11 g-h), which were similar to the observed correlations of
0.22 and 0.62 at those scales. In both fields there were correlation coefficients close to
zero at the finest scale between soil organic matter and A. myosuroides (Figure 6.10 j

and 6.11j).

When we consider pH and its relationship with A. myosuroides seedling densities
in the Harpenden field we find a bimodal distribution in the correlation coefficients at
coarse scales (Figure 6.10 k). This may be due to the way in which we incorporated

soil pH in the implementation of the model as we applied a threshold below which
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emergence levels would be increased (this chapter, Section 6.4.3). In some of our soil
simulations this threshold would not be triggered and so the relationship with pH would
be quite different in those simulations to the relationship observed when the threshold
was reached. Again, at intermediate scales (Figure 6.10 l-n) there is no distinct pattern
in the correlation coefficients and at fine scales all correlation coefficients are close to
zero. In Haversham the REML model could not be fitted to the field data and so no

comparison can be made with the simulated model outputs.

We found positive relationships with soil moisture content at the coarse-scale in
the majority of simulations (Figure 6.10 p and 6.11 p). This result matched the signif-
icant positive correlation we found in the fields at this spatial scale. At intermediate
scales (Figure 6.10 g—s and 6.11 g-s) The correlations between soil water content and
A. myosuroides densities predicted by the model were less consistent with a range of
correlations both positive and negative predicted by different model simulations. At the
finest scale (Figure 6.10 t and 6.11 t) the relationship between soil water content and
A. myosuroides seedling counts predicted by the model was often close to zero in both
fields. However, at this fine scale our field observations gave quite large correlations

and lay outside of the distribution of correlations predicted by our model.
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Figure 6.10. (Figure on page 179.) Frequency distribution of scale-dependent cor-
relation coefficients between the simulated number of A. myosuroides seedlings and
simulated soil properties used as inputs into the model simulations for the field in
Harpenden. The dotted line represents the observed scale-dependent correlation in the
field (Chapter 3). The correlations shown are between A. myosuroides seedlings and the
soil properties clay (a—e), soil organic matter (f—j), pH (k-o0) and water (p-t) and for
each soil property a range of spatial scales are considered ranging from coarse-scale in
the first column to fine-scale in the last column: 50+ m (a, f, k, p), 20 m (b, g, L, q),

7.3m (c,h,m,1),2.7m (d, i, n, s), and 1 m (e, j, o, t).

Figure 6.11. (Figure on page 180.) Frequency distribution of scale-dependent cor-
relation coefficients between the simulated number of A. myosuroides seedlings and
simulated soil properties used as inputs into the model simulations for the field in
Haversham. The dotted line represents the observed scale-dependent correlation in the
field (Chapter 3). The corellations shown are between A. myosuroides seedlings and the
soil properties clay (a—e), soil organic matter (f—j), pH (k-o0) and water (p-t) and for
each soil property a range of spatial scales are considered ranging from coarse-scale in
the first column to fine-scale in the last column: 50+ m (a, f, k, p), 20 m (b, g, 1, q),

7.3m (¢c,h,m,1),2.7m (d, i, n, s), and 1 m (e, j, o, t).

The predicted scale-dependent correlations between A. myosuroides heads and soil
properties (Supplementary Figure S6.1 and S6.2) were very similar to those we found
between A. myosuroides seedlings and soil properties (Figure 6.10 and 6.11) despite
the observed correlations in the field often being weaker for heads than they were for

seedlings (see Chapter 3).

6.7 Discussion

Here we show that by modifying the life-cycle of this species according to experimental
data about how the life-cycle is affected by soil we can accurately predict the spatial
population dynamics of the species within surveyed fields in commercial production of
winter wheat. Our results support in-field studies (Lutman et al., 2002; Murdoch et al.,

2014; Metcalfe et al., 2017c (Chapter 3)) that show soil is an important determinant in
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the within-field distribution of A. myosuroides.

Our results suggest that our model can provide a good prediction of the location
of patches within fields. Irrespective of the cultivation type implemented in the model
the correlation between the average A. myosuroides densities across 300 realisations
and kriged soil properties were consistently strong and positive (Figures 6.7-6.9). This
indicates the usefulness of this model in locating A. myosuroides vulnerable zones within
fields. Seedling densities were quite different under the different cultivation types, yet
all provided a good estimation of patch location. This supports the conclusions from
Colbach et al., (2000) that densities are often highly variable and so the prediction of
densities is less accurate than the prediction of patch location. This means that it is
possible to predict patch locations irrespective of the cultivation practices in place on a
farm, making the model useful as a decision support tool as it is not necessary to provide
all the information about cultivation history in order to locate weed vulnerable zones.
As densities predicted here were often higher than those observed in the fields it makes
this model a conservative tool for the implementation of site-specific management as we
are likely to predict higher densities of A. myosuroides than are observed. Therefore we
are more likely to suggest the need to spray an area that would not need such control
measures than we are to avoid spraying an area that has an A. myosuroides problem.
This goes some way to addressing the concerns of farmers that patch spraying is too
risky as individuals might be missed and the seed return from those individuals is too

great to counter any cost savings from the reduced herbicide input.

Strong coarse-scale relationships between soil properties and A. myosuroides dis-
tributions were an emergent property of our model. These matched those observed
in-field. This is important as it is at these coarse scales that the in-field correlations were
strongest (Metcalfe et al., 2016 and 2017c (Chapters 2 and 3)) and so it is important
that our model corroborates these observations. In the application of site-specific weed
management coarse-scales of 504+ m such as those where we observe these strong
correlations are the most useful for management, as it is at these coarse scales that
most farm machinery operates. As such, if we can input pre-existing or supplemented
soil maps, already in use on farm for other site-specific management practices, then
we should be able to predict the likelihood of parts of the field being vulnerable to
A. myosuroides and so be able to develop maps for patch spraying based on the output

of this model.
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As with all models of weed population dynamics there are some limitations to this
model. However these are necessary in order to keep the model simple enough to be
functional whilst retaining enough detail to understand the system (Fernandez-Quintilla,
1988). Initially some of the limitations of the model come due to a lack of field data
and are also under-represented in other models of A. myosuroides such as those by Moss
(1990) and Colbach et al., (2006a). These include the fate of seeds after shedding
where we have included a certain amount of seed loss but this is an all encompassing
figure, which includes germination, predation and decay. Similarly for other life-cycle
processes where we only have information on the range and mean of field data such
as seed production. These values are drawn stochastically from distributions with
these parameters but remain unaffected by other factors and the value drawn for one
process is independent of all other processes within the life-cycle. In our model we
assume that the density of the crop and other weeds are uniform across the field and so
interspecific competition is excluded other than to prevent any further germination once
a crop canopy is established (this is uniform across the field). As we base this model
on the premise that the field is a heterogeneous environment this may not be a correct
assumption to make, however, it is an assumption that is also made in other models for
patch spraying purposes (e.g. Paice et al., 1998). In order to simplify the model we have
divided the soil into two layers: a shallow layer from which seeds can germinate and a
deep layer. However, in reality the soil is a continuum and there will be a gradient over
which seeds can germinate at different rates. Finally, seed dispersal is only barochorous
or by cultivation in our model. Both of these methods of dispersal are independent of
other factors, yet it has been shown that there can be some influence of wind speed on
seed dispersal of A. myosuroides (Colbach & Sache, 2001) and equally, seed movement

in the soil can depend on soil properties (Benvenuti, 2007).

6.7.1 Conclusions

We have drawn together experimental data on the impact of soil properties on the life-
cycle and management of this important agricultural species and through a modelling
approach demonstrated the important role played by soil properties in determining the
within-field distribution of A. myosuroides. We have also shown that scale-dependent
correlations between A. myosuroides and soil properties observed in the field are an

emergent property of this model. This could allow it to become an effective management
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tool as the coarse-scale correlations, which are shown to be of the greatest importance,
are the ones that have the most relevance to management. Seedling densities predicted
in all simulations were higher than observed densities in the field, which is beneficial
given the conservative nature of farmers as the model is likely to predict higher densities

than are present in the field.
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Chapter 7

Discussion

Throughout this thesis my main objective was to identify environmental determi-
nants of Alopecurus myosuroides Huds. (black-grass) patch location and use these
to define weed vulnerable zones. An improved understanding of the relationships
between A. myosuroides and the abiotic environment, in particular the soil, could better
equip farmers and agronomists to manage this species in a more sustainable manner
through site-specific weed management. In order to achieve this I have tested four main
hypotheses through a combination of field work, pot experiments and modelling in
Chapters 3-6 respectively, (Chapter 2 presented a new sampling methodology to address
Hypothesis 1). In this chapter I discuss some of my main findings and their implications

for UK farmers and agronomists as well as some possible directions for future work.

Hypothesis 1: The within-field spatial distribution of A. myosuroides is associated
with the spatial distribution of environmental variables at scales appropriate for

management.

Previous studies that have attempted to investigate the link between A. myosuroides
patch location and soil properties have been limited in their scope because they only
sample at a single scale (e.g. Dunker & Nordmeyer, 1999 and 2000; Lutman et al.,
2002). They each observed weak correlations, sometimes with contradictory results.
Their failure to account for scale meant that finer scale variation obscured the strong
coarse-scale relationships that link A. myosuroides and soil properties. I examined the

scale-dependence of correlations between the distribution of A. myosuroides and various
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abiotic variables using a novel nested sampling design (described in Chapter 2). This
design allowed me to study scale-dependent correlations between weed distributions
and environmental properties, and as such revealed the importance of the coarse-scale
associations missed by these previous studies. Through the implementation of this
novel sampling design in a case-study field (Harpenden, Chapter 2) I determined the
strongest correlations between A. myosuroides and soil properties were at coarse scales
(50+ m). I was also able to identify, in this field, the scales at which A. myosuroides
showed the greatest amount of variation, and so could use this information to optimize
the sampling design for use in subsequent fields. In this field I showed that there
is scale-dependence in both the variation of A. myosuroides seedling counts and soil
properties, demonstrating the importance of studying variation at several spatial scales.
When I examined only the overall correlation between two variables, uncorrelated
variation between the variables at finer scales obscured the scientifically interesting, and
practically important relations exhibited at coarser scales. From this first investigation
in Harpenden I preliminarily identified soil organic matter, texture, water, and pH as

being associated with A. myosuroides seedlings, particularly at coarse scales.

I investigated these scale-dependent correlations between A. myosuroides counts and
soil properties further by sampling in multiple fields across different growing seasons
to investigate if any of the observed relationships found in the case-study field were
consistent across fields and at what scale the strongest relations are observed (Chapter 3).
I found that in different fields the soil properties show different amounts of variation and
many of these properties can be correlatively linked with A. myosuroides distributions.
Interestingly, it was often at the coarser scales studied (>50 m) that I found the strongest
relationships, which implies a practical relevance to farmers. Most machinery currently
available on farm operates at scales of 20 m or greater and so it is helpful to know that
this is a relevant scale for management, although machinery with section and nozzle
control, which allows patch spraying at finer resolutions is becoming more readily
available. If patch spraying were to be implemented based on soil maps then it may
only be necessary to map the soil at this coarse resolution, reducing the sampling effort
required for mapping. The identification of these coarse scale relationships is also useful
in the design of future sampling. As I showed in Chapter 2, nested sampling designs can

be optimised based on knowledge of the scales at which variation occurs.

By considering five separate fields I was able to confirm that the observed relation-
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ships between A. myosuroides counts and soil properties were somewhat consistent
across fields and growing seasons indicating that the patterns I observed may be general.
This generality allowed me to identify a suite of environmental properties including
pH, soil moisture content and topography which could be built into a REML model to
predict A. myosuroides patch locations. My work accords with the work of others (e.g.
Wilson & Brain, 1991; Krohmann et al., 2006) that the distribution of A. myosuroides can
be patchy in fields growing winter wheat for commercial purposes. Incorporating this
spatial autocorrelation in A. myosuroides counts into the statistical model also improved

my prediction of A. myosuroides densities.

In addition to these results, which addressed Hypothesis 1, my work in Chapter 3
also ascertained that the distribution of seed heads in the summer is a contraction of
the initial seedling patch. This highlights a problem associated with current methods
of patch spraying. Where A. myosuroides heads are mapped in the summer to guide
herbicide application of seedlings in the following season (Walter et al., 2002). Even
if buffer zones are applied this may not be sufficient to account for the contraction of
the patch over the growing season as well as dispersal to new areas. If the contraction
of patches is caused by the environment, then this does not pose a risk to the farmer.
However, if the contraction of patches during the growing season is because of effective
management measures in the intervening period then there is a risk the patches could
expand again if those same measures are not implemented in the following season.
I also demonstrated that the patches of heads are less accurately predicted from soil
properties than seedlings. Whilst the real-time mapping of seedlings still remains the
best option this is still very difficult to do and so the identification of weed vulnerable
zones by soil properties will be an improvement on current methodologies as it will
most accurately identify seedling patches, which are the target for the application of

pre-emergence herbicides.

A particularly interesting observation to emerge from this work was that in fields
where infestation was highest (Haversham) and particularly low (Ivinghoe and Rad-
brook) there were weaker correlations between A. myosuroides numbers and soil prop-
erties. This indicates that the relationship between A. myosuroides and soil properties
identified here may depend on plant density. The weak relationships where plant den-
sities were low might indicate that the patch may not have reached all areas suitable

for growth. In these cases the identification and spraying of weed vulnerable zones
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is a useful approach as a farmer will capture all A. myosuroides individuals. Whereas
where densities were high we saw spill-over out of the optimal parts of the field. Seed
production was so great in these fields that the likelihood of seed germinating and
plants growing outside of their optimal environment was increased. This impresses the
importance of effective management of A. myosuroides populations, as once plant densi-
ties become sufficiently large their control becomes increasingly difficult and in such
fields where densities become so high that there may be spillover from identified weed
vulnerable zones then more drastic control measures may be required and site-specific

management of this kind is no longer useful.

These results collectively support Hypothesis 1: The within-field spatial distribution
of A. myosuroides is associated with the spatial distribution of environmental variables at
scales appropriate for management. Taking this a step further, the use of soil properties
in the prediction of patch locations looks promising as it is fairly consistent across fields
and seasons, particularly if we consider the incorporation of spatial autocorrelation
in the prediction of seedling numbers. Where the predictive power of this statistical
model is poorest seems to be in the prediction of areas with no A. myosuroides seedlings.
However, this model is more likely to predict that there will be A. myosuroides present
when there is none — making it a conservative approach in terms of risk and so more

likely to be useful to farmers.

Hypothesis 2: Soil organic matter, moisture and pH affect the life-cycle of

A. myosuroides from germination to seed return.

Through my field studies I determined that there were two main axes of variation
in soil properties (Figure 3.3 in Chapter 3). The first of these axes corresponded to
variation in soil organic matter, texture, and moisture, whilst the second axis was largely
due to variation in pH. In order to elucidate the mechanisms and processes underlying
the spatial variation in A. myosuroides observed in the field I investigated the effect of
these two sources of soil variation on all aspects of the life-cycle of A. myosuroides from

germination to seed return, through a series of pot experiments (Chapter 4).

The germination of A. myosuroides was found to be affected by both soil organic
matter and moisture through a change in the rate of accumulation of hydrothermal time.

Where there was increased water input, hydrothermal time was accumulated more
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quickly and so germination occurred at a faster rate. I would have expected a similar
increase in germination on soil with higher soil organic matter as the water holding
capacity of such a soil would be higher and so hydrothermal time should accumulate
more quickly. However, the results were somewhat contrary to this expectation; the
medium organic matter soil allowed more seeds to germinate than the high organic
matter soil. I believe this may be caused by mulching from the compost used to elevate
the soil organic matter. Interestingly there was some evidence for an effect of soil pH on
A. myosuroides germination with more seeds germinating where the soil pH was lower.
The change in germination with pH may also be a result of the altered chemistry of the

soil affecting water uptake.

I observed no effects of any of the soil properties tested on phenology, but plant
height was affected by both soil organic matter and moisture in an interacting manner.
In low water conditions plant height decreased with increasing organic matter whereas
when water was plentiful plant height increased with organic matter. Increasing organic
matter also increased the number of seeds produced. I also demonstrated that changing
soil pH could affect the competitive balance between A. myosuroides and the wheat.
This indicates that soil pH may have some influence on the location of A. myosuroides
patches. It is likely this effect is related to the availability of nutrients at varying soil pH;
for example, nitrogen, phosphorus, and potassium are all limited in availability in acid
soil, whilst iron, zinc, and copper become limited in more alkaline soil (Brady, 1984).
The contrasting rooting structure and function of A. myosuroides and wheat have been
suggested as a possible reason for the current distribution of A. myosuroides in relation
to variation in soil properties (Stratonovitch et al., 2012). Through these experiments I
showed that changing soil properties, particularly those which may alter the availability
of resources including water and nutrients can change the growth rate of this plant and
may also therefore affect the competitive balance. When I compared these results to my
field observations (Chapter 3) I saw that it supported the conclusion that soil properties,
including water, organic matter and pH may have some controlling influence over the

within-field distribution of A. myosuroides.

The results from my pot experiments could potentially be translated into the devel-
opment of management practices. For example, delayed drilling is a common method of
cultural control. However, if the timing of germination can be affected by environmental

processes then perhaps this needs to be taken into consideration when developing such
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management programmes. Additionally, the difference in the optimum pH for wheat
and A. myosuroides suggests that soil amendments to adjust the pH could make the
environment less favourable to A. myosuroides but still optimal for wheat. The use of
crop cultivars that are more competitive under particular field conditions could also be

considered for fields with particularly low pH or high organic matter for example.

Hypothesis 3: Soil organic matter affects the efficacy of flufenacet and
pendimethalin against A. myosuroides and the ability of the weed to withstand

sub-lethal doses of those herbicides.

Organic matter in the soil can lead to adsorption of herbicide (Farenhorst, 2006) and
different herbicides may be more or less adsorbed by organic matter, dependent on their
physical and chemical properties (Nordmeyer, 2015). As pre-emergence herbicides are
applied directly to the soil, it is particularly important to understand how varying soil
properties within fields may be affecting their efficacy, as this may also, in part, determine
the within-field distribution of this species. I investigated the effect of soil organic matter
on the efficacy of two pre-emergence herbicides against A. myosuroides and whether soil

organic matter plays a role in the resulting sub-lethal effects (Chapter 5).

My results showed that soil organic matter plays an important role in the control
of A. myosuroides achieved by flufenacet and pendimethalin. I found that the ability of
A. myosuroides to survive pre-emergence herbicide application was significantly affected
by soil organic matter. Specifically, the placement of the curve on the dose axis is altered
significantly depending on the levels of organic matter in the soil. Soil with a greater
concentration of organic matter shifts the dose-response curve to the right meaning a
higher dose of herbicide is required to achieve the same reduction in survival. However,
the asymptotes of these dose-response curves remained the same indicating that given a
high enough dose the same level of control can be achieved across all soil organic matter
levels. Similarly, the size of the plants after six weeks was also greatly affected by soil
organic matter with surviving plants grown in soil with high organic matter typically
being larger than those grown in soil with less organic matter. This indicates that on
higher organic matter soil, where pre-emergence herbicides are used for A. myosuroides
control there are likely to be more survivors than on lower organic matter soil and those
surviving individuals will be larger and so more likely to be able to compete well with

the crop plants. I investigated this further using a crop competition model and found
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that seed production was generally predicted to be higher on high organic matter soil

and this was maintained across a wider range of doses than on low organic matter soil.

These results indicate the potential for altering dose rates of pre-emergence applica-
tion according to soil organic matter to ensure a uniform level of control is achieve, or
where control is poor on organic matter rich soil the application of post-emergence her-
bicides could be adjusted to compensate for the reduced control by the pre-emergence
herbicides. Precision herbicide application per soil type is possible in the same way
that patch spraying of weeds is conducted as many farmers have soil maps of their
farms and the uptake of precision agriculture is advancing. So, in fields where there are
within-field gradients of organic matter, it should be possible to adjust the application

rate of the herbicide to account for this.

In the absence of competition, we found that plants surviving the application of
pre-emergence herbicides show few sub-lethal effects of having received that dose. They
produce the same amount of total biomass and seed, the seed they produce also shows
similar viability to unsprayed plants, implying that plants adjust partitioning of resources
such that fecundity is not compromised. In a crop-free environment this has no cost but
would reduce competition when growing with a crop. In the absence of competition, on
soil where control is poor I would expect little subsequent reduction in growth, and so
any surviving plants will go on to produce as much seed as in an unsprayed situation.
However, I also demonstrated through a modelling approach that in the presence of
competition the reductions in plant size at an early stage would likely have further
effects on seed production due to the asymmetric nature of competition. When plant
densities are particularly high then density dependent effects may overshadow the
sub-lethal effects of the herbicide. However, in the presence of competition when plant
densities are much lower then these reductions in growth at an early stage can lead
to substantial differences later in the growing season, yet these plants do still survive
and go on to produce some seed, albeit not as much as in an unsprayed situation. This
presents a further opportunity to exploit precision management techniques by increasing
the crop seed rate in areas of high organic matter so as to compensate for the reduced

herbicide efficacy.

This work supported the claims of others (Blumhorst et al., 1990; Nordmeyer, 2015)
that there are non-trivial effects of soil organic matter on pre-emergence herbicidal

efficacy, even within the small range of organic matters typical of the UK arable landscape.
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This raises the question about the suitability of claims made on herbicide labels to suggest
they remain effective on soil with up to 10% organic matter. Even if this is the case,
perhaps it needs to be considered that the optimal dose may change according to the
level of organic matter in the soil. This may have strong implications for minimal- and
no-tillage systems where the aim is to increase the levels of organic matter in the topsoil
as this could mean decreased levels of control by pre-emergence herbicides despite their

increased reliance on herbicide as they are unable to control the weeds using cultivation.

My results support Hypothesis 3: Soil organic matter affects the efficacy of flufenacet
and pendimethalin against A. myosuroides and the ability of the weed to withstand
sub-lethal doses of those herbicides. The results indicate that increasing soil organic
matter would lead to decreased efficacy of both flufenacet and pendimethalin in the
control of A. myosuroides. I expect that this is a result of adsorption of herbicide. The
differences between the two herbicides could be because of different levels of adsorption,

as was described by Nordmeyer (2015) for pendimethalin and chlortoluron.

The outcome of this hypothesis driven work on pre-emergence herbicide efficacy
on soil with different levels of organic matter, together with the results concerning the
life-cycle of the plant indicate that there are additive effects of increased fitness of the
plant on high organic matter soil and reduced efficacy of pre-emergence plant protection
products. Each of the processes I observed individually, for example the increased seed
return or reduced herbicide efficacy with increasing soil organic matter, would not be
sufficient to explain the aggregation of weeds in the field. However, as many of these
processes act on the weeds in the same direction there is sufficient cause to believe
that their additive effects would lead to an effect on weed population dynamics with

increased numbers on organic matter rich, wet soil, with low pH.

Hypothesis 4: The scale-dependent relationships between soil properties and the
density of A. myosuroides observed in fields is an emergent property of the effect

of soil on the various aspects of the soil properties on the weed’s life-cycle.

Building on previous work modelling A. myosuroides (Moss, 1990; Paice et al., 1998;
Colbach et al., 2006) I developed a life-cycle model for A. myosuroides that incorporates
natural dispersal as well as dispersal by cultivation (Chapter 6). I adjusted various
aspects of the life-cycle according to soil properties based on the results of my investiga-

tions in Chapters 4 and 5. I tested if the model was able to replicate the distributions
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of A. myosuroides observed in Chapter 3 and also if the scale dependent relationships
between soil properties and the density of A. myosuroides observed in the field were an

emergent property of the modelling process (Chapter 6).

Through modelling, I have combined the experimental data on the effects of soil
properties on the life-cycle and management of this important agricultural species to
demonstrate the role played by soil properties in determining the within-field distribution
of A. myosuroides. The model I developed provides a good prediction of the location
of patches within fields. However, predicted seedling densities are quite different
under different simulated cultivation types. I have also shown that scale-dependent
correlations between A. myosuroides and soil properties observed in the field are an
emergent property of this model with strong coarse-scale relationships between soil

properties and A. myosuroides distributions proving to be the most important.

These findings support my hypothesis that through incremental changes to the
life-cycle of A. myosuroides, due to soil properties, the within-field distribution of this
species can be predicted. This shows the importance of the role of soil properties in
determining the within-field distribution of the species and also the need to consider the
life-cycle in an holistic manner as it is not one process that determines the distribution
but rather a series of incremental changes to its life-cycle each caused by an adjustment
due to a given soil property. It is only when we consider these as a whole that we can

predict the location of patches within fields.

By addressing these four hypotheses I have met my main objective, which was to
identify environmental determinants of A. myosuroides patch location and use these
to identify weed vulnerable zones. I have developed our understanding of the role
played by abiotic factors in determining the location of A. myosuroides patches, both
through observed patterns in the field and through a modelling approach whereby I
took empirical relationships between soil properties and life history traits and modelled
the effect of these relationships on the spatial dynamics of this species in a spatially

heterogeneous simulated field.

The emergent property of the model that coarse-scale correlations between A. myosuroides
and soil properties are generally strongest is in accordance with my field data. This
result is important in the application of site-specific weed management as these coarse

scales of 50+ m are most useful for management, given that most farm machinery
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operates at these scales. As such, if we can use pre-existing or supplemented soil maps,
already in use on farm for other site-specific management practices, then we should be
able to predict the likelihood of parts of the field being vulnerable to A. myosuroides and

so be able to develop maps for patch spraying based on the output of this model.

