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A B S T R A C T

Willow (Salix sp.) is a historically well-known herbal medicine that provided the lead compound (salicin) for the
discovery of aspirin, one of the most successful plant derived drugs in human medicine. During a metabolomics
screen of 86 Salix species contained in the UK National Willow Collection, we have discovered, isolated and fully
characterised a new natural salicinoid – salicin-7-sulfate. This molecule may have important human pharma-
cological actions that need to be considered in determining the efficacy and safety of willow herbal medicines.

1. Introduction

Comminuted or powdered barks from Salix (willow) species, espe-
cially S. alba, S. nigra, S. purpurea, S. daphnoides and S. fragilis are well-
known phyto-medicines with a history of ethno-medical use that
stretches back to ancient Greek, Assyrian and Egyptian civilisations.
The story of the identification of salicin 1 as an active analgesic from
willow, and the introduction of the synthetic analogue aspirin (acetyl
salicylate) 2, which was to become a huge pharmaceutical success, has
been well documented [1,2]. Both salicin and aspirin act as pro-drugs,
being metabolised in humans to salicylate - the active pharmacophore
that competitively inhibits cyclooxygenase [3,4], whilst aspirin itself
also has a more direct action on cyclooxygenase, via irreversible acet-
ylation of the active site [3].

The broad Salicaceae woody plant family contains several hundred
species of Salix as well as the smaller Populus genus (e.g. poplar, aspen,
cottonwoods). The family is characterised by the presence of phenolic
glycosides, including, in many cases, the salicinoid sub-group of which
salicin 1 represents the basic structure in a modular array of more
complex analogues [5]. Possibly because of the success of aspirin, the
potential for the discovery of new pharmacologically active compounds
in the Salicaceae has been largely unexplored, although it has been
suggested recently that the bioactivity of herbal extracts of willow
cannot be accounted for by the levels of salicin alone [6]. In addition to
pain relief, the use of aspirin in mitigation of thrombo-embolism is also
well established and, more recently, both salicin and aspirin have been
investigated for the prevention of cancer [7–10].

As part of a programme dedicated to high value products from
plants we have focussed on novel phytochemistry in the Salicaceae, in

particular, those species contained in the 1500+ National Willow
Collection (NWC), maintained as a short-rotation coppice plantation at
Rothamsted Research. Taking a metabolomics approach [11] to polar
extracts using NMR and high mass accuracy LC-MS-MS we have con-
structed a large annotated data-resource that spans the NWC and the
full breadth of phenolic glycoside diversity. In this paper, we report on
the discovery and structure determination of salicin-7-sulfate 3 (Fig. 1),
a close analogue of salicin 1, that potentially has a different metabolic
fate in humans and thus requires further investigation in the context of
efficacy and safety of the herbal materials.

2. Materials and methods

2.1. General experimental procedures

1H-1D and 1H-1H & 1H-13C 2D-NMR spectra were acquired on a
Bruker Avance 600MHz NMR spectrometer (Bruker Biospin, Germany),
operating at 600.05MHz for 1H and 150.9MHz for 13C NMR spectra,
using a 5mm selective inverse probe. 1D 1H spectra were collected
using 128 scans and by using the zgpr pulse sequence with a 90° angle.
The residual HOD signal was suppressed by pre-saturation during a 5 s
delay. Spectra consisted of 64,000 data points with a spectral width of
12 ppm. FIDs were automatically Fourier transformed using an ex-
ponential window function with a line broadening of 0.5 Hz. Phasing
and baseline correction were carried out within the instrument soft-
ware. 2D COSY, HSQC and HMBC spectra were collected using standard
Bruker parameter sets and acquisition details are given in Supporting
Information. All spectra were collected at 300 °K in D2O:CD3OD (8:2)
and chemical shifts are given in δ, relative to d4-TSP [(trimethylsilyl)
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propionic acid, 0.01 % w/v] added as a chemical shift reference stan-
dard. NMR data was processed using TOPSPIN v. 2.1 (Bruker Biospin,
Germany), MestReNova v. 6.0.2 (Mestrelab Research SL, Spain) and
ACD NMR Processor (ACD Labs, Toronto, Canada)

