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Abstract

Background and aims Bacterial Non-Specific Acid
Phosphatase (NSAP) enzymes are capable of dephos-
phorylating diverse organic phosphoesters but are rarely
studied: their distribution in natural and managed envi-
ronments is poorly understood. The aim of this study
was to generate new insight into the environmental
distribution of NSAPs and establish their potential glob-
al relevance to cycling of organic phosphorus.
Methods We employed bioinformatic tools to determine
NSAP diversity and subcellular localization in microbial
genomes; used the corresponding NSAP gene se-
quences to census metagenomes from diverse ecosys-
tems; studied the effect of long-term land management
upon NSAP diversity and abundance.

Results Periplasmic class B NSAPs are poorly repre-
sented in marine and terrestrial environments, reflecting
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their association with enteric and pathogenic bacteria.
Periplasmic class A and outer membrane-associated
class C NSAPs are cosmopolitan. NSAPs are more
abundant in marine than terrestrial ecosystems and class
C more abundant than class A genes, except in an acidic
peat where class A genes dominate. A clear effect of
land management upon gene abundance was identified.
Conclusions NSAP genes are cosmopolitan. Class C
genes are more widely distributed: their association with
the outer-membrane of cells gives them a clear role in
the cycling of organic phosphorus, particularly in soils.
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Abbreviations

CCA Constrained canonical analysis

Corg Organic carbon

DNA Deoxyribose nucleic acid

E Expect value

EC Enzyme commission number

EDTA  Ethylenediaminetetraacetic acid

FAO Food and Agriculture Organization of the
United Nations

NMR Nuclear magnetic resonance

ML Maximum likelihood

N Nitrogen

NSAP  Non-Specific Acid Phosphatases

P Phosphorus

pHMM  Profile hidden Markov model

%GE Percentage of genome equivalents
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Introduction

The biogeochemical cycling of phosphorus (P) is im-
portant to biological productivity on a global scale:
fixation of both carbon dioxide and nitrogen in the
oceans by the cyanobacterium 7richodesmium is limited
by the availability of inorganic P (Moore et al. 2013) and
global agricultural production relies upon regular inor-
ganic P inputs to soil (derived primarily from finite rock
phosphate reserves) to maintain yields (Cordell et al.
2009). Bacteria commonly express hydrolase enzymes
to acquire nutrients from complex organic molecules:
for example, cellulases to acquire carbon from cellulose
or chitinases to acquire nitrogen from chitin. There are
several described enzyme families that can dephosphor-
ylate organic compounds to acquire P, among them
phosphatases and phytases. Many of these hydrolase
enzymes may be secreted outside the cell, where they
either function as soluble enzymes or are retained as
membrane-bound enzymes to hydrolyse organic com-
pounds into inorganic phosphate and organic by-
products that can be transported across membranes.
Among phosphoric monoester hydrolases, alkaline
phosphatases (EC 3.1.3.1) are the most commonly stud-
ied. There are three gene families, phoA, phoD and phoX
which code for enzymes with monoester and some
diester activity. Similarly, there are a number of phytase
(EC 3.1.3.8 and EC 3.1.3.26) families, differentiated by
different catalytic mechanisms and co-factor require-
ments (Mullaney and Ullah 2003). Alkaline phospha-
tase and phytase genes are distributed across a broad
phylogenetic range and display a high degree of
microdiversity (Lim et al. 2007; Zimmerman et al.
2013; Ragot et al. 2015) where ecologically- or
physiologically-distinct groups exist within
phylogenetically-related clades. In marine systems,
there is evidence that alkaline phosphatase genes phoD
and phoX are more abundant than phoA (Luo et al. 2009;
Sebastian and Ammerman 2009) and the (-propeller
phytase gene is the most abundant phytase (Lim et al.
2007). Additionally, phoD is the dominant alkaline
phosphatase gene in terrestrial ecosystems (Tan et al.
2013) and more abundant in soils than other environ-
ments (Ragot et al. 2015). From a functional standpoint,
abundance of phoD-like sequences, assessed by quanti-
tative PCR, correlate well with estimates of potential
alkaline phosphatase activity (Fraser et al. 2015) in soils,
but there is little information regarding other alkaline
phosphatases or phytases. These genes collectively
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appear to be regulated by the availability of P via by
the Pho regulon (Vershinina and Znamenskaya 2002)
and are only expressed under conditions of P-limitation.