As A. myosuroides seedling densities predicted by the model were often higher
than those observed in the fields it makes this model a conservative tool for the im-
plementation of site-specific management as it is likely to predict higher densities of
A. myosuroides than are observed. Therefore we are more likely to suggest the need
to spray an area that would not need such control measures than we are to avoid
spraying an area that has an A. myosuroides problem. The statistical model described in
Chapter 3 also has the benefit of being conservative in its prediction — it is more likely
to predict the presence of A. myosuroides when it is absent than to indicate falsely a lack
of A. myosuroides when it is there. These conservative predictions are beneficial if they
were to be used in the creation of maps identifying weed vulnerable zones. The lack of
uptake of patch spraying is often attributed to the inherent risk aversion of farmers when
it comes to weed control. Current methods of patch spraying often fail to address this
by only mapping heads in summer — a technique that we have shown to be unreliable
in identifying the full extent of infestation within a field (Figure 7.1A). The addition
of buffer zones around those patches (Figure 7.1B) goes some way to addressing this
issue but is often not enough to convince farmers that the weed will still be controlled.
Through the conservative predictions of our models we could identify areas of the field
that are weed vulnerable zones and so capture any parts of the field that are susceptible
to forming a new patch (Figure 7.1). As such, I suggest the most robust approach to
site-specific weed control would be to combine weed maps with soil-based predictions

of habitat suitability and weed vulnerable zones.

7.1 Recommendations for Further Research

My work has gone a long way towards identifying the soil properties responsible for
determining the within-field distribution of A. myosuroides. However, there is still more
work to do on determining the mechanistic response of the plant to those soil properties,
and identifying how knowledge of soil properties can be used to locate weed vulnerable

zones within fields.
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Figure 7.1. Diagrammatic representation of the principles of patch spraying. Patch
spraying often involves the mapping of weed patches within fields (A), either through
manual surveying of heads or real-time detection. A buffer zone (B) is then drawn
around these mapped patches to allow for the spread of the patch in the following
season. The field is then divided into grids of a manageable size — often the width of the
spray boom — and all grid cells that contain the patch and buffer zones will be sprayed
(cells within the red line). This approach does not account for individuals dispersing
outside of the buffer zones (C), being dragged long distances by the cultivator (D) or
entering the field from the margin (E). If a suite of soil properties could be identified that
are favourable to A. myosuroides (grey areas). Then we may be able to identify “weed
vulnerable zones” and spray accordingly (cells within the yellow line). This presents a
more conservative approach as a greater area of the field is sprayed, making it more
appealing to farmers, yet still reducing the overall use of pesticide. It is likely that in
this instance the seeds that fell outside of the original buffer zones, but are captured
within the weed vulnerable zone, would have gone on to form a new patch (C and
D). However, the seeds entering the field from the margin to land outside of the weed

vulnerable zone (E) would not present a risk.
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7.1.1 Improving the understanding of the within-field spatial distribution

of A. myosuroides

I believe it would be beneficial to extend my field studies (Chapter 3) to more fields. The
fields I studied covered only a limited geographical area in south-east England, yet the
range of A. myosuroides extends much further than this and a possible northward shift
in its range is predicted with climate change (Stratonovitch et al., 2012). By studying
more fields encompassing the full extent of the geographical range of the species would
allow the study of differing underlying soil types and levels of infestation. This would
provide me with more data to make the statistical model for A. myosuroides seedling

densities more robust and to confirm the selection of soil properties.

To extend my work looking at the direct effects of soil properties on the life-cycle
of A. myosuroides it would be interesting to consider further experiments looking at
additional soil properties and their effect on the life-cycle of A. myosuroides both in the
presence and absence of competition. I would be particularly interested in extending the
work from Chapter 4 to look at a greater range of soil organic matter contents and soil pH
as these results provided some insight into the role of these soil properties in determining
the within-field distribution of this species, but more detailed experiments would allow
a better understanding of the mechanisms underlying those relationships. Similarly,
my work looking at pre-emergence herbicides and soil organic matter in Chapter 5
highlights an opportunity for further research into the efficacy of other chemical control
methods on different soil types and the role this plays in determining the within-field

distribution of A. myosuroides.

7.1.2 Within-field spatial patterns of herbicide resistance

Throughout this thesis I have focussed on the spatial distribution of A. myosuroides. This
species is particularly problematic in the UK, largely because of its evolving resistance to
herbicides. Whilst herbicide resistance is an important part of the narrative surrounding
the control of this agricultural weed it has not been central to my objectives regarding its
spatial distribution. It would nevertheless be interesting to combine the work presented
in this thesis with the study of herbicide resistance by considering the effect of the local

environment on the evolution and management of herbicide resistance.
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It would be interesting to consider the herbicide resistance status of the fields studied
in Chapters 2 and 3 as it might be that in fields with high levels of herbicide resistance
the relationship with soil properties is different to that observed in fields with susceptible
populations. Initial work indicates that some of the same soil properties that I found
to be important in determining the within-field distribution of A. myosuroides, namely
soil texture, organic matter and pH, can explain variance in the level of susceptibility
to some herbicides (Figure 7.2); although it is unclear from these preliminary data the
causality of this relationship. In order to investigate this further it would be possible to
collect seed from all field sites and test their resistance status to see if there is spatial
correlation with soil properties. It would also be interesting to run selection experiments
on different soil types where plants are exposed to a range of herbicides to see if the

evolution of resistance is accelerated on any particular soil type.

Pendimethalin resistance
o 013-023
0.24-0.34
0.35-0.44
0.45-0.56

0.57 - 0.80

Figure 7.2. Results of resistance assay to pendimethalin (methods according to Moss,
2000) on seed sampled from the same quadrats as detailed in Chapter 2 in the Harp-
enden field. Resistance is focussed on the centres of high population density (compare
Figure 2.5 in Chapter 2) associated with the parts of the field with lower pH. However,
the mechanisms underpinning these patterns are unclear in terms of the interplay of

evolutionary and ecological processes.
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7.1.3 Development of the mechanistic model to identify weed vulnerable

zones

The modelling component of my work detailed in Chapter 6 could also be developed
further by investigating the effect of different cultural control practices in addition to the
cultivation systems investigated here. It would be interesting to incorporate aspects of
inter-specific competition into the model, as it is currently assumed to be uniform across
the field. If I could incorporate the effect of the soil on the crop as well as the weed
it may be possible to gain further insight into the mechanisms controlling the spatial
distribution of the weed. It would also be interesting to implement different site-specific
management programs within the model to determine the optimal means by which to
implement these in the field together with the economics associated with each weed
management program. As part of this it would also be useful to determine if seasonal
variations in patch size are captured within the weed vulnerable zones predicted by the

model.

In order, to make the model more useful in terms of its application in site-specific
management it would be necessary to try and reduce the overall size of the model
allowing it to process fields quickly and therefore be potentially of use on farm. This
could be achieved through sensitivity analyses to determine which components of the
model are most important in determining the output. The implementation of the model
on farms could also be made more coherent by the development of simple algorithms
allowing the input of existing soil maps available on farm in order to use these to identify

weed vulnerable zones.

As I found that it is often at the coarse scale that the strongest relationships between
A. myosuroides and soil properties are found, it could be possible to use the coarse-scale
soil maps already in use on farms as inputs to the model. However in order to test
the usefulness of these it would be necessary to verify the model at this scale. This
could be done by kriging the soil properties for the fields investigated here at a much
coarser resolution and using these maps as the input for the model and then seeing if the

resulting output correlates with A. myosuroides densities kriged at the same resolution.
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Supplementary Material: Chapter 3
— Defining the Habitat Niche of
Black-grass (Alopecurus

myosuroides) at the Field Scale.

Table S3.1. Terms selected in a regression type analysis using REML to predict
A. myosuroides head densities from soil properties. The non-spatial model has only
field location as a random effect, whereas the spatial model allows the estimation of a
variogram as a random effect. Here a spherical variogram with a nugget of 2.470, range

of 122.3 m and a sill of 1.136 was fitted.

Term Effect S.E.

Non-spatial model

Constant -0.8577  1.33253
Log(clay:sand) 2.292 0.4448
Log(silt:sand) -1.998 0.5245
Soil organic matter 0.7466  0.20514

Gravimetric water content top 10cm  0.3269  0.08080

Spatial model
Constant -1.023 0.3454
Phosphorus -0.0451 0.019264

Gravimetric water content top 10cm  0.1609 0.07105
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Figure S3.1. Figure legend on page 227.
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Figure S3.2. Figure legend on page 227.
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Figure S3.3. Figure legend on page 227.
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Figure S3.4. Figure legend on page 227.



Figure S3.1. (Figure on page 223.) Maps showing the kriged soil moisture content
(0-10 cm) in each of the five fields (a) Radbrook, (b) Haversham, (c) Harpenden, (d)
Redbourn, and (e) Ivinghoe, soil moisture is gravimetric in all cases except Radbrook
where the volumetric moisture content is shown. The kriging was conducted using

ordinary kriging based on the variogram fitted for that field.

Figure S3.2. (Figure on page 224.) Maps showing the kriged soil clay content in the
four fields where it was measured: (a) Harpenden, (b) Redbourn, (c) Haversham, and
(d) Ivinghoe. The kriging was conducted using ordinary kriging based on the variogram

fitted for that field.

Figure S$3.3. (Figure on page 225.) Maps showing the kriged soil clay content in each
of the five fields (a) Radbrook, (b) Haversham, (c) Harpenden, (d) Redbourn, and (e)
Ivinghoe. The kriging was conducted using ordinary kriging based on the variogram

fitted for that field.

Figure S3.4. (Figure on page 226.) Maps showing the kriged soil pH in each of the five
fields (a) Radbrook, (b) Haversham, (c) Harpenden, (d) Redbourn, and (e) Ivinghoe.
The kriging was conducted using ordinary kriging based on the variogram fitted for that

field.



Supplementary Material: Chapter 4
—The Effect of the Abiotic
Environment on the Life-Cycle of
Black-grass (Alopecurus

myosuroides)

Table S4.1. ANOVA table for the total number of seeds germinating in Experiment 1,
Chapter 4.

Source of Variation d.f. S.S. m.s. V.IL F pr.

Block stratum 6 186.5 21.2 0.22

Block.*Units* stratum

Soil 2 2659.0 1329.5 9.25 <0.001
Water 1 91819 9181.9 6391 <0.001
Soil.Water 2 283.9 141.9 0.99 0.384
Residual 30 4310.4 143.7

Total 41 16621.6
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Table S4.2. Non-linear regression analysis to fit a Gompertz curve to germination data

collected in Experiment 1, Chapter 4.

Source d.f. S.S. m.s. V.I. F pr

Single curve

Regression 3 1100485 366828.2 1847.89 <0.001
Residual 669 132804 198.5
Total 672 1233289 1835.3

Separate Curve for each treatment

Regression 18 1176830 65379.43 757.33 <0.001
Residual 654 556459 86.33
Total 672 1233289 1835.25
Change -15 -76345 5089.68 58.96 <0.001

Table S4.3. ANOVA table for the Julian day of first flowering in Experiment 1, Chapter 4.

Source of Variation d.f. s.S. m.s. V.I. F pr.

Block stratum 6 352.62 58.77 2.37

Block.*Units* stratum

Soil 2 28.76 14.38 0.58 0.567
Water 1 34.38 34.38 1.38 0.249
Soil.Water 2 0.76 0.38 0.02 0.985
Residual 30 745.10 24.84

Total 41 1161.62

Table S4.4. ANOVA table for the height of the plants at maturity in Experiment 1,
Chapter 4.

Source of Variation d.f. S.S. m.s. V.I F pr.

Block stratum 6 729.7 121.6 1.08

Block.*Units* stratum

Soil 2 190.6 95.3 0.85 0.438
Water 1 2407.7 2407.7 21.45 <0.001
Soil.Water 2 2186.1 1093.1 9.74 <0.001
Residual 30 3367.2 112.2

Total 41 8881.3




Table S4.5. ANOVA table for the number of seed heads per plant at maturity in

Experiment 1, Chapter 4.

Source of Variation d.f. s.S. m.s. V.I. F pr.

Block stratum 6 15332 2555 1.58

Block.*Units* stratum

Soil 2 50297 25149 15.54 <0.001
Water 1 3659 3659 2.26 0.143
Soil.Water 2 5372 2686 1.66 0.207
Residual 30 48557 1619

Total 41 123217

Table S4.6. ANOVA table for the total dry weight of seed heads at maturity in Experi-
ment 1, Chapter 4.

Source of Variation d.f. s.S. m.s. V.I. F pr.

Block stratum 6 29.461 4910 0.72

Block.*Units* stratum

Soil 2 40.292 20.146 2.95 0.068
Water 1 35.492 35.492 5.19 0.030
Soil.Water 2 4.878 2.439 036 0.703
Residual 30 205.190 6.840

Total 41 315.313

Table S4.7. ANOVA table for the total dry weight of seed heads at maturity in Experi-

ment 1, Chapter 4.

Source of Variation d.f. s.S. m.s. V.I. F pr.

Block stratum 6 141.09 23.52 0.55

Block.*Units* stratum

Soil 2 273230 1366.15 32.15 <0.001
Water 1 1.64 1.64 0.04 0.846
Soil.Water 2 32.32 16.16 0.38 0.687
Residual 30 1274.60 42.49

Total 41 4181.95




Table S4.8. ANOVA table for the total dry weight of seed heads at maturity in Experi-

ment 1, Chapter 4.

Source of Variation d.f. S.S. m.s. V.I. F pr.

Block stratum 6 239.95 39.99 0.72

Block.*Units* stratum

Soil 2 3273.33 1636.66 29.40 <0.001
Water 1 52.39 52.39 0.94 0.340
Soil.Water 2 48.66 24.33 0.44 0.650
Residual 30 1670.21 55.67

Total 41 5284.54

Table S4.9. ANOVA table for the total number of seeds germinating in Experiment 2,
Chapter 4.

Source of Variation d.f. S.S. m.s. V.I. F pr.

Block stratum 6 1570.7 261.8 2.14

Block.*Units* stratum

pH 1 94.5 94.5 0.77 0.385
Residual 34 4151.3 122.1
Total 41 5816.5

Table S4.10. Non-linear regression analysis to fit a Gompertz curve to germination data

collected in Experiment 1, Chapter 4.

Source d.f. S.S. m.s. V.I. F pr

Single curve

Regression 3 211852 70617.5 628.00 <0.001
Residual 333 37446 112.4
Total 336 249298 742.0

Separate Curve for each treatment

Regression 6 212689 35448.1 319.53 <0.001
Residual 330 36609 110.9
Total 336 249298 742.0

Change -3 -836 278.8 2.51 0.058




Table S4.11. ANOVA table for the Julian day of flowering in Experiment 3, Chapter 4.

Source of Variation d.f. S.S. m.s. V.I. F pr.

Block stratum 6 10324 1721 1.27

Block.*Units* stratum

pH 1 12.1 12.1  0.09 0.767
Competition 1 66.5 66.5 0.49 0.489
pH.Competition 1 4.6 46 0.03 0.856
Competion.SpeciesComp 1 404.3 404.3 298 0.094
Competion.SpeciesNoComp 1 100.3 100.3 0.74 0.396
pH.SpeciesComp 1 1.1 1.1 0.01 0.928
pH.SpeciesNoComp 1 26.0 26.0 0.19 0.664
Residual 34 4617.3 135.8

Total 47  5994.8

Table S4.12. ANOVA table for the height of plants in Experiment 3, Chapter 4.

Source of Variation d.f. S.S. m.s. V.I. F pr.

Block stratum 6 11327 1888 1.21
Block.*Units* stratum
pH 595.7 595.7 3.83 0.060
152.5 152.5 0.98 0.330

0.4 0.4 0.00 0.961

1
Competition 1
1

Competion.SpeciesComp 1 462.1 462.1 297 0.095
1
1
1

pH.Competition

108.1 108.1 0.69 0.411
166.4 166.4 1.07 0.309
pH.SpeciesNoComp 60.0 60.0 0.39 0.539
Residual 31 4826.5 155.7

Competion.SpeciesNoComp

pH.SpeciesComp

Total 44 7007.9




Table S4.13. ANOVA table for the number of seed heads in Experiment 3, Chapter 4.

Source of Variation d.f. S.S. m.s. V.I. F pr.

Block stratum 6 39881 6647 2.15

Block.*Units* stratum

pH 1 596 596 0.19 0.663
Competition 1 21396 21396 6.92 0.013
pH.Competition 1 1200 12000 0.39 0.537
Competion.SpeciesComp 1 1257 1257 0.41 0.528
Competion.SpeciesNoComp 1 57876 57876 18.71 <0.001
pH.SpeciesComp 1 448 448 0.14 0.706
pH.SpeciesNoComp 1 472 472 0.15 0.698
Residual 34 105156 3093

Total 47 220792

Table S4.14. ANOVA table for the dryweight of seed heads in Experiment 3, Chapter 4.

Source of Variation d.f. s.s.  M.S. V.IL F pr.

Block stratum 6 3590 598 0.59

Block.*Units* stratum

pH 1 1400 1400 1.38 0.248
Competition 1 4 4 0.00 0.951
pH.Competition 1 695 695 0.69 0413
Competion.SpeciesComp 1 1736 1736 1.71 0.200
Competion.SpeciesNoComp 1 83 83 0.08 0.776
pH.SpeciesComp 1 58 58 0.06 0.812
pH.SpeciesNoComp 1 62 62 0.06 0.806
Residual 33 33440 1013

Total 46 39886




Table S4.15. ANOVA table for the total plant dryweight in Experiment 3, Chapter 4.

Source of Variation d.f. s.s.  M.S. V.I. F pr.

Block stratum 6 6844 1147 0.38
Block.*Units* stratum
pH 7726 7726 2.54 0.121
1423 1423 0.47 0.499

916 916 0.30 0.587

1
Competition 1
1

Competion.SpeciesComp 1 3800 3800 1.25 0.272
1
1
1

pH.Competition

16 16 0.01 0.943
114 114 0.04 0.848
pH.SpeciesNoComp 8209 8209 2.70 0.110
Residual 33 100435 3043

Competion.SpeciesNoComp

pH.SpeciesComp

Total 46 123477

Table S4.16. ANOVA table for relative biomass of plants when grown in competition to

when grown in isolation in Experiment 3, Chapter 4.

Source of Variation d.f. S.S. m.s. V.I. F pr.

Block stratum 5 0.3811 0.0762 0.62

Block.*Units* stratum

pH 1 0.0403 0.0403 0.33 0.577
Species 1 1.1947 1.1947 9.78 0.009
pH.Species 1 04113 0.4113 3.37 0.091
Residual 12 1.4660 0.1222

Total 20 3.2434




Supplementary Material: Chapter 5
—The Implications of Spatially
Variable Pre-Emergence Herbicide

Efficacy for Weed Management

Table S5.1. Fitted parameter values for the log-logistic model used to describe the
dose-response of the number of tillers per plant of A. myosuroides seedlings surviving
six weeks after the application of two pre-emergence herbicides on three levels of soil

organic matter.

Parameter Estimate Standard error
b 2.870 0.3570
d 4.101 0.0698
1 — low organic matter, flufenacet 0.086 0.0083
1 — low organic matter, pendimethalin 0.154 0.0145
1 — medium organic matter, flufenacet 0.276 0.0264
n — medium organic matter, pendimethalin 0.409 0.0423
n — high organic matter, flufenacet 0.395 0.0330
n — high organic matter, pendimethalin 0.516 0.0083
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Figure S5.1. (Figure on page 236.) The number of tillers per plant surviving six weeks
after the application of two pre-emergence herbicides on soil with varying levels of
organic matter: (a) low, (b) medium and (c) high. Points indicate the response of each
sample and the fitted model is shown by a solid line (flufenacet in blue, pendimethalin

in red). Dose is given as a proportion of recommended field rate.
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Figure S5.2. Outputs from 100 simulations for each of 10 years of weather data from
the INTERCOM model (a) in the absence of crop competition and (b) in the presence of
crop competition. Data points when there is no size penalty to having been sprayed with
pre-emergence herbicide are shown in green (mortality adjusted according to inputs in
Table 6, no reduction in seedling biomass), those with a size penalty for a sub-lethal dose
of herbicide are shown in purple (Mortality and seedling biomass adjusted according
to inputs in table 6). A linear model that best describes the data is shown with 95%
confidence intervals. (For panel (a) the linear model was fitted to log densities. The

back transformed model is shown here).



Supplementary Material: Chapter 6
— Modelling the Spatial Variation
in Alopecurus myosuroides due to

Soil Properties
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Figure S6.1. (Figure on page 239) Frequency distribution of scale-dependent correlation
coefficients between the simulated number of A. myosuroides heads and simulated soil
properties used as inputs into the model model simulations for the field in Harpenden.
The corellations shown are between blackgrass heads and the soil properites clay (a—¢),
soil organic matter (f—j), pH (k—o) and water (p—t) and for each soil property a range of
scales are considered ranging from coarse-scale in the first column to fine-scale in teh
last column: 50+ m (a, f, k, p), 20 m (b, g,1, @), 7.3 m (c, h, m, r), 2.7 m (d, i, n, s),

1m (e, j, 0, t).

Figure S6.2. (Figure on page 240)Frequency distribution of scale-dependent correlation
coefficients between the simulated number of A. myosuroides heads and simulated soil
properties used as inputs into the model model simulations for the field in Haversham.
The corellations shown are between blackgrass heads and the soil properites clay (a—e),
soil organic matter (f—j), pH (k—o) and water (p—t) and for each soil property a range of
scales are considered ranging from coarse-scale in the first column to fine-scale in teh
last column: 50+ m (a, f, k, p), 20 m (b, g,1, @), 7.3 m (c, h, m, r), 2.7 m (d, i, n, s),

1m (e, j, 0, t).

The following code is the complete spatial model of the A. myosuroides life cycle as

described in chapter 6.