UHPLC–MS were recorded with a Dionex UltiMate 3000 RS UHPLC
system, equipped with a DAD-3000 photodiode array detector, coupled
to an LTQ-Orbitrap Elite mass spectrometer (Thermo Fisher Scientific,
Germany). UHPLC separation was carried out using a reversed-phase
Hypersil GOLD™ column (1.9 μm, 30× 2.1mm i.d. Thermo Fisher
Scientific, Germany) which was maintained at 35 °C. The solvent system
consisted of water/0.1% formic acid (A) and acetonitrile/0.1% formic
acid (B), both Optima™ grade (Thermo Fisher Scientific, Germany).
Separation was carried out for 40 min under the following conditions:
0–5min, 0% B; 5–27min, 31.6% B; 27–34min, 45% B; 34–37.5 min,
75% B. The flow rate was 0.3 mL/min, and the injection volume was 10
μL. Mass spectra were collected using an LTQ-Orbitrap Elite with a
heated ESI source (Thermo Fisher Scientific, Germany). Mass spectra
were acquired in negative mode with a resolution of 120,000 over m/z
50–1500. The source voltage, sheath gas, auxiliary gas, sweep gas and
capillary temperature were set to 2.5 kV, 35 (arbitrary units), 10 (ar-
bitrary units), 0.0 (arbitrary units) and 350 °C, respectively. Default
values were used for other acquisition parameters. Automatic MS–MS
was performed on the four most abundant ions and an isolation width
of m/z 2 was used. Ions were fragmented using high-energy C-trap
dissociation with a normalised collision energy of 65 and an activation
time of 0.1 ms. Data was collected and inspected using Xcalibur v. 2.2
(Thermo Fisher Scientific, Germany). Data were analysed with the
SIEVE™ 2.0 software (Thermo Fisher Scientific) using the
Chromatographic Alignment and Framing algorithm. Frames were
calculated from 0 to 40 minutes, between m/z 50 and 1500. Framing
parameters were set at frame width of 2.5 minutes and m/z of 100 ppm,
and peak intensity threshold of 2682520.

Compound isolation was carried out using an HPLC system (Dionex
UltiMate 3000, Thermo Fisher Scientific) equipped with an Ascentis C-
18 column (5 μm, 5× 250mm i.d., Supelco, UK) maintained at 25 °C.
The chromatographic separation was performed by using a constant
flow rate of 1ml/min of the mobile phases water (A) and acetonitrile

(B), both containing 0.1% formic acid. The binary gradient was: 10min,
isocratic of 2% B; 10 to 30min, linear from 2 to 5% B, followed by
15min of 5% B. Peaks were detected using wavelengths of 210 to 310
nm and the peak corresponding to salicin-7-sulfate was collected, in
automation, by time (37.5–42min) into glass tubes. Eighteen injections
(100 μL each) were performed and fractions from repeated runs were
combined and the solvent evaporated using a Speedvac concentrator
(Genevac, Suffolk, UK).

Optical rotation was measured in water on an Anton Paar MCP-100
polarimeter using a 100 mm sample cell.

2.2. Plant material

Multiple dormant stems were harvested in February 2015 from the
National Willow Collection (NWC) maintained at Rothamsted Research,
Harpenden, UK (RRes), UK. Plants had been previously coppiced in
February 2014. Each plot of the collection contains 10 plants that were
generated from separate stem cuttings. Stem tissue portions (10–15 cm)
were harvested from the top of each plant in a plot and combined to
give a single sample. Tissue was kept at−80 °C prior to freeze-drying to
remove residual water. After lyophilisation plant material was milled to
a fine power (Ultra Centrifugal Mill ZM200, Retsch, UK). Milled tissue
was maintained at −80 °C until analysis. Voucher specimens of lyo-
philised material have been retained and are available on request.

2.3. Metabolite extraction and isolation

For initial metabolite profiling by NMR and UHPLC-MS triplicate
aliquots of milled freeze-dried willow stem powder (30mg) were ex-
tracted as previously described [11]. Separate extractions were made
for each analytical method. For compound isolation freeze-dried,
milled, Salix koriyanagi (NWC1038) powder (270mg) was extracted at
50 °C (10min) in H2O: MeOH (80:20, 5mL). The sample was cen-
trifuged (5min) and the supernatant transferred to a new tube and
heated at 90 °C (2min). After cooling and centrifugation the super-
natant (3.0 mL) was removed to a glass HPLC vial for purification by
HPLC peak collection.