There is a third group of phosphoric monoester hy-
drolases which exhibit optimal in vitro activity at low pH
and are therefore termed acid phosphatases (EC 3.1.3.2).
Based upon amino acid sequence analysis, these en-
zymes are separated into three distinct types (referred to
as classes A, B and C) but all lack strong substrate
specificity, instead showing activity across a broad range
of structurally-unrelated phosphoesters (Rossolini et al.
1998): in recognition of this, the enzymes are termed
collectively non-specific acid phosphatases (NSAPs).
NSAPs of bacteria and archaea share a common evolu-
tionary origin (Gandhi and Chandra 2012) and appear to
be distributed widely among prokaryotes and eukaryotes.
At least one NSAP gene, class A phoC of the bacterium
Morganella morganii, appears not to be regulated by the
availability of P (Thaller et al. 1994) and thus may be
regulated in a different manner from alkaline phospha-
tases and phytases. The significance of NSAPs with
respect to P-acquisition in soils and other environments
is rarely considered and poorly understood. However,
because of their different physiological response traits
(pH, specificity etc.) and potentially different regulation
compared to alkaline phosphatases, environmental infor-
mation regarding the biogeographical distribution of
NSAPs and the effects of land management upon their
abundance is critical to development of mechanistic
models of dynamic biological processes regarding P
cycling in the environment. The work described here
begins to address this lack of knowledge by first survey-
ing the distribution of NSAP classes in sequenced mi-
croorganisms then, using the assembled sets of class A,
B, and C NSAP gene sequences, assessing the distribu-
tion and abundance of NSAPs in publically-available
metagenome sequences from geographically- and
physically-diverse environments and finally, studying
the effects of land management on NSAP abundance in
a well-studied long-term field experiment.

Materials and methods

Distribution of NSAP classes in sequenced
microorganisms Archetypal proteins for each NSAP
class listed by Gandhi and Chandra (2012) were used
as starting points to generate sets of reference proteins
for each NSAP class. JackHMMER, part of the
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HMMER ver. 3.1b1 software suite, was used to generate
a collection of homologous protein sequences for each
group of archetype protein sequences from the
UniprotKB database, as well as generating a profile
hidden Markov model (pHMM) for each enzyme
(Durbin et al. 1998; Eddy 2011). Cut-off Expect (E)
values were adjusted for each protein family, however
values were typically 1 x 10> E>1 x 107'%. The
BLOSUM45 substitution scoring matrix was used, to-
gether with gap opening and gap extension penalties of
0.02 and 0.4 respectively. For each JackHMMER itera-
tion, only sequences having identical domain architec-
ture as the query sequence were used to generate the
pHMM for the proceeding iteration. Iterations were
continued until no new sequences were included in the
set. Each reference set of proteins was then edited man-
ually to remove protein fragments. Any sequence with a
length less than 70% that of the archetype was consid-
ered a fragment. Redundant protein sequences were
removed using CD-HIT (Li and Godzik 2006). A
multi-sequence alignment (MSA) of the remaining
unique, full-length protein sequences was generated
using the E-INS-i iterative refinement method using
weighted-sum-of-pairs and consistency scores in
MAFFT ver. 7.182 (Katoh and Standley 2013)
employing BLOSUM62 and a gap opening penalty of
1.53. Maximum-Likelihood (ML) phylogenetic trees
were generated using RAXML ver 7.2.8 (Stamatakis
2006), employing the PROTGAMMA amino acid sub-
stitution evolutionary model and Dayhoff matrix and
bootstrapping, the number of bootstrap replicates deter-
mined using autoMRE convergence checking. Best-
scoring ML trees were visualised using iTOL ver 3.2.4
(Letunic and Bork 2016).

NSAP protein localization To determine the subcellu-
lar localization of NSAP proteins we employed
PSORTD ver. 3.0.2 (Yu et al., 2010). PSORTb employs
support vector machines for each of the nine sub-cellular
locations of Gram-negative and Gram-positive
Eubacteria, and Archaeal prokaryotes, combining these
predictions with results of BLASTP searches
(E < 1 x 107%) against reference sets of proteins of
known subcellular localization and model HMMs for
transmembrane-spanning «-helices and signal peptide
cleavage sites. A Bayesian network is then used to
combine predictions from all modules and generate a
weighted localisation prediction based on the perfor-
mance accuracies of each prediction module.

Metagenome analysis We studied a number of
publically-available shotgun metagenomic datasets
from diverse environments to determine the global dis-
tribution of the three NSAP classes (Table 1). Shotgun
metagenome sequences generated using [llumina® se-
quencing technology containing at least 10 million reads
were downloaded in FASTQ format from the European
Nucleotide Archive (ENA), the DNA Data Bank of
Japan and Sequence Read Archive. The specific datasets
used were chosen because they contain the largest num-
ber of reads in each respective collection. We used three
marine datasets, a bathypelagic sediment from the Gulf
of Mexico (SRR4027974), sediment from the Columbia
River estuary coastal margin, Washington State, US
(ERR864075), and sediment from the Noosa River es-
tuary in south east Queensland, Australia (ERR688352)
and four terrestrial soil datasets, a tallgrass prairie soil
from Fricke Cemetery, NE (ERR346662), a peat bog
hydric soil from the Marcell Experimental forest, MN
(SRR 1157608), a rice paddy hydric soil from southeast
China (SRR1190306), and an arid soil from Uluru,
Northern Territory, Australia (ERR671923). We also
included a managed grassland from the Highfield Ley-
Arable long-term field experiment, Rothamsted, UK
(experiment described below). Sequences were limited
to a minimum quality score of 25 using a sliding win-
dow of 4 bases, and a minimum read length of 70 bases
using Trimmomatic (Bolger et al. 2014).