The main program file is “Weeds_2.cpp”. This file calls other functions listed in
“Grow.cpp” and “Water.cpp”. The “LandGrid.cpp” file contains code to store and access
the information about each cell in the grid and “Weather.cpp” contains code to store and
access the weather data. These two files (“LandGrid.cpp” and “Weather.cpp”) are taken

from an existing crop model whilst the other files comprise my own work.
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// Weeds_2.cpp : Defines the entry point for the console application.
/7

#include <iostream> //indicate all the files to include

#include <direct.h>//header file provided by Microsoft - contains functions for
manipulating file system directories

#include <fstream>//read/write functions

#include "stdafx.h"//describes both standard system and project specific include
files

#include "LandGrid.h"//my other files

#include "Grow.h"

#include "Water.h"

#include "Weather.h"

#include <math.h>// a set of functions to compute common mathematical operations
and transformations

#include <random>

#include "d:\\Program Files (x86)\\NAG\\FL25\\f1d11254m1\\c_headers\\nagmk25.h"

int _tmain(int argc, _TCHAR* argv[]) //START HERE
{ //**********Input FilesHrksrkkkokk / /
char path_buffer[_MAX_PATH];//declare character
char Npath_buffer[_MAX_PATH];
char Cpath_buffer[_MAX_PATH];
char Opath_buffer[_MAX_PATH];
char Wpath_buffer[_MAX_PATH];
char Spath_buffer[_MAX_PATH];
char Gpath_buffer[_MAX_PATH];
char Apath_buffer[_MAX_PATH];
char Ppath_buffer[_MAX_PATH];
_getcwd(path_buffer, _MAX_PATH); //Gets current working directory
char drive[_MAX_DRIVE];
char dir[_MAX_DIR];
char fname[_MAX_FNAME];
char ext[_MAX_EXT];
_splitpath_s(path_buffer, drive, dir, fname, ext); //Splits the working
directory into drive, directory etc
strcpy_s(Npath_buffer, drive);
strcat_s(Npath_buffer, dir);
int WeathYear(1966);

?

strcat_s(Npath_buffer, "Weather\\MetRR."); //Creates the directory path for the=?

weather data that we shall read in

strcpy_s(Cpath_buffer, drive);

strcat_s(Cpath_buffer, dir);

strcat_s(Cpath_buffer, "InputData\\scaleHAVclayoutl.txt"); //Creates the
directory path for the clay data that we shall read in

strcpy_s(Opath_buffer, drive);

strcat_s(Opath_buffer, dir);

strcat_s(Opath_buffer, "InputData\\scaleHAVomoutl.txt"); //Creates the
directory path for the OM data that we shall read in

strcpy_s(Wpath_buffer, drive);

strcat_s(Wpath_buffer, dir);

strcat_s(Wpath_buffer, "InputData\\scaleHAVwateroutl.txt"); //Creates the
directory path for the water data that we shall read in

strcpy_s(Spath_buffer, drive);



X:\C++Code\Helen\HMThesis\Weeds_2\Weeds_2.cpp 2

strcat_s(Spath_buffer, dir);

strcat_s(Spath_buffer, "InputData\\scaleHAVsiltoutl.txt"); //Creates the ?
directory path for the silt data that we shall read in

strcpy_s(Gpath_buffer, drive);

strcat_s(Gpath_buffer, dir);

strcat_s(Gpath_buffer, "InputData\\HavSlopefull.txt"); //Creates the directory =
path for the slope data that we shall read in

strcpy_s(Apath_buffer, drive);

strcat_s(Apath_buffer, dir);

strcat_s(Apath_buffer, "InputData\\HavAspectfull.txt"); //Creates the directory=?
path for the aspect data that we shall read in

strcpy_s(Ppath_buffer, drive);

strcat_s(Ppath_buffer, dir);

strcat_s(Ppath_buffer, "InputData\\scaleHAVphoutl.txt"); //Creates the ?
directory path for the aspect data that we shall read in

try {

Grid::InitialiseGrid(); //Run the initialise grid function - basic function=?
to set up a uniform grid with sensible values

Grid::InitialiseOC(Opath_buffer); // Initialise reading in from OC file

Grid::InitialiseClay(Cpath_buffer); // Initialise reading in from Clay file

Grid::InitialiseSWC(Wpath_buffer); // Initialise reading in from Water file

Grid::InitialiseSilt(Spath_buffer); // Initialise reading in from Silt file

Grid::InitialiseSlope(Gpath_buffer); // Initialise reading in from Slope =@
file

Grid::InitialiseAspect(Apath_buffer); // Initialise reading in from Aspect =
file

Grid::InitialisePH(Ppath_buffer); // Initialise reading in from Aspect file

refsolar();//Get reference value for solar energy and compute total ?
potential energy for each cell in the field. Compare them tho the ?
reference to give a scaling factor for each cell dependent on slope and =
aspect

for (int irow = @; irow < Grid::GetNumRows(); irow++)

{
for (int jcol = @; jcol < Grid::GetNumCols(); jcol++)//For each cell in=?
the field
{
double myOC = Grid::GetOC(irow, jcol);//get the OM value from the =
grid
double myClay = Grid::GetClay(irow, jcol);//get the clay value from?
the grid
double mySilt = Grid::GetSilt(irow, jcol);//get the silt value from=?
the grid
double mybulkd = 0.80806 + (0.823844*exp(-0.27993*my0C) + ?
(0.0014065*(1 - myClay - mySilt)) - (0.0010299*myClay)); // ?

calculate Db from the soil parameters

Grid::SetBulkD(irow, jcol, mybulkd); //set Db to the grid

double myWater = Grid::GetSWC(irow, jcol); //get the water from the?
grid (data input as GWC%)

myWater = (myWater*mybulkd) / 100; //convert to VWC as a proportion

Grid::SetSWC(irow, jcol, myWater);//save the VWC proportion to the =@
grid
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}
}

int const numyears = 40; //Declare how many years to run the model for

int cult[numyears]; //Define the type of cultivation to be used each year. =
Cultivation type: ©=plough, 1=tine<5, 2=tine 10, 3=tine 20

for (int icount = @; icount < numyears; icount++)//for each year

{
cult[icount] = 1; //set cultivation type
double myadd = floor(fmod(double(icount), 4.0));//every fourth year set?
a different cultivation type
if (myadd == 1)
{
cult[icount] = @;
}
}

double breakcrop[numyears]; // Determine whether breakcrops will be used. A=?

breakcrop prevents weed from growing in that year but seeds are still ?

moved around within the soil due to cultivation. Breakcrop: © = no ?
breakcrop(normal weed growth), 1 = breakcrop

for (int icount = @; icount < numyears; icount++)//for each year

{
breakcrop[icount] = 0;//set there to be no breakcrop
//double myadd = floor(fmod(double(icount), 8.0));//every eigth year =
set a breakcrop
//if (myadd == 1)
/74
// breakcrop[icount] = myadd;
/1%
}

[ [ RRERRRSR SRRk Rk Sat Up dispersal optionsikkkkskskskkkkkkkkkkkkkkkkok / /

//*¥*¥FEE%% Natural dispersal******x//
std: :vector<double> proportions;
double extra;

// Natural dispersal is modelled by a rotated Gaussian function as ?
described in Paice et al 1998

double mu = @; // Mean Gaussian seed dispersal distance (@0.0m in Paice et @
al, 1988)

double sigma = 0.3;// Standard deviation for Gaussian seed dispersal ?
distance (0.3m in Paice et al, 1988)

// By integrating the dispersal functions it is possible to determine the =
proportion of seeds from each grid cell that will be dispersed to other =
grid cells. This function only needs to be run once as the result is a ?
proportion which can then be applied year on year to the model no matter =
how many plants there are in each cell. For natural dispersal seeds are =2
allocated to cells in turn by integrating different areas under the curve=?
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in order according to figure shown in lab book 1 (p15) with seeds first =
falling in the starting square and then the squares immediately adjacent,?
followed by further squares getting ever further from the starting ?
point.
natDisp(proportions, extra, mu, sigma); //This function is in Grow.cpp it =
gives 'proportions' and 'extra'. proportions is the proportion of seeds @
that go into each cell type (determined by the distance from the centre =
point). Extra is any remaining proportion after we have integrated up to =
0.999.

J/¥*F*¥**FEx Cultivation dispersal*******//
std::vector<double> proportions2;
double extra2;

//Dispersal by cultivation is described in Paice et al (1988) as a Gaussian=?
and exponential distribution where the Gaussian distribution(Mean = ?
0.025m, stdev = 0.15m) is used for values <= © and the exponential ?
bistribution(b = 1.68m - 1) is used for values >1. Here, an exponentially=?
modified Gaussian distribution is used and the parameters adjusted to =
provide a distribution similar to that provided by Paice et al(1998).

double eta = -0.15; // Mean of the exponentially modified Gaussian ?
distribution(-0.15 provides best estimate of data)

double lambda = @0.1; // Std dev of the exponentially modified Gaussian ?
distribution(-0.1 provides best estimate of data)

double b = @0.3; // exponential model component of the exponentially ?

modified Gaussian distribution(@.3 provides best estimate of data)
int maxdisp = 20; // Set the maximum dispersal distance in m(20m in Paice =
et al, 1998)

cultDisp(proportions2, extra2, lambda, eta, b);//This function is in ?
Grow.cpp it gives 'proportions2' and 'extra2'.These describe the
proportion of seeds that move to each cell along the line of cultivation =
and the extra that is not allocated to any cell by this function

)

][] ] FFREFAEFAGETUP WATERKH K KA KA AR A KA KA A KKK A KKK KK A KA KA KKK [

double startday = 76;//This is the Julian day for which the soil water ?
content is valid - so the day the field measurments were taken
//CrossF = 21

//Redb = 71
//Iv = 85
//Hav 76

//set flower and harvest day

//This sets up the nag functions to calculate the selection of a random ?
number from a normal distrivution

int const LR = 1;

double R[LR];

double X[1];

int ifail = 1;

int const genid(1);

int const subid(9);

int 1lstate(17);

int* state; //when we declare 'state' we dont say how long it will be so we=?
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need to delete it after we have used it
state = new int[lstate]; //here we declare state again so must delete it ?
again
ifail = 1;
GO5KGF (genid, subid, state, lstate, ifail); //this is a non-repeatable seed
if (ifail != 9)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5KGF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

int N = 1; // number of numbers to generate

int flowerday = 150;//Julian day for the start of flowering

double var = 3;//variance for distribution for flowering day

GO5SKF (N, flowerday, var, state, X, ifail);//take flowering day from a ?
normal distribution

if (ifail != 9)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GO5SKF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

flowerday = round(X[@]);

int nextharvestday = 206;//Julian day for harvest

var = 6;

GO5SKF (N, nextharvestday, var, state, X, ifail);//take harvest day from a =
normal distribution

if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GO5SKF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

nextharvestday = round(X[0]);
delete[] state; //here we delete 'state’
double mydeficit=0;
Weath: :ReadInWeath(@, Npath_buffer, WeathYear);//Read in the first weather =
file
double myWater;
for (int irow = ©@; irow < Grid::GetNumRows(); irow++)
{
for (int jcol = @; jcol < Grid::GetNumCols(); jcol++) //for each cell =
in the field
{
myWater = Grid::GetSWC(irow, jcol); //get the water stored in the =
grid (this is valid for the startday)
initialwater(irow, jcol, myWater, startday, flowerday);//Take water?
from start day to flowering
Grid::SetSWC(irow, jcol, myWater);//set soil water content at the =
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start of flowering to the grid

waterdeficit(irow, jcol, myWater, flowerday, nextharvestday, ?
mydeficit);//calculate the water deficit from flowering to ?
harvest (this is needed in the germination calculations)

Grid::SetWD(irow, jcol,mydeficit);//set water deficit to the grid =
for season prior to model start

Grid::SetSWC(irow, jcol, myWater);//set soil water content at ?
harvest to the grid

Cyc1e********************************************//

double dropSeeds, aPlants, Heads;

for (int iyear = @; iyear < numyears; iyear++) //allow the model to run for?
the number of years stored in numyears
{
int thisharvestday = nextharvestday;//we always have the previous year 2
and this year in consideration so have to transfer dates in each ?
iteration of the model

//This sets up the nag functions to calculate the selection of a random=?
number from a normal distrivution

int const LR = 1;

double R[LR];

double X[1];

int ifail = 1;

int const genid(1);

int const subid(9);

int lstate(17);

int* state; //when we declare 'state' we dont say how long it will be =
so we need to delete it after we have used it

state = new int[lstate]; //here we declare state again so must delete =
it again

ifail = 1;

GOSKGF (genid, subid, state, lstate, ifail); //this is a non-repeatable =
seed

int N = 1; // number of numbers to generate

if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5KGF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

nextharvestday = 220;//Julian day for harvest
var = 6;//variation in harvest day
GO5SKF (N, nextharvestday, var, state, X, ifail);//take harvest day from=?
a normal distribution
if (ifail != @)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5SKF ";
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strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

}
nextharvestday = round(X[@]);

flowerday = 110;//Julian day for the start of flowering //150

var = 3;//variance for flowring day

GO5SKF(N, flowerday, var, state, X, ifail);//take flowering day from a =2
normal distribution

if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5SKF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

flowerday = round(X[0]);

int cultivationday = 258;//Julian day for cultivation
var = 8;//variance for cultivation day
GO5SKF(N, cultivationday, var, state, X, ifail);//take cultivation day =
from a normal distribution
if (ifail != @)
if (ifail !'= 0)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GO5SKF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

cultivationday = round(X[0]);
delete[] state; //here we delete 'state’

if (breakcrop[iyear] == @) //if there is no breakcrop the weeds will =
grow
{
//go through each grid cell in turn and determne how many plants ?
grow and what seeds get dropped
for (int irow = 0; irow < Grid::GetNumRows(); irow++)
{
for (int jcol = @; jcol < Grid::GetNumCols(); jcol++)
{
double EarlysumVWC = 0;//we need to calculated the ?
accumulated available water throughout the growing season
int Earlycountdays = 1;
double LatesumVWC = 0;
int Latecountdays = 1;
growearly(irow, jcol, aPlants, thisharvestday, EarlysumVWC,?
Earlycountdays, Heads, cultivationday); //This a function in =
grow.cpp it performs the early part of the life cycle in each =
cell (up to the end of the calendar year)
Weath: :ClearWeath(0);
Weath: :ReadInWeath(@, Npath_buffer, WeathYear + iyear + ?
1); //Read in the weather for the next year.
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growlate(irow, jcol, dropSeeds, aPlants, Earlycountdays,
Heads, nextharvestday, flowerday, LatesumVWC,
Latecountdays); //This a function in grow.cpp it performs the
late part of the life cycle in each cell (from the start of
the calendar year)

}

Y Y Y Yle

}

Disp(proportions); //this does the natural dispersal based on the =
proportions calculated for each cell type. It is a function in ?
grow.cpp. The dispersed seeds are in TempWeeds

}
else //if there is a breakcrop no plants grow and no seeds are dropped
{
for (int irow = @; irow < Grid::GetNumRows(); irow++)
{
for (int jcol = @; jcol < Grid::GetNumCols(); jcol++)
{
Grid::SetPlants(irow, jcol, ©); //set (to the grid) the ?
number of mature plants at the end of the growing season
Grid::SetDropSeeds(irow, jcol, ©); //set (to the grid) the =
number of dropped seeds
}
}
}
// We now have values for the number of plants that grow and where ?

their seeds have been naturally dispersed to

/[ ¥FREFRRRR KRRk Rk Moyement of seeds in the soil*¥*¥kikkikskxkskxkskx [/

soilMove(iyear, cult[iyear]); //this converts all seeds in the soil to =»
old seeds and puts the newly dropped seeds stored in TempWeeds into @
the soil surface layer as new seeds, seeds are moved between soil ?
layers according to the cultivation type. It is a function in ?
grow.cpp

//Depending on cultivation type seeds in the soil are dispersed in the
direction of cultivation using the proportions found in ?
proportions2//

if (cult[iyear] == @) //If the cultivation type is plough, seeds in all?
soil layers will be moved in the direction of cultivation

{
cdisp2NSS(proportions2, extra2, maxdisp); //movement of new seeds =2
in the shallow soil layer
cdisp2NSD(proportions2, extra2, maxdisp); //movement of new seeds =
in the deep soil layer
cdisp20SS(proportions2, extra2, maxdisp); //movement of old seeds =
in the shallow soil layer
cdisp20SD(proportions2, extra2, maxdisp); //movement of old seeds =
in the deep soil layer
}
else //For other cultivation types, only seeds in the shallow soil ?
layer will be moved in the direction of cultivation
{

cdisp2NSS(proportions2, extra2, maxdisp);//movement of new seeds in=?
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the shallow soil layer
cdisp20SS(proportions2, extra2, maxdisp);//movement of old seeds in=
the shallow soil layer

} //End of deciding how to disperse seeds in soil according to ?
cultivation type

WriteSeedlings(iyear);//write to a file the number of seedlings that =
emerged this year in each cell

WriteHeads(iyear);//write to a file the number of heads produced this =
year in each cell

WriteSWC(iyear);//write out the at the end of this year in each cell

Writepropavailablewater(iyear);//write out the proportion of available =@
water this year in each cell

} //Year Loop

}

catch (std::logic_error &E)

{
char Mess[500];
strcpy_s(Mess, E.what());
std::cout << Mess << '\n';
system("pause>nul™);

}

return 0;
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#include "LandGrid.h"

#include <iostream>

#include <fstream>

#include <algorithm>

#include <direct.h>

#include <string>

//The LandGrid allows us to store information about each cell that can be accessed =
in any function

struct TCell { //list of the atributes of a cell

double Latitude;

double Elevation;

double Slope;

double Aspect;

double SolarScale;
double Clay;

double SoilDepth;

double Silt;

double BulkD;

double pH;

double 0OC;

double SoilWaterContent;
double WaterDeficit;
double propavailablewater;
double EarlySumVWC;

//Weed properties

double NewSeeds[2]; //The number of new seeds in the surface soil layer[@], The@
number of new seeds in the deep soil layer[1].

double 0OldSeeds[2]; //The number of old seeds in the surface soil layer[@], The@
number of old seeds in the deep soil layer[1].

double DroppedSeeds; //keeps track of seed that are shed
double TempSeeds; //keeps track of seed that are shed following dispersal

double Plants; //The number of mature plants
double Seedlings;//The number of seedlings in the autumn
double Heads;//The number of heads produced

}s

namespace Grid
{ //set uyp the size of the field and grid cells - this is different for each field
// Harpenden
//int const Nrows=352;
//int const Ncols=283;
//Redbourn
//int const Nrows=421;
//int const Ncols=371;
//Ivinghoe
//int const Nrows=502;
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//int const Ncols=696;
//Haversham
int const Nrows=321;
int const Ncols=272;

double const Cell = 1; // the side length of a grid cell in m

double CultWidth = 40;

double IntVars[2]; //stores values of mu and sigma for natural dispersal
double IntVarsCult[3]; //stores values of mu and sigma for natural dispersal
TCell MainGrid[Nrows][Ncols];

void SetIntVars(double mu, double sigma) //A function that allows you to set =
the values of mu and sigma for natural dispersal
{
IntVars[0]
IntVars[1]

mu;
sigma;

}

void GetIntVars(double& mu, double& sigma) //A function that allows you to get @
the values of mu and sigma for natural dispersal

{
mu = IntVars[0];

sigma = IntVars[1];
}

[ ] FFFF A A A A AR A AR AR AAK AR KA K KA HAK A KA H KRR K A KA KK\ |

void SetIntVarsCult(double lambda, double eta, double gamma) //A function that =
allows you to set the values of mu and sigma for natural dispersal

{

IntVarsCult[@] = lambda;
IntVarsCult[1l] = eta;
IntVarsCult[2] = gamma;

}

void GetIntVarsCult(double& lambda, double& eta, double& gamma) //A function ?
that allows you to get the values of mu and sigma for natural dispersal
{
lambda = IntVarsCult[e];
eta = IntVarsCult[1];
gamma = IntVarsCult[2];

}

[ ] FFFFAAAAAAAAA KA A KA KA A KA AR KA KA K AK A KA A AR F KKK A K A KA KK\ |

void SetNewSeeds(int irow, int jcol, double myNSeeds[]) //A function that ?
allows you to set the values for new seeds in the shallow [@] and deep [1] ?
layers

{

if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
for (int ccount = @; ccount<2; ccount++)
MainGrid[irow][jcol].NewSeeds[ccount] = myNSeeds[ccount];
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else

{
}

throw std::logic_error("Error in SetNewSeeds: index not in grid");

}

void SetOldSeeds(int irow, int jcol, double myOSeeds[])//A function that allows=?
you to set the values for old seeds in the shallow [@] and deep [1] layers

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{ for (int ccount = @; ccount<2; ccount++)
MainGrid[irow][jcol].0ldSeeds[ccount] = myOSeeds[ccount];
}
else
{
throw std::logic_error("Error in SetOldSeeds: index not in grid");
}
}

void SetLatitude(int irow, int jcol, double myLat) //A function that allows you?
to set the latitude - this is needed for meteorological functions

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].Latitude=myLat;
}
else
{
throw std::logic_error("Error in SetlLatitude: index not in grid");
}
}

void SetElevation(int irow, int jcol, double myEle) //A function that allows ?
you to set the elevation

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].Elevation=myEle;
}
else
{
throw std::logic_error("Error in SetElevation: index not in grid");
}
}
void SetPH(int irow, int jcol, double myPH) //A function that allows you to set?
the pH
{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].pH=myPH;
}
else

{
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throw std::logic_error("Error in SetPH: index not in grid");

}
}

void SetOC(int irow, int jcol, double myOC) //A function that allows you to set?
the organic carbon

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].0C = myOC;
}
else
{
throw std::logic_error("Error in SetOC: index not in grid");
}
}

void SetClay(int irow, int jcol, double myClay) //A function that allows you to@
set the clay content

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].Clay = myClay;
}
else
{
throw std::logic_error("Error in SetClay: index not in grid");
}
}

void SetSilt(int irow, int jcol, double mySilt) //A function that allows you to@
set the silt content

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].Silt = mySilt;
}
else
{
throw std::logic_error("Error in SetSilt: index not in grid");
}
}

void SetBulkD(int irow, int jcol, double myBulkD) //A function that allows you @
to set the bulk density

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].BulkD = myBulkD;
}
else
{
throw std::logic_error("Error in SetBulkD: index not in grid");
}
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void SetSWC(int irow, int jcol, double mySWC) //A function that allows you to
set the soil water content

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].SoilWaterContent=mySWC;
}
else
{
throw std::logic_error("Error in SetSWC: index not in grid");
}
}

void Setpropavailablewater(int irow, int jcol, double propavailablewater) //A
function that allows you to set the proportion of available soil water

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].propavailablewater = propavailablewater;
}
else
{
throw std::logic_error("Error in Setpropavailablewater: index not in
grid");
}
}

void SetEarlySumVWC(int irow, int jcol, double EarlySumvWC) //A function that
allows you to set the sum of available water in the early part of the year

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].EarlySumVWC = EarlySumVWC;
}
else
{
throw std::logic_error("Error in SetEarlySumVWC: index not in grid");
}
}

void SetWD(int irow, int jcol, double myeWD) //A function that allows you to
set the soil water deficit

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].WaterDeficit = myelD;
}
else
{
throw std::logic_error("Error in SetWD: index not in grid");
}
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void SetSoilDepth(int irow, int jcol, double mySoilDepth) //A function that ?
allows you to set the soil depth

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].SoilDepth = mySoilDepth;
}
else
{
throw std::logic_error("Error in SetSoilDepth: index not in grid");
}
}

void SetSlope(int irow, int jcol, double mySlope) //A function that allows you @
to set the slope

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].Slope=mySlope;
}
else
{
throw std::logic_error("Error in SetSlope: index not in grid");
}
}

void SetAspect(int irow, int jcol, double myAspect) //A function that allows ?
you to set the aspect

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].Aspect = myAspect;
}
else
{
throw std::logic_error("Error in SetAspect: index not in grid");
}
}

void SetSolarScale(int irow, int jcol, double mySolarScale) //A function that =
allows you to set the solar scalar

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
MainGrid[irow][jcol].SolarScale = mySolarScale;
}
else
{
throw std::logic_error("Error in SetSolarScale: index not in grid");
}
}

[ ] FHFFAEAAAAAAA AR A A AR AR A AR A KA KA HAK A KA KA KKK A K FH KA KK\ |
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void GetNewSeeds(int irow, int jcol, double myNSeeds[]) //A function that ?
allows you to get the values for new seeds in the shallow [@] and deep [1] ?
layers
{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{ for (int ccount = @; ccount<2; ccount++)
myNSeeds[ccount] = MainGrid[irow][jcol].NewSeeds[ccount];
}
else
{
throw std::logic_error("Error in GetNewSeeds: index not in grid");
}
}
void GetOldSeeds(int irow, int jcol, double myOSeeds[]) //A function that ?
allows you to get the values for old seeds in the shallow [@] and deep [1] ?
layers
{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{ for (int ccount = @; ccount<2; ccount++)
myOSeeds[ccount] = MainGrid[irow][jcol].0ldSeeds[ccount];
}
else
{
throw std::logic_error("Error in GetOldwSeeds: index not in grid");
}
}

double GetlLatitude(int irow, int jcol) //A function that allows you to get the =@
latitude - this is needed for meteorological functions

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].Latitude;
}
else
{
throw std::logic_error("Error in GetLat: index not in grid");
}
}
double GetElevation(int irow, int jcol) //A function that allows you to get the=
elevation
{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].Elevation;
}
else
{

throw std::logic_error("Error in GetElevation: index not in grid");

}
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}

double GetClay(int irow, int jcol) //A function that allows you to get the clay?

content
{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].Clay;
}
else
{
throw std::logic_error("Error in GetClay: index not in grid");
}
}
double GetSilt(int irow, int jcol)//A function that allows you to get the silt =
content
{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].Silt;
}
else
{
throw std::logic_error("Error in GetSilt: index not in grid");
}
}

double GetBulkD(int irow, int jcol) //A function that allows you to get the ?
bulk density

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].BulkD;
}
else
{
throw std::logic_error("Error in GetSilt: index not in grid");
}
}

double GetSWC(int irow, int jcol) //A function that allows you to get the soil @
water content

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].SoilWaterContent;
}
else
{
throw std::logic_error("Error in SetSWC: index not in grid");
}
}

double Getpropavailablewater(int irow, int jcol) //A function that allows you =
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to get the soil water content

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].propavailablewater;
}
else
{
throw std::logic_error("Error in Getpropavailablewater: index not in
grid");
}
}

double GetEarlySumVWC(int irow, int jcol) //A function that allows you to get
the soil water content

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].EarlySumVWC;
}
else
{
throw std::logic_error("Error in GetEarlySumVWC: index not in grid");
}
}

double GetWD(int irow, int jcol) //A function that allows you to get the soil
water content

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].WaterDeficit;
}
else
{
throw std::logic_error("Error in GetWD: index not in grid");
}
}

double GetPH(int irow, int jcol) //A function that allows you to get the pH

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))

{
return MainGrid[irow][jcol].pH;
}
else
{
throw std::logic_error("Error in GetPH: index not in grid");
}

}

double GetOC(int irow, int jcol) //A function that allows you to get the
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organic carbon

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].0C;
}
else
{
throw std::logic_error("Error in GetOC: index not in grid");
}
}

int GetNumRows() //A function that allows you to get the number of rows
{

}

return Nrows;

int GetNumCols() //A function that allows you to get the number of columns
{

}

return Ncols;

double GetCell() //A function that allows you to get the cell size
{

}

return Cell;

double GetCultWidth() //A function that allows you to get the cultivator widthe

{
return CultWidth;

}
double GetSoilDepth(int irow, int jcol) //A function that allows you to get the=
soil depth
{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].SoilDepth;
}
else
{
throw std::logic_error("Error in GetSoilDepth: index not in grid");
}
}
double GetSlope(int irow, int jcol) //A function that allows you to get the ?
soil depth
{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].Slope;
}
else
{

throw std::logic_error("Error in GetSlope: index not in grid");

}
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}

double GetAspect(int irow, int jcol) //A function that allows you to get the =

soil depth
{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].Aspect;
}
else
{
throw std::logic_error("Error in GetAspect: index not in grid");
}

}

double GetSolarScale(int irow, int jcol) //A function that allows you to get =
the soil depth

{
if ((irow<Nrows)&(irow>-1)&(jcol<Ncols)&(jcol>-1))
{
return MainGrid[irow][jcol].SolarScale;
}
else
{
throw std::logic_error("Error in GetSolarScale: index not in grid");
}
}

[ ] FHFFAE A A A AR AR KA KA AR AR KA KKK AK A KA A AR HA KA KA KK\ |

void ClearTempWeeds() //A function to clear the vlaues from TempWeeds

{

for (int icount = ©; icount<Nrows; icount++)

{
for (int jcount = ©; jcount<Ncols; jcount++)
{
MainGrid[icount][jcount].TempSeeds=0;
}
}

}

void SetTempWeed(int irow, int jcol, double NewNum) //A function to set the =
vlaues from TempWeeds

{
if ((irow>-1) && (irow<Grid::GetNumRows()) && (jcol>-1) && (jcol < ?
Grid: :GetNumCols()))
{
MainGrid[irow][jcol].TempSeeds = NewNum;

}

else

{

throw std::logic_error("index out of bounds");

}
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}
double GetTempWeed(int irow, int jcol) //A function to get the vlaues from ?
TempWeeds
{
if ((irow>-1) && (irow<Grid::GetNumRows()) && (jcol>-1) && ?
(jcol<Grid: :GetNumCols()))
return MainGrid[irow][jcol].TempSeeds;
else
throw std::logic_error("index out of bounds");
}

void SetDropSeeds(int irow, int jcol, double dropSeeds) //A function to set the?
vlaues in DropSeeds

{
if ((irow>-1) && (irow<Grid::GetNumRows()) && (jcol>-1) && ?
(jcol<Grid: :GetNumCols()))
MainGrid[irow][jcol].DroppedSeeds = dropSeeds;
else
throw std::logic_error("index out of bounds");
}
double GetDropSeeds(int irow, int jcol) //A function to get the vlaues in ?
DropSeeds
{
if ((irow>-1) && (irow<Grid::GetNumRows()) && (jcol>-1) && ?
(jcol<Grid: :GetNumCols()))
return MainGrid[irow][jcol].DroppedSeeds;
else
throw std::logic_error("index out of bounds");
}
void SetPlants(int irow, int jcol, double Plants) //A function to set the ?
vlaues in Plants
{
if ((irow>-1) && (irow<Grid::GetNumRows()) && (jcol>-1) && ?
(jcol<Grid: :GetNumCols()))
MainGrid[irow][jcol].Plants = Plants;
else
throw std::logic_error("index out of bounds");
}

double GetPlants(int irow, int jcol) //A function to get the vlaues in Plants
{
if ((irow>-1) && (irow<Grid::GetNumRows()) && (jcol>-1) && ?
(jcol<Grid: :GetNumCols()))
return MainGrid[irow][jcol].Plants;
else
throw std::logic_error("index out of bounds");

}

void SetSeedlings(int irow, int jcol, double Seedlings) //A function to set the=
vlaues in Plants

{
if ((irow>-1) && (irow<Grid::GetNumRows()) && (jcol>-1) && ?