2.4. Spectroscopic data

Salicin-7-sulfate 3: Yellowish amorphous powder (0.9 mg),
[α]25D− 32.8 (c 0.0367, water), UHPLC-MS: RT 9.90 min, UV λmax

210, 271 nm; m/z 365.0549 [M-H]− calc'd for C13H17O10S, 365.0542.
1H NMR [600MHz,(D2O:CD3OD=8:2)] δ 3.52 (1H, m, H-4′),
3.59–3.63 (2H, m, H-3′,5′), 3.65 (1H, dd, J=9.3,7.7 Hz, H-2′), 3.76
(1H, dd, J=12.5, 5.7 Hz, H-6′β), 3.93 (1H, dd, J=12.5, 2.2 Hz, H-6′α),
5.12 (1H, d, J=11.2 Hz, H-7), 5.22 (1H, d, J=11.2 Hz, H-7), 5.10
(1H, d, J=7.6 Hz, H-1′), 7.17 (1H, td, J=7.5, 1.0 Hz, H-4), 7.24 (1H,
d, J=8.0 Hz, H-6), 7.43 (1H, td, J=8.3, 1.6 Hz, H-5), 7.48 (1H, dd,
J=7.6, 1.6 Hz, H-3). See Table 2 for 13C NMR and Supplementary
information file for 2D spectra.

3. Results and discussion

Data from a standardised 1H-NMR fingerprinting method for aqu-
eous methanolic extracts of willow [11], that gives quantitative data on
a mixture of primary and secondary metabolites, was mined to examine
the variation in salicin concentration in stem tissue samples, across 86
pure (i.e non-hybrid) Salix genotypes in the NWC, harvested at the
dormant stage (February), a time-point when biomass willows are
generally cropped. Quantitative data derived from 1H-NMR via in-
tegration of the distinctive and isolated benzylic hydrogens of salicin 1
(δ4.74 and δ4.69) against internal d4- trimethylsilylpropionate stan-
dard, are given in Table 1. Salicin levels varied from 2.85 (S. mac-
caliana) to 57.6 (S. acutifolia Willd.) mg/g dry weight, (i.e. 0.29% to
5.8% dry weight) of whole stem tissue. Interestingly, the Salix sp. (alba,

Fig. 1. Chemical structures described in this paper.
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purpurea, fragilis and daphnoides), that are documented for medicinal
use by the Herbal Medicinal Product Committee of European Medicines
Agency [12], were not the highest in salicin content, ranging from 0.84
to 3% dry weight. The highest salicin contents were found in S. acuti-
folia (5.76%) and S. rorida (4.83%). S. acutifolia has previously been
found to contain mainly salicin 1 and salicortin 4 in the emerging green
shoots during the rapid growth season (May) [13] and this agrees with
the finding here that much of the salicin remains in the matured stem
tissue in the dormant season. High-resolution LC-MS data (negative
ionisation mode) was also collected on comparative extracts of all
samples for direct comparison with the 1H-NMR data. The peak corre-
sponding to salicin 1 appeared at 11.27 min (Fig. 2) and gave ions at m/
z 285.0976 (C13H17O7) corresponding to [M-H]- and at m/z 331.1030
(C14H19O9) which corresponded to the formate adduct (Fig. 3).

MSMS of m/z 331.1030 gave a single fragment ion at m/z 123.0455
corresponding to the C7H7O2 salicyl alcohol aglycone moiety (Fig. 4). In
many lines, a further peak corresponding to 3 was present in the same
region of the Total Ion Chromatogram appearing at 9.90min (Fig. 2).
The mass spectrum of 3 contained an ion at m/z 365.0549 and a for-
mula corresponding to C13H17O10S (Fig. 3). The presence of sulfur in

Table 1
Concentration of salicin, 1, in 86 accessions from the National Willow Collection (NWC)
held at Rothamsted Research (RRes). Data is obtained from 1H-NMR analysis (600MHz)
of a D2O:CD3OD (4:1) extract of dormant stem tissue.

ID NWC plot
code

RRes no Species Variety Salicin, 1 mg/g
d.w.

1 M30 1165 S. arbusculoides 15.35 ± 0.08
2 M130 1043 S. wilsonii 7.88 ± 1.00
3 M46 1062 S. rosmarinifolia 45.04 ± 0.97
4 M147 1236 S. rhamnifolia

Pall.
8.51 ± 2.41

5 M28 - S. waldsteiniana
Willd.

2.88 ± 0.83

6 NWC742 - S. bebbiana 8.14 ± 0.87
7 GH1346 - S. kalarica 11.48 ± 0.14
8 GH1239 1239 S. saposhnikovii 6.24 ± 0.68
9 M56 415 S. magnifica

Hemsl.
8.18 ± 0.21

10 M36 500319 S. balfourii 10.90 ± 1.55
11 M164 500340 S. humilis microphylla 19.40 ± 0.26
12 M60 746 S. gracilistyla Miq. Neko-Yanagi 6.83 ± 0.17
13 NWC1011 791 S. alberti 12.72 ± 1.98
14 M38 823 S. caesia Vill. Misurina.