We adopted an assembly-free, gene-centric approach,
MApPP (Metagenomics/transcriptomics Assignment
pHMM Phylogenetic Placement), to analysing the abun-
dance and phylogenetic diversity of NSAP genes asso-
ciated with microbial communities in the different soils.
For each collection of reference proteins, UniProtKB
protein accessions were mapped to their respective ENA
nucleotide sequence accession and the nucleic acid se-
quences were obtained. The resulting set of nucleotide
sequences were aligned using the FFT-NS-i iterative
algorithm in MAFFT, employing the 1PAM/k = 2 scor-
ing matrix and a gap opening penalty of 1.53. For each
gene, a pHMM of the resulting MSA was generated
using HMMbuild (HMMER ver 3.1bl) resulting in a
799 nucleotide (nt) Class A pHMM based upon 426
sequences, a 714 nt Class B pHMM based upon 319
sequences and an 836 nt Class C pHMM based upon
479 sequences. These pHMMs were used to search the
unassembled metagenome datasets using HMMsearch,
employing an £ < 1 x 107> along the full sequence
length. The probability thresholds for the multiple

@ Springer



Plant Soil

Table 1 Details of the publically-available metagenome sequence data sets compared in this study

Terrestrial Soil Metagenome  Sequencing Number of  Mean normalized Reference
ID Technology Reads counts of single-
copy genes
Arid Soil, Uluru, Northern ERR671923*  Tllumina, HiSeq 2500 34,457,076 2982 www.bioplatforms.com/

Territories Australia
Rice Paddy Soil, South China

Tall grass prairie, Fricke
Cemetery, Nebraska, USA

Ombrotrophicbog soil,
75 cm subsurface, Marcell
Experimental Forest,
Minnesota, USA

Marine Sediment

Gulf of Mexico,
bathypelagic (>1.5 km depth)
Columbia River costal
margin, Washington, USA
(33 %o salinity, 16 m depth)
Noosa River estuary,
Queensland, Australia

(0.34 m depth)

ERS351497*

ERR864075"

ERR688352°

SRR1157608" TIllumina, HiSeq 2000 51,628,818 3599

SRR4027974° Illumina, HiSeq 2000 310,990,307 13,444

Illumina, HiSeq 1000 51,801,990 7528

soil-biodiversity/

SRR1190306" Illumina, HiSeq 2000 26,612,780 1707
Illumina, HiSeq 2000 41,112,030 2838

Fierer et al. 2013

Lin et al. 2014

Mason et al. 2014

Fortunato and Crump 2015

Illumina, HiSeq 2000 129,525,367 10,405

# European Nucleotide Archive
®DNA Data Bank of Japan

¢Sequence Read Archive

segment Viterbi, Viterbi and Forward filters were 0.02,
0.001 and 1 x 107> respectively.

PHMMER was used to compare the retrieved
metagenome sequences, following six-frame translation
using EMBOSS Transeq (Rice et al., 2000), to the
UniprotKB protein sequence database to confirm that
the sequences represented the correct protein family.
Only those metagenome sequences for which one of
the six frame translations elicited a UniprotKB hit of
the appropriate protein family (£ < 1 x 107°) was
included in the subsequent analysis. Phylogenetic place-
ment and visualization of the recovered metagenome
sequences upon reference Maximum-Likelihood phylo-
genetic trees was performed using pplacer ver 1.1
(Matsen et al., 2010).

To allow meaningful comparison between
metagenomic datasets, gene abundance was
expressed as a proportion of the estimated total num-
ber of genomes in each dataset, assessed by estimat-
ing the abundance of the ubiquitous, single-copy
genes rpoB, recA, gyrB (Santos & Ochman, 2004)
and atpD (Gaunt et al., 2001). Nucleotide sequence-
based pHMMs were developed for each gene as
described above. Metagenome-derived homologue
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counts for each single-copy gene were size-
normalized to the length of the shortest gene, recA
accounting for differences in length between the
genes. To do this, the modal length of recA
(1044 nt) was divided by the modal length of the
other single-copy genes (1422 nt for atpD, 2415 nt
for gyrB, 4029 nt for rpoB), and this value was then
multiplied by each single-copy gene count. The size-
normalized abundance of each target phosphatase
gene was then calculated for each soil as [target gene
count-read length/(mean normalized counts of single-
copy genes)| (Howard et al., 2008). The mean nor-
malized counts of single-copy genes for each
metagenome is given in Table 1.

Identification and phylogenetic placement
of metagenome reads from Highfield soil treatments

Soils Experimental soils were collected from permanent
grassland, arable and bare fallow plots of the Highfield
Ley-Arable experiment (00:21:48 °W, 51:48:18 °N) at
Rothamsted Research. The soil is a silty clay loam (27%
clay) (Chromic Luvisol according to FAO criteria). At
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the time of sampling, arable plots had been under con-
tinuous wheat rotation and receiving fertilization and
pesticides according to normal farm management for
62 years, bare fallow plots had been maintained crop-
and weed-free by regular tilling for 52 years, and grass-
land plots had been maintained as a managed sward of
mixed grasses and forbs for over 200 years: all plots are
considered now to be in quasi-equilibrium (Wu et al.
2012). Physical and biological data has already been
reported for these soils (Table 2).