X:\C++Code\Helen\HMThesis\Weeds_2\LandGrid.cpp 13
(jcol<Grid: :GetNumCols()))
MainGrid[irow][jcol].Seedlings = Seedlings;
else
throw std::logic_error("index out of bounds");

}
double GetSeedlings(int irow, int jcol) //A function to get the vlaues in ?
Plants
{
if ((irow > -1) && (irow<Grid::GetNumRows()) && (jcol>-1) && (jcol < ?
Grid::GetNumCols()))
return MainGrid[irow][jcol].Seedlings;
else
throw std::logic_error("index out of bounds");
}
void SetHeads(int irow, int jcol, double Heads) //A function to set the vlaues =@
in Plants
{
if ((irow>-1) && (irow<Grid::GetNumRows()) && (jcol>-1) && ?
(jcol<Grid: :GetNumCols()))
MainGrid[irow][jcol].Heads = Heads;
else
throw std::logic_error("index out of bounds");
}

double GetHeads(int irow, int jcol) //A function to get the vlaues in Plants
{
if ((irow > -1) &% (irow<Grid::GetNumRows()) && (jcol>-1) && (jcol < ?
Grid::GetNumCols()))
return MainGrid[irow][jcol].Heads;
else
throw std::logic_error("index out of bounds");

}

[ ] FFFFAEAAAAAAAA KA A KA KA KA AR AR KA K AR HAK A KA AR KA KR K A H A KK\ |

//Use this for now - a basic set up for a uniform grid
void InitialiseGrid() //A function with a basic set up for the grid
{

char path_buffer[_MAX_PATH];

char Npath_buffer[_MAX_PATH];

_getcwd(path_buffer, _MAX_PATH);

strcpy_s(Npath_buffer, path_buffer);

strcat_s(Npath_buffer, "\\OutFiles");

int dirMade = _mkdir(Npath_buffer);

for (int icount=0; icount<Grid::GetNumRows(); icount++)

{

for (int jcount = @; jcount < Grid::GetNumCols(); jcount++)
{
//Set the seeds
double mySeeds[2] = {2000, 8000};
int mycol = Grid::GetNumCols() / 2; //define the centre square
int myrow = Grid::GetNumRows() / 2;
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if (icount > myrow - 5 &% icount<myrow + 5 & jcount>mycol - 5 && =@
jcount < mycol + 5)

{
mySeeds[@] = 2000;
mySeeds[1] = 8000;
}
SetNewSeeds(icount, jcount, mySeeds); //set the new seeds as ?

described above
SetOldSeeds(icount, jcount, mySeeds); //and the old seeds

SetLatitude(icount, jcount, 51.77); //51.77set latitude to a single=?
value everywhere

SetElevation(icount, jcount, 100); //set elevation to a single ?
value everywhere

//SetWeathSet(icount, jcount, 0);

//soil - define some standard values to be used for the whole field

double mypH = 6;

double myClay;

myClay = 23.4;

double mySilt;
mySilt = 36.6;

double myOC;
myoC = 4.7;

double mySWC;
mySWC = 25;

double myDepth = 100; //in mm

double myslope, myaspect;
if (icount==0 && jcount==0)

{
myslope = 0;
myaspect = 0,
}
if (icount == @ && jcount == 1)
{
myslope = 30;
myaspect = 45;
}
if (icount == 1 && jcount == 9)
{
myslope = 30;
myaspect = 180;
}
if (icount == 1 && jcount == 1)
{

myslope = 10;
myaspect = 275;
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}

//set these soil parameters for the whole grid

SetPH(icount, jcount, mypH);

SetClay(icount, jcount, myClay);

SetSilt(icount, jcount, mySilt);

SetSWC(icount, jcount, mySWC);

SetOC(icount, jcount, myOC);

SetSlope(icount, jcount, myslope); //set slope to a single value =@
everywhere

SetAspect(icount, jcount, myaspect); //set slope to a single value
everywhere

SetSoilDepth(icount, jcount, myDepth); //set the soil depth - LOOK =
INTO THIS MORE

}

//These functions can be worked on to read data files to set up variable soil =
across the grid
void InitialisePH(char MyPHData[])

! std::ifstream MyFile(MyPHData);
if (MyFile)
! for (int icount=0; icount<Grid::GetNumRows(); icount++)
! for (int jcount=0; jcount<Grid::GetNumCols(); jcount++)
{
if (!MyFile.eof())
{ double MyPH(@);
MyFile>>MyPH;
SetPH(icount, jcount, MyPH); //function to set PH
}
else
{
throw std::logic_error("PH Input file too short");
}
}
}
}
else
{
throw std::logic_error("Error opening PH file");
}
}
void InitialiseSoilDepth(char MySoilDepth[])
{

std::ifstream MyFile(MySoilDepth);
if (MyFile)
{
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int FGridRows, FGridCols; // first check that number of Rows and Cols =@
match our grid
char tempData[200];
MyFile.getline(tempData, 200);

MyFile>>FGridRows;
MyFile>>FGridCols;
if ((FGridRows==Grid::GetNumRows())&&(FGridCols==Grid: :GetNumCols()))

{
double* Mshall = new double[FGridRows*FGridCols];

int kcount=0;
for (int icount=0; icount<Grid::GetNumRows(); icount++)

{
for (int jcount=0; jcount<Grid::GetNumCols(); jcount++)
{
if (IMyFile.eof())
{
MyFile>>Mshall[kcount];
kcount++;
}
else
{
MyFile.close();
delete [] Mshall;
Mshall=NULL;
throw std::logic_error("Sow Input file too short");
}
}
}

MyFile.getline(tempData, 200);
MyFile.getline(tempData, 200);

MyFile.getline(tempData, 200);
kcount=0;
for (int icount=0; icount<Grid::GetNumRows(); icount++)

{

for (int jcount=0; jcount<Grid::GetNumCols(); jcount++)
{
double myDepth=Mshall[kcount];
SetSoilDepth(icount, jcount, myDepth);
kcount++;
}

}
delete [] Mshall;

Mshall=NULL;
else
MyFile.close();

throw std::logic_error("Number of rows and columns in file ?
incorrect");
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}
else
throw std::logic_error("Error opening SoilDepth file");
}
void InitialiseClay(char MyClay[])
{

std::ifstream MyFile(MyClay);
if (MyFile)
{
int FGridRows, FGridCols; // first check that number of Rows and Cols match=?
our grid
char tempData[200];
MyFile.getline(tempData, 200);

MyFile>>FGridRows;
MyFile>>FGridCols;
if ((FGridRows==Grid::GetNumRows())&&(FGridCols==Grid: :GetNumCols()))

{
double* Mshall = new double[FGridRows*FGridCols];

int kcount=0;
for (int icount=0; icount<Grid::GetNumRows(); icount++)

{
for (int jcount=0; jcount<Grid::GetNumCols(); jcount++)
{
if (!MyFile.eof())
{
MyFile>>Mshall[kcount];
kcount++;
}
else
{
MyFile.close();
delete [] Mshall;
Mshall=NULL;
throw std::logic_error("Sow Input file too short");
}
}
}

MyFile.getline(tempData, 200);
MyFile.getline(tempData, 200);
kcount=0;

kcount=0;
for (int icount=0; icount<Grid::GetNumRows(); icount++)

{

for (int jcount=0; jcount<Grid::GetNumCols(); jcount++)
{

double myDepth;

myDepth=Mshall[kcount];

SetClay(icount, jcount, myDepth);

kcount++;
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}

}
delete [] Mshall;

Mshall=NULL;

}
else
{
MyFile.close();
throw std::logic_error("Number of rows and columns in file ?
incorrect");
}
}
else

throw std::logic_error("Error opening Clay file");

void InitialiseSWC(char MySWC[])
{

std::ifstream MyFile(MySWC);
if (MyFile)
{
int FGridRows, FGridCols; // first check that number of Rows and Cols =
match our grid
char tempData[200];
MyFile.getline(tempData, 200);

MyFile >> FGridRows;
MyFile >> FGridCols;
if ((FGridRows == Grid::GetNumRows()) && (FGridCols == Grid::GetNumCols?

0))

double* Mshall = new double[FGridRows*FGridCols];

{

int kcount = 0;
for (int icount = @; icount<Grid::GetNumRows(); icount++)

{
for (int jcount = @; jcount<Grid::GetNumCols(); jcount++)
{
if (IMyFile.eof())
{
MyFile >> Mshall[kcount];
kcount++;
}
else
{
MyFile.close();
delete[] Mshall;
Mshall = NULL;
throw std::logic_error("Sow Input file too short");
}
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}

else

}

}

MyFile.getline(tempData, 200);
MyFile.getline(tempData, 200);
kcount = 0;

kcount = 0;
for (int icount = @; icount<Grid::GetNumRows(); icount++)

{

for (int jcount = ©; jcount<Grid::GetNumCols(); jcount++)

{
double myDepth;
myDepth = Mshall[kcount];
SetSWC(icount, jcount, myDepth);
kcount++;

}

}
delete[] Mshall;

Mshall = NULL;

}
else
{
MyFile.close();
throw std::logic_error("Number of rows and columns in file
incorrect");
}

throw std::logic_error("Error opening SWC file");

void InitialiseSilt(char MySilt[])

{
{

std::ifstream MyFile(MySilt);
if (MyFile)
{
int FGridRows, FGridCols; // first check that number of Rows and
Cols match our grid
char tempData[200];
MyFile.getline(tempData, 200);

MyFile >> FGridRows;

MyFile >> FGridCols;

if ((FGridRows == Grid::GetNumRows()) && (FGridCols ==
Grid: :GetNumCols()))

{
double* Mshall = new double[FGridRows*FGridCols];

int kcount = 0;
for (int icount = 0; icount<Grid::GetNumRows(); icount++)

{

for (int jcount = @; jcount<Grid::GetNumCols(); jcount++)

2
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{
if (!MyFile.eof())
{
MyFile >> Mshall[kcount];
kcount++;
}
else
{
MyFile.close();
delete[] Mshall;
Mshall = NULL;
throw std::logic_error("Sow Input file too short");
}
}

}

MyFile.getline(tempData, 200);
MyFile.getline(tempData, 200);
kcount = 0;

kcount = 0;
for (int icount = @; icount<Grid::GetNumRows(); icount++)

{
for (int jcount = @; jcount<Grid::GetNumCols(); jcount++)
{
double myDepth;
myDepth = Mshall[kcount];
SetSilt(icount, jcount, myDepth);
kcount++;
}
¥

delete[] Mshall;

Mshall = NULL;

}
else
{
MyFile.close();
throw std::logic_error("Number of rows and columns in file ?
incorrect");
}
}
else

throw std::logic_error("Error opening Silt file");

}

void InitialiseBulkD(char MyBulkD[])
{

void InitialiseOC(char MyOCData[])

{
{
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std::ifstream MyFile(MyOCData);
if (MyFile)
{

int FGridRows, FGridCols; // first check that number of Rows and ?
Cols match our grid

char tempData[200];

MyFile.getline(tempData, 200);

MyFile >> FGridRows;

MyFile >> FGridCols;

if ((FGridRows == Grid::GetNumRows()) && (FGridCols == ?
Grid: :GetNumCols()))

{
double* Mshall = new double[FGridRows*FGridCols];

int kcount = 0;
for (int icount = 0; icount<Grid::GetNumRows(); icount++)

{
for (int jcount = @; jcount<Grid::GetNumCols(); jcount++)
{
if (!MyFile.eof())
{
MyFile >> Mshall[kcount];
kcount++;
}
else
{
MyFile.close();
delete[] Mshall;
Mshall = NULL;
throw std::logic_error("OM Input file too short");
}
}
}

MyFile.getline(tempData, 200);
MyFile.getline(tempData, 200);
kcount = 0;

kcount = 0;
for (int icount = @; icount<Grid::GetNumRows(); icount++)

{
for (int jcount = @; jcount<Grid::GetNumCols(); jcount++)
{
double myDepth;
myDepth = Mshall[kcount];
SetOC(icount, jcount, myDepth);
kcount++;
}
¥

delete[] Mshall;

Mshall = NULL;
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else
{
MyFile.close();
throw std::logic_error("Number of rows and columns in file ?
incorrect");
}
}
else

throw std::logic_error("Error opening OC file");

}

void InitialiseEle(char MyEle[])
{
std::ifstream MyFile(MyEle);
if (MyFile)

{
int FGridRows, FGridCols; // first check that number of Rows and Cols =
match our grid
char tempData[200];
MyFile.getline(tempData, 200);
MyFile>>FGridRows;
MyFile>>FGridCols;
if ((FGridRows==Grid::GetNumRows())&&(FGridCols==Grid: :GetNumCols()))
{
for (int icount=0; icount<Grid::GetNumRows(); icount++)
{
for (int jcount=0; jcount<Grid::GetNumCols(); jcount++)
{
if (IMyFile.eof())
{
double MyEled(9);
MyFile>>MyEled;
SetElevation(icount, jcount, MyEled); //function to set?
elevation
}
else
{
throw std::logic_error("Elevation Input file too ?
short™);
}
}
}
}
else
{
MyFile.close();
throw std::logic_error("Number of rows and columns in file ?
incorrect");
}
}
else
{

throw std::logic_error("Error opening elevation file");
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}

}

void InitialiseSlope(char MySlope[])

{
{

std::ifstream MyFile(MySlope);
if (MyFile)
{
int FGridRows, FGridCols; // first check that number of Rows and ?
Cols match our grid
char tempData[200];
MyFile.getline(tempData, 200);

MyFile >> FGridRows;

MyFile >> FGridCols;

if ((FGridRows == Grid::GetNumRows()) && (FGridCols == ?
Grid: :GetNumCols()))

{
double* Mshall = new double[FGridRows*FGridCols];

int kcount = 0;
for (int icount = @; icount<Grid::GetNumRows(); icount++)

{
for (int jcount = @; jcount<Grid::GetNumCols(); jcount++)
{
if (!MyFile.eof())
{
MyFile >> Mshall[kcount];
kcount++;
}
else
{
MyFile.close();
delete[] Mshall;
Mshall = NULL;
throw std::logic_error("Slope Input file too ?
short");
}
}
}

MyFile.getline(tempData, 200);
MyFile.getline(tempData, 200);
kcount = 0;

kcount = 0;
for (int icount = 0; icount<Grid::GetNumRows(); icount++)

{

for (int jcount = @; jcount<Grid::GetNumCols(); jcount++)
{

double mySlope;

mySlope = Mshall[kcount];
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SetSlope(icount, jcount, mySlope);
kcount++;

}

}
delete[] Mshall;

Mshall = NULL;

}
else
{
MyFile.close();
throw std::logic_error("Number of rows and columns in file ?
incorrect");
}
}
else

throw std::logic_error("Error opening Slope file");

}

void InitialiseAspect(char MyAspect[])

{
{

std::ifstream MyFile(MyAspect);
if (MyFile)
{
int FGridRows, FGridCols; // first check that number of Rows and ?
Cols match our grid
char tempData[200];
MyFile.getline(tempData, 200);

MyFile >> FGridRows;

MyFile >> FGridCols;

if ((FGridRows == Grid::GetNumRows()) && (FGridCols == ?
Grid: :GetNumCols()))

{
double* Mshall = new double[FGridRows*FGridCols];

int kcount = 0;
for (int icount = 0; icount<Grid::GetNumRows(); icount++)

{

for (int jcount = @; jcount<Grid::GetNumCols(); jcount++)
{
if (!MyFile.eof())
{
MyFile >> Mshall[kcount];
kcount++;

}

else

{
MyFile.close();

delete[] Mshall;
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Mshall = NULL;

throw std::logic_error("Aspect Input file too

short");

}

}

}
MyFile.getline(tempData, 200);
MyFile.getline(tempData, 200);
kcount = 0;

kcount = 0;
for (int icount = ©; icount<Grid::GetNumRows(); icount++)

{
for (int jcount = @; jcount<Grid::GetNumCols(); jcount++)
{
double myAspect;
myAspect = Mshall[kcount];
SetAspect(icount, jcount, myAspect);
kcount++;
}
¥

delete[] Mshall;

Mshall = NULL;

}
else
{
MyFile.close();
throw std::logic_error("Number of rows and columns in file
incorrect");
}
}
else

throw std::logic_error("Error opening Aspect file");

}

}
} // End of namespace
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#include
#include
#include
#include
#tinclude
#include
#include
#tinclude
#include

#include
void grow

Earlysu
// grow e

"Grow.h"
"math.h"
"LandGrid.h"
"Water.h"
<fstream>
<iostream>
<direct.h>
<vector>
<random>

"d:\\Program Files (x86)\\NAG\\FL25\\f1d11254m1\\c_headers\\nagmk25.h"
early(int irow, int jcol, double& aPlants, int harvestday, double& ?

mVWC, int& Earlycountdays, double& Heads, int cultivationday)
arly is a function describing the life cycle of the blackgrass plant from =2

germination to the end of the calendar year.

// Inputs
// Output
accumul

{
//wat
doubl

are the field size, the dates for harvest and cultivation.
s are the number of plants in each cell and the amount of water ?
ated over this period

er saved in the grid is for harvestday
e myWater = Grid::GetSWC(irow, jcol);//get the value of water saved in the=

grid
initialwater(irow, jcol, myWater, harvestday, cultivationday);//move water ?
froward from harvest day to cultivation day
Grid::SetSWC(irow, jcol, myWater);//set SWC in the grid for start of ?
cultivation
double aold = 818; //% age of oldseeds
double MgOld = hydrothermaltime(irow, jcol, aold,cultivationday); //Mean ?
germination of old seeds determined by a function hydrothermal time in ?
Water.cpp
double anew = 60; //% age of newseeds
double MgNew = hydrothermaltime(irow, jcol, anew, cultivationday); //Mean ?
germination of new seeds determined by a function hydrothermal time in ?
Water.cpp
//// Germination
// The proportion of seeds which germinate in each square is determined by ?
randomly selecting numbers from the distributions defined above for old and =
new seeds in the surface layer of the soil.
// GermO is the proportion of old seeds germinating in each cell of the field

doubl
GermO
GermO

// Ge
doubl
GermN
GermN

// Th

e GermO = MgOld;
= fmax(@, GermO); // The proportion is limited to values between © and 1
fmin(1, GermO);

rmN is the proportion of old seeds germinating in each cell of the field
e GermN = MgNew;

= fmax(@, GermN); // The proportion is limited to values between © and 1
= fmin(1, GermN);

e number of plants that germinate is calculated by multiplying the seeds =

in the soil by the germination rates
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double myNewS[2], myOldS[2];
Grid::GetNewSeeds(irow, jcol, myNewS);
Grid::GetOldSeeds(irow, jcol, my0ldS);

aPlants = (GermO*myO0ldS[@] + GermN*myNewS[@]);

Grid::SetSeedlings(irow, jcol,aPlants);//The number of seedlings that germinate=
is saved to the grid - This can be compared to autumn seedling counts in the?
field

//// Herbicide Kill

//pre-em

// Herbicide kill acts on a binomial distribution with a probability of ?
survival being determined by organic matter. Results from Metcalfe et al 2017%
(dose response paper), with a curve fitted.

double x1 = 4.9;//parameters of the curve

double x2 3.8252;

double x3 -1.0890;

double myOm = Grid::GetOC(irow, jcol);//get the organic matter in each cell. ?
This is used in the calculation of herbicide efficacy

double bino = x1*myOm / (1 + x2*myOm) + x3;//bino is the proportion of ?
seedlings surviving pre-emergence herbicide

std::default_random_engine generator;//set up a binomial distribution generator
std::binomial distribution<int> distribution(aPlants, bino);

aPlants = distribution(generator); // Calculate the number of plants remaining =
after pre-em herbicide application.

double postem = ©0.3; //survival from post em (independent of soil propoerties) =
- given on Bayer website

std::default_random_engine generator2; //set up binomial distributon

std::binomial distribution<int> distribution2(aPlants, postem);

aPlants = distribution2(generator2); // Calculate the number of plants ?
remaining after post-em herbicide application.

//// Seed Production

// The numebr of heads per plant is density dependent, the numebr of seeds per =
head is calculated from a lognormal distribution and the number of seeds taht=?
are viable is stochastically generated from a normal distribution. Seed ?
losses are also accounted for using a lognormal distribution

// Moss (1990) describes a density dependent relationship between the number of=
plants and head production. Parameters were more recently updated with more =2

data
//double B = 8.71; //updated parameters from Integrated Management of Herbicide?
Resistance By S.R.Mossl, L.V.Tatnell2, R.Hulll, J.H.Clarke2, S.Wynn2 & ?

R.Marshalll.

//double a = 0.005741;

//parameters for curve based on soil . Calculated for data from Metcalfe et al =
(life cycle chapter)

x1 = 844.4883;

X2 = 6.9542;

X3 = -106.7242;

double asy = 8.71 / 0.005741;//the asympotote remains the same as in the ?

original work
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// Calculate number of heads in each grid cell using a density dependent ?
function
double myslope = x1*myOm / (1 + x2*myOm) + X3;
double a = myslope / (asy - myslope);
double B = asy*a;
Heads = B*aPlants / (1 + a*aPlants);
//The yield of the black-grass plant will also respond to water stress ?
accumulated from germination to flowering
double yearend = 364;
myWater = Grid::GetSWC(irow, jcol);
averageVWC(irow, jcol, myWater, cultivationday, yearend, EarlysumVWC, ?
Earlycountdays);//accumulate available water for this part of the year
Grid: :SetEarlySumVWC(irow, jcol, EarlysumVWC);
Grid::SetSWC(irow, jcol, myWater);//Set soil water for the year end
}
void growlate(int irow, int jcol, double& dropSeeds, double& aPlants, int ?

Earlycountdays, double Heads, int& harvestday, int flowerday, double LatesumVWC,#

int Latecountdays)

// grow late continues the life-cycle from the endpoint of grow early. Now we have @

the next years weather data. It runs from the start of the calendar year to
harvest.

// Inputs are the field size, the dates for harvest and flowering.