Belluna
18.15 ± 0.54

15 M39 830 S. kochiana Traut. 18.79 ± 0.04
16 M113 888 S. pychnostachya 9.01 ± 0.14
17 NWC1096 889 S. suchowensis 13.23 ± 0.52
18 NWC1037 828 S. integra Thunb. 15.13 ± 0.39
19 M121 984 S. alaxensis

Anderss.
18.55 ± 1.80

20 M129 - S. elaeagnos Scop. 11.68 ± 1.08
21 M27 - S. nakamurana 4.32 ± 0.22
22 M47 - S. hastata L. 26.87 ± 2.32
23 M54 - S. commutata

Bebb
40.93 ± 3.31

24 NWC1231 - S. excelsa 11.07 ± 0.00
25 NWC1306 1317 S. lasiocarda Musgroves

Orange
26.11 ± 0.00

26 NWC1308 1339 S. patula 3.92 ± 0.00
27 NWC1309 - S. tetrapla 7.32 ± 0.00
28 NWC1315 - S. discolor 6.88 ± 0.00
29 NWC1316 - S. ehrhartiana 25.13 ± 0.00
30 NWC1317 - S. exigua 9.95 ± 0.00
31 NWC1318 - S. lasiocarpa 10.95 ± 0.00
32 NWC1319 - S. meyeriana 28.63 ± 0.00
33 NWC1320 - S. pellita 25.63 ± 0.00
34 NWC1321 - S. pendulina 11.64 ± 0.00
35 NWC1322 - S. wardiana 11.17 ± 0.00
36 NWC695 500579 S. pyrolifolia 8.79 ± 0.00
37 NWC1195 1017 S. phylicifolia L. 4.12 ± 1.01
38 NWC1196 1018 S. reinii Franch. et

Savat.
15.17 ± 0.19

39 NWC1165 1024 S. hookeriana
Barratt ex Hook.

28.16 ± 1.12

40 NWC1202 1038 S. sitchensis
Sanson ex Bong.

24.40 ± 4.03

41 NWC285 11 S. lucida Muhl. 38.53 ± 5.82
42 NWC1214 1130 S. maccaliana 2.85 ± 0.05
43 NWC1215 1131 S. wimmeriana 21.35 ± 0.01
44 NWC1216 1155 S. acutifolia Willd. 57.57 ± 1.88
45 NWC1219 1157 S. adhenophylla

Hook.
6.95 ± 0.60

46 NWC722 1184 S. cinerea L. 8.50 ± 1.39
47 M137 1187 S. coesia Vill. 14.45 ± 0.63
48 NWC1236 1208 S. irrorata

Anderss.
22.91 ± 4.30

49 NWC1237 1209 S. kangensis Nakai 37.39 ± 1.45
50 NWC1241 1218 S. nipponica

(Franch. et Sav.)
A.Skvorts.

10.13 ± 1.65

51 NWC1245 1229 S. pierotii Miq. 12.73 ± 1.62
52 NWC1301 1285 S. udensis Trautv.

et Mey.
4.96 ± 0.35

53 NWC1302 1301 S. vinogradovii
A.Skvorts.

29.87 ± 2.12

54 M162 1308 S. repens L. Argentea 6.13 ± 0.93
55 M93 14 S. pentandra L. Dark French 21.19 ± 3.45

Table 1 (continued)

ID NWC plot
code

RRes no Species Variety Salicin, 1 mg/g
d.w.