Phosphorus chemistry in Highfield ley-arable exper-
iment soils We employed alkaline ethylenediaminetet-
raacetic acid (EDTA) extraction (Bowman & Moir,
1993) to estimate the amounts of orthophosphate and
organic P in each soil. 30 mL of a 250 mM
NaOH:50 mM Na,-EDTA solution was used to extract
P-compounds from 1.5 g of air dried, sieved (<2 mm)
soil. Extraction was allowed to proceed for 14 hat22 °C
with continuous shaking. The resulting solution was
centrifuged at a maximum relative centrifugal force of
13,416 (10,000 rpm, rpa 12 cm.) for 30 min and the
supernatant collected. For solution *'P-NMR, 1 mL ofa
50 ug-P L™ methylenediphosphonic acid (MDPA,
Sigma-Aldrich; M9508; >99%) solution was added to
20 mL of the remaining extractant as an internal stan-
dard. Following mixing, each sample was frozen and
lyophilised in preparation for NMR analysis (Turner
et al. 2003). Once dry, the sample was re-dissolved in
0.1 mL D,O and 0.9 mL of a 1 M NaOH, 0.1 M Na,-
EDTA solution and transferred to a S mm NMR tube.
Solution *'P-NMR spectra were collected on a DRX-
500 spectrometer (Bruker UK Ltd.) operating at
202.456 MHz. A 6.2 ps pulse was used with a 0.41 s
acquisition time and a delay of 2 s to collect spectra.
Approximately 32,000 scans were acquired for each
sample and broadband proton decoupling was applied
(Cade-Menun and Liu 2014). Spectra were plotted with
a line broadening of 2.5 Hz and chemical shifts of
signals were determined in ppm relative to the ortho-
phosphate peak which was set to 6 ppm. Peaks were
identified by comparison with literature reports of shifts
for model P compounds dissolved in NaOH-EDTA
(Turner et al. 2003; Cade-Menun and Liu 2014). Process-
ing of spectra was performed with ACD/1D NMR Pro-
cessor and Manager Ver 12 (Advanced Chemistry Devel-
opment, Inc., USA). Peak areas were calculated by inte-
gration and concentrations were calculated based upon
the area of the MDPA peak at 4 = 17.17 + 0.01 ppm

Table 2 Summary physical and chemical data of Highfield Ley-Arable experiment soils

NaOH-extractable
pyrophosphate /

NaOH-extractable
orthophosphate
monoester /

NaOH-EDTA

extractable

Nitrogen® /

Intra-aggregate

Free Organic
Carbon® /

Organic Carbon® /

mg g soil

pH* (H0) /

soil

Hg g
ug g ' soil

orthophosphate /
ug g ! soil

ug g ' soil

Organic Carbon® /

ug g ! soil

soil

—1

Hg g

-log(g[HIL ™)

17

82
53

203

150

490
380

370

1.3
0.8

5.8
5.1

Arable

103
240

100
390

150

Bare Fallow

10

139

4690 3010

3.9

Grassland

* Gregory et al. 2016

® Hirsch et al. 2009
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(n = 9). Inorganic orthophosphate at 6 = 6 ppm, phos-
phate monoesters at = 3.11 to 5.58 ppm, pyrophosphate
at & =—4.03 to —4.07 ppm, diesters (DNA) at = 0.92 to
0.96 ppm, and phosphonates at & = 16.15 ppm were the
main groups identified.

DNA extraction and Metagenome sequencing Soil
was collected from triplicate plots for each treatment
from the Highfield Ley-Arable experiment in October
2011 to a depth of 10 cm using a 3 cm diameter corer.
The top 2 cm of soil containing root mats and other plant
detritus was discarded. Ten cores per plot were pooled
and thoroughly mixed whilst sieving through a 2 mm
mesh; samples were then frozen at —80 °C. All imple-
ments were cleaned with 70% ethanol between
sampling/sieving soil from each plot. Soil community
DNA was extracted from a minimum of 2 g soil using
the MoBio PowerSoil® DNA isolation kit (Mo Bio
Laboratories, Inc. Carlsbad, CA) with three replicates
for each soil treatment. When necessary, extracts were
pooled to provide sufficient material for sequencing.
10 ug of high-quality DNA was provided for sequenc-
ing for each of the nine plots. Shotgun metagenomic
sequencing of DNA from each soil was provided by
[Mlumina® (Cambridge, UK) using a HiSeq™ 2000,
generating 150 bp paired-end reads. Sequences were
limited to a minimum quality score of 25 and a mini-
mum read length of 70 bases using Trimmomatic
(Bolger et al. 2014).