// Outputs are the number of plants in each cell and the amount of water
accumulated over this period

{

double yearstart = 0;

double myWater = Grid::GetSWC(irow, jcol); //Get water for yearstart
averageVWC(irow, jcol, myWater, yearstart, flowerday, LatesumVWC,

Latecountdays);//accumulate available water from the year start to flowering

Grid::SetSWC(irow, jcol, myWater);//Set soil water for flowerday

double EarlySumVWC = Grid::GetEarlySumVWC(irow, jcol);

double avgVWC = (EarlySumVWC + LatesumVWC) / (Earlycountdays +
Latecountdays);//This is the average VWC from germination to flowering

//compare this to field capacity and wilting point for that cell

double myw50, mywl5000;

double mbar = 50;

vanGenuchten2(irow, jcol, mbar, myw50); //calculate water content needed for
mbar=50 (field capacity)

mbar = 15000;

»°

»°

»°

vanGenuchten2(irow, jcol, mbar, mywl5000); //calculate water content needed for?

mbar=1500 (wilting point)

double propavailwater = (avgVWC - mywl5000) / (myw50 - mywl5000);//calculate
the proportion of available water experienced by the plant

Grid::Setpropavailablewater(irow, jcol, propavailwater);

double transp =1 / (1 + 6.88*exp(-4.61*propavailwater));//Proportion of
potentail transpiration for BG from Storkey and Cussans 2007

Heads = Heads*transp;//Number of heads is reduced by a proportion that is
related to water stress

»°

»°

»°

Grid: :SetHeads(irow, jcol,Heads);//Set the number of heads to the grid - - This=?
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can be compared to summer head counts in the field

1/ K
****************************************************************************/?
/

// pSeeds is the number of seeds produced per head. Using the mean and 95% ?

confidence intervals (given as range) in Moss(1990) a lognormal distribution =@
is used to describe the germination rates.

double Mpseeds = 4.5779; // mean of lognormal for pSeeds

double Spseeds = 0.2337; // st dev of lognormal for pSeeds

// Calculate the number of seeds per head by taking numbers from a normal
// distribution

double Mu = Mpseeds; // mean of the normal distribution

double Var = Spseeds*Spseeds; //variance of the normal distribution

//This sets up the nag functions to calculate the selection of a random number =2
from a normal distrivution

int const LR = 1;

double R[LR];

double X[1];

int ifail = 1;

int const genid(1);

int const subid(9);

int lstate(17);

int* state; //when we declare 'state' we dont say how long it will be so we ?
need to delete it after we have used it

state = new int[lstate]; //here we declare state again so must delete it again

ifail = 1;

GO5KGF (genid, subid, state, lstate, ifail); //this is a non-repeatable seed

if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5KGF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}
int N = 1; // number of numbers to generate
GO5SKF(N, Mu, Var, state, X, ifail);//Take the number of seeds from the ?
distribution
if (ifail != @)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GO5SKF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

double SeedHeads = X[0];

SeedHeads = exp(SeedHeads); //because it is a lognormal distribution

SeedHeads = fmax(@, SeedHeads); // The number of seeds per head is limited to a@?
minimum of ©

double TotalSeeds = Heads * SeedHeads; // The total number of seeds in the ?
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cell is calculated

// vSeeds is the proportion of seeds that are viable. Using the mean and 95% =
confidence intervals (given as range) in Moss(1990) a normal distribution is =@
used to describe the germination rates.

double Mvseeds = 0.55; // mean of normal for vSeeds

double Svseeds = 0.126; //% st dev of normal for vSeeds

Mu = Mvseeds; // mean of the normal distribution
Var = Svseeds*Svseeds; //variance of the normal distribution

GO5SKF(N, Mu, Var, state, X, ifail);
if (ifail != 0)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5SKF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

double Via = X[@];//Via is the seed viability proportion

Via = fmax(@, Via); // The proportion is limited to values between © and 1

Via = fmin(1, Via);

double viableSeeds = TotalSeeds * Via; // The number of viable seeds in the ?
cell is calculated by multiplying the number of seeds by the viability ?
proportion.

// sSeeds is the proportion of seeds remaining after losses. Using the mean and=?
95% confidence intervals (given as range) in Moss(1990) a lognormal ?
distribution is used to describe the germination rates.

double Msseeds = -0.8070; // mean of lognormal for sSeeds

double Ssseeds = 0.1303; // st dev of lognormal for vSeeds

Mu = Msseeds; // mean of the lognormal distribution

Var = Ssseeds*Ssseeds; //variance of the lognormal distribution
GO5SKF(N, Mu, Var, state, X, ifail);

if (ifail != 0)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5SKF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}
double Surv = X[@]; // Seed losses are calculated by selecting a survival % ?

from a lognormal
// distribution

Surv = exp(Surv);
Surv = fmax(@, Surv);// The proportion is limited to values between © and 1
Surv = fmin(1, Surv);

dropSeeds = Surv * viableSeeds; // The number of seeds that are dropped by the =
plant and survive is calculated by multiplying the numebr of viable seeds by @
the survival proportion
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//Calculate water deficit from flowering to harvest - used in germiantion next =
season
double mydeficit = 0;

myWater = Grid::GetSWC(irow, jcol); //get the water stored in the grid for ?
flowerday

waterdeficit(irow, jcol, myWater, flowerday, harvestday, mydeficit);//calculate=
the water deficit from flowering to harvest (this is needed in the ?

germination calculations)

Grid::SetWD(irow, jcol, mydeficit);//set water deficit to the grid for season =
prior to model start

Grid::SetSWC(irow, jcol, myWater);//set soil water content at harvest to the =
grid

Grid::SetDropSeeds(irow, jcol, dropSeeds); //set the number of seeds dropped
Grid::SetPlants(irow, jcol, aPlants); //set the number of mature plants

void Disp(std::vector<double>& proportions)//The Disp function uses the proportions=
found in natDisp and allocates seeds to their new grid squares

{
Grid::ClearTempWeeds();
for (int icount = ©; icount<Grid::GetNumRows(); icount++) //go through each ?
grid cell in turn
{
for (int jcount = @; jcount<Grid::GetNumCols(); jcount++)
{
int numSeeds = int(round(Grid::GetDropSeeds(icount, jcount))); //get =
the number of Dropped seeds from plants in this cell
Distribute2(icount, jcount, proportions, numSeeds); //distribute those =
seeds using function Distribute2 in Grow.cpp. These are now in ?
TempWeeds
}
}
}
void Distribute2(int irow, int jcol, std::vector<double>& proportions, int ?
numseeds)//This function distributes the seeds according to binomial with ?
parameter gamma and nu
{
if (numseeds == @) //if there are no seeds don't worry
{
return;
}
else
{

double P_Sum = @; // to keep track of probability used so that we readjust
int numSum = 0;

int NRows = Grid::GetNumRows();

int NCols = Grid::GetNumCols();

int Len = proportions.size();
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//central point

double NewV(0);

int N 1;
int M = numseeds;

//The probability of landing in cell irow, jcol
double P = proportions[0];

/7 K
*************************************************************************?
//This sets up the nag functions to calculate the binomial outcome from ?

numseeds events and P prob

int const LR = 1;

double R[LR];

int X[1];

int ifail = 1;

int MODE = 3;

int const genid(1);

int const subid(9);

int lstate(17);

int* state; //when we declare 'state' we dont say how long it will be so we?
need to delete it after we have used it

state = new int[lstate];

ifail = 1;

GO5KGF (genid, subid, state, lstate, ifail);

if (ifail != 0)

{

char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5KGF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}
GOSTAF(MODE, N, M, P, R, LR, state, X, ifail); //The number of seeds that =
fall is X
if (ifail != @)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAFF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

// ®
ok ok ok ko ok ok ok ok ok ok Kok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok kR kok ko
*//
//From a crop competition model by AE Milne//
P_Sum = P_Sum + proportions[@];
M=M- X[0];

//Add into temporary weed structure
NewV = Grid::GetTempWeed(irow, jcol) + X[@]; //The weeds that were in ?
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centre cell + new dropped seeds
Grid::SetTempWeed(irow, jcol, NewV);
numSum = numSum + X[@]; //number of seeds that have droped so far

int sideCount(2);
int LenCount(3);
while (Len>LenCount - 1) //next square%
{
//sides
int nrow = irow;
int ncol = jcol + sideCount - 1;
Reflect(nrow, ncol); //reflects seeds back into the field

if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount]) / (1 - P_Sum);
}
else
{
P=1;
}
if (P>1)
P=1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

}
P_Sum = P_Sum + proportions[LenCount - sideCount];
M=M- X[0];

if (X[0] > @)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid: :SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[0];

}

nrow = irow;
ncol = jcol - sideCount + 1;
Reflect(nrow, ncol);

if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount]) / (1 - P_Sum);
}
else
{
P =1;
}
if (P>1)

P=1;
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GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

}
P_Sum = P_Sum + proportions[LenCount - sideCount];
M=M- X[0];

if (X[0] > @)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid::SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[0];
}

nrow = irow + sideCount - 1;
ncol = jcol;
Reflect(nrow, ncol);

if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount]) / (1 - P_Sum);
}
else
{
P =1;
}
if (P>1)
P =1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

}
P_Sum = P_Sum + proportions[LenCount - sideCount];
M=M- X[0];

if (X[0] > @)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid::SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[0];
}

nrow = irow - sideCount + 1;
ncol = jcol;
Reflect(nrow, ncol);
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if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount]) / (1 - P_Sum);
}
else
{
P=1;
}
if (P>1)
P=1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

}
P_Sum = P_Sum + proportions[LenCount - sideCount];
M=M- X[0];

if (X[e] > @)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid::SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[O];

}

//corners

nrow = irow + sideCount - 1;
ncol = jcol + sideCount - 1;
Reflect(nrow, ncol);

if (P_Sum < 1)

{
P = (proportions[LenCount - 1]) / (1 - P_Sum);
}
else
{
P =1;
}
if (P>1)
P =1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
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}
P_Sum = P_Sum + proportions[LenCount - 17;
M=M- X[0];
if (X[e] > @)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid: :SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[0];
}

nrow = irow + sideCount - 1;
ncol = jcol - sideCount + 1;
Reflect(nrow, ncol);

if (X[0] > ©)

{
if (P_Sum < 1)
{
P = (proportions[LenCount - 1]) / (1 - P_Sum);
}
else
{
P =1;
}
}
if (P>1)
P =1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

P_Sum = P_Sum + proportions[LenCount - 17;
M=M- X[0];
if (X[e] > @)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid::SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[0];
}

nrow = irow - sideCount + 1;
ncol = jcol + sideCount - 1;
Reflect(nrow, ncol);

if (P_Sum < 1)
{
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P = (proportions[LenCount - 1]) / (1 - P_Sum);

}
else
{
P=1;
}
if (P>1)
P=1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != @)

{

n
n

char myText[10];

_itoa_s(ifail, myText, 10);

char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);

throw std::logic_error(myBigText);

Sum = P_Sum + proportions[LenCount - 1];
=M - X[e];
X

NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid::SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[0];

row = irow - sideCount + 1;
col = jcol - sideCount + 1;

Reflect(nrow, ncol);

i

i

G
i

{

=2 U

R

f (P_Sum < 1)
P = (proportions[LenCount - 1]) / (1 - P_Sum);
1se
P =1;
f (P>1)
P =1;
@5TAF(MODE, N, M, P, R, LR, state, X, ifail);

f (ifail != @)

char myText[10];

_itoa_s(ifail, myText, 10);

char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);

throw std::logic_error(myBigText);

_Sum = P_Sum + proportions[LenCount - 1];
= M - x[el;
f (X[e] > 0)
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NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid::SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[0];

}

//diagonalsides
int Mid = sideCount - 2;

for (int Mcount = ©; Mcount<Mid; Mcount++)

{

nrow = irow + Mcount + 1;
ncol = jcol + sideCount - 1;
Reflect(nrow, ncol);

if (P_Sum < 1)

{ P = (proportions[LenCount - sideCount + Mcount + 1]) / (1 - ?
P_Sum);

}

else

{
P=1;

}

if (P>1)
P =1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

P_Sum = P_Sum + proportions[LenCount - sideCount + Mcount + 1];
M=M- X[0];
if (X[e] > o)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid: :SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[O];
}

nrow = irow - Mcount - 1;
ncol = jcol + sideCount - 1;
Reflect(nrow, ncol);

if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount + Mcount + 1]) / (1 - ?
P_Sum);
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else
{
P=1;
}
if (P>1)
P=1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

P_Sum = P_Sum + proportions[LenCount - sideCount + Mcount + 1];
M=M- X[0];
if (X[e] > o)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid: :SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[O];
}

nrow = irow + Mcount + 1;
ncol = jcol - sideCount + 1;
Reflect(nrow, ncol);

if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount + Mcount + 1]) / (1 - ?
P_Sum);
}
else
{
P =1;
}
if (P>1)
P =1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

P_Sum = P_Sum + proportions[LenCount - sideCount + Mcount + 1];
M=M- X[0];
if (X[e] > o)



X:\C++Code\Helen\HMThesis\Weeds_2\Grow.cpp 15

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid::SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[O];
}

nrow = irow - Mcount - 1;
ncol = jcol - sideCount + 1;
Reflect(nrow, ncol);

if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount + Mcount + 1]) / (1 - ?
P_Sum);
}
else
{
P=1;
}
if (P>1)
P =1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

P_Sum = P_Sum + proportions[LenCount - sideCount + Mcount + 1];
M=M- X[0];
if (X[e] > o)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid: :SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[O];
}
/117
nrow = irow + sideCount - 1;
ncol = jcol + Mcount + 1;

Reflect(nrow, ncol);

if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount + Mcount + 1]) / (1 - ?
P_Sum);

}

else

{
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P=1;

}

if (P>1)
P=1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

P_Sum = P_Sum + proportions[LenCount - sideCount + Mcount + 1];
M=M- X[0];
if (X[e] > o)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid: :SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[O];
}

nrow = irow + sideCount - 1;
ncol = jcol - Mcount - 1;
Reflect(nrow, ncol);

if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount + Mcount + 1]) / (1 - ?
P_Sum);
}
else
{
P =1;
}
if (P>1)
P =1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

}
P_Sum = P_Sum + proportions[LenCount - sideCount + Mcount + 1];
M=M- X[0];

if (x[e] > @)
{
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NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid::SetTempWeed(nrow, ncol, NewV);

numSum = numSum + X[O];

}
nrow = irow - sideCount + 1;
ncol = jcol + Mcount + 1;

Reflect(nrow, ncol);

if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount + Mcount + 1]) / (1 - ?
P_Sum);
}
else
{
P=1;
}
if (P>1)
P =1;

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != @)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

P_Sum = P_Sum + proportions[LenCount - sideCount + Mcount + 1];
M=M- X[0];
if (X[e] > @)

{
NewV = Grid::GetTempWeed(nrow, ncol) + X[0];
Grid: :SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[O];
}
nrow = irow - sideCount + 1;
ncol = jcol - Mcount - 1;

Reflect(nrow, ncol);

if (P_Sum < 1)

{
P = (proportions[LenCount - sideCount + Mcount + 1]) / (1 - ?
P_Sum);

}

else

{
P =1;

}
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P=1;
GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != 9)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}
P_Sum = P_Sum + proportions[LenCount - sideCount + Mcount + 1];
M=M- X[0];
if (X[e] > 0)
{
NewV = Grid::GetTempWeed(nrow, ncol) + X[O];
Grid::SetTempWeed(nrow, ncol, NewV);
numSum = numSum + X[0];
}
}
sideCount++; //these keep track of where you are on square
LenCount = LenCount + sideCount;
}
delete[] state;
state = NULL;
if (numSum < numseeds)
{
NewV = Grid::GetTempWeed(irow, jcol) + numseeds - numSum;
Grid::SetTempWeed(irow, jcol, NewV);
}
}
}
void natDisp(std::vector<double>& Type, double& extra, double mu, double sigma) ?
//This is a function that reads in the information about the natural dispersal ?
parameters and integrates cells under the curve to determine the proportion of =2
seeds which will be dispersed into different cell types.
//Outputs are a list of proportions to move to each cell type and the remainng ?

proportion that is not currently allocated to any cell type

{
int idist
int jdist

9;
9;

Type.push_back(Integrate(idist, jdist, mu, sigma)); //position ©
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Type.push_back(Integrate(®, 1, mu, sigma)); //position 1
Type.push_back(Integrate(1, 1, mu, sigma)); //position 2

//Test to see how much of the population is in this inner square
double popT = Type[@] + 4 * Type[l] + 4 * Type[2];

//if (popT<0.99) //keep calculating

int Mcount = 3;

while (popT<0.999)

{
for (int icount = @; icount<Mcount; icount++)
{
double Ival = Integrate(icount, Mcount - 1, mu, sigma);
Type.push_back(Ival);
if ((icount>0) && (icount < Mcount - 1))
{
popT = popT + 8 * Ival;
if (popT > 1)
{
double rem = popT - 1;
int len = Type.size();
Type[len - 1] = Type[len - 1] - rem / 8;
popT = 1;
}
}
else
{
popT = popT + 4 * Ival;
if (popT > 1)
{
double rem = popT - 1;
int len = Type.size();
Type[len - 1] = Type[len - 1] - rem / 4;
popT = 1;
}
}
}
Mcount++;
}

//put remained in extra
extra = 1.0 - popT;

double Integrate(int idist, int jdist, double mu, double sigma)
{

//This function integrates the dispersal distributions over each cell.
//inputs are the mean and stdev of the distribution

//By AE Milne

double gridLen = Grid::GetCell(); // get the size of a grid cell

Grid::SetIntVars(mu, sigma);
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double x1b[2], xub[2];

x1b[@] = (idist - @.5)*gridLen;
x1b[1] (jdist - @.5)*gridLen;
xub[0] (idist + @.5)*gridLen;
xub[1] (jdist + @.5)*gridLen;

double ABSACC
double RELACC

"
(]

.0;
. 0000001 ;

1}
(]

int NDIM(2);

int NumFunc(1);

int MaxCals(18000000);
int MinCals(10);

const int LENWRK = 500;
double WRKSTR[LENWRK];
int IFAIL = 1;

double ANS[1];

double ABSET[1];

DO1EAF (NDIM, x1lb, xub, MinCals, MaxCals, NumFunc, fFunc2, ABSACC, RELACC, @
LENWRK, WRKSTR, ANS, ABSET, IFAIL);

if (ANS[@]«@)

throw std::logic_error("Error in integration");
if (IFAIL !'= @)

int junk = ©;

return ANS[O];

}
extern "C" void _ stdcall fFunc2(const int& NDIM, const double x[], const int& ?
NumFunc, double funcY[])
{
//Rotated Gaussian function from Paice et al 1998 predicts the distribution
// of seeds released from plants in the starting cell
double mu, sigma;
Grid: :GetIntVars(mu, sigma);
int IFAIL = 1;
double func(@);
double 00twoPi = 1.0 / (2.0*3.141572);
func = 00twoPi/(sigma*sigma)*exp(-0.5*(((x[@] - mu) / sigma)*((x[@] - mu) / ?
sigma) + ((x[1] - mu) / sigma)*((x[1] - mu) / sigma)));
funcY[@] = func;
}

void Reflect(int& nrow, int& ncol)//put seeds back into field if they are dispersed=?

{

outsode of the field boundary

int NRows = Grid::GetNumRows();
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int NCols = Grid::GetNumCols();

while ((nrow>NRows - 1) || (nrow<@))
{
if (nrow<®)
{
nrow = -1 - nrow;
}
else if (nrow>NRows - 1)
{
nrow = 2 * NRows - 1 - nrow;
}
}
while ((ncol>NCols - 1) || (ncol<@))
{
if (ncol<@)
{
ncol = -1 - ncol;
}
else if
(ncol>NCols - 1)
{
ncol = 2 * NCols - 1 - ncol;
}
}

void WritePlants(int iyr)//create a text file in outputs with the numebr of plants =

{

in the given year

char path_buffer[_MAX_PATH];

char Npath_buffer[_MAX_PATH];
_getcwd(path_buffer, _MAX_PATH);
strcpy_s(Npath_buffer, path_buffer);

char Crop[50];

int n = sprintf_s(Crop, 50, "\\OutFiles\\Plants%d.txt", iyr);
strcat_s(Npath_buffer, Crop);

std::ofstream OutF(Npath_buffer);

if (OutF)
{
for (int jcount = @; jcount<Grid::GetNumRows(); jcount++)
{
for (int icount = 0; icount<Grid::GetNumCols(); icount++)
{
OutF << Grid::GetPlants(jcount, icount) << "\t'; //'\t' is a tab
between numbers
}
OutF << '\n'; //'\t' is a line return
}
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else
throw std::logic_error("Error in write plants");
}
void WriteSWC(int iyr)//create a text file in outputs with the SWC in the given ?
year
{
char path_buffer[_MAX_PATH];
char Npath_buffer[_MAX_PATH];
_getcwd(path_buffer, _MAX_PATH);
strcpy_s(Npath_buffer, path_buffer);
char Crop[50];
int n = sprintf_s(Crop, 50, "\\OutFiles\\SWC%d.txt", iyr);
strcat_s(Npath_buffer, Crop);
std::ofstream OutF(Npath_buffer);
if (OutF)
{
for (int jcount = @; jcount<Grid::GetNumRows(); jcount++)
{
for (int icount = @; icount<Grid::GetNumCols(); icount++)
{
OutF << Grid::GetSWC(jcount, icount) << "\t'; //'\t' is a tab ?
between numbers
}
OutF << '\n'; //'\t' is a line return
}
}
else
throw std::logic_error("Error in write plants");
}
void Writepropavailablewater(int iyr)//create a text file in outputs with the ?

{

proportion of available water in the given year

char path_buffer[_MAX_PATH];

char Npath_buffer[_MAX_PATH];
_getcwd(path_buffer, _MAX_PATH);
strcpy_s(Npath_buffer, path_buffer);

char Crop[50];

int n = sprintf_s(Crop, 50, "\\OutFiles\\propavailablewater%d.txt", iyr);
strcat_s(Npath_buffer, Crop);

std::ofstream OutF(Npath_buffer);

if (OutF)
{

for (int jcount = @; jcount<Grid::GetNumRows(); jcount++)

{
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for (int icount = ©; icount<Grid::GetNumCols(); icount++)

{
OutF << Grid::Getpropavailablewater(jcount, icount) << "\t'; //"\t'=
is a tab between numbers
}
OutF << '\n'; //'\t' is a line return
}
}
else
throw std::logic_error("Error in write propavailablewater");
}
void WriteSeedlings(int iyr)//create a text file in outputs with the number of ?
seedlings in the given year
{
char path_buffer[_MAX_PATH];
char Npath_buffer[_ MAX_PATH];
_getcwd(path_buffer, _MAX_PATH);
strcpy_s(Npath_buffer, path_buffer);
char Crop[50];
int n = sprintf_s(Crop, 50, "\\OutFiles\\Seedlings%d.txt", iyr);
strcat_s(Npath_buffer, Crop);
std::ofstream OutF(Npath_buffer);
if (OutF)
{
for (int jcount = @; jcount<Grid::GetNumRows(); jcount++)
{
for (int icount = @; icount<Grid::GetNumCols(); icount++)
{
OutF << Grid::GetSeedlings(jcount, icount) << "\t'; //'\t' is a tabw=
between numbers
}
OutF << '\n'; //'\t' is a line return
}
}
else
throw std::logic_error("Error in write seedlings");
}

void WriteHeads(int iyr)//create a text file in outputs with the number of heads in=?
the given year
{
char path_buffer[_MAX_PATH];
char Npath_buffer[_ MAX_PATH];
_getcwd(path_buffer, _MAX_PATH);
strcpy_s(Npath_buffer, path_buffer);

char Crop[50];

int n = sprintf_s(Crop, 50, "\\OutFiles\\Heads%d.txt", iyr);
strcat_s(Npath_buffer, Crop);

std::ofstream OutF(Npath_buffer);
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if (OutF)
{
for (int jcount = @; jcount<Grid::GetNumRows(); jcount++)
{
for (int icount = ©; icount<Grid::GetNumCols(); icount++)
{
OutF << Grid::GetHeads(jcount, icount) << "\t'; //'\t' is a tab ?
between numbers
}
OutF << '\n'; //'\t' is a line return
}
}
else
throw std::logic_error("Error in write heads");
}
void soilMove(int iYear, int cult)
{
// soilMove is a function that relocates seeds within the seed bank to ?
different depths according to the cultivation method in use.
// Inputs are the number of old and new seeds currently at both depths in the =

soil, the dispersed seeds from the current year,
// the cultivation type, the field size and the year.
// Outputs are the number of old and new seeds currently at both depths in the @
soil.