56 NWC470 191 S. alba L. Kew 8.40 ± 0.57
57 NWC279 2 S. nigra Marsh. SN3 Primrose

Hill
28.90 ± 4.79

58 NWC488 210 S. alba L.
var.coerulea

Wantage Hall 12.21 ± 0.62

59 NWC295 23 S. amygdaloides
Anderss.

20.07 ± 3.95

60 M55 261 S. babylonica L. Annularis 7.96 ± 0.09
61 NWC647 386 S. fragilis L. Cox 19.06 ± 0.65
62 M69 420 S. daphnoides Vill. Ruberrima 24.70 ± 5.93
63 NWC688 441 S. rorida Lacksch. 48.26 ± 2.30
64 NWC692 446 S. aegyptiaca L. 9.25 ± 0.11
65 NWC698 449 S. appendiculata

Vill.
Venzonassa 3.57 ± 0.64

66 NWC701 452 S. apennina
A.Skvorts.

Pescara 26.87 ± 1.47

67 NWC704 455 S. aurita L. Innis Moor 6.67 ± 0.24
68 NWC708 459 S. caprea L. Smithiana 6.31 ± 0.97
69 NWC733 481 S. scouleriana

Barrat ex Hook.
32.45 ± 0.70

70 NWC326 56 S. triandra L.
f.concolor

Baldwin 4.24 ± 0.41

71 NWC821 577 S. dasyclados
Wimm.

6.68 ± 0.01

72 NWC841 607 S. rehderiana C.K.
Schneider

10.54 ± 3.14

73 NWC849 615 S. schwerinii
E.Wolf

K3 Hilliers 7.04 ± 0.29

74 NWC890 672 S. viminalis L. Bowles
Hybrid

5.01 ± 0.11

75 NWC963 741 S. turanica
Nasarov

4.76 ± 0.06

76 NWC1032 820 S. amplexicaulis Bory 6.61 ± 1.03
77 NWC1034 824 S. gilgiana Seemen 15.12 ± 2.25
78 NWC1038 831 S. koriyanagi

Kimura ex Goerz
24.16 ± 0.00

79 NWC1053 844 S. purpurea L. Uralensis 29.25 ± 1.56
80 NWC1095 886 S. caspica Pall. 14.14 ± 1.89
81 NWC1097 890 S. tenuijulis Ledeb. 13.99 ± 2.93
82 NWC1046 941 S. miyabeana

Seemen
Purpurescens 28.11 ± 1.02

83 NWC1141 956 S. eriocephala
Michx.

Mawdesley 12.80 ± 0.24

84 NWC1170 988 S. drummondiana
Barratt ex Hook.

36.28 ± 1.84

85 NWC1174 993 S. laggerii Wimm. 7.03 ± 0.23
86 NWC1175 994 S. mielichhoferii

Saut.
Seiseralp 11.70 ± 0.74
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the molecule was confirmed via inspection of the M+2 isotope region.
In addition to the ions at m/z 367.0580 and m/z 367.0635,

corresponding the 18O (C13H17O9
18OS) and 13C (C11

13C2H17O10S) iso-
topes respectively, an ion at m/z 367.0500 was present and corre-
sponded to an entity with molecular formula C13H17O10

34S. These M+2
ions and their relative intensities, are consistent for S-containing me-
tabolites when data is collected on MS instruments with a high resol-
ving power (such as FT-ICR-MS or Orbitrap) and have previously been
suggested to confirm the molecular formulae of sulfur bearing meta-
bolites [14].

The MSMS spectrum (Fig. 4) showed a base peak at m/z 96.9607
[SO4H]−. Other peaks at m/z 347.0441 (C13H15O9S), 203.0028
(C7H7O5S) and 123.0455 (C7H7O2) corresponded to [M-H2O]−, [M-
glucose]− and [salicyl]− respectively. The MS data thus indicated that
3 is a sulfated derivative of salicin. The presence of a further ion at m/z
259.0140 (C6H11O9S), corresponding to sulfated glucose, seemed to
indicate that the sulfate group was possibly located on the glucose
moiety of salicin. However, this ion could also arise from a rearrange-
ment and neutral loss of orthoquinone methide from a 7-sulfate as
shown in Fig. S1, Supporting information. Small ions arising from an
analogous neutral loss are present in the published MS data of other
salicinoids, e.g. a 423→ 317 transition in salicortin 4 that have not, to
date, been rationalised [15], but can be explained by a similar loss of
orthoquinone methide and transfer of the 7-ester group to glucose.
Thus, from MS data alone it was impossible to assign the position of the
sulfate group with certainty. The ions obtained in the MS-MS spectrum
suggested three possible structures, that of salicin-7-sulfate, isosalicin-
1-sulfate (i.e. 7-glucosylsalicyl alcohol-1-sulfate) or salicin-2′/6′-sulfate.
The final structure was determined via isolation using repeated HPLC
injections and structural characterisation by 1D and 2D-NMR.