Statistical analysis We used parametric one-factor
Analysis of Variance tests for comparison of P concen-
trations and normalised abundance of NSAP classes in
different environments and soil treatments. Where a
significant treatment effect was determined (o = 0.05),
means were compared post hoc employing the Holm-
Sidak all pairwise multiple comparison procedure
(SigmaPlot ver. 13, SysStat Software Inc.). The abun-
dance of NSAP gene ecotypes was related to edaphic
factors using canonical correspondence analysis (CCA)
in PAST ver 3.15 (Hammer et al. 2001). Counts of
individual ecotypes acted as “species” data: counts less
than 5 were treated as 0 and ecotypes which were
present in only 1 of the 9 soils were removed from the
analyses. The pH, organic carbon (C,,), Nitrogen (N)
and NaOH-EDTA extractable orthophosphate concen-
trations in Table 2 were used to represent soil chemical
environments and the ratio of intra-aggregate Coy, to
free C,, (intra-aggregate ratio) - calculated from data
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in Table 2 - was used to represent soil physical structure.
Corg and N were significantly correlated in the soils
(r = 0.999, p < 0.001), consequently only C,, was
included in CCA. Variables were included in a single
model combining both genes; significance was estimat-
ed based upon 9999 Monte Carlo permutations.

Results

Phylogenetic distribution and predicted subcellular
localization of NSAP classes in sequenced bacterial
genomes

Class A Using the pHMM-based JackHMMER rou-
tine, 376 unique class A NSAP proteins were identified
in UniprotKB, all of them, apart from one uncultured
microorganism, Gram-negative bacteria. The sequences
shared the conserved amino acid motif KXsRP-(X;,_
54)-PSGH-(X3;_54)-SRXsHX,D (Fig. 1) characteristic
of class A NSAPs (Stukey and Carman 1997) and also
shared with several lipid phosphatases and mammalian
glucose-6-phosphatases. Predictions of subcellular lo-
calization of the proteins indicated that many were of
indeterminate localization, however 61 of the proteins
could be assigned a sub-cellular compartment. Of these,
27 were predicted to be periplasmic, 4 cytoplasmic and
30 were predicted with less certainty to be associated
with the cytoplasmic membrane. Signal peptides were
identified in all but 20 of the proteins, suggesting that
most Class A proteins are transported at least out of the
cytoplasm. However, it is clear that PSORTb was unable
to determine a clear location for the proteins, possibly
because NSAPs are a relatively poorly studied group
and there may be few Class A NSAP proteins in the
training datasets as a consequence. The proteins were
found in a range of free-living bacteria including
Caulobacter, Stenotrophomonas, Methylobacterium,
Sphingomonas, Xanthomonas and Pseudomonas.

Class B In all, 319 unique class B proteins were iden-
tified. The proteins were found predominantly in
eukaryote-associating Gram-negative bacteria, for ex-
ample Aeromonas, Aggrigatibacter, Citrobacter, En-
terobacter, Escherichia, Klebsiella, Photobacterium,
Salmonella, and Xenorhabdus. The protein sequences
shared common conserved amino acid motifs
PX,FDIDDTXVLFSSPXF at the N-terminal and
YGD(S/A)DXDX3A at the C-terminal (Fig. 1)
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Fig. 1 Sequence logos showing regions of conserved amino acid
motifs for each class of non-specific acid phosphatase. Each logo
was generated from multi-sequence alignments of collections of

consistent with previous descriptions (Thaller et al.
1998). The majority of class B proteins tested (96%)
were predicted to be periplasmic, the remaining 4%
were of indeterminate location.

Class C Of the three classes studied here, class C
contained the greatest number of unique protein se-
quences, 1125, characterised as containing four highly
conserved aspartic acid residues (D) (Fig. 1) across the
two amino acid motifs DXDET at the N-terminal and
GDX;DF at the C-terminal (Thaller et al. 1998). Ap-
proximately 90% of the proteins were predicted to be
outer membrane-associated, less than 1% were predict-
ed to be periplasmic and 9% were of indeterminate
localisation. The proteins were identified in a broad
range of bacteria including Bacillus, Clostridium, En-
terobacter, Erwinia, Lysobacter, Pedobacter, Pseudo-
monas, Rhodobacter and Serratia among others.

Biogeography of NSAPs Shotgun metagenome
datasets from eight diverse marine and terrestrial envi-
ronments were used to establish the distribution of
NSAPs. Gene abundance was normalized and expressed
as % genome equivalents (%GE) to allow meaningful

30 0 30 %0 70 30

---------- KPS ; ]

reference protein sequences and depicts the consensus sequence
and diversity of the sequences

comparison between metagenome datasets of different
read numbers. A census of the environments (Fig. 2)
indicated that classes A and C are relatively much more
abundant in both marine and terrestrial environments
than class B. Given the association of class B with
pathogens and other microorganisms found in close
association with eukaryotes this is perhaps unsurprising.
Comparisons of the normalized abundance of classes A
and C indicated that although both are relatively more
abundant in marine than terrestrial environments, there
was no significant difference in abundance (F 1, =0.36;
p = 0.526). Similarly, although class C NSAPs were
more abundant across the eight environments than class
A, again differences were not significant (¥} 1, = 1.7;
p=0.221). Comparison of the normalized abundance of
classes A and C (< 5%GE) with the abundance of the
alkaline phosphatase phoX in marine systems (relative
to recA, Sebastian and Ammerman 2009) indicates that
NSAPs are considerably less common than phoX
(18%GE).