//This sets up the nag functions to calculate the selection of a random number =2
from a normal distrivution

int const LR = 1;

double R[LR];

double X[1];

int ifail = 1;

int const genid(1);

int const subid(9);

int lstate(17);

int* state; //when we declare 'state' we dont say how long it will be so we
need to delete it after we have used it

state
ifail

new int[lstate]; //here we declare state again so must delete it again
1;

GO5KGF (genid, subid, state, lstate, ifail); //this is a non-repeatable seed
if (ifail != @)

{

}

char myText[10];

_itoa_s(ifail, myText, 10);

char myBigText[50] = " Error in Nag GO5KGF ";
strcat_s(myBigText, myText);

throw std::logic_error(myBigText);

int N = 1; // number of numbers to generate

[ ] FHFFA A A A A AR A A KA KA KA KA KA KA KA HAK A AR AA KA KA KA FA KA KA KA KA KK A KKK [ ]

/*Function parameters
The parameters required by the model to run, can be altered to

?
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investigate different scenarios

soilSurv is the survival rate of seeds in the soil.Using the mean and
95 % confidence intervals(given as range) in Moss(1990) a normal
distribution is used. */

double MsoilSurv, SsoilSurv, SoilSurv;

MsoilSurv = @.3; // Mean of normal for soilSurv

SsoilSurv = 0.077; // St dev of normal for soilSurv

double Mu = MsoilSurv; // mean of the normal distribution
double Var = SsoilSurv*SsoilSurv; //variance of the normal distribution

GO5SKF(N, Mu, Var, state, X, ifail);
if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5SKF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}
SoilSurv
SoilSurv
and 1
SoilSurv

X[e];
fmax (0@, SoilSurv); //The proportion is limited to values between ©

fmin(1, SoilSurv);

/*cl1lBury is the proportion of seeds that are buried with cultivation type 1
Using the mean and 95 % confidence intervals(given as range) in
Moss(1990) a lognormal distribution is fitted.*/
double c1Bury, sB1l, clbRand;
clBury = -0.0515; //Mean of lognormal for c1Bury
sBl = 0.0191; //st dev of lognormal for clBury
Mu = c1Bury;
Var = sBl*sB1;
GO5SKF(N, Mu, Var, state, X, ifail);
if (ifail != @)
{

char myText[10];

_itoa_s(ifail, myText, 10);

char myBigText[50] = " Error in Nag GOS5SKF ";

strcat_s(myBigText, myText);

throw std::logic_error(myBigText);
}
clbRand
clbRand
clbRand

and 1

clbRand

X[e];
exp(clbRand);
fmax(@, clbRand); // The proportion is limited to values between ©

fmin(1, clbRand);

/*c2Bury is the proportion of seeds that are buried with cultivation type 2*/
double c2Bury=0;

//c2Bury = zeros(nrows, ncols); /* As no seeds are buried there is no need to
// generate a distribution*/

/* c3Bury is the proportion of seeds that are buried with cultivation type 3
Using the mean and 95 % confidence intervals(given as range) in
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Moss(1990) a normal distribution is fitted.*/
double c3Bury, sB3, c3bRand;
c3Bury = 0.2; // Mean of normal for c3Bury
sB3 = 0.051; // st dev of normal for c3Bury
Mu = c3Bury;
Var = sB3*sB3;
GO5SKF(N, Mu, Var, state, X, ifail);
if (ifail != 0)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5SKF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

)

c3bRand = X[0];

c3bRand = fmax(®, c3bRand); //The proportion is limited to values between © and=?
1

c3bRand = fmin(1, c3bRand);

/* c4Bury is the proportion of seeds that are buried with cultivation type 4
Using the mean and 95 % confidence intervals(given as range) in
Moss(1990) a normal distribution is fitted.*/
double c4Bury, sB4, c4bRand;
c4Bury = 0.4; // Mean of normal for c4Bury
sB4 = 0.101; // st dev of normal for c4Bury
Mu = c4Bury;
Var = sB4*sB4;
GO5SKF(N, Mu, Var, state, X, ifail);
if (ifail != 0)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GO5SKF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}
c4bRand = X[@];
c4bRand = fmax(@, c4bRand); // The proportion is limited to values between =
0 and 1
c4bRand = fmin(1, c4bRand);

/* clRise is the proportion of seeds that rise with cultivation type 1
% % Using the mean and 95 % confidence intervals(given as range) in
% Moss(1990) a lognormal distribution is fitted.*/
double c1Rise, sR1, clrRand;
clRise = -1.0570; //Mean of lognormal for clRise
sR1 = 0.1199; //st dev of lognormal for clRise
Mu = clRise;
Var = sR1*sR1;
GO5SKF(N, Mu, Var, state, X, ifail);
if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5SKF ";
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strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

¥
clrRand

clrRand
clrRand

0 and
clrRand

X[eJ;
exp(clrRand);

=l

fmin(1, clrRand);

/* c2Rise is the proportion of seeds that rise with cultivation type 2*/
double c2Rise=0;// As no seeds are buried there is no need to generate a
distribution

/*c3Rise is the proportion of seeds that rise with cultivation type 3*/
double c3Rise=0;// As no seeds are buried there is no need to generate a
distribution

/*c4Rise is the proportion of seeds that rise with cultivation type 4*/

double c4Rise=0; // As no seeds are buried there is no need to generate a

distribution

delete[] state;
// Create cell arrays to store the proportions of seeds that are buried and?
rise according to cultivation type.
//The index cult, assigned in Weeds_2.cpp tells which position in the array=?
to use for each year

double bury[4]
double rise[4]

{ clbRand, c2Bury, c3bRand, c4bRand };
{ clrRand, c2Rise, c3Rise, c4Rise };

//For each row and column bury seeds and bring them up according to the
cultivation type
for (int icount = @; icount < Grid::GetNumRows(); icount++)

{

for (int jcount = ©; jcount < Grid::GetNumCols(); jcount++)

{

/* Seed Movement in the soil

Seeds are moved between the soil layers according to the
cultivation type

that year*/

double myOldSeeds[2], myNewSeeds[2];

Grid: :GetOldSeeds(icount, jcount, myOldSeeds);

Grid: :GetNewSeeds(icount, jcount, myNewSeeds);

double 0SS, 0SD, NSS, NSD;

0SS = myOldSeeds[©0];
OSD = myOldSeeds[1];
NSS = myNewSeeds[0];
NSD = myNewSeeds[1];

/*A1l1l seeds in the surface layer become old and are subjected to
survival

rates */

0SS = (0SS + NSS)*SoilSurv;

NSS = 0;

/* All seeds in the deep layer become old and are subjected to

fmax (@, clrRand); // The proportion is limited to values between =

»°
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survival
rates*/
0SD = (NSD + 0SD)*SoilSurv;
NSD = O;

// The newly shed seeds that are buried are determined by indexing =
bury according to the cultivation type for that year

//and multiplying the values by the newly dispersed seeds

double dispSeeds = Grid::GetTempWeed(icount, jcount);

NSD = dispSeeds*bury[cult];

/*The new seeds that remain on teh surface are determined by the =
number that were dispersed here minus those that were buried*/

NSS = dispSeeds - NSD;

//The old seeds in the deep soil layer are calcuated by taking the #»
old seeds in the surface that are buried

//and the old seeds in the deep layer that do not rise and adding =
them together

double burySeedsDeep = (0SS*(bury[ cult ]))+(0SD*(1 - rise ?

[ cult 1));

//The old seeds on the surface are calculated by adding together =
the old

//seeds on teh surface that are not buried to the old seeds from =
the deep layer that rise

0SS = 0SS*(1 - bury[cult]) + OSD*rise[cult];

OSD = burySeedsDeep;

double myOSeeds[2] = { 0SS, OSD };

Grid::SetOldSeeds(icount, jcount, myOSeeds);
double myNSeeds[2] = { NSS, NSD };
Grid: :SetNewSeeds(icount, jcount,myNSeeds );

void cultDisp(std::vector<double>& proportions2, double& extra2, double lambda, ?
double eta, double b)

//This is a function that reads in the information about the cultivation dispersal =
parameters and integrates cells under the curve to determine the proportion of =2
seeds which will be dispersed into different cell types.

//Outputs are a list of proportions to move to each cell type and the remainng ?
proportion that is not currently allocated to any cell type

{

double gamma = 1 / b; // Additional distribution parameters are calculated from=?
the inputs
double grid = Grid::GetCell();

Grid::SetIntVarsCult(lambda, eta, gamma);
// % Proportions will store the proportion of seeds that move to each cell

// % tProportion calculates the total proportion of seeds already accounted ?
for
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double tProportion = 0;

//%% Integrate the function
// % The integration is carried out for each set of coordinates in turn until
// % the total proportion accounted for is >= 0.999
int i = 1; //% set a counter to 1. This will increment upon each ?
integration and
// % will allow reference to which cell type is currently being investigated

int j = 2; //%As the cultivation dispersal function goes in both direction =
from
// % the @ starting point we need to consider both direction so a second ?

counter is used to begin counting positions in the opposite direction
double myIntvVal(®);
while (tProportion < ©.999) //% whilst we still havent reached a total ?
proportion //% of seeds is <0.999 we should integrate at each position

//% initially we will look at the proportion of seeds that travel in ?
the opposite direction to the direction of travel up to a maximum of =2
5 grid squares

if (i <= 5)

{

double xmin = -((grid*(i - 1)) + (grid / 2));

double xmax = -((grid*(i - 2)) + (grid / 2));

myIntVal = IntegrateCult(xmin, xmax);

proportions2.push_back(myIntVal); //% Integrate from xmin to xmax =
according to the distance from the starting point in terms of
grid size

)

}

else //% look at the proportion of seeds that travel various distances #
in the direction of travel

{
double xmin = (grid*(j - 1)) - (grid / 2);
double xmax = (grid*j) - (grid / 2);
myIntVal = IntegrateCult(xmin, xmax);
proportions2.push_back(myIntvVal); //% Integrate from xmin to xmax
//% according to the distance from the starting point in terms =
of
//% grid size
j=3+1
}

tProportion = tProportion + myIntval;
if (tProportion > 1)
{
double Remainder = tProportion - 1;
proportions2[i - 1] = proportions2[i - 1] - Remainder;
¥
// % if we have reached a total that is >1 subtract the excess from ?
the
// % last cell type to be integrated

i=1+1;// % The counter is then incremented
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extra2z = 1 - tProportion;

double IntegrateCult(double xmin, double xmax)

{

}

extern "C" void __stdcall fFunc3(const int& NDIM, const double x[], const int&
NumFunc, double funcY[])

//This function integrates the distributions over each cell .
//By AE Milne

double ABSACC
double RELACC
//double ANS(9);

int NDIM(1);

int NumFunc(1);

int MaxCals(18000000);

int MinCals(10);

const int LENWRK = 500;//(NDIM+NumFunc+2)*(10+MaxCals);
double WRKSTR[LENWRK];

int IFAIL = 1;

double ANS[1];

double ABSET[1];

0.0;
0.0000001;

//DO1DAF (x1b, xub, ylbFunc, yubFunc,fFunc,ABSACC, ANS, NPTS, IFAIL);

DO1EAF (NDIM, &xmin, &xmax, MinCals, MaxCals, NumFunc, fFunc3, ABSACC, RELACC,

LENWRK, WRKSTR, ANS, ABSET, IFAIL);

if (ANS[@]«@)

throw std::logic_error("Error in integration");
if (IFAIL !'= @)

int junk = ©;

//ANS[@]=ANS[@]*ga;
return ANS[O];

?

?

//void fFunc2(const int& NDIM, const double x[], const int& NumFunc, double funcY =

{

(1)

//Rotated Gaussian function from Paice et al 1998 predicts the distribution

// of seeds released from plants in the starting cell

double lambda, eta, gamma;
Grid: :GetIntVarsCult(lambda, eta, gamma);
int IFAIL = 1;

double func(@);
double 00twoPi = 1.0 / (2.0*3.141572);

// In paice et al 1998 cultivator dispersal was described by a Gaussian

function and an exponential function
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// z = @(x)(1. / (lambda.*(sqrt(2.*pi)))).*exp(-0.5.*((x - eta). / lambda). ~ =
2);
// f = @(x)(b.*exp(-b.*x));
//Here an exponentially modified Gauusian distribution is described
double myerfcx = (eta + gamma*pow(lambda, 2) - x[0]) / (sqrt(2)*lambda);
double callerfc = S15ADF(myerfcx, IFAIL);
func = gamma / 2 * (exp((gamma / 2)*(2 * eta + gamma*pow(lambda, 2) - 2 * x ?
[0])))*callerfc;
funcY[@] = func;
}
void cdisp2NSS(std::vector<double> proportions2, double extra2, int maxd) //New ?

seeds shallow
//This is a function which moves seeds in the soil in the direction of cultivation

//Inputs are the proportions generated by integration of the cultural dispersal

{

Grid::ClearTempWeeds();
double myNSeeds[] = { 0, © };

// Disperse seeds //

// Seeds are distributed from their starting point in the direction of travel

according to the results of the integration of the cultivation dispersal
distribution

for (int icount = ©; icount<Grid::GetNumRows(); icount++) //For each row in
turn decide if the cultivator is travelling east or west

{

double cWidth
double DirInd

if odd west
double myrem = remainder(DirInd, 2);

Grid::GetCultWidth();

if (myrem == 0)
{

for (int jcount = ©; jcount < Grid::GetNumCols(); jcount++)

{

Grid: :GetNewSeeds(icount, jcount, myNSeeds);

int numSeeds = int(myNSeeds[@]);

//cultmoveW Function

cultmoveW(proportions2, numSeeds, icount, jcount, maxd);

»°

distribution, the extra proportion from the integration and the maximum dispersal=
distance.
//Output is the new numebr of seeds of the type of interest in the soil layer of
interest.

»°

floor(icount / cWidth);// If this is even we shall go East =

//Disperses the seeds in the soil in the correct direction for when?

cultivation is in a westerly direction
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}
}
else
{
for (int jcount = ©; jcount < Grid::GetNumCols(); jcount++)
{
Grid: :GetNewSeeds(icount, jcount, myNSeeds);
int numSeeds = int(myNSeeds[0@]);
// cultmoveE Function
cultmoveE(proportions2, numSeeds, icount, jcount, maxd);
// Disperses the seeds in the soil in the correct direction for ?
when cultivation is in a easterly direction
}
}
}
for (int icount = ©; icount < Grid::GetNumRows(); icount++)
{
for (int jcount = @; jcount < Grid::GetNumCols(); jcount++)
{
double myNSeedsShallow;
double myNSeedsAll[] = { @, © };
Grid::GetNewSeeds(icount, jcount, myNSeedsAll);
double myNSeedsDeep = myNSeedsAll[1];
myNSeedsShallow = Grid::GetTempWeed(icount, jcount);
myNSeeds[@] = myNSeedsShallow;
myNSeeds[1] = myNSeedsDeep;
Grid::SetNewSeeds(icount, jcount, myNSeeds);
}
}
}
void cdisp2NSD(std::vector<double> proportions2, double extra2, int maxd)//New ?

seeds deep

//This is a function which moves seeds in the soil in the direction of cultivation

//Inputs are

the proportions generated by integration of the cultural dispersal

»°

distribution, the extra proportion from the integration and the maximum dispersal=

distance.

//Output is the new numebr of seeds of the type of interest in the soil layer of

interest.

Grid::Cl
double m

// Dispe

earTempWeeds();
yNSeeds[] = { @, © };

rse seeds //

»°

// Seeds are distributed from their starting point in the direction of travel =

accord
distri

for (int
turn d

{

ing to the results of the integration of the cultivation dispersal
bution

icount = @; icount<Grid::GetNumRows(); icount++) //For each row in
ecide if the cultivator is travelling east or west

»°

»°
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double cWidth = Grid::GetCultWidth();
double DirInd = floor(icount / cWidth);// If this is even we shall go East =
if odd west
double myrem = remainder(DirInd, 2);

if (myrem == 0)
{

for (int jcount = ©; jcount < Grid::GetNumCols(); jcount++)

{

Grid: :GetNewSeeds(icount, jcount, myNSeeds);

int numSeeds = int(myNSeeds[1]);

//cultmoveW Function

cultmoveW(proportions2, numSeeds, icount, jcount, maxd);

//Disperses the seeds in the soil in the correct direction for when?
cultivation is in a westerly direction

else

for (int jcount = ©; jcount < Grid::GetNumCols(); jcount++)

Grid: :GetNewSeeds(icount, jcount, myNSeeds);

int numSeeds = int(myNSeeds[1]);

// cultmoveE Function

cultmoveE(proportions2, numSeeds, icount, jcount,maxd);

// Disperses the seeds in the soil in the correct direction for ?
when cultivation is in a easterly direction

}

for (int icount = @; icount < Grid::GetNumRows(); icount++)

{

for (int jcount = @; jcount < Grid::GetNumCols(); jcount++)
{
double myNSeedsShallow;
double myNSeedsAll[] = { @, © };
Grid: :GetNewSeeds(icount, jcount, myNSeedsAll);
myNSeedsShallow = myNSeedsAll[@];
double myNSeedsDeep = Grid::GetTempWeed(icount, jcount);
myNSeeds[@] = myNSeedsShallow;
myNSeeds[1] = myNSeedsDeep;
Grid: :SetNewSeeds(icount, jcount, myNSeeds);

}

void cdisp20SS(std::vector<double> proportions2, double extra2, int maxd)//old ?
seeds shallow

//This is a function which moves seeds in the soil in the direction of cultivation

//Inputs are the proportions generated by integration of the cultural dispersal ?
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distribution, the extra proportion from the integration and the maximum dispersal=
distance.

//Output is the new numebr of seeds of the type of interest in the soil layer of =@
interest.

{
Grid::ClearTempWeeds();

double myOSeeds[] = { 0, © };

// Disperse seeds //

// Seeds are distributed from their starting point in the direction of travel =
according to the results of the integration of the cultivation dispersal ?
distribution

for (int icount = ©; icount<Grid::GetNumRows(); icount++) //For each row in ?
turn decide if the cultivator is travelling east or west

{

double cWidth = Grid::GetCultWidth();
double DirInd = floor(icount / cWidth);// If this is even we shall go East =
if odd west
double myrem = remainder(DirInd, 2);
if (myrem == 0)
{
for (int jcount = ©; jcount < Grid::GetNumCols(); jcount++)
{
Grid::GetOldSeeds(icount, jcount, myOSeeds);
int numSeeds = int(myOSeeds[@]);
//cultmoveW Function
cultmoveW(proportions2, numSeeds, icount, jcount, maxd);
//Disperses the seeds in the soil in the correct direction for when?
cultivation is in a westerly direction
myOSeeds[0@] = numSeeds;
}
}
else
{
for (int jcount = ©; jcount < Grid::GetNumCols(); jcount++)
{
Grid::GetOldSeeds(icount, jcount, myOSeeds);
int numSeeds = int(myOSeeds[©@]);
// cultmoveE Function
cultmoveE(proportions2, numSeeds, icount, jcount,maxd);
// Disperses the seeds in the soil in the correct direction for ?
when cultivation is in a easterly direction
myOSeeds[@] = numSeeds;
}
}
}

for (int icount = @; icount < Grid::GetNumRows(); icount++)

{
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for (int jcount = @; jcount < Grid::GetNumCols(); jcount++)

{

double myOSeedsShallow;

double myOSeedsAll[] = { @, © };
Grid::GetOldSeeds(icount, jcount, myOSeedsAll);
double myOSeedsDeep = myOSeedsAll[1];
myOSeedsShallow = Grid::GetTempWeed(icount, jcount);
myOSeeds[@] = myOSeedsShallow;

myOSeeds[1] = myOSeedsDeep;
Grid::SetOldSeeds(icount, jcount, myOSeeds);

}

void cdisp20SD(std: :vector<double> proportions2, double extra2, int maxd) //old ?
seeds deep
//This is a function which moves seeds in the soil in the direction of cultivation

//Inputs are the proportions generated by integration of the cultural dispersal ?
distribution, the extra proportion from the integration and the maximum dispersal=
distance.

//Output is the new numebr of seeds of the type of interest in the soil layer of =
interest.
{
Grid::ClearTempWeeds();
double myOSeeds[] = { @, © };

// Disperse seeds //
// Seeds are distributed from their starting point in the direction of travel =

according to the results of the integration of the cultivation dispersal ?
distribution

for (int icount = ©; icount<Grid::GetNumRows(); icount++) //For each row in ?
turn decide if the cultivator is travelling east or west

{
double cWidth

double DirInd
if odd west
double myrem = remainder(DirInd, 2);

Grid::GetCultWidth();
floor(icount / cWidth);// If this is even we shall go East =

if (myrem==0)
{
for (int jcount = ©; jcount < Grid::GetNumCols(); jcount++)
{
Grid::GetOldSeeds(icount, jcount, myOSeeds);
int numSeeds = int(myOSeeds[1]);
//cultmoveW Function
cultmoveW(proportions2, numSeeds, icount, jcount, maxd);
//Disperses the seeds in the soil in the correct direction for when?
cultivation is in a westerly direction

else
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}

for (int jcount = ©; jcount < Grid::GetNumCols(); jcount++)

{

Grid: :GetOldSeeds(icount, jcount, myOSeeds);

int numSeeds = int(myOSeeds[1]);

// cultmoveE Function

cultmoveE(proportions2, numSeeds, icount, jcount, maxd);

// Disperses the seeds in the soil in the correct direction for
when cultivation is in a easterly direction

for (int icount = ©; icount < Grid::GetNumRows(); icount++)

{

for (int jcount = @; jcount < Grid::GetNumCols(); jcount++)

{

double myOSeedsDeep;

double myOSeedsAll[] = { @, © };

Grid: :GetOldSeeds(icount, jcount, myOSeedsAll);
double myOSeedsShallow = myOSeedsAll[0];
myOSeedsDeep = Grid::GetTempWeed(icount, jcount);
myOSeeds[@] = myOSeedsShallow;

myOSeeds[1] = myOSeedsDeep;
Grid::SetOldSeeds(icount, jcount, myOSeeds);

void cultmoveE(std::vector<double> proportions2, int numseeds, int icount, int
jcount, int maxd)
//move seeds by cultivation - cultivator moving east

{

if (numseeds == @) //if there are no seeds don't worry

{
}

else

{

return;

double P_Sum = @; // to keep track of probability used so that we readjust
int numSum = 0;
int NRows = Grid::GetNumRows();

int NCols

Grid::GetNumCols();

int Len = proportions2.size();
double NewV(9);

int N = 1;

int M = numseeds;

for (int kcount = @; kcount < Len; kcount++)

{

//The probability of landing in cell irow, jcol
double P = proportions2[kcount];

2
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//This sets up the nag functions to calculate the binomial outcome @
from numseeds events and P prob

int const LR = 1;

double R[LR];

int X[1];

X[e] = o;

int ifail = 1;

int MODE = 3;

int const genid(1);

int const subid(9);

int lstate(17);

int* state; //when we declare 'state' we dont say how long it will =
be so we need to delete it after we have used it

state = new int[lstate];

ifail = 1;

GO5KGF (genid, subid, state, lstate, ifail);
if (ifail !'= 9)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5KGF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

if (kcount == @) // For the first value in the array the seeds will=
be dispersed into the starting square
{
GOSTAF(MODE, N, M, P, R, LR, state, X, ifail); //The number of =
seeds that fall is X

if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}
// K4

st sk sk sk sk sk sk sk sk sk s s sk s s s s sk stk sk ok sk ok sk ok sk ok sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk ok sk kot ok ko ok Rk ok ok ok ok
fRAFKKKAKKKK )/

P_Sum = P_Sum + proportions2[kcount];
M=M- X[0];
//Add into temporary weed structure
NewV = Grid::GetTempWeed(icount, jcount) + X[@]; //The weeds =
that were in centre cell + new dropped seeds
Grid: :SetTempWeed(icount, jcount, NewV);
numSum = numSum + X[@]; //number of seeds that have droped so =
far
}
else if (kcount > @ && kcount <= 4)//For values of kcount from 1-4 =
seeds will be dispersed in the opposite direction to the ?
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direction of travel

{
int ii = icount;
if (ii < 0)
{
ii = o;
}
if (ii>NRows - 1)
{
ii = NRows - 1;
}
int jj = jcount - kcount;
if (Jj < o)
{
jj = e;
}
if (jj>NCols - 1)
{
jJj = NCols - 1;
}
if (P < 1)
{
P = (proportions2[kcount]) / (1 - P_Sum);
}
else
{
P =1;
}
if (P>1)
{
P =1;
}
GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != @)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}
P_Sum = P_Sum + proportions2[kcount];
M =M - X[0];
if (X[e] > @)
{
NewV = Grid::GetTempWeed(ii, jj) + X[0];
Grid::SetTempWeed(ii, jj, NewV);
numSum = numSum + X[O];
}
}
else //For values of k >4 seeds will be dispersed in the direction
of travel

{
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int ii = icount;

if (ii < 0)
{
ii = o;
}
if (ii>NRows - 1)
{
ii = NRows - 1;
}
int jj = jcount + (kcount - 4);
if (jj < 9)
{
jj = e;
}
if (jj>NCols - 1)
{
jJj = NCols - 1;
}
if (P_Sum < 1)
{
P = (proportions2[kcount]) / (1.0 - P_Sum);
}
else
{
P =1;
}
if (P>1)
{
P =1;
}

GOSTAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

_Sum = P_Sum + proportions2[kcount];
= M - x[el;
£ (X[e] > 9)

Lo Nl - v B

NewV = Grid::GetTempWeed(ii, jj) + X[0];
Grid::SetTempWeed(ii, jj, NewV);
numSum = numSum + X[O];

}

}
delete[] state; //here we delete 'state’

state = NULL;
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//Disperse the extra seeds in the direction of travel.
//Set the maximum value of j that the seeds can be dispersed to

int myrandd = rand() % maxd;
int myrandj = jcount + myrandd;
if (myrandj > NCols-1)

{

}

else if (myrandj<@)

{

}

myrandj = NCols-1;

myrandj = 0;

int extraseeds = numseeds - numSum;
int mynewS = Grid::GetTempWeed(icount, myrandj) + extraseeds;
Grid: :SetTempWeed(icount, myrandj, mynewS);

void cultmoveW(std::vector<double> proportions2, int numseeds, int icount, int
jcount, int maxd)
//move seeds by cultivation - cultivator moving west

{

if (numseeds == @) //if there are no seeds don't worry

{
}

else

{

return;

double P_Sum = @; // to keep track of probability used so that we readjust
int numSum = 0;

int NRows = Grid::GetNumRows();

int NCols = Grid::GetNumCols();

int Len = proportions2.size();

double NewV(0);

int N = 1;

int M = numseeds;

for (int kcount = ©@; kcount < Len; kcount++)

{

//The probability of landing in cell irow, jcol
double P = proportions2[kcount];

//

?

st sk sk sk sk sk sk sk sk sk sk s sk s sk s s ok ok ok ok ok ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s s s sk kst ok ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk sksk ok

*REFKAKK [ ]

//This sets up the nag functions to calculate the binomial outcome from?

numseeds events and P prob
int const LR = 1;
double R[LR];
int X[1];
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int ifail = 1;
int MODE = 3;
int const genid(1);
int const subid(9);
int lstate(17);
int* state; //when we declare 'state’' we dont say how long it will be =
so we need to delete it after we have used it
state = new int[lstate];
ifail = 1;
GOSKGF (genid, subid, state, lstate, ifail);
if (ifail != 0)

{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOS5KGF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}

if (kcount == @) // For the first value in the array the seeds will be =
dispersed into the starting square
{
GOSTAF(MODE, N, M, P, R, LR, state, X, ifail); //The number of ?
seeds that fall is X

if (ifail != 9)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}
// ®

ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ok sk ok ook ko Rk ok ok ok
wokokskokskok  /
P_Sum = P_Sum + proportions2[kcount];
M=M- X[0];
//Add into temporary weed structure
NewV = Grid::GetTempWeed(icount, jcount) + X[@]; //The weeds that =
were in centre cell + new dropped seeds
Grid: :SetTempWeed(icount, jcount, NewV);
numSum = numSum + X[@]; //number of seeds that have droped so far
}
else if (kcount > © && kcount <= 4)//For values of kcount from 1-4 ?
seeds will be dispersed in the opposite direction to the direction of=
travel

int ii = icount;
if (ii < 9)

{

}

if (ii>NRows - 1)
{

}

ii

9;

ii = NRows - 1;
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}

int jj = jcount + kcount;
if (33 < 9)
{

}
if (jj>NCols - 1)

{

jj = e;

jj = NCols - 1;

if (P < 1)

vl
1}

(proportions2[kcount]) / (1 - P_Sum);

GO5TAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != 0)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

_Sum = P_Sum + proportions2[kcount];
= M - x[el;
£ (X[e] > 0)

A H = O

NewV = Grid::GetTempWeed(ii, jj) + X[0];
Grid: :SetTempWeed(ii, jj, NewV);
numSum = numSum + X[0];

}

else //For values of k >4 seeds will be dispersed in the direction of

{

travel

int ii = icount;

if (ii < 9)
{
ii = 0;
}
if (ii>NRows - 1)
{
ii = NRows - 1;
}
int jj = jcount - (kcount-4);
if (jj < @)
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{
jj = o;
}
if (jj>NCols - 1)
{
jj = NCols - 1;
}
if (P_Sum < 1)
{
P = (proportions2[kcount]) / (1 - P_Sum);
}
else
{
P=1;
}
if (P>1)
{
P=1;
}

GO5TAF(MODE, N, M, P, R, LR, state, X, ifail);
if (ifail != 9)
{
char myText[10];
_itoa_s(ifail, myText, 10);
char myBigText[50] = " Error in Nag GOSTAF ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);

Sum = P_Sum + proportions2[kcount];
=M - X[e];

NewV = Grid::GetTempWeed(ii, jj) + X[0];
Grid: :SetTempWeed(ii, jj, NewV);
numSum = numSum + X[0];

}

}
delete[] state;

}

//Disperse the extra seeds in the direction of travel.
//Set the maximum value of j that the seeds can be dispersed to

int myrandd = rand() % maxd;
int myrandj jcount - myrandd;
if (myrandj > NCols-1)

{
myrandj = NCols - 1;
}
else if (myrandj<@)
{
myrandj = 0;
}

int extraseeds = numseeds-numSum;
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int mynewS = Grid::GetTempWeed(icount, myrandj) + extraseeds;
Grid: :SetTempWeed(icount, myrandj, mynewS);
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#include "Water.h"

#include "math.h"

#include"LandGrid.h"

#include "weather.h"

#include <algorithm>

//std::ofstream ofm(Npath_buffer, std::ofstream::out | std::ofstream::app);

double hydrothermaltime(int irow, int jcol, double mya, int cultivationday) // ?
hydrothermal time is a function that uses weather data to determine the maximum =
level of germination

{
double gmd = 297.5; //%number of days from germination to maturity of mother =
plants
double wd = Grid::GetWD(irow,7jcol); //%water deficit(mm) between flowering and=
maturity

double depth = 1.5; //% depth of seed in cm
double dh = 425; //%hydrothermal time spent in darkness before tillage
double myph = Grid::GetPH(irow, jcol);

double sw = 0.0014; //%mean seed weight(g)
double n = 25; //%total available n(kg / ha)

int maxdays = 50; //This is the maximum time period over which germination can =
take place

//%table3 %Effect of seed characteristics and environmental
conditions of the proportion of non - dormant seeds, obtained
by selecting one equation from each section depending on
conditions and applying the five resulting equations in
sequence

//%1 Loss of primary dormancy / after - ripening Effect of =
seed characteristics

double gm = 0.924 - 0.000149*gmd + 0.391*exp(-0.033*mya) - 0.00380*gmd*exp ?
(-9.033*mya) + 0.000777*wd;
//%Colbach and D"urr(2003)

//% ii Effect of seed depth
double gml = gm*(0.5311 - 0.00947*depth) / ©.5311;

//%iii Effect of stimulation by light while imbibed(during tillage or on soil =
surface)

double gm2 = gml*exp(-0.00115*pow(dh, 1.121)); //%Seeds activated during ?
current tillage

// %Colbach et al 2002a)

// % iv Effect of soil climate
double gm3 = gm2;
//%Colbach et al 2002b)

//% v Secondary dormancy due to winter conditions
double gm4 = gm3;
//%Based on Lonchamp et al. (1984)

// % table4 Effect of seed characteristics and environmental conditions of the?
germination parameters
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// %1 Loss of primary dormancy / after - ripening Effect of seed ?
characteristics(Colbach and D urr, 2003)
double gx@ = 49.78 - 66.43*exp(-0.0086*mya) - 0.0022*gmd + ©.358*gmd*exp ?
(-0.0086*mya); //%Germination lag
double gx50 = 65.72 + 200.99*exp(-0.044*mya) + 0.0968*gmd - 1.086*wd;// %Time 2

to mid - germination
double gb = 0.125 - 1.997*exp(-0.063*mya) + 0.00676*gmd + 0.0199*gmd*exp ?
(-0.063*mya) + 0.0101*wd + 246.9*sw - 0.00702*n;// %Shape parameter

// %ii Effect of seed depth ?
(extrapolated from experiment in this paper)
double varm = (0.5311 - 0.00947*depth) / ©.5311;// %Relative variation in the =
proportion of non - dormant seeds

double gx0l = (1 / varm)*gx0; // %Germination lag
double gx501 = (1 / varm)*gx50;// %Time to mid - germination
double gbl = (1 / varm)*gb; //%Shape parameter

// %iii Effect of stimulation by light while imbibed(during tillage or on soil=?
surface)

// % (Colbach et al., 2002a)

// % Seeds activated during current tillage

double gx02 = gxo1l;

double gx502 = gx501*(exp(0.212*pow(dh, 0.276)) - 1);

double gb2 = gbil;

//%iv = Effect of soil climate
double gx@3 = gx02;

double gx503 = gx502;

double gb3 = gbh2;

//%v Secondary dormancy due to winter conditions(extrapolated from Lonchamp et =
al., 1984) Winter:

//%after Oct 20

int oct20 = 293; //%day number for october 20

int d = cultivationday + maxdays; //%day number for start of germination

double varm2 = (1 / ©.9481)*(-0.00317*(d - oct20) + ©.9481);

double gx04 = (1 / varm2)*gxe3;

double gx504 = (1 / varm2)*gx503;

double gb4 = varm2*gb3;

if (gx04 < 9)
gx04 = 0;

if (gb4 < ©.000001)
gh4 = 0.000001;

double k = log(2); //%rate of increase
double a = gx04; //%lag phase

double c = gb4; //%shape parameter
double M = gm4;

double x50 = gx504;

if (myph < 6.5)

{
M = M*40.92 / 36.72;//values for low and high pH (asymptote is C parameter =
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in gompertz curve - life cycle chapter)

}
double Germ(®Q);

//the function needs to access the soil information
double myClay = Grid::GetClay(irow, jcol);

double mySilt = Grid::GetSilt(irow, jcol);

double myOM = Grid::GetOC(irow, jcol);

double myElev = Grid::GetElevation(irow, jcol);
double myDb = Grid::GetBulkD(irow, jcol);

double mySoilDepth = Grid::GetSoilDepth(irow, jcol);
double myLat = Grid::GetLatitude(irow, jcol);

double myCell = Grid::GetCell();

double myWater = Grid::GetSWC(irow, jcol);//water saved in grid is for ?
cultivationday

//// Set germination properties for black - grass

double WPb = -1.53; //Effect of environmental conditions on Alopecurus ?

myosuroides germination.II.Effect of moisture conditions and storage length.N?

COLBACH*, C DU” RR, B CHAUVEL* & G RICHARD.European Weed Research Society =
Weed Research 2002 42, 222-230.

double Tb = @; //Effect of environmental conditions on Alopecurus myosuroides =@
germination.I.Effect of temperature and light.N COLBACH*, B CHAUVEL*, C DU" =
RR & G RICHARD.European Weed Research Society Weed Research 2002 42, 210-221

////Accumulate hydrothermal time
double mylength = maxdays + 1;
double TT(9);

double WhTT(®);

double HTT = 0;

for (int i = @; i <mylength; i++) // for each day after cultivation

{

int ibay = i + cultivationday - 1;
//get that days weather data

double Irr = Weath::GetIrrad(@, iDay);
double EMVP = Weath::GetVapP(@, iDay);
double AvRad = Irr * 1000;

double Vap = EMVP * 10;

TT = TT + Weath::GetTT(@, iDay); //add the thermal time for htat day on to =
the thermal time already accumulated

// Calculte the hydrotime
double Tmin = Weath::GetMinT(@, iDay);
double Tmax = Weath::GetMaxT(@, iDay);
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double Wind = Weath::GetWindS(@, iDay);

double EO = 0;

double ES@ = 0;

double ETO = 0;

Penman(iDay, irow, jcol, E@, ES@, ET@); //use the Penman function to ?
calculate evapotranspiration based on soil and weather data. This ?
function is in water.cpp

double myPrecip = Weath::GetPrecip(@, iDay);

double wc = myWater*mySoilDepth; //convert to mm

WC = wc + myPrecip - ESO; //adjust the soil water content according to the =
days precip and evapotranspiration

myWater = wc / mySoilDepth; //convert back to VWC

double myw50, mywl5000;

double mbar = 50;

vanGenuchten2(irow, jcol, mbar, myw50); //calculate water content needed ?
for mbar=50 (field capacity)

mbar = 15000;

vanGenuchten2(irow, jcol, mbar, mywl5000); //calculate water content needed=?
for mbar=1500 (wilting point)

if (myWater < mywl5000) //prevents van genuchten from working correctly

{
myWater = mywl5000;
}
if (myWater > myw50) //prevents van genuchten from working correctly
{
mylWater = myw50;
}

mbar = vanGenuchten(irow, jcol, myWater);

////Convert mbar to MPa
double WP = mbar * -0.0001;

double ht = @;//hydrotime
if (WP > WPD)
{

}
double tt = Weath::GetTT(@, iDay);//thermal time

ht = WP - WPb;

double htt = tt*ht;//hydrothermal time
WhTT = WhTT + Weath::GetWhTT(@, iDay);

//Check the green area index of the wheat. Once the wheat is sufficiently =
big, black-grass germination will cease
double GAI = StorkeyGAI(WhTT, myCell); //StorkeyGAI is a function to ?
calulate GAI of wheat it is in Water.cpp
if (GAI <= 0.5) //if the wheat is sufficiently small
{
HTT = HTT + htt; //add that days hydrothermal time on to the ?
hydrothermal time accumulated so far
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}

if (HTT < a + 49.169) //if we are still in the lag phase of germination
{

Germ = 0;
}
else//after the lag phase we have an exponential phase
{
double DivBit = (HTT - a - 49.169) / (x50 - a);
Germ = M*(1 - pow(exp(-k*(DivBit)), c));
}

return Germ;

}

void initialwater(double irow, double jcol, double& myWater, double startday, ?
double endday)
//This is a function to initialise the soil water content from the start day to end=?

day

{

for (int iday = startday; iday < endday; iday++) //for each day calculate the =

{

water gained and lost according to weather conditions

//Interrogate the weather data - these functions read the weather data and =
are in Weather.cpp

double Irr, EMVP, Precip, AvRad, Vap;

Irr = Weath::GetIrrad(@, iday);

EMVP = Weath::GetVapP(@, iday);

Precip = Weath::GetPrecip(@, iday);

AvRad = Irr * 1000;

Vap = EMVP * 10;

double myDepth = Grid::GetSoilDepth(irow, jcol);

double EO = 0;

double ES@ = 0;

double ETO = 0;

Penman(iday, irow, jcol, E@, ES@, ETQ); //calculate evaporation from the ?
soil using Penman function in Water.cpp

double wc = myWater*myDepth; //convert to mm

WC = wC + Precip - ESO; //adjust the soil water content according to the =
days precip and evapotranspiration

myWater = wc / myDepth; //convert back to VWC]

double myw50, mywl5000;

double mbar = 50;

vanGenuchten2(irow, jcol, mbar, myw50); //calculate water content needed ?
for mbar=50

mbar = 15000;

vanGenuchten2(irow, jcol, mbar, mywl5000); //calculate water content needed?
for mbar=1500

if (myWater <= mywl5000) //prevents van genuchten from working correctly

{
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myWater = mywl5000;
}
if (myWater >= myw50) //prevents van genuchten from working correctly
{
myWater = myw50;
}
}
void waterdeficit(double irow, double jcol, double& myWater, double startday, ?
double endday, double& mydeficit)
//This is a function to calculate the water deficit between flowering and harvest =
in the previous season
{
for (int iday = startday; iday < endday; iday++) //for each day calculate =

the water gained and lost according to weather conditions

//Interrogate the weather data - these functions read the weather data and =

are in Weather.cpp
double Irr, EMVP, Precip, AvRad, Vap;
Irr = Weath::GetIrrad(@, iday);
EMVP = Weath::GetVapP(@, iday);
Precip = Weath::GetPrecip(0, iday);
AvRad = Irr * 1000;
Vap = EMVP * 10;

double myDepth = Grid::GetSoilDepth(irow, jcol);

double EO = 0;

double ES@ = 0;

double ETO = 0;

Penman(iday, irow, jcol, E@, ES@, ETQ); //calculate evaporation from the
soil using Penman function in Water.cpp

double wc = myWater*myDepth; //convert to mm

if (ETO>(Precip + wc))
mydeficit = mydeficit + (ET@ - (Precip + wc));//calculate the deficit
WC = wC + Precip - ESO; //adjust the soil water content according to the
days precip and evapotranspiration
myWater = wc / myDepth; //convert back to VWC

double myw50, mywl5000;

double mbar = 50;

vanGenuchten2(irow, jcol, mbar, myw50); //calculate water content needed
for mbar=50

mbar = 15000;

»°

vanGenuchten2(irow, jcol, mbar, mywl5000); //calculate water content needed?

for mbar=1500
if (myWater <= mywl5000) //prevents van genuchten from working correctly

{
}

if (mywater >= myw50) //prevents van genuchten from working correctly

{

mylWater = mywl5000;
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myWater = myw50;

}

void resetwater(double irow, double jcol)//no longer needed
//This is a function to initialise the soil water content based on the weather data=
in the previous year

double myWater = Grid::GetSWC(irow, jcol);
double startday = 76;//This is the Julian day for which the soil water content =

is valid - so the day the field measurments were taken
//CrossF = 21

//Redb = 71
//Iv = 85
//Hav 76

for (int myi = startday; myi < 365 + startday; myi++) //for each day up until =
the day of ploughing calculate the water gained and lost according to weather?

conditions
{
int iday;
if (myi < 365)
{
iday = myi;
}
else
{
iday = myi - 365;
}

//Interrogate the weather data - these functions read the weather data and =
are in Weather.cpp

double Irr, EMVP, Precip, AvRad, Vap;

Irr = Weath::GetIrrad(@, iday);

EMVP = Weath::GetVapP(09, iday);

Precip = Weath::GetPrecip(0, iday);

AvRad = Irr * 1000;

Vap = EMVP * 10;

double myDepth = Grid::GetSoilDepth(irow, jcol);

double EO = 0;

double ES@ = 0;

double ETO = 0;

Penman(iday, irow, jcol, E@, ES@, ETO); //calculate evaporation from the ?
soil using Penman function in Water.cpp

double wc = myWater*myDepth; //convert to mm

WC = wWC + Precip - ESO; //adjust the soil water content according to the =
days precip and evapotranspiration

myWater = wc / myDepth; //convert back to VWC

double myw50, mywl5000;
double mbar = 50;
vanGenuchten2(irow, jcol, mbar, myw50); //calculate water content needed ?
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for mbar=50
mbar = 15000;
vanGenuchten2(irow, jcol, mbar, mywl5000); //calculate water content needed=?
for mbar=1500
if (myWater <= mywl5000) //prevents van genuchten from working correctly

{
myWater = mywl5000;
}
if (myWater >= myw50) //prevents van genuchten from working correctly
{
myWater = myw50;
}

}
Grid::SetSWC(irow, jcol, myWater);

double StorkeyGAI(double TT, double myCell)

//StorkeyGAI is a function that calculates the green area index of the wheat plants=?
based on accumulated thermal time

//From Storkey&Cussans 2000

{
double Cm = ©.32;//5.8; //max relative growth rate
double RGRm = ©.00575;//0.3; //max growth rate
double t0 = 630; //degreedays time at which plant reaches linear phase of ?
growth
double W = (Cm / RGRm)*log(1l + exp(RGRm*(TT - t@)));
double Wm = W / 10000;
double cellA = myCell*myCell;
double wheat = 300 * cellA;
double GA = (Wm*wheat);
double GAI = GA / cellA;
return GAI;
}

void Penman(int iDay, int irow, int jcol, double& E©, double& ESO, double& ETOQ)
/*Penman function for calculating evapotranspiration
This calculates the potential evapotranspiration rates from a free water
surface(E@), a bare soil surface(ESQ), and a crop canopy(ETO) in mm / d.
For these calculations the analysis by Penman is followed(Frere and
Popov, 1979; Penman, 1948, 1956, and 1963).*/
{
//Declare Parameters
double PsyCon, RefCFW, RefCFS, RefCFC, LHVAP, STBC, AngstA, AngstB, MinR, MaxR;
PsyCon = 0.67; //psychrometric instrument constant(mbar / Celsius - 1)

RefCFW = 0.05; //albedo for water surface
RefCFS = 0.15; //albedo for soil surface
RefCFC = ©.25; //albedo for canopy

LHVAP = 2.45E6; //latent heat of evaporation of water(J / kg = J / mm)
STBC = 4.9E-3; // Stefan Boltzmann constant(J / m2 / d / K4)
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AngstA = 0.25; // Empirical constants in Angstrom formula -
AngstB = ©.50; // FAO recommend ©.25 and ©.50

MinR = 0.9;

MaxR = 1.0

B

// Preparatory calculations

/] * mean daily temperature and temperature difference(Celsius)
/] * coefficient Bu in wind function, dependent on temperature
/] * difference

double Tmin, Tmax, AvTemp, Tdif, Irr, AvRad, x, BU, Pbar, myElev, gamma, A;
Tmin = Weath::GetMinT(@, iDay);

Tmax = Weath::GetMaxT(0, iDay);

AvTemp = (Tmin + Tmax) / 2.0; //mean daily temperature

Tdif = Tmax - Tmin; //temperature difference

double pardif, pardir, myscale;

splitirrad(iDay, irow, jcol, pardif, pardir);

myscale = Grid::GetSolarScale(irow, jcol);

AvRad = pardif + (pardir*myscale);

myElev = Grid::GetElevation(irow, jcol);

x = (Tdif - 12.9) / 4.0;
double myLimit = mylimitfn(MinR, MaxR, X);

BU = ©.54 + 0.35*myLimit; //coefficient Bu in wind function is dependent on
temperature difference

Pbar = 1013.0*exp(-0.034*myElev / (AvTemp + 273.0)); //barometric pressure
(mbar)
gamma = PsyCon*Pbar / 1013.9; //psychrometric constant(mbar / Celsius)

/*saturated vapour pressure

saturated vapour pressure according to equation of Goudriaan
(1977) derivative of SVAP with respect to temperature, i.e.

slope of the SVAP - temperature curve(mbar / Celsius);

measured vapour pressure not to exceed saturated vapour pressure*/

double Svap, delta, EMVP, Vap;

EMVP = Weath::GetVapP(@, iDay);

Vap = EMVP * 10;

SVap = 6.10588*exp(17.32491*AvTemp / (AvTemp + 238.102));
delta = 238.102*17.32491*SVap / pow((AvTemp + 238.102), 2);
Vap = fmin(Vap, SVap);

/*RELSSD

the expression n / N(RELSSD) from the Penman formula is estimated

from the Angstrom formula : RI = RA(A + B.n / N)->n / N = (RI / RA - A) / B,
where RI / RA is the atmospheric transmission obtained by the astro
function*/

double ATMTR, amax, mymax, RELSSD;

ATMTR = astro(irow, jcol, iDay);

amax = (ATMTR - abs(AngstA)) / abs(AngstB);
mymax = fmax(@, amax);

RELSSD = fmin(1, mymax);

/*Terms in Penman formula, for water, soil and canopy
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net outgoing long - wave radiation(J / m2 / d) acc.to Brunt(1932)*/

double RB, RNW, RNS, RNC;

RB = STBC*pow((AvTemp + 273), 4)*(0.56 - 0.079*sqrt(Vap))*(0.1 + 0.9*RELSSD);
// net absorbed radiation, expressed in mm / d

RNW = (AvRad*(1 - RefCFW) - RB) / LHVAP;
RNS = (AvRad*(1 - RefCFS) - RB) / LHVAP;
RNC = (AvRad*(1 - RefCFC) - RB) / LHVAP;

// evaporative demand of the atmosphere(mm / d)
double EA, EAC, Wind;

Wind = Weath::GetWindS(@, iDay);

amax = (SVap - Vap);

mymax = fmax(@, amax);

EA = 0.26*mymax*(0.5 + BU*Wind);

EAC = 0.26*mymax*(1.0 + BU*Wind);

// Penman formula(1948)

EO = (delta*RNW + gamma*EA) / (delta + gamma);
ESO = (delta*RNS + gamma*EA) / (delta + gamma);
ETO = (delta*RNC + gamma*EAC) / (delta + gamma);

//Ensure reference evaporation >= 0.
E0 = fmax(0, EOQ);

ESO = fmax(0@, ESO);

ETO = fmax(@, ETO);

}

double mylimitfn(double MinR, double MaxR, double x)//used in Penman

{
double myLimit;
if (x < MinR)

{

myLimit = MinR;
}
else if (x <= MaxR)
{

myLimit = x;
}
else
{

myLimit = MaxR;
}

return myLimit;

}

double astro(int irow, int jcol, int iDay)
{
/* Astro function for calculating astronomical values
% astronomic daylength, diurnal radiation characteristics such as the
% atmospheric transmission, diffuse radiation etc.
% This routine has been modified so that it uses arrays to hold some input
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% output variables for faster processing */

//Declare Parameters

double Angle, Rad, Dec, SC, pi;

pi = atan(1) * 4;

Angle = -4.0;

Rad = 0.0174533;

Dec = -asin(sin(23.45*Rad)*cos(2 * pi*(iDay + 10.0) / 365.0)); //Declination
SC = 1370.0%(1.0 + ©0.033*cos(2 * pi*iDay / 365.0)); //solar constant

// Calculation of daylength from intermediate variables
double Lat, SinLD, CosLD, AOB;

Lat = Grid::GetLatitude(irow, jcol);

SinlD = sin(Rad*Lat)*sin(Dec);

CosLD = cos(Rad*Lat)*cos(Dec);

AOB = SinlLD / CosLD;

/* Winter Limit

For very high latitudes and days in summer and winter a limit is
inserted to avoid math errors when daylength reaches 24 hours in
summer or @ hours in winter.*/

//Calculate solution for base = @ degrees
double DayL, DsinB, DsinBE;

if (abs(AOB) <= 1)

{
DayL = 12 * (1 + 2 * asin(AOB) / pi);
DsinB = 3600 * (DayL*SinlLD + 24 * CosLD*sqrt(1 - pow(AOB, 2)) / pi);
DsinBE = 3600.*(DayL*(SinLD + ©.4*(pow(SinLD, 2) + pow(CosLD, 2)*@.5)) + 12%
* CosLD*(2 + 3 * 0.4*SinLD)*sqrt(1 - pow(AOB, 2)) / pi);
}
else if (AOB > 1)
{
DayL = 24;
DsinB = 3600 * (DayL*SinLD);
DsinBE = 3600 * (DayL*(SinLD + ©.4*(pow(SinLD, 2) + pow(CosLD, 2)*@.5)));
}
else if (AOB < -1)
{
DayL = 0;
DsinB = 3600 * (DayL*SinLD);
DsinBE = 3600 * (DayL*(SinLD + ©.4*(pow(SinLD, 2) + pow(CosLD, 2)*@.5)));
}
//Calculate solution for base = -4 degrees

double AOBcorr, DaylLP;
AOBcorr = (-sin(Angle*Rad) + SinLD) / CosLD;
if (abs(AOBcorr) <= 1)

{
DayLP = 12.*(1 + 2.*asin(AOBcorr) / pi);
}
else if (AOBcorr > 1)
{

DayLP = 24;
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}

}
else if (AOBcorr < -1)
{
DayLP = ©;
}

// extraterrestrial radiation and atmospheric transmission

double angot, ATMTR;

angot = SC*DsinB;

// Check for DayL = @ as in that case the angot radiation is © as well
double Irr, AvRad;

Irr = Weath::GetIrrad(@, iDay);

AvRad = Irr * 1000;

if (DayL>@)

{
ATMTR = AvRad / angot;
}
else
{
ATMTR = ©;
}

// estimate fraction diffuse irradiation
double FRDIF, DifPP;

if (ATMTR > ©.75)

{
FRDIF = 0.23;
}
else if (ATMTR <= @©.75 & ATMTR > 0.35)
{
FRDIF = 1.33 - 1.46*ATMTR;
}
else if (ATMTR <= .35 & ATMTR > 0.07)
{
FRDIF = 1 - 2.3*pow((ATMTR - 0.07), 2);
}
else if (ATMTR <= 0.07)
{
FRDIF = 1;
}

DifPP = FRDIF*ATMTR*@.5*SC;

return ATMTR;

double vanGenuchten(int irow, int jcol, double myWater)

{

/*vanGenuchten is a pedotransfer function that uses known soil properties
to calculate the water potential*/

//Calculate parameters for equations
double myClay, mySilt, myOM, myDb, alpha, thetaS, n, thetaR, m;
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myClay = Grid::GetClay(irow, jcol) / 100;
mySilt = Grid::GetSilt(irow, jcol) / 100;
myOM = Grid::GetOC(irow, jcol);
myDb = Grid::GetBulkD(irow, jcol);

alpha = exp(-14.96 + 3.135*myClay + 3.51*mySilt + 0.646*(myOM*1.72) + ?
15.29*myDb
- 0.192 * 1 - 4.671*pow(myDb, 2) - 7.81*pow(myClay, 2) - ©.00687*pow ?
((myoM*1.72), 2)
+ 0.0449*pow((myOM*1.72), -1) + 0.0663*log(mySilt * 100) + 0.1482*log ?

(myoM*1.72)
- 4.546*myDb*mySilt - ©.4852*myDb*(myOM*1.72) + 0.673*myClay * 1);

thetaS = 0.7919 + 0.1691*myClay - 0.29619*myDb - 0.01491*pow(mySilt, 2)

+ 0.0000821*pow((myOM*1.72), 2) + 0.02427*pow((myClay * 100), -1) + ?
0.01113*pow( (100 * mySilt), -1)
+ 0.01472*log(mySilt * 100) - 0.00733*(myOM*1.72)*myClay - ?

0.0619*myDb*myClay

- 0.001183*myDb*(myOM*1.72) - 0.01664*mySilt * 1;
n = exp(-25.23 - 2.195*myClay + ©0.74*mySilt - 0.194*(myOM*1.72) + 45.5*myDb - =
7.24*pow(myDb, 2)
+ 3.658*pow(myClay, 2) + 0.002885*pow((myOM*1.72), 2) - 12.81*pow(myDb, -1)
0.1524%pow((100 * mySilt), -1) - ©.01958*pow((myOM*1.72), -1) - »
0.2876*log(mySilt * 100)
0.0709*1og(myOM*1.72) - 44.6*log(myDb) - 2.264*myDb*myClay + ©.0896*myDb*=>
(myOM*1.72)
+ 0.718*myClay * 1) + 1;

thetaR = 0.01;
m=1-1/n;

// Convert water content in soil(%) to water potential
double mbar, top, bottom, powerl, partl, power2, part2;
top = thetaR - thetas;

bottom = thetaR - myWater;

powerl =1 / m;

partl = pow((top / bottom), powerl);

power2 =1 / n;

part2 = pow((partl - 1), power2);

mbar = part2 / alpha;

return mbar;

}

double vanGenuchten2(int irow, int jcol, double mbar, double& mylWater)

{

/*vanGenuchten is a pedotransfer function that uses known soil properties
to calculate the water percentage*/

//Calculate parameters for equations
double myClay, mySilt, myOC, myDb, alpha, thetaS, n, thetaR, m;
myClay = Grid::GetClay(irow, jcol) / 100; // convert clay to proportions
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mySilt = Grid::GetSilt(irow, jcol) / 100;// convert silt to proportions
myOC = Grid::GetOC(irow, jcol); // Organic carbon is transform to organic ?
matter by multiplying by 1.72 below
myDb = Grid::GetBulkD(irow, jcol);
alpha = exp(-14.96 + 3.135*myClay + 3.51*mySilt + 0.646*(my0OC*1.72) + ?
15.29*myDb - ©.192 * 1 - 4.671*pow(myDb, 2)
- 7.81*pow(myClay, 2) - 0.00687*pow((myOC*1.72), 2) + 0.0449*pow ?
((myoC*1.72), -1) + 0.0663*1log(mySilt * 100)
+ 0.1482*1og(my0C*1.72) - 4.546*myDb*mySilt - ©.4852*myDb*(myOC*1.72) + ?
0.673*myClay * 1);
thetaS = 0.7919 + 0.1691*myClay - 0.29619*myDb - 0.01491*pow(mySilt, 2) + ?
0.0000821*pow( (myoC*1.72), 2)
+ 0.02427*pow((myClay * 100), -1) + 0.01113*pow((100 * mySilt), -1) + ?
0.01472*1log(mySilt * 100)
- 0.00733*(my0C*1.72)*myClay - 0.0619*myDb*myClay - ©.001183*myDb* ?
(myoC*1.72) - 0.01664*mySilt * 1;
n = exp(-25.23 - 2.195*myClay + ©0.74*mySilt - 0.194*(myOC*1.72) + 45.5*myDb - =

7.24%pow(myDb, 2)

+ 3.658*pow(myClay, 2) + 0.002885*pow((my0C*1.72), 2) - 12.81*pow(myDb, -1)=

- 0.1524*pow( (100 * mySilt), -1)
- 0.01958*pow((my0C*1.72), -1) - 0.2876*log(mySilt * 100) - 0.0709*log
(my0C*1.72) - 44.6*1log(myDb)
- 2.264*myDb*myClay + ©.0896*myDb*(myOC*1.72) + 0.718*myClay * 1) + 1;

thetaR = 0.01;
m=1-1/n;

// Convert waterpotential in soil to water content(%)
myWater = (thetaR + (thetaS - thetaR) / pow(1l + pow((alpha*mbar), n), m));

return myWater;

}

2

void averageVWC(double irow, double jcol, double& myWater, double startday, double =@

endday, double& sumVWC, int& countdays)//This is a function to initialise the
soil water content based on the weather data in the previous year
{
for (int iday = startday; iday < endday; iday++) //for each day calculate the
water gained and lost according to weather conditions

{

2

2

//Interrogate the weather data - these functions read the weather data and =

are in Weather.cpp
double Irr, EMVP, Precip, AvRad, Vap;
Irr = Weath::GetIrrad(@, iday);
EMVP = Weath::GetVapP(0, iday);
Precip = Weath::GetPrecip(@, iday);
AvRad = Irr * 1000;
Vap = EMVP * 10;

double myDepth = Grid::GetSoilDepth(irow, jcol);
double EO = 0;
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double ES@ = 0;

double ETO = 0;

Penman(iday, irow, jcol, E@, ES@, ETO); //calculate evaporation from the =
soil using Penman function in Water.cpp

double wc = myWater*myDepth; //convert to mm

WC = wCc + Precip - ESO; //adjust the soil water content according to the =
days precip and evapotranspiration

myWater = wc / myDepth; //convert back to VWC]

double myw50, mywl5000;

double mbar = 50;

vanGenuchten2(irow, jcol, mbar, myw50); //calculate water content needed ?

}

for mbar=50
mbar = 15000;

vanGenuchten2(irow, jcol, mbar, mywl5000); //calculate water content needed=?

for mbar=1500
if (myWater <= mywl5000) //prevents van genuchten from working correctly

{
}
if (myWater >= myw50) //prevents van genuchten from working correctly

{
}

myWater = mywl5000;

myWater = myw50;

sumVWC = sumVWC + myWater;
countdays = countdays + 1;

double solarenergy(double Latitude, double Slope, double Aspect)//calculates the

{

solar energy for a given latitude, slope and aspect

// Based on equations given by E.C.Frank and R.Lee(1966)
// U.S. Forestry service research paper RM - 18.

double klat = 1;//assume latitude is constant for the wohole field

double DEC[13] = { 0.4102, ©.3834, 0.3374, 0.2717, 0.1905, 0.0983, 0.0,
-0.0983, -0.1905, -0.2717, -0.3374, -0.3834, -0.4102 };

double NDAYS[13] = { 21, 34, 29, 29, 29, 29, 29, 29, 29, 28, 28, 32, 19 };

double IOE[13] = { 1.347, 1.350, 1.355, 1.362, 1.371, 1.382, 1.392, 1.404,
1.414, 1.423, 1.430, 1.436, 1.438 }; // **** SOLAR CONSTANT ASSUMED AS 1.39
KW / M**2

double LAT = Latitude*0.01745;

double GRAD = Slope*0.01745;

double AZI = Aspect*0.01745;

if (LAT>1.5696)

{
}

LAT = 1.5696;

//*** COMPUTE TIMES OF SUNRISE AND SUNSET FOR SOLAR DECLINATIONS
double sunris[13];
double sunset[13];
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for (int jcount = 1; jcount < 14; jcount++)

{
double DELTA = DEC[jcount];
double WTCOS = -(sin(LAT) / cos(LAT))*(sin(DELTA) / cos(DELTA));
if (abs(WTCOS)<1.0E-10)
WTCOS = 1.0E-10;
if (WTCOS > ©.9999)
{
sunris[jcount-1] = 0.9;
sunset[jcount - 1] = 0.0
}
else if (WTCOS < -0.9999)
{
sunris[jcount - 1] = -12.0;
sunset[jcount - 1] = 12.0;
}
else
{
double WTTAN = abs(sqrt(1.0 - WTCOS*WTCOS) / WTCOS);
double WT = atan(WTTAN);
if (WTC0S<0.9)

WT = 3.14159 - WT;
sunris[jcount - 1] = -WT*3.819;
sunset[jcount - 1] = WT*3.819;

}
¥

//*** COMPUTE LATITUDE OF EQUIVALENT SLOPE, THETA, AND
// LONGITUDE SHIFT, ALPHA, FOR SITE
double THSIN = sin(GRAD)*cos(AZI)*cos(LAT) + cos(GRAD)*sin(LAT);
if (THSIN>@.99999)
THSIN = 0.99999;
if (THSIN<-0.99999)
THSIN = -0.99999;
double THTAN THSIN / sqrt(1.0 - THSIN*THSIN);
double THETA = atan(THTAN);
double DIV = cos(GRAD)*cos(LAT) - cos(AZI)*sin(GRAD)*sin(LAT);
double ALTAN;
if (abs(DIV) >= 1.0E-10)
ALTAN = sin(AZI)*sin(GRAD) / DIV;
else
ALTAN = 1.0E109;
double ALPHA = atan(ALTAN);

//*** CALCULATE SOLAR RADIATION FOR EACH DAY WITH GIVEN
// DECLINATION AND SUM
double ENERGY = 0.0;
for (int jcount = 1; jcount < 14; jcount++)
{
double DELTA = DEC[jcount];
double TCOSP = -(sin(THETA) / cos(THETA))*(sin(DELTA) / cos(DELTA));
double T1, T2;
if (abs(TCOSP)<1.0E-10)
TCOSP = 1.0E-10;
if (TCOSP > ©.9999)



X:\C++Code\Helen\HMThesis\Weeds_2\Water.cpp 17

{
Tl = 0.0;
T2 = 0.0;
}
else if (TCOSP < -0.9999)
{
Tl = -12.0;
T2 = 12.0;
}
else
{
double TTANP = abs(sqrt(1.0 - TCOSP*TCOSP) / TCOSP);
double WTP = atan(TTANP);
if (TCOSP < 0.0)
WTP = 3.14159 - WTP;
T1 = (-WTP - ALPHA)*3.819;
T2 = (WTP - ALPHA)*3.819;
}

if (Ti<sunris[jcount - 1])
sunris[jcount - 1];
if (T2>sunset[jcount - 1])
T2 = sunset[jcount - 1];
double SRAD = IOE[jcount - 1]*((T2 - T1)*sin(THETA)*sin(DELTA) + 3.819*cos =»
(THETA)*cos(DELTA)*(sin(0.2618*T2) - sin(0.2618*T1)))*3.6;
ENERGY = ENERGY + SRAD*NDAYS[jcount - 1];

}
return ENERGY;

}

void refsolar()//Get reference value for solar energy and compute total potential =
energy for each cell in the field.
//Compare them to the reference to give a scaling factor for each cell dependent on?
slope and aspect

{

double MyLat = Grid::GetLatitude(1, 1);

double RefSolarkE;

RefSolarkE = solarenergy(MyLat, 0, 0);//Get reference value for solar energy on ?
a flat surfact

double slope, aspect, energy, scalesolar;

for (int irow = @; irow < Grid::GetNumRows(); irow++)
{
for (int jcol = @; jcol < Grid::GetNumCols(); jcol++)//For each cell in the?
field
{
slope = Grid::GetSlope(irow, jcol);
aspect = Grid::GetAspect(irow, jcol);
//compute total potential energy for each cell in the field.
energy = solarenergy(MyLat, slope, aspect);
//Compare them to the reference to give a scaling factor for each cell #
dependent on slope and aspect
scalesolar = energy / RefSolark;
Grid::SetSolarScale(irow, jcol, scalesolar);
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}
}

void splitirrad(int iday, int irow, int jcol, double& pardif, double& pardir)
//separate the incoming radiation into direct and diffuse components

{

double Irr, AvRad, Lat, SinLD, CosLD;

double pi

3.1415926;

Irr = Weath::GetIrrad(@, iday);

Lat = Grid::GetLatitude(irow, jcol);

AvRad = Irr * 1000;

double Rad = 0.0174533;

double Dec = -asin(sin(23.45*Rad)*cos(2 * pi*(iday + 10.0) / 365.9)); //
Declination

SinLlD = sin(Rad*Lat)*sin(Dec);

CosLD = cos(Rad*Lat)*cos(Dec);

double aob = SinlLD / CoslLD;
double DayL
double hour
double sinb

solar elevation
double dsinb = 3600*(DayL*SinLD + 24 * CosLD*sqrt(1 - aob*aob) / pi);//integral=

of sin

double dsinbe = 3600 * (DayL*(SinLD + ©.4*(SinLD*SinLD + CosLD*CosLD*0.5)) +

b

=12 * (1 + 2 * asin(aob) / pi);
= 20;
fmax (@, SinLD + CosLD*cos(2 * pi*(hour + 12) / 24));//sine of

12.0*CosLD*(2.0+3.0*0.4*SinLD)*sqrt(1 - aob*aob) / pi);//integral of sinb

with correction for lower atmospheric transmission at low solar elevations

double sc = 1370 * (1 + ©.033*cos(2*pi*iday/365));//solar constant
double angot

= sc*dsinb; //daily extraterrestrial radiation

double atmtr = AvRad / angot; //atmospheric transmission
double frdif; //diffuse light fraction

if (atmtr > 0.75)
frdif = 0.23;
if (atmtr <= 0.75 && atmtr > 0.35)
frdif = 1.33 - 1.46*atmtr;
if (atmtr <= 0.35 && atmtr > 0.07)
frdif = 1 - 2.3*pow((atmtr - 0.07),2);
if (atmtr <= 0.07)
frdif = 1;
pardif = AvRad*frdif;
pardir = AvRad - pardif;

2

?
?
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#tinclude "Weather.h"
#tinclude <fstream>

//This code is all to handle the Weather class
//By AE Milne
Weather: :Weather()//constructor

{
Firstyear=-1;

}

Weather: :~Weather() //destructor

{
irrad.clear(); //(kJ m-2 d-1)
minTemp.clear();//(degrees Celsius)
maxTemp.clear(); //(degrees Celsius)
vapPres.clear(); //early morning vapour pressure (kPa)

of surrounding days

windSpeed.clear(); //speed (height: 2 m?) (m s-1)
precip.clear(); //(mm d-1)
sunHours.clear();

}

void Weather::AddIrrad(double myIrrad)

{
irrad.push_back(myIrrad);

}

void Weather::AddMaxT(double myMaxT)

{
maxTemp.push_back(myMaxT);

}

void Weather::AddMinT(double myMinT)

{
minTemp.push_back(myMinT);

}

void Weather::AddVapP(double myVapP)

{
vapPres.push_back(myVapP);

}

void Weather::AddWindS(double myWindS)

{
windSpeed.push_back(myWindS);
}
void Weather::AddPrecip(double myprecip)
{
precip.push_back(myprecip);
}

void Weather::AddsunHours(double mySun)
{

}

sunHours.push_back(mySun);

Zeroes average @
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void Weather::AddTT(double mytt)

{
TT.push_back(mytt);
}
void Weather::AddWhTT(double mywWhtt)
{
WhTT.push_back(myWhtt);
}
void Weather::SetFirstYear(int myYear)
{
Firstyear=myYear;
}
double Weather::GetIrrad(int iday)
{
if (iday<irrad.size())
return irrad[iday];
else
{
char myText[10];
_itoa_s(iday, myText, 10);
char myBigText[50] = " index out of bounds in irrad array ";
strcat_s(myBigText, myText);
throw std::logic_error(myBigText);
}
}
double Weather::GetMaxT(int iday)
{
if (iday<maxTemp.size())
return maxTemp[iday];
else
throw std::logic_error("index out of bounds in maxTemp array");
}
double Weather::GetMinT(int iday)
{
if (iday<minTemp.size())
return minTemp[iday];
else
throw std::logic_error("index out of bounds in minTemp array");
}
double Weather::GetVapP(int iday)
{
if (iday<vapPres.size())
return vapPres[iday];
else
throw std::logic_error("index out of bounds in vapPres array");
}

double Weather::GetWindS(int iday)
{
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if (iday<windSpeed.size())
return windSpeed[iday];
else
throw std::logic_error("index out of bounds in windSpeed array");

}
double Weather::GetTT(int iday)
{
if (iday<TT.size())
return TT[iday];
else
throw std::logic_error("index out of bounds in TT array");
}
double Weather::GetWhTT(int iday)
{
if (iday<WhTT.size())
return WhTT[iday];
else
throw std::logic_error("index out of bounds in WhTT array");
}
double Weather::GetPrecip(int iday)
{
if (iday<precip.size())
return precip[iday];
else
throw std::logic_error("index out of bounds in precip array");
}
double Weather::GetsunHours(int iday)
{
if (iday<sunHours.size())
return sunHours[iday];
else
throw std::logic_error("index out of bounds in sunHours array");
}
int Weather::GetFirstYear()
{
return Firstyear;
}

//This is the main namespace where the weather data will be held
namespace Weath
{
Weather Weath@; //these are the objects that hold the weather.
Weather Weathl;

void ReadInWeath(int SetNum, char FName[], int iniYear)//reads in the
weather data from a specified set of files into Weath'SetNum'
{
if ((SetNum!=0)&(SetNum!=1))
throw std::logic_error("Weather set number not valid");
//open weather one file at a time and load it into the weather vectors
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for (int iyr=0; iyr<2; iyr++)
{
char myFile[_ MAX_PATH];
char tempData[200];
char tempNum[10];
_itoa_s (iniYear+iyr,tempNum,10);

strcpy_s(myFile, FName);
strcat_s(myFile, tempNum);

std::ifstream Rfile(myFile); //open the weather file

if (Rfile)
{

for (int icount=0; icount<23; icount++) //read the first few

lines of junk

{
Rfile.getline(tempData, 200);
}
while (!Rfile.eof())
{

int myTempInt, myYear;

double myIr, myMinT, myMaxT, myVP, myWindS, myPre, mySunH;

Rfile>>myTempInt;
Rfile>>myYear;
if (iyr==0)
{
if (SetNum==0)

Weathe.SetFirstYear(myYear);

else if (SetNum==1)

Weathl.SetFirstYear(myYear);

}
Rfile>>myTempInt;

Rfile>>myIr;

if (SetNum==0)
Weathe.AddIrrad(myIr);

else if (SetNum==1)
Weathl.AddIrrad(myIr);

Rfile>>myMinT;
if (SetNum==0)
Weathe.AddMinT (myMinT);
else if (SetNum==1)
Weathl.AddMinT (myMinT);

Rfile>>myMaxT;
if (SetNum==0)
Weathe.AddMaxT (myMaxT);
else if (SetNum==1)
Weathl.AddMaxT (myMaxT);
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//Calculate the thermal time each day

double Tb = 0;
double tt(@);
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if (myMaxT>Tb)

2

{
tt = 0.5*(myMaxT + myMinT) - Tb;
double PI12, TTB, B2, BA2;
if (myMinT < Tb)
{
PI12 = 24.0 / (2.0*3.14159);
TTB = PI12*acos(1.0 - 2.0*((Tb - myMinT) / (myMaxT =
- myMinT)));
B2 = Tb*(12.8 - TTB);
BA2 = (myMaxT + myMinT)*(6.0 - TTB*@.5);
BA2 = BA2 + PI12*(myMaxT - myMinT)*@.5*sin(TTB /
PI12);
tt = 2.0%(BA2 - B2) / 24.0;
}
}

if (SethNum == @)
Weatho.AddTT(tt);

else if (SethNum == 1)
Weathl.AddTT(tt);

//Calculate the thermal time FOR WHEAT each day

double WhTb = 0.2;
double Whtt(0);
if (myMaxT>WhTb)
{
Whtt = 0.5*(myMaxT + myMinT) - WhTb;
double PI12, TTB, B2, BA2;
if (myMinT < WhTb)
{
PI12 = 24.0 / (2.0%*3.14159);

TTB = PI12*acos(1.0 - 2.0*((WhTb - myMinT) /

(myMaxT - myMinT)));
B2 = WhTb*(12.0 - TTB);

BA2 = (myMaxT + myMinT)*(6.0 - TTB*0.5);
BA2 = BA2 + PI12*(myMaxT - myMinT)*@.5*sin(TTB /
PI12);
Whtt = 2.0*(BA2 - B2) / 24.0;
}
}

if (SethNum == @)
Weatho.AddWhTT (Whtt);

else if (SetNum ==1)
Weathl.AddWhTT (Whtt);
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Rfile>>myVP;
if (SetNum==0)
Weathe.AddVapP (myVP);
else if (SetNum==1)
Weathl.AddVapP(myVP);

2



X:\C++Code\Helen\HMThesis\Weeds_2\Weather.cpp 6
Rfile>>myWindS;
if (SetNum==0)
Weatho.AddWindS (myWindS);
else if (SetNum==1)
Weathl.AddWindS (myWindS);

Rfile>>myPre;

if (SetNum==0)
Weatho.AddPrecip(myPre);

else if (SetNum==1)
Weathl.AddPrecip(myPre);

Rfile>>mySunH;
if (SetNum==0)
Weathe.AddsunHours (mySunH) ;
else if (SetNum==1)
Weathl.AddsunHours (mySunH);

// myraindur;
//Rfile>>myraindur;

while(Rfile.peek()=="\n") //this bit sorts out some strange=?
stuff that sometimes happens when there are new lines or tabs=?
at ends of files

{
Rfile.ignore(1, '\n');
}
}
Rfile.close(); //release file
}
else

throw std::logic_error("Error opening weather file");

} //end of year loop

} /// end function to read weather
void ClearWeath(int SetNum)

{
if (SetNum==0)
{
Weath@.~Weather();
}
else if (SetNum==1)
{
Weathl.~Weather();
}
else
{
throw std::logic_error("No such weather set");
}
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double GetIrrad(int Setnum, int iday)

{
if (Setnum==1)
{
return Weathl.GetIrrad(iday);
}
else if (Setnum==0)
{
return Weath@.GetIrrad(iday);
}
else
{
throw std::logic_error("No such weather set");
}
}
double GetMaxT(int Setnum, int iday)
{
if (Setnum==1)
{
return Weathl.GetMaxT(iday);
}
else if (Setnum==0)
{
return Weath@.GetMaxT(iday);
}
else
{
throw std::logic_error("No such weather set");
}
}
double GetMinT(int Setnum, int iday)
{
if (Setnum==1)
{
return Weathl.GetMinT(iday);
}
else if (Setnum==0)
{
return Weathe.GetMinT(iday);
}
else
{
throw std::logic_error("No such weather set");
}
}
double GetVapP(int Setnum, int iday)
{
if (Setnum==1)
{
return Weathl.GetVapP(iday);
}
else if (Setnum==0)
{
return Weathe.GetVapP(iday);
}

else
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{
throw std::logic_error("No such weather set");
}
}
double GetWindS(int Setnum, int iday)
{
if (Setnum==1)
{
return Weathl.GetWindS(iday);
}
else if (Setnum==0)
{
return Weath@.GetWindS(iday);
}
else
{
throw std::logic_error("No such weather set");
}
}
double GetPrecip(int Setnum, int iday)
{
if (Setnum==1)
{
return Weathl.GetPrecip(iday);
}
else if (Setnum==0)
{
return Weatho.GetPrecip(iday);
}
else
{
throw std::logic_error("No such weather set");
}
}
double GetsunHours(int Setnum, int iday)
{
if (Setnum==1)
{
return Weathl.GetsunHours(iday);
}
else if (Setnum==0)
{
return Weath@.GetsunHours(iday);
}
else
{
throw std::logic_error("No such weather set");
}
}
double GetTT(int Setnum, int iday)
{
if (Setnum == 1)
{
return Weathl.GetTT(iday);
}

else if (Setnum == 9)



X:\C++Code\Helen\HMThesis\Weeds_2\Weather.cpp

{
return Weatho.GetTT(iday);
}
else
{
throw std::logic_error("No such weather set");
}
}
double GetWhTT(int Setnum, int iday)
{
if (Setnum == 1)
{
return Weathl.GetWhTT(iday);
}
else if (Setnum == @)
{
return Weath@.GetWhTT(iday);
}
else
{
throw std::logic_error("No such weather set");
}
}

}//end of namespace