The 1H-NMR (Table 2 and Fig. S2, Supporting information) was
compared to that of salicin 1 to determine the position of sulfation. A
clear 0.44 ppm downfield shift of the two J= 11Hz doublet signals
relating to the methylene group at C-7 were observed. These signals
now appeared at δ5.216 and δ5.123 in contrast to those observed in
salicin (δ4.734 and δ4.681). Signals relating to the glucoside moiety
were largely unchanged as where those of the aromatic salicyl unit.
Thus, the 1H-NMR data suggested a structure of salicin-7-sulfate 3. 13C
NMR data was obtained from HSQC and HMBC data and is presented in

Fig. 2. Total Ion Chromatograms (negative ion mode) of two accessions (NWC441 and
NWC 831) from the natural willow collection. 1: salicin, 3: salicin-7-sulfate.

Fig. 3. A: MS spectrum of 1 (m/z 331, 11.27min); B: MS spectrum of 3 (m/z 365, 9.90min); C: Enlarged region showing m/z 333 ion [(M+2)+formate-H] of 1; D: Enlarged region of m/z
367 ions relating to [(M+2)-H] ions of 3. Data was collected in negative ion mode.
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Table 2 and Figs. S4 and S5, supporting information. The most sig-
nificant difference was a 6.8 ppm downfield shift of the signal relating
to C-7 which appeared at 68.8 ppm in comparison to the equivalent
carbon in salicin (62.0 ppm). An associated upfield shift of 6.4 ppm was
observed for the signal corresponding to C-2 which now appeared at
127.5 ppm. Salicin-7-sulfate 3 has not previously been reported in the
literature. However, 1H and 13C NMR data is available for other sulfated
natural products. The structurally related idesin hydrogen sulfate 5
isolated from the fruits of Idesia polycarpa Maxim. (Flacourtiaceae)
showed comparable changes in its NMR spectra (Table 2) when

compared to the non-sulfated compound, i.e. a downfield shift of 0.54
and 5.7 ppm for the protons and carbon, respectively, attached to the
sulfate group [16]. Similarly, the position of a sulfate group at C-6 of
glucose in a triterpene glycoside, isolated from the whole plant of Ba-
copa monnieri (L.) Wettst. (Scrophulariaceae), was also confirmed based
on a downfield shift of 3.4 ppm in the carbon directly attached to the
sulfate group [17]. Although sulfation of natural products is not rare,
and occurs often in mammalian metabolism, most examples from the
plant world concern sulfated flavonoids [18]. Other instances from
plant pathways include a sulfated anthraquinone [19] and a sulfate of

Fig. 4. A: MSMS spectrum of 1 (m/z 331, 11.27 min); B: MSMS spectrum of 3 (m/z 365, 9.90 min). Data was collected in negative ion mode.

Table 2
Chemical shift data of salicin 1, salicin-7-sulfate 3 and idesin hydrogen sulfate 5.

Position 1a 3a 5b,c

δC δH JH-H (Hz); multiplicityd δC δH JH-H (Hz); multiplicityd δC δH JH-H (Hz); multiplicityd

1 157.6 - - 157.8 - - 144.1 - -
2 133.9 - - 127.5 - - 132.0 - -
3 132.1 7.40 7.5; 1.5; dd 133.7 7.48 7.6; 1.6; dd 121.1 6.96 7.5; 2.0; dd
4 126.0 7.15 7.5; 1.0; td 126.1 7.17 7.5; 1.0; td 126.6 7.01 7.5; t
5 132.3 7.37 8.3; 1.7; td 133.7 7.43 8.3; 1.6; td 117.6 6.86 7.5; 2.0; dd
6 118.0 7.21 8.0; d 118.1 7.24 8.0; d 150.6 - -
7 62.0 4.68

4.73
12.7; d
12.7; d

68.8 5.12
5.22

11.2; d
11.2; d

66.2 5.32 5.19 12.0; d
12.0; d

1′ 103.4 5.08 7.4; d 103.7 5.10 7.6; d 106.9 4.63 7.5; d
2′ 75.7 3.56-3.63 Overlapped 76.2 3.65 7.7; 9.3; dd 75.3 3.55 m
3′ 78.6 3.56-3.63 Overlapped 78.7 3.59-3.63 m 77.7 3.45-3.36 m
4′ 72.1 3.50 m 72.5 3.52 9.0, 9.8, dd 70.9 3.45-3.36 m
5′ 78.6 3.56-3.63 m 78.7 3.59-3.63 m 78.3 3.32 m
6′ 63.3 3.75 3.91 12.4; 5.7; dd

12.4; 2.2; dd
63.9 3.76 3.93 12.5; 5.7; dd 12.5; 2.2; dd 62.1 3.88 3.75 12.3; 2.3; dd

12.3; 5.0; dd

a Data collected in 80:20 D2O:CD3OD (4:1). Spectra were referenced to d4-TSP at δ0.00.
b Data collected in d4-MeOH. Spectra were referenced to d4-MeOH.
c Chou et al. [16].
d d doublet; dd double doublet; m multiplet; dt doublet of triplets; t triplet.
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deoxylactucin – a sesquiterpene from lettuce [20]. This report and that
of the related idesin hydrogen sulfate [16] are the first examples from
simple phenolic metabolism although there are examples of sulfated
lignans (e.g. [21,22]).

Unlike salicin, it was not possible, due to overlapping signals, to
quantify salicin-7-sulfate in the NMR spectra. However, relative quan-
titation within the original LC-MS datasets arising from the 86 geno-
types screened, was used to gain insight into the abundance of the
sulfated form (Fig. 5). It can be seen, by correlating the NMR-quantified
levels of salicin shown in Table 1 with the relative intensities of the
salicin peak in the output data table from SieveTM software processing
of the LC-MS data (see Fig. S6, supporting information for the corre-
lation), that the LC-MS ‘quantitation’ in general shows good correlation
with the NMR data, but there are several significant outliers such as
lines 33 and 78 where LC-MS data is high, and lines 41 and 44, where
LC-MS is giving low readings. The vagaries of differential ionisation and
ion suppression are known influences on LC-MS quantitation and thus
the data presented in Fig. 5 provides relative levels rather than absolute
quantitation provided by NMR. It also should be noted that the sulfated
form of salicin ionises much more easily than salicin and thus Fig. 5
serves as a guide to relative levels of the sulfate across samples rather
than accurate quantitation. Nevertheless, the LC-MS data indicated that
the ratio of salicin: salicin-7-sulfate was not fixed. Many of willow
species produced only trace levels of the sulfated form. The highest
amounts were observed in S. pellita (ID= 33, NWC1320) and S. kor-
iyanagi (ID=78, NWC1038). However, as a general rule across the
dataset, the amount of salicin produced does not correlate with the
amount of the sulfated form (as observed by LC-MS). For example, S.
commutata (ID=23, M54) and S. rorida (ID= 63, NWC688) both
contained appreciable amounts of salicin, yet only trace amounts of
salicin-7-sulfate. In contrast, S. babylonica L. var. Annularis (ID=60,
M55) showed low levels of salicin and a much higher proportion of
salicin-7-sulfate.

Although, in many cases the levels of salicin-7-sulfate are very low,
the presence of this compound in the varieties that are in both

traditional and commercial use as herbal medicines is of concern. Of the
above mentioned traditional varieties used in herbal products, S. alba
and fragilis, contained significant amounts of (2) with respect to salicin.
The presence of the sulfate group in 3, when metabolised by humans, is
likely to lead to the formation of salicyl alcohol–7-sulfate 6 (Fig. 6) that
is unlikely to be further metabolised to salicylate, but more likely to
form orthoquinone methide, a reactive entity. There are four pharma-
cological aspects to consider – (i) that 6 is a close analogue of salicylate
and thus itself is a cyclooxygenase inhibitor; (ii) that having the sulfate
group gives 6 different anti-coagulant properties (c.f. heparin) to sali-
cylate; (iii) that 6 is a much stronger acid than salicylate and thus po-
tentially more harmful in gastro-intestinal bleeding side effects and (iv)
that the elimination of sulfuric acid from 6 to form orthoquinone me-
thide in vivo may result in co-valent binding to enzyme active sites.
Although herbal extracts of Salix species also contain other more
complex salicinoids, many of these break down to salicin and thus can
be considered as further sources of active salicylate. However, the
blocking acidic sulfate group means that 3 needs further investigation
as this is likely to have direct effects in humans, and may partly explain
the different efficacies of herbal willow and synthetic aspirin. Also,
from a safety of herbal medicines perspective, the pharmacology of
salicin-7-sulfate 3 warrants further investigation, and our efforts are
now focussed on obtaining larger quantities of this new analogue for
this purpose.
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