To compare the phylogenetic distributions, the con-
firmed homologous metagenome sequences were
placed on respective class A and class C ML phyloge-
netic trees. The normalized abundance (%GE) of the
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Fig. 2 Relative abundance of 5 ) - A 3.0 B F,,,=0.36; p=0.562
non-specific acid phosphatase : Ef;’;’a'?fnzfgiﬁ"::éimem
gene homologues in shotgun mmm Bathypelagic marine sediment 2.5 1
metagenomes developed from = Sﬁﬁﬁféff‘?pﬁ:’c"bog 20 4 l T
marine and terrestrial 4 o Paddy soil 1
environments. The counts of Tall grass prairie soil 1.5 1
homologous sequences are
normalized relative to the number LU 1.0 1
of genome-equivalents in each o 0.5 -
metagenome, normalization X 3
details are given in Materials and ~ ~ 0.0 i
Methods section. a — Relative 8 Marine  Terrestrial
abundance of Class A, B and C c
NSAPs in each environment. b — -g 5 3.0 1F, ,,=1.7; p=0.221 C
Mean relative abundance of class g ' T
A and B NSAPs in marine and e 251 l
terrestrial environments. ¢ — Mean < 20 A I
relative abundance of class A and
B NSAPs in the datasets overall 1 1.5 1 l
1.0
I I 0.5 1
| EEEEEE - ﬁl_ 0.0 , ,
Class A Class B Class C Class A Class C

read placements is shown on the phylogenetic trees. In
the case of class A genes, there was a clear association
between gene phylogeny and environment (Fig. 3). For
example, the dominant class A gene in the Columbia
River estuary shows high homology to that of marine
Gammaproteobacteria HTCC2080 and HTCC2148,
originally isolated from nearby coastal waters off Ore-
gon (Thrash etal. 2010). A second placement, with high
homology to the cyanobacterium Synechoccocus sp.
RS9916, is also abundant in the Columbia estuary. In
contrast, sequences from the Noosa River estuary gen-
erally have weaker homology to the sequence database
and the class A sequences appear more diverse than
those from the Columbia estuary. Sequences with re-
duced homology to HTCC2080 and HTCC2148 are
most abundant, but a group of sequences with varying
homology to class A NSAPs of Methylococcus
capsulatus and Pseudomonas stuzeri, the
Deltaproteobacterium SG813 and a second group with
varying homology to Synechococcus spp. are also pres-
ent as well as sequences with high homology to
Pseudohongiella spirulinae. The least diverse and least
abundant of the three marine environments was the
bathypelagic sediment. The limited number of se-
quences from these sediments were most closely related
to isolate SG813 and Desulfotalea psychrophila. In
contrast to marine environments, NSAP class A com-
pliments from soils were relatively diverse: the
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phylogenetic distribution of genes was more diverse
and the dominant ecotype differed between environ-
ments. For example, NSAP class A was most numerous
in terrestrial environments in the peat bog of Marcell
Experimental Forest. Here the greatest number of
metagenome sequences exhibited homology to
Methylobacterium spp. and Granulibacter spp. Some
Marcell placements showed very similar homology to
M. capsulatus and P. stuzeri as those from the Columbia
estuary. Although less abundant, these placements were
also associated with the Paddy soil metagenome. These
placements were relatively less abundant in either the
Fricke prairie or Uluru grassland metagenomes which
were dominated by reads with homology to
Phenylobacterium sp., Lysobacter dokdonensis DS58,
Azotobacter vinelandii CA6, reads with low homology
to a group of Alphaproteobacteria and a number of read
placements with limited homology to various
Proteobacteria including Brevundimonas spp.

For class C NSAPs there was again a distinct sepa-
ration in marine and terrestrial environments in the
placement of metagenome reads on the reference ML
phylogenetic tree (Fig. 3). The Columbia estuary was
dominated by a group of closely-related reads with high
homology to NSAP from a SAR86 cluster bacterium
and lesser numbers of reads with high homology to class
C NSAPs from OM182 (oligotrophic marine) bacterium
BACL3, Brevibacillus choshinensis and
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Fig. 3 Phylogenetic placement of metagenome sequences gener-
ated from contrasting marine and terrestrial environments showing
homology to class A and class B non-specific acid phosphatase
reference gene sequences. The placement of reads from each of the
eight metagenomes are overlaid for each maximum-likelihood tree
and are represented by different symbols. In each case, the nor-
malized abundance of each ecotype (accumulation of reads) is
represented, normalized to the maximum abundance - HTCC2148

Chloracidobacterium thermophilum B. Again, the pop-
ulation of class C NSAPs in the Noosa estuary were
distinct from the Columbia estuary, showing homology
to Marinomonas spp. and Kosmotoga pacifica,
Plesiocystis pacifica SIR1, Alphaproteobacterium
AAP38, Gammaproteobacterium SG8-31, and a
Chlorobium spp. clade. The Gulf of Mexico again
showed the least number of class C reads of the marine
environments and was dominated by reads with high
homology to the class C NSAP of Alphaproteobacterium
BAL199, a Rhodopirellula spp. clade and the same
Chlorobium spp. clade identified in Columbia River. A
smaller numbers of reads showed high homology to Vibrio
caribbeanicus and B. chishinensis. For terrestrial soils, the
Marcell peat bog contained few class C NSAPs and what
metagenome reads were identified typically showed limit-
ed homology to reference genes. In contrast, the datasets
from paddy soil, Fricke prairie and Uluru contained greater
numbers of class C homologous reads: those identified
exhibited greater homology to reference genes. Reads from
paddy soil displayed homology to a group of

S B'ev””d/'mo,m,

in the coastal margin sediment sample in the case of Class A and
SARS6 cluster bacterium, again in the coastal margin sediment in
the case of Class C. The size of the symbol representing read
placements is proportional to the normalized relative abundance.
For clarity, organisms harbouring homologous gene sequences are
only identified where they are associated with read placements.
Geographical location of the different soils and sediments is given

in Table 1

Alphaproteobacteria including Azospirillum and
Hyphomonas and there were also placements of small
numbers of reads distributed across the reference tree.
The metagenomes from Fricke prairie and Uluru shared a
number of common placements: in both environments
reads with high homology to Azospirillum spp. were iden-
tified as well as reads with varying homology to a number
of other Alphaproteobacteria including bacterium
BAL199 (also identified in the Gulf of Mexico),
Martelella endophytica, Thalassospira spp.,
C. thermophilum B (also identified in the Columbia River
estuary) and Lysobacter spp. Homologous sequences of
the Delataproteobacterium P. pacifica SIR1 were also
present in both environments, as well as the Noosa River
estuary and Gulf of Mexico.

Effect of land management upon abundance and
diversity of NSAPs in soil To evaluate the potential
effect of land management upon abundance and diver-
sity of NSAP genes in soil we studied the Highfield
Ley-Arable Experiment. A great deal of physical and
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biological data has already been reported for these soils
(Hirsch et al. 2009; Wu et al. 2012; Gregory et al. 2016;
Hirsch et al. 2016). Quantification of orthophosphate,
orthophosphate monoester and pyrophosphate moieties
in soil extracts by *'P-NMR indicated significant dif-
ferences between the three soil managements in the
amount of total P, summed from NMR spectra of
NaOH-EDTA extracts (F,13 = 57.0; p < 0.001: all soil
managements were significantly different from each of
the others, smallest difference = 29.0 pg g_l, t=4.02,
p < 0.001). Comparison of the amounts of different
moieties in the three soils indicated that the mean con-
centration of orthophosphate (239.7 pg g ' + 18.5 pg
g ' SE, 203.1 £ 109 ug g ', 102.5 £ 7.4 pg g ' for
grass, arable and bare fallow soil respectively) and or-
thophosphate monoesters (138.6 pug g ' 2.1 g g
SE,81.5+6.6 ugg ',52.5+ 1.4 ugg ' for grass, arable
and bare fallow soil respectively) were significantly
differentin each ofthe soils (smallest difference =28.9 g
g ', orthophosphate monoesters in arable versus bare
fallow soil: = 2.3, p = 0.032). There was no significant
difference in mean concentrations of pyrophosphate
between the soils (9.9 ug g ' + 1.2 ug g ' SE,
167+ 11.6 ugg ', 45+ 04 ug g ' for grass, arable
and bare fallow soil respectively; largest differ-
ence = 12.2 pg g ', arable versus bare fallow soil:
t=0.98, p=0.716).

The normalized abundances of the three NSAP clas-
ses were determined in triplicate shotgun metagenomes
developed from the three soil managements (Fig. 4). As
for the previous set of metagenomes, Class B NSAPs
were present in extremely low relative abundance (<
0.1%GE). However, classes A and C were present,
depending upon the soil management, at between 1.9—
4.2%GE. The two classes responded differently to soil
management: the proportion of class A NSAPs in bare
fallow soil was significantly reduced compared to either
arable or grassland soils, in contrast to class C genes
where no significant effect of soil management was
observed. The result was that although the two classes
were present in grassland soil in equal relative abun-
dance, class C genes comprised a significantly greater
proportion in arable and particularly, bare fallow soil.

Class A NSAP ecotypes in grassland and arable soils
were dominated by sequences with high homology to
genes of Caulobacter crescentus OR37, Granulibacter
bethesdensis, a placement with reduced homology to a
clade including Pseudomonas, Serratia, and
Desulfovibrio and a third with reduced homology to a
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Brevundimonas clade (Fig. 5). In all cases, the abun-
dance of these ecotypes was higher in grassland and
arable soils than in bare fallow soil. Other ecotypes
characteristic of grassland and arable soils but present
in lower abundance showed high homology to Azoto-
bacter, Rhizobium, Bosea, Methylococcus and
Synechococcus. Class A ecotypes which were more
abundant in the bare fallow soil showed high homology
to Phenylobacterium and at reduced abundance to
Variovorax, Sphingobium, and Novosphingobium.

For class C NSAPs, placement of homologous
metagenome reads on the phylogenetic tree indicated a
separation between ecotypes present in grassland and
arable soils and those dominating bare fallow soils
(Fig. 5). Ecotypes associated with the former exhibited
high homology to a clade containing NSAPs from the
myxobacterium Plesiocyctis and Azospirillum,
Inquilinus and Rhizobium. A second group of common
metagenome sequences showed high homology to
Chloroacidobacterium thermophilum class C NSAP
and a third group exhibited reduced homology to a clade
composed of the alphaproteobacteria Martelella,
Thioclava, and BAL199. In contrast, there were a num-
ber of metagenome sequence placements which were
characteristic of the bare fallow soils: these included
ecotypes with high homology to Arenimonas
oryziterrae and the closely related A. composti,
Chlorobium, Chitinophaga, Mucilagibacter and place-
ments with reduced homology to Elizabethkingia,
Pedobacter, Myroides and Chryseobacterium. None of
the ecotypes were exclusive to any soil but the abun-
dance of these reads was much greater in bare fallow
soil.

Edaphic factors influencing NSAP gene
distribution To identify soil physical and chemical
factors likely to influence gene distribution, responses
of Class A and C NSAP ecotypes to soil chemical and
structural factors were assessed using CCA. The
resulting gene-conditional triplot is shown in Fig. 6
and a clear separation of class A and class C ecotypes
on Axis 1 is evident. The median score for class A
ecotypes (0.969, 90% confidence interval 0.572 to
1.212) is significantly higher than that for class C eco-
types (—0.354, 90% confidence interval — 0.679 to
0.015) on Axis 1 (Mood test, X2 =30.48; p < 0.0001).
The edaphic factors (shown as vectors on the triplot)
most strongly associated with Axis 1 are pH and intra-
aggregate ratio: increasing axis scores are associated
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Fig. 4 Soil phosphorus
speciation determined from
solution *"P-NMR and
normalized abundance of non-
specific acid phosphatase gene
homologues in shotgun
metagenome generated from
triplicate datasets for each soil
treatment. A — estimates of
orthophosphate, orthophosphate
monoester and dipolyphosphate
in alkaline-EDTA soil extracts
from the individual grassland,
arable and bare fallow plots of the
Highfield Ley-Arable
experiment. A 50 pug-P L™
methylenediphosphonic acid
internal standard was used to
estimate the concentration of each
species in the soil extracts (see
text for details). B - Counts of
homologous sequences
normalized relative to the number
of genome-equivalents in each
metagenome, normalization
details are given in supplementary
information. The mean of three
replicate plots and standard error
are shown for each gene in each
treatment. Brackets joining
treatment bars show significant
Holm-Sidak pos--ANOVA
comparisons

Normalized Abundance / %GE

£=0.044

_|
|_

—3 Class A
&= Class B
—=3 Class C

£<0.001

| Soil Management F, .= 2.29: p=0.130
NSAP class F5.5=334.0:p<0.001
Interaction Fs:z= 9.89:0<0.001

£<0.001

Arable

with increasing pH but decreasing intra-aggregate ratio
(alternatively, an increase in free C,,). Extractable or-
thophosphate was less strongly associated with Axis 1
while C,,; was only weakly associated.

Discussion

NSAPs are a phylogenetically diverse group of enzymes
found predominantly in Gram-negative bacteria. They
remain relatively poorly studied and so the significance
of NSAPs to the turnover of organic P in the environ-
ment is unclear. Searches of the UniprotKB protein
sequence database identified a large number of proteins
from each of the three NSAP classes. From these, a
number of conserved amino acid motifs characteristic
of each class have been identified (Fig. 1): although

Fallow Grass

Soil Management

these are not novel we have expanded the number of
sequences described previously by Rossolini et al.
(1998) and Gandhi and Chandra (2012) to include
1900 non-redundant enzymes across the three classes,
with class C being the most numerous. The three classes
appear to have distinct sub-cellular localization profiles
with enzymes that can be classified from classes A and
B being periplasmic and associated with the cytoplasmic
membrane while those from class C are associated with
the outer membrane and thus able to catalyse the hydro-
lysis of large organic compounds. This evidence sug-
gests that this class is most responsible for the release of
P from soil organic matter among the NSAPs. This
conjecture is supported by the fact that class C gene
homologues are more abundant than class A homo-
logues in all but one of the eight metagenomes from
diverse environments and Highfield soils.
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Fig. 5 Phylogenetic placement of metagenome sequences gener-
ated from contrasting land management plots of the Highfield Ley-
Arable experiment showing homology to class A and class C non-
specific acid phosphatase reference gene sequences. The place-
ment of reads from each of the nine metagenomes are overlaid for
each maximum-likelihood tree and are represented by different
symbols. The normalized abundance of each ecotype (accumula-
tion of reads) is represented, normalized to the maximum

Class B genes are least common in all of the soils or
sediments tested here (Fig. 2), perhