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21 Abstract

22 Lepidoptera are sensitive to climate change, with documented impacts on their phenology, 

23 distribution and communities. However, there remains considerable uncertainty over which 

24 species are most vulnerable, and which have been most affected so far. To address this, we 

25 analyse 35-year UK or English population trends of 55 butterfly and 265 moth species to 

26 model the impacts of variation in temperature and precipitation upon population growth rates. 

27 We identify the weather variables and periods that species are most sensitive to, the long-

28 term impacts of climate change, and the characteristics of species which show the greatest 

29 responses. Positive impacts of summer temperature on both butterflies and moths were partly 

30 offset by negative impacts of temperature in other seasons, particularly winter. Precipitation 

31 tended to have negative impacts on population growth rates, particularly for moths. Annual 

32 population fluctuations were strongly driven by inter-annual variation in weather conditions. 

33 Over 40% of a significant decline in mean moth abundance from the 1990s to 2000s was 

34 consistent with a weather-driven decline predicted by our models, which also explained up to 

35 19% of the decadal variation in abundance between species. Species overwintering as larvae 

36 and multivoltine species were most sensitive to the effects of weather, whilst southerly-

37 distributed species, species associated with woodland and unimproved grassland habitats, and 

38 pest species, showed the most positive long-term responses to climate change. Combined, 

39 these results show how climate change is already having significant impacts on the 

40 abundance of particular butterfly and moth species, with likely future consequences for 

41 ecosystem function and services. 

42



43 1. Introduction

44 Climate change is an increasing threat to natural systems, the biodiversity they support and 

45 the ecosystem services they provide (Bellard et al., 2012; IPCC, 2014). There is an urgent 

46 need to document the impacts of climate change that have already happened in order to 

47 improve our ability to predict their future impacts on natural systems. There is growing 

48 evidence for distribution shifts and phenological change (Parmesan and Yohe, 2003; Chen et 

49 al., 2011), and of impacts on ecological communities and species’ populations (Devictor et 

50 al., 2012; Oliver et al., 2017), leading to potential disruption in biotic interactions (Cahill et 

51 al., 2013; Ockendon et al., 2014). However, there remain significant gaps in our 

52 understanding of the climate change influence on population abundances of specific species 

53 over time, and the traits associated with vulnerability to such impacts. To narrow this gap in 

54 knowledge, we present a detailed analysis of the response of over 300 UK butterfly and moth 

55 species to climate change. 

56 Due to their sensitivity to temperature and good data availability, UK butterflies and moths 

57 are a suitable model group to investigate climate change impacts. They are well monitored, 

58 with documented range expansions (Warren et al., 2001; Mason et al., 2015), phenological 

59 changes (Thackeray et al., 2010, 2016) and sensitivity to variation in the weather (Roy et al., 

60 2001; WallisDeVries et al., 2011; Mair et al., 2012; McDermott Long et al., 2017). Recent 

61 work has also suggested that climate change, amongst other drivers, has caused long-term 

62 declines in moth populations (Fox, 2013; Martay et al., 2017), but has not identified how this 

63 impact varies between species. As well as containing many species of conservation concern 

64 (Fox et al., 2013, 2015) moths are also an important group from an economic and ecosystem 

65 service provision perspective, including a number of agricultural and horticultural pests (Ellis 

66 et al., 2015). They are a keystone group for community function, acting as pollinators for 



67 many flowering plants (Hahn and Brühl, 2016), and as important prey for other taxa, such as 

68 culturally significant bird and bat species (Krištín and Patočka, 1997). 

69 There is increasing interest in the ecological traits associated with species’ vulnerability to 

70 climate change, as a means of identifying future conservation priorities (e.g. Foden and 

71 Young, 2016). However, evidence to identify the species’ characteristics impacted by climate 

72 change is generally lacking (Wheatley et al., 2017), or available only for a limited number of 

73 taxa (e.g. Pearson et al., 2014; Pacifici et al., 2017).  In particular, there is little information to 

74 identify the traits of invertebrate species affected by climate change. As our sample of 

75 butterflies and moths include a wide range of species from habitat specialists to generalists, 

76 sedentary to mobile, southern to northern (at a national scale), this analysis provides an 

77 important opportunity to assess the traits associated with vulnerability to climate change 

78 impacts that may be relevant to other taxa. 

79 In order to document climate change impacts on butterflies and moths, we examine the extent 

80 to which variation in population growth rates can be explained by temperature and 

81 precipitation, key variables which cover the majority of climate change impacts on terrestrial 

82 species (Pearce-Higgins et al., 2015b). First we model annual population changes from the 

83 mid-1970s to 2011 as a function of annual fluctuations in these weather variables, whilst also 

84 accounting for non-climatic trends in abundance through time. This analysis is best regarded 

85 as summarising impacts of annual variation in the weather upon the abundance of flying 

86 adults.  Next we consider the extent to which these models can be used to explain long-term 

87 trends in abundance between decades, as this will show whether the impact of climate change 

88 increases over time (Eglington and Pearce-Higgins, 2012). Finally, we relate inter-specific 

89 differences in those responses to various ecological traits. 



90 In doing so, we are able to test several key hypotheses for Lepidoptera, with more wide-

91 ranging data than before: 

92 1. That annual fluctuations in butterfly and moth populations are largely driven by weather 

93 (Roy et al., 2001). 

94 2. That climate change impacts vary between seasons (Martay et al., 2016). 

95 3. That extreme weather events will exert a disproportionate impact on populations 

96 compared to more typical weather fluctuations (Oliver et al., 2015). 

97 4. That long-term population trends are largely driven by climate change, the impacts of 

98 which have increased through time (Martay et al., 2017). 

99 5. That climate change impacts are more negative for habitat specialists, but positive for 

100 habitat generalists (Davey et al., 2012)

101 6. That climate change impacts are negative for northerly distributed species, but are 

102 positive for southern species (Devictor et al., 2012). 

103 7. That climate change impacts vary with species’ life-history (McDermott Long et al., 

104 2017). 

105

106 2. Materials and Methods

107 2.1. Butterfly and moth abundance indices

108 Butterfly data were derived from the UK Butterfly Monitoring Scheme (BMS), in which 

109 volunteer recorders count butterflies along fixed-transects each week (where possible) from 

110 April through to September, within set weather criteria (Pollard and Yates, 1993). The 

111 scheme has grown incrementally from its inception in 1976 to cover more than 1000 sites by 

112 2011 (Botham et al., 2013). In early years of the scheme, recording was restricted almost 

113 entirely to England so we therefore restricted our analysis to data from England, the most 

114 evenly recorded country (Martay et al., 2016). 



115 Moth data were derived from the Rothamsted network of light traps run by a mix of 

116 professionals and volunteers on a daily basis from 1975 (Woiwod and Gould, 2008). Here, 

117 analysis was restricted to the 13 sites from across the UK with a continuous data run to 2010, 

118 thus eliminating the need to account for spatial variation in coverage through time (Martay et 

119 al., 2016). 

120 Firstly, we generated annual abundance indices for each species at each site, accounting for 

121 missing weekly counts in the case of butterflies (Roy et al., 2001). Because we were 

122 interested in large-scale responses to climate, secondly, we collated these into annual multi-

123 site indices of population change for each species (ni,Y in year Y for species i), using the 

124 freeware program TRIM, a widely used method to document national trends (e.g. Pannekoek 

125 and van Strien, 1998; Conrad et al., 2004). Species for which there were no records in any 

126 one year were excluded. Sufficient data were available for analysis of 55 butterfly species 

127 and 265 moth species.

128 2.2. Weather variables

129 We used UK Met Office 5km gridded datasets, averaged across England and the UK for 

130 butterflies and  moths respectively (Perry and Hollis, 2005), to calculate average mean daily 

131 temperature and seasonally summed precipitation, separately for winter (Dec-Feb), spring 

132 (Mar-May), summer (Jun-Aug) and autumn (Sept-Nov). Given the potential for these 

133 variables to operate on populations through lagged effects (e.g. Pearce-Higgins et al., 2015a), 

134 we considered the 24 months preceding the season in which the last flight of a species was 

135 recorded; giving a total of 16 variables (2 variables calculated separately for each of the 8 

136 seasons in the 2 years preceding the flight period). Thus for adults of species such as the 

137 Small Blue (Cupido minimus) which are active from May to August, we used data from 

138 summer in yeart to autumn in yeart-2. We refer to these variables describing annual variation 
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139 in seasonal temperature and precipitation values as weather variables (VW), but use climate to 

140 refer to decadal averages or change over longer time-periods. We tested whether there were 

141 trends in these mean seasonal weather variables throughout the study area (England for 

142 butterflies and UK for moths) between 1975 and 2010 using GLMs. 

143 2.3. Models of population growth

144 Population growth was described by ΔnOi,Y = log (nOi,Y/ nOi,Y-1), where nOi,Y is the observed 

145 annual national population index in year Y for species Oi. We modelled population growth as 

146 a function of weather variables f(VW) for each species as follows (Model 1). 

147 Δni,Y = α + b0 ni,Y-1 + b1 Y + ƒ(VW) Model 1

148 Count in the previous year (nOni,Y-1) was included to account for potential density-

149 dependence (Pearce-Higgins et al., 2015a), known to be important for some butterfly and 

150 moth species (Roy et al., 2001). Year was included to account for potential non-climatic 

151 drivers of long-term trends which could alter the population growth rate through time. Given 

152 the potential for non-linear relationships to occur between population growth and both 

153 weather variables (indicating disproportionate impacts of extreme weather events) and year, 

154 we also considered quadratic terms in cases where they were shown in preliminary analysis to 

155 have significant explanatory power when added to a model of population growth as a 

156 function of the related linear weather variable, year and count in the previous year. Quadratic 

157 terms were only included in combination with the associated linear term. Given the sample 

158 size of 35 years for both groups, population growth was modelled as a function of up to six 

159 variables (two of which were always count in the previous year and year), to reduce the risk 

160 of over-fitting.



161 All possible models were fitted using the lm function in R (R Core Team, 2015) and model 

162 selection was undertaken by Akaike information criterion corrected for small sample sizes 

163 (AICc; Anderson, 2007), using the dredge function from the MuMIn package (Barton, 2016) 

164 in R, selecting the best-fitting of the candidate models. We tested for multicollinearity 

165 between the variables in resulting models by examining whether the Pearson correlation 

166 coefficients r > 0.7, the threshold considered necessary to prevent reliable model estimation 

167 (Dormann et al., 2013). For only six of the 320 species was this threshold exceeded, and for 

168 each of these species the collinearity was between the year term and the count in the previous 

169 year. As very few species were affected, this should have a minimal impact on the results.

170 Model fit was assessed by r2. Hierarchical partitioning (Chevan and Sutherland, 1991; Walsh 

171 and Mac Nally, 2013) was used to identify the proportion of the variance which could be 

172 attributed specifically to the weather variables (VW). The product of r2 and Vw gave the r2 

173 attributable to annual variation in the weather (sensitivity), used to test Hypothesis 1 (that 

174 annual fluctuations in butterfly and moth populations are largely driven by weather). We used 

175 t-tests to determine whether the r2 or sensitivity differed between butterflies and moths after 

176 checking for normality.

177 To test Hypothesis 2 (that climate change impacts vary between seasons), we identified how 

178 many times each weather variable was included in the models (in each case indicating a 

179 significant relationship between the weather variable and the species’ population growth) 

180 from the best-fitting model for each species, and whether these were positive or negative. The 

181 direction of quadratic relationships was determined by plotting their form over the range of 

182 the climatic data. We used Pearson's chi-squared test to test whether each of the 24 weather 

183 variables had notably positive or negative impacts across species (separating moths and 

184 butterflies), after applying a Bonferroni correction. The prevalence of significant quadratic 

185 relationships indicated the extent to which extreme events had a disproportionate impact on 



186 populations, as described by non-linear relationships between weather variables and 

187 population growth (Hypothesis 3).

188 2.4. Models of population trends

189 By predicting population growth using Model 1 and observed weather variables, we were 

190 able to test the extent to which observed long-term trends were consistent with the cumulative 

191 impact of modelled effects of annual variation in weather upon population growth. Thus, for 

192 each species in each year we predicted the weather-driven population growth (ΔnVw_i,Y ) as a 

193 function of the observed relevant weather variables (Vw) using the best fitting models 

194 (described above). In these predictions we fixed the year terms to equal the first year in the 

195 time-series (Y1), thus removing the impact of variation in non-climatic drivers of change. To 

196 predict this weather-related population growth between the first and second year only, 

197 observed population count in the first year was used but thereafter the predicted count in the 

198 previous year (nVw _i,Y-1) was used to predict the population growth in the following year, 

199 ensuring that the model was ‘free-running’ (Model 2; see Eglington and Pearce-Higgins, 

200 2012). 

201 ΔnVw_i,Y = α + b0 nVw_i,Y-1 + b1 Y 1 +ƒ(VW) Model 2

202 In this prediction, annual growth rates (ΔnVw_i,Y ) were therefore determined by the effects of 

203 density-dependence, weather and an underlying population growth rate (due to year being 

204 included in the model, representing linear non-weather related change). Long-term trends 

205 were quantified from the slope of the observed and weather-model predicted population 

206 estimates through time as a measure of overall change across the study period which we refer 

207 to as βi and βVw_i, for species i. By modelling βi as a function of βVw_i, taxa and the interaction 

208 between taxa and βVw_i, we tested whether the long-term population trends were consistent 

209 with expected effects of climate change (Hypothesis 4).



210 Based on observed population trends (βi), species were classified by the extent to which their 

211 population trends were increasing (statistically significant (P<0.05) positive linear trend), 

212 decreasing (significant negative linear trend) or stable (non-significant linear trend). We then 

213 used the same criteria to determine the extent to which each species’ population trend had 

214 been influenced by trends in the weather variables, based on the slope of the weather-model 

215 prediction through the time-series (βVw_i). We used tests of equal proportions to test whether 

216 within each taxon there are significant differences in the number of species with declining 

217 observed and weather-model predicted trends compared to increasing trends. The 

218 combination of observed trends and weather-model prediction trends was used to categorise 

219 species by the impact of weather trends upon their population (Table 2).

220 2.5. Traits analysis

221 Butterfly and moth traits were collated from a range of sources and databases (Dennis et al., 

222 2005; Waring and Townsend, 2009; Dennis, 2010) to cover ecological and life-history 

223 parameters that may affect species’ sensitivity to weather variables (Table 1). In order for the 

224 analyses to be comparable across both groups, which were modelled together, we used trait 

225 variables that were available for both butterflies and moths. 

226 The influence of traits upon sensitivity (proportion of variance which could be attributed to 

227 weather variables) and the weather-model prediction trend (βVw_i) was tested to identify how 

228 variation in the importance of weather in driving population fluctuations and long-term trends 

229 varies between groups of species. Both responses were modelled as a function of the trait 

230 variables in Table 1.  Given multiple habitat associations for many species, habitat category 

231 was separated into species that occur in woodland (D1), unimproved grassland (D2) and 

232 upland (D3) categories, the main associations of habitat specialists, and multiple associations 

233 were possible for each species. Linear mixed models were fitted in R (R Core Team, 2015) 



234 using the lme4 package (Bates and Maechler, 2010), with random factors for family, genus 

235 and taxa to account for phylogenetic correlation. Model selection was undertaken by AICc 

236 using the dredge function within the MuMIn package in R, allowing for up to five variables, 

237 in addition to the random factors. This analysis allowed us to test Hypotheses 5 – 7.

238 2.6. Impacts of climate change

239 Annual fluctuations in population growth for each species could be highly dependent on the 

240 weather, irrespective of the long-term impact of climatic trends. To better separate these 

241 fluctuations from the long-term impacts of changes in weather variables (climate change) 

242 upon overall butterfly and moth abundance, we examined the change in  mean observed and 

243 weather-model predictions of population abundance between three decades for each species 

244 e.g. (Models 3 & 4).

245       ∆ni,90s - 80s =  log(ni,Y = 1990:1999/ni,Y = 1980:1989) 

246 Model 3

247 ∆nVw_i,90s - 80s =  log(nVw_i,Y = 1990:1999/nVw_i,Y = 1980:1989) 

248 Model 4

249 This focus on decadal means from 1981-2010 is complementary to our analyses of long-term 

250 trends, but avoided the results being overly influenced by extreme weather events at the start 

251 and end of the time-series; 1976 was characterised by summer drought, whilst the 2010/11 

252 winter was extremely cold (Palmer et al., 2017). 

253 Specifically, we tested for whether the decadal changes in mean population estimates (e.g. 

254  were significantly different from zero and whether they varied between  taxa. ∆niO,90s - 80s)

255 We also tested whether the observed decadal population changes for each species (e.g. 

256  correlated with weather-model predicted changes (  ∆niO,90s - 80s) e.g. ∆nVw_iO,90s - 80s) 
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257 and whether this varied between taxa. These analyses allowed us to test whether there were 

258 climate change impacts on long-term population trends and whether the climate change 

259 impacts increased over time (Hypothesis 4). This final analysis was undertaken in SAS 9.4 

260 using PROC MIXED, applying a Kenward-Rogers correction for the degrees of freedom. 

261 Unless specified, means are presented with standard errors throughout. 



262 Table 1. Species traits used in the analysis.

Trait Definition

A. UK latitudinal 

distribution

Simplified to four categories based on occurrence within 100km 

latitudinal band; 1 = southerly – occurring up to 300km north (the 

Wash), 2 = occurring up to 500km north (Cumbria / N. Yorkshire), 3 

= occurring up to 600km north (Northumberland and southern 

Scotland), 4 = occurring to 1000km north or higher, virtually or 

totally throughout whole of UK.

B. type of main 

larval food plants

1 = deciduous trees, including low deciduous in hedgerows (Hawthorn 

etc), 2 = coniferous trees and shrubs, 3 = grasses, including sedges 

and rushes, 4 = dicots, including herbaceous and low woody shrubs 

such as heather etc.  5 = lichens, mosses, fungi and algae (majority are 

lichens),  6 = polyphagous (covering at least two of the above 

categories).

C. Broad categories 

of larval feeding 

specialisation

1 = monophagous (one species only or rarely other species), 2 = 

specialist (restricted to one family of food plant or lower taxa of plants 

apart from food resources rarely taken), 3 = intermediate generalist 

(restricted to one main larval food plant group), 4 = polyphagous 

(spanning at least two main larval food plant groups). 

D. Broad habitat 

preferences

D1 = woodland, D2 = unimproved grassland (inc. downland), D3 = 

upland – each a binary term.

E. Wing span in mm mean width of the span of the forewings (as surrogate for dispersal 

power, Sekar, 2011)

F. Overwintering 1 = egg, 2 = larva, 3 = pupa, 4 = adult, 5 = migrant



stage

G. Voltinism 1 = always univoltine, 2 = variable between one to two (rarely three) 

generations, with multiple generations in the south and single 

generations further north, 3 = obligate multivoltine with two 

generations per year, 4 = obligate multivoltine, with three generations 

per year. 

H. Flight period 1 = spring (March to May), 2 = summer (June to August), 3 = spring 

and summer (March to August), 4 = autumn (September to 

November), 5 = summer and autumn (June to November), 6 = spring, 

summer and autumn (March to November), 7 = autumn, winter and 

spring (September to May) and (rarely) all year round

I. Larval period I1 = January to March, I2 = April to June, I3 = July to September, I4 = 

October to December – each a binary term such that larval periods can 

span multiple seasons.

J. Pest species Binary term denoting if the species is regarded as an agricultural or 

horticultural pest. 

K. Priority Species 

for Conservation 

Binary term defining if a species is defined as ‘conservation priority 

species’ by formal Governmental processes prior to 2012 (Eaton el al., 

2015)

L. Larval start 

month

Initial month for the larval stage.



264 Table 2. Categorisation of the impact of weather trends on species according to the cross-

265 tabulation of observed population trends and weather prediction trends.

Observed population trend

Decreasing Stable Increasing

Decreasing Loser

Significant 

population 

decline matches 

weather 

prediction trend. 

Hindered

Population 

trend 

constrained by 

decreasing 

weather 

prediction trend. 

Hindered

Population 

trend 

constrained by 

decreasing 

weather 

prediction trend.

Stable Unaffected 

Stable weather 

prediction trend. 

Unaffected 

Stable weather 

prediction trend.

Unaffected 

Stable weather 

prediction trend.

Weather 

prediction 

trend

Increasing Helped 

Population 

trend 

ameliorated by 

increasing 

weather 

prediction trend.

Helped 

Population 

trend 

ameliorated by 

increasing 

weather 

prediction trend.

Winner 

Significant 

population 

increase 

matches 

weather 

prediction trend.

266

267 3. Results



268 3.1. Weather variables

269 Throughout the study area (England for butterflies and UK for moths) the mean seasonal 

270 temperatures increased significantly between 1975 and 2010 except for winter temperature 

271 (Supplementary material, Appendix AS1). Precipitation did not vary over time in any season 

272 except for an increase in summer rain across the UK (Supplementary material, Appendix 

273 S1A). Mean annual temperatures increased between decades by 0.49 ± 0.10 °C/decade (P < 

274 0.001) with the UK mean annual temperature in the 1980s, 1990s and 2000s respectively 8.4, 

275 8.9 and 9.3 °C.

276 3.2. Models of population growth

277 The best-fitting models of population growth (Model 1) explained between 29.9% and 89.5% 

278 of the variation in observed populations (r2) across both butterflies and moths (Supplementary 

279 material, Appendix BS2). There was a significant difference in the proportion of variation 

280 explained between butterflies (67.6%) and moths (63.8%; t = 2.739, P = 0.007). The 

281 proportion of this variation that could be attributed to weather variables (VW) suggests annual 

282 variation in weather alone explained a mean of 28.8% of the variation in population growth 

283 across all species (ranging from 0% - 65.0% for individual species) (Hypothesis 1). This 

284 proportion did not differ significantly between butterflies and moths (t = -0.588, P = 0.558).

285 Eleven weather variables were found to affect population growth rates in significantly more 

286 species than the 1/20 expected by chance (Fig. 1) (Hypothesis 2). The most widespread 

287 impact of weather was a significant positive association between population growth rate and 

288 summert temperature, found in 35% of butterflies and 44% of moth species. However, 

289 significant negative effects of temperature were apparent at other times of the year, with the 

290 growth rates of 29% of butterfly species negatively correlated with winter t-1/t temperature and 

291 population growth rates of 17%, 23% and 19% of moths species negatively correlated with 



292 summert-1, wintert-1/t and springt temperature respectively. Moth population growth was 

293 significantly negatively associated with rainfall throughout the year, affecting 21% of species 

294 in autumnt-1, 16% in wintert-1/t, 17% in springt and 14% of species in summert, whilst 

295 population growth rates of 27% of butterfly species was negatively associated with autumnt-1 

296 rainfall. 

297 Only 9% of significant relationships with weather variables were quadratic (Hypothesis 3). 

298 These relationships comprised more than 5% of the possible relationships in any season 

299 expected by chance for butterfly population responses to summert temperature alone. In this 

300 instance only 4 species (Hamearis luci, Pyronia tithonus, Thymelicus sylvestris, Lasiommata 

301 megara) showed quadratic negative relationships indicative of extreme negative responses to 

302 summert temperature. 

303 3.3. Models of population trends

304 There was no overall relationship between observed trends (βi) and weather-model predicted 

305 trends (βVw_i) (F1,317 = 0.31, P = 0.58), or any difference in this relationship between 

306 butterflies and moths (F1,316 = 0.06, P = 0.80), although moths exhibited more negative 

307 population trends than butterflies (F1,317 = 9.64, P = 0.0021). Cross-species trends across all 

308 species were not therefore strongly related to weather-model predicted trends across 35 years. 

309 Likewise, there were more moths with significantly declining population trends than 

310 increasing (χ = 40.1, P < 0.001) but no difference in the proportion of moth species with 

311 increasing and declining weather-model predicted trends (χ = 0.59, P = 0.44) and no 

312 difference in the proportions of butterflies with increasing and declining observed (χ = 1.10, 

313 P = 0.29) or weather-predicted trends (χ = 0.66, P = 0.42).  Six species of butterfly and 36 

314 species of moth were classified as losers, with a further 10 and 48 respectively classified as 

315 hindered (Table 4). These numbers compare with 5 and 9 species respectively classified as 



316 winners and 17 and 61 species respectively, classified as helped. The final classification of 

317 each species is given in the supplementary material, Appendix S2B. Although long-term 

318 trends across all species were not consistently linked to climate change, for a sizeable subset 

319 of species, trends were consistent with the modelled expectation of climate change 

320 (Hypothesis 4). For observed, modelled and weather-model predicted abundances for all 

321 species see the supplementary material, Appendix S3C.

322 3.4. Traits analysis

323 The best-fitting model for describing the sensitivity of species’ populations to weather by 

324 traits showed significant effects of upland habitat association, overwintering strategy and 

325 voltinism (Table 3), although combined, these variables only accounted for 9% of the 

326 variation between species. Sensitivity was lowest in species occupying upland habitats 

327 compared to other habitats. Sensitivity in species overwintering as larvae was greater than in 

328 species overwintering as pupae and higher in non-migratory species compared to migratory 

329 species (Hypothesis 7). Finally, univoltine species showed the lowest sensitivity to weather 

330 variables, particularly compared to species with variable voltinism that were most sensitive.

331 Between-species variation in weather-model prediction trends (βVw_i) varied strongly with 

332 UK latitudinal distribution (Hypothesis 6), habitat (Hypothesis 5) and pest status, accounting 

333 for 10% of the variance between species (Table 3). The effect of weather on long-term trends 

334 was most positive in the most southerly-distributed species, and most negative in northerly-

335 distributed or widespread species. Species associated with woodland and unimproved 

336 grassland habitats showed more positive weather trends than those from other habitats. The 

337 modelled effect of weather upon trends was also significantly more positive for pest species 

338 than other species. 

339 3.5. Impacts of climate change



340 Given strong inter-annual fluctuations in butterfly and moth populations which may have 

341 influenced the slope of the long-term trends, we regard the impacts of climate change as 

342 better assessed from changes in decadal averages (Fig. 2a & b). Between the 1980s and 1990s 

343 the mean observed and weather predicted decadal moth abundances remained stable 

344 (∆nmoths,90s-80s = -0.056 ± 0.031, P = 0.074; ∆nVw_moths,90s-80s = 0.037 ± 0.024, P = 0.13) while 

345 observed and decadal butterfly abundances increased by about 4% (∆nObutterflies,90s-80s = 0.037 

346 ± 0.012, P = 0.003) of which about 76% was consistent with the expectation from the 

347 weather-model predicted increase (∆nVw_butterflies,90s-80s = 0.028 ± 0.011, P = 0.019). Between 

348 the 1990s and the 2000s moth populations declined by 28% (∆nmoths,00s-90s = -0.280 ± 0.032, P 

349 < 0.001), of which about 38% was consistent with the weather-model predicted expectations 

350 (∆nVw_moths,00s-90s = -0.108 ± 0.022, P < 0.001), indicating the contribution that climate change 

351 may have made to the decline (Hypothesis 4). Between the 1990s and 2000s butterfly 

352 populations were largely stable (∆nbutterflies,00s-90s = -0.026 ± 0.014, P = 0.065; ∆nVw_butterflies,00s-

353 90s = -0.010 ± 0.009, P = 0.306) (Fig. 2c). 

354 There was a significant correlation between observed and weather-predicted species-specific 

355 differences in abundance between the 1980s and 1990s (respectively ∆ni,90s-80s and ∆nVw_i,90s-

356 80s) (F1,318 = 8.61, P < 0.0001, r2 = 0.19; Fig. 3a), that did not differ significantly between 

357 butterflies and moths (taxa * weather-trend interaction, F1,319 = 0.01, P = 0.93; taxa, F1,318 = 

358 0.15, P = 0.13). Between the 1990s and 2000s there was also no difference in the correlation 

359 between observed (∆ni,00s-90s ) and weather-predicted differences in abundance (∆nVw_i,00s-90s) 

360 between taxa (taxa * weather-trend interaction, F1,318 < 0.01, P = 0.98), although butterfly 

361 population trends were more positive than moths (taxa, F1,318 = 9.24, P = 0.0026) and there 

362 was again a strong correlation between observed and weather-predicted trends (F1,318 = 33.06, 

363 P <0.0001, r2 = 0.13; Fig. 3b). 
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364 Table 3. The results of the traits analysis, presenting the final models for Sensitivity and 

365 Weather trend, where the traits were selected by AICc. 

Variable Parameter 

estimate

SE

Sensitivity r2=0.089

Intercept

D3 (upland)

F2 (larvae)

F3 (pupae)

F4 (adult)

F5 (migrant)

G2 (variable voltinism)

G3 (obligate multivoltine 2 generations)

G4 (obligate multivoltine 3 generations)

28.019

-2.746

2.898

-1.504

-1.923

-20.889

5.519

2.454

7.391

1.493

1.356

1.823

1.909

4.336

6.803

1.721

2.292

7.950

Weather trend r2=0.101

Intercept

A UK latitude 2

A UK latitude 3

A UK latitude 4

D1 (woodland)

D2 (unimproved grassland)

J Pest species

0.005

-0.010

-0.017

-0.019

0.007

0.008

0.009

0.006

0.006

0.007

0.006

0.004

0.003

0.004

366

367



368 Table 4. Butterfly and moth population trends and modelled trends from the weather-related 

369 model to indicate the long-term impact of climate change. See methods and Table 2 for 

370 criteria used to categorise species’ responses.

 Climate 

response

Weather-related 

trend Observed trend Butterflies Moths

Winner Increase Increase 5 9

Helped Increase Stable 11 30

  Decline 6 31

Unaffected Stable Increase 4 16

 Stable 9 49

  Decline 4 46

Hindered Decline Increase 2 10

  Stable 8 38

Loser Decline Decline 6 36

371

372

373

374

375



376   

377

378 Fig. 1. Percentage of butterfly (left) and moth (right) species whose population growth rates 

379 correlate with seasonal temperature (top) and rainfall (bottom) variables, from the year in 

380 which the population was monitored (yeart) to two years prior to monitoring (yeart-2). The 

381 percentage of significant positive (above the line) or negative (below the line) relationships is 

382 shown by the open bars. The percentage of significant quadratic relationships with 

383 increasingly positive (above the line) or negative (below the line) relationships is shown by 

384 the black bars. Asterisks identify significant (P < 0.001) differences in the frequency of 

385 positive or negative relationships. The numbers under the bars indicate the number of species 

386 for which each variable was tested for; only species active and monitored in winter would 

387 have wintert/t+1 (i.e. the winter in which their activity was monitored) included as a potential 

388 variable in their population models.

389

390

(a) (b)

(c) (d)
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394 Fig. 2. (a & b) Multi-species mean observed (solid) and weather-predicted (dotted) 

395 population trends indices for buterflies (a) and moths (b). Decadal means (±s.e.) based on 

396 observed populations (filled) and weather- predictions (open) are shown for the 1980s, 1990s 

397 and 2000s. (c) Change in mean decadal abundance of moths (left side) and butterflies (right 

398 side) from the 1980s to the 1990s (circles) and from the 1990s to the 2000s (triangles). 

399 Observed abundance changes are shown with open symbols (left of pairs) and weather-

400 predicted changes are shown with closed symbols (right of pairs).

401

(c)
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405 Fig. 3. Correlations between observed and weather-predicted changes in mean abundance 

406 from the 1980s to 1990s (topa & b) and 1990s to 2000s (bottomc & d) for butterflies (a & c) 

407 open circles and grey line) and moths (filled circles and black lineb & d). Commented [EBD5]:  Is there a grey line in the top plot? 
If so I can’t see it! Would it be better to have 4 subplots to 
separate butterflies and moths?



408 4. Discussion

409 The weather had a strong impact on the national abundance of butterflies and moths, 

410 accounting for over a quarter of the annual variation in abundance, and over 50% in 15 

411 species (13 moths and 2 butterflies). Using information about the weather over the preceding 

412 two years, we can therefore model population growth rates of many species with a reasonably 

413 high degree of confidence, providing support for hypothesis 1. 

414 Despite this, the evidence in support of hypothesis 4, that long-term population trends are 

415 driven largely by climate change, was more equivocal. From the 1980s to the 1990s there was 

416 no consistent effect of weather on overall UK moth populations while butterfly populations 

417 marginally benefitted from weather changes. However, between the 1990s and the 2000s, 

418 climate change (as measured by the contribution of weather to population growth rates and 

419 abundances between decades) contributed to a significant decline in overall moth abundance. 

420 Over the length of the time-series, climate change had a significant negative effect on 32% of 

421 moth species and 29% of butterflies. A greater proportion of butterflies were classified as 

422 climate change winners or helped (40%), but there were fewer moths (26%) in this category. 

423 Despite a lack of correlation between observed and weather-predicted trends across the entire 

424 time-series, there was a significant correlation between weather-predicted and observed mean 

425 abundances between both the 1980s and 1990s, and 1990s and 2000s. Given the weather-

426 predicted trends are based upon free-running models, these findings suggest that across a 35-

427 year timescale, error can propagate to reduce their predictive power, particularly given the 

428 stochastic nature of butterfly and moth populations which can make long-term trends 

429 sensitive to rapid changes in abundance. However, the significant relationships between 

430 observed and predicted changes in abundances between decades, and the modelled impact on 

431 moth population growth rates and abundances, particularly in the 2000s, indicate that climate 

432 change has probably reduced the abundance of many moth population during this period, and 



433 therefore contributed to the previously observed decline in moth populations (Conrad et al., 

434 2004, 2006). 

435 Research comparing climate and habitat change impacts on UK butterflies between 1977 and 

436 2007 concluded that habitat factors were the main driver of change (Oliver et al., 2012). Our 

437 results are consistent with this finding. Moth declines have previously been attributed to both 

438 habitat changes in the agriculturally intensive lowlands (Fox et al., 2014) and climate change 

439 (Martay et al., 2017), which again, our results support. We estimate that about 40% of the 

440 moth decline from the 1990s to 2000s could be attributed to climate change as modelled by 

441 weather-related population trends, and 60% is therefore potentially due to other factors. 

442 Although moth populations are being driven by multiple factors, climate change appears to be 

443 a significant driver of change, particularly given their sensitivity to annual changes in the 

444 weather. The fact that the magnitude of impact increased in the most recent decade is 

445 consistent with the hypothesis of increasing impacts of climate change through time 

446 (hypothesis 4). 

447 Although 40% of butterflies were predicted to have benefitted from climate change, fewer 

448 than 10% of species were clear winners with increasing populations matching weather-

449 modelled trends.  Of 18 butterfly species which have shown poleward range expansions over 

450 the sampling period attributable to climate warming (Fox et al., 2006), we identified only two 

451 of these as ‘winners’ with substantial population level increases (Aphantopus hyperantus and 

452 Erebia aethiops). There is a close link between the rate of population change and range 

453 expansion in butterflies, with evidence of declining abundance trends from the mid-1990s to 

454 2009 limiting further range expansion (Mair et al., 2014). The weaker relationship between 

455 weather-predicted trends and observed trends from the 1990s to 2000s, compared to the 

456 1980s to 1990s, suggests that many of the population increases and range expansions of the 

457 1980s and 1990s could have been mediated by climate change, but that since then, other 



458 processes have become more important and limited continued increase and expansion. The 

459 ability of many butterflies to expand their distribution in response to warming is also limited 

460 by habitat availability (Warren et al., 2001; Oliver et al., 2012; Mair et al., 2014). 

461 Sensitivity to weather was greatest in species which overwintered as larvae and were multi-

462 voltine, but was lowest in migratory and upland species. Unsurprisingly, migratory species 

463 had low sensitivity to weather, as we did not include weather variables from their wintering 

464 grounds and migratory routes in the models. Low sensitivity to weather in upland species was 

465 surprising given previously identified vulnerabilities of some mountain butterflies to climate 

466 change (Franco et al., 2006), but could reflect a high availability of temperature ranges over 

467 small distances due to altitudinal gradients and microhabitats on mountainous ground. 

468 Alternatively, it may be a function of the greater uncertainty associated with the estimated 

469 population indices in such species, due to low monitoring coverage in uplands. 

470 The sensitivity of species overwintering as larvae indicates that the negative impacts of 

471 winter warming are likely to be most important for these species, through the mechanisms of 

472 fungal or pathogenic attack, increased energy loss or mismatch, as described below. Multi-

473 voltine species were more sensitive to weather than univoltine species but did not have 

474 increased weather-modelled population trends, suggesting that increasing generations per 

475 year will benefit some species, but drive declines in others. Increasing temperature can drive 

476 declines in multi-voltine species due to a disruption in synchrony with plant host species 

477 (Altermatt, 2010). 

478 Weather-modelled population trends were most positive for southerly distributed species, 

479 providing support for hypothesis 6, and suggesting that climate change is likely to have 

480 played a part in facilitating the long-term northwards expansion of many butterfly and moth 

481 species (Warren et al., 2001; Mason et al., 2015). This is also consistent with previous 



482 analyses of butterfly trends across the UK and Europe indicating that species associated with 

483 warmer temperatures have increased in abundance relative to cold-associated species 

484 (Devictor et al., 2012; Oliver et al., 2017). In an analysis of UK moth communities across a 

485 gradient of long-term monitoring sites, northern and upland species declined in warmer years 

486 more than southerly-distributed species (Martay et al., 2016). Weather-modelled trends were 

487 more positive for species associated with woodland and unimproved grassland habitats. This 

488 supports previous work suggesting that semi-natural habitats may increase resilience to 

489 climate change (Oliver et al., 2015, 2017), although runs counter to the previous finding for 

490 birds (Davey et al., 2012), that impacts of climate change are more negative for habitat 

491 specialists compared to generalists (hypothesis 5). The predicted impacts of weather trends 

492 were also more positive for pest species than other species, indicating that climate change 

493 may play a role in driving population increases of agricultural and horticultural pests, which 

494 may be more adaptable to climate change (Cannon, 1998). Alternatively, many such species 

495 are also migratory, and therefore in warm years, UK populations may be boosted by 

496 immigration from continental Europe. There was therefore evidence across measures of both 

497 sensitivity and weather-modelled population trends that climate change impacts will vary 

498 with species’ life-history traits (hypothesis 7), although actually the strength of such effects 

499 may be fairly limited. 

500 The response of species to temperature and precipitation varied widely between seasons, 

501 strongly supporting hypothesis 2. Effects of temperature were consistently positive during the 

502 summert
 for both butterflies and moths, but were negative during the wintert

 and for moths, 

503 during the springt
 and previous summert-1 as well. Thus, although warm conditions during the 

504 summer boosted adult activity and survival, it appears that warming at other times of the year 

505 can have a detrimental impact on populations. The positive effects of summer warming on 

506 butterflies are well known (Roy et al., 2001; Warren et al., 2001; McDermott Long et al., 



507 2017), but the negative effects of warm winter weather have only recently been documented 

508 for butterflies (Dennis et al., 2016; McDermott Long et al., 2017), and are further supported 

509 by our analysis. That such conditions may also affect moths, along with more negative 

510 impacts of temperature at other times of the year, is a novel finding, but is consistent with the 

511 recent finding that overall moth abundance may be sensitive to variation in temperature 

512 during summer, winter and spring months (Martay et al., 2016), and previous analyses on 

513 Actia caja populations in the UK (Conrad et al., 2002). 

514 Several potential mechanisms have been suggested to underpin this negative impact of warm 

515 winters and springs. It may be mediated through increased fungal attack of overwintering 

516 life-stages (Radchuk et al., 2013), increasing metabolic rates over winter, draining energy 

517 reserves, and leading to poorer quality adults (Mercader and Scriber, 2008), or earlier 

518 emergence, leading to subsequent mismatch with environmental conditions (Wiklund et al., 

519 1996). Negative lagged temperature effects in summert-1 may be related to drought conditions 

520 which can affect host plant growth and therefore reproductive success, and have previously 

521 been highlighted as being of concern for some butterfly species (Oliver et al., 2013, 2015). 

522 Although we did not find a consistent negative impact of summer t-1 temperature across 

523 butterflies, it is noteworthy that the one species, Aphantopus hyperantus, showing a negative 

524 quadratic relationship with summert-1 temperature, and therefore most vulnerable to extreme 

525 summer temperatures has previously been identified as highly drought sensitive (Oliver et al., 

526 2013). Fifty moth species showed negative relationships between summer t-1 temperature and 

527 population growth rates, suggesting that they may be even more constrained by hot summer 

528 conditions than butterflies. Thus, despite the fact that greater numbers of species tend to 

529 exhibit positive relationships between summert
 temperature than negative relationships with 

530 summert-1 temperature, some species are clearly sensitive to negative lagged effects of high 

531 summer temperatures and may therefore be particularly vulnerable to climate warming 



532 (Supplementary material, Appendix CS2). Negative lagged effects of summer heat have also 

533 been identified for various bird species (Pearce-Higgins et al., 2010; Pearce-Higgins et al., 

534 2015a), suggesting more broadly that the ecological impacts of extreme summer heat may be 

535 immediately apparent, but manifest only in subsequent years. Conversely, periods of high 

536 precipitation from autumnt-1 to summert were detrimental to many moth species. Whilst 

537 immediate negative impacts of summert rainfall are probably related to impacts on activity 

538 and adult survival, rainfall at other times of the year, particularly in autumn and winter, may 

539 promote fungal attack overwinter (Radchuk et al., 2013). 

540 Relatively few non-linear relationships were identified. Quadratic relationships with weather 

541 variables would be expected if extreme weather events had a disproportionate impact on 

542 populations. Whilst as just discussed, there are clearly some species which are sensitive to 

543 extreme conditions, such as summer drought (see also Oliver et al., 2013, 2015), our results 

544 suggests that it is not the response to those extreme events which have so far driven recent 

545 population trends (see also Palmer et al., 2017). Thus, hypothesis 3 is rejected, although 

546 given that extreme events are rare within a 35-year time-series, they may still be important in 

547 the future. 

548 Although we believe that this study is a significant advance in documenting the species-

549 specific climate change impacts on UK Lepidoptera, and estimating the totality of that impact 

550 across species, it does have a number of limitations. Firstly, we examined the response of 

551 national population trends to nationally-averaged climate data, which may hide climate-

552 change or habitat impacts if a species is increasing in some areas and declining in others. This 

553 may also decrease our ability to identify the impact of extreme weather events, especially if 

554 they are local events (Oliver et al., 2013). However, our results are broadly consistent with 

555 those of McDermott Long et al. (2017), who also identified few responses to extreme events 

556 in butterfly populations using local data. Indeed, given the potential for local adaptation in 



557 populations to climate (Roy et al., 2015), our national-scale approach may be more 

558 appropriate for documenting large-scale climate change impacts. A second drawback is that 

559 non-climate factors were characterised by the model intercept, year and a quadratic year term, 

560 rather than being modelled directly. Whilst this means that we cannot identify important non-

561 climatic factors, we were able to at least partially account for such effects; the model 

562 intercept allowed a constant non-weather model prediction trend to be identified and two 

563 terms relating to year allowed a cubic relationship between population abundance and non-

564 climate factors (i.e. a quadratic relationship between population change and non-climate 

565 factors). Thus habitat factors that changed over time would be included in the model provided 

566 that the fluctuations occurred over a long-term basis, although any influential non-climatic 

567 factors that fluctuated annually would not be modelled well using this approach. It is also 

568 worth noting that a stable population growth rate contributed to the weather only prediction, 

569 which may not always be biologically accurate in some circumstances. Conversely, some 

570 variation due to long-term climate change may also have been soaked up by the year terms, 

571 wrongly attributing some long-term impacts of climate change to non-weather factors.  

572 Despite these limitations, our results generally mirrored previous research into climate 

573 change impacts where equivalent studies were available, and the good descriptive power of 

574 our models at the national-level is encouraging.

575 To conclude, we have documented that moth and butterfly populations fluctuate strongly in 

576 relation to inter-annual variation in weather conditions. These conditions have deteriorated 

577 during the 2000s for many moths, leading to a 24% decline in average moth populations, 

578 43% of which is consistent with an impact of climate change. This closely matches the 

579 estimated 48% contribution of climate change to the decline in moths in the UK from the 

580 1970s to 2011 derived independently by Martay et al. (2017) using an ordination approach. 

581 This adds to the evidence that climate change has exerted a significant downward pressure on 



582 moth populations, although clearly other factors have also contributed significantly to their 

583 decline. There was strong interspecific variation in the impacts of climate change with 

584 species in both groups having apparently increased in response to climate change, and others 

585 having declined. A significant proportion of this inter-specific variation can be attributed to 

586 the modelled impact of weather variables through time. Although our trait-based models were 

587 only able to account for a limited amount of variation between species, species overwintering 

588 as larvae, and multivoltine species, appeared most sensitive to the effects of weather. 

589 Southerly-distributed species were those most likely to have benefited from climate change, 

590 along with woodland, unimproved grassland and pest species. Climate change is therefore 

591 already having a major impact on the abundance of some butterfly and moth species, with 

592 potential implications for their conservation. More broadly, it is also leading to a general 

593 decline in national moth populations, as previously documented for a single species by 

594 Conrad et al. (2002), and by Martay et al. (2017). Given the importance of these species as 

595 pollinators, as keystone species within ecosystems and food webs, and in some cases, as 

596 agricultural and horticultural pests, these declines have wide implications for ecosystem 

597 health and functioning, for natural capital and if they lead to impacts on food production, for 

598 human health and wellbeing (Fox et al., 2010). Given projected trends for warmer, wetter 

599 winters in the UK due to future climate change (Jenkins et al., 2009), these trends are likely 

600 to be exacerbated in the future. 
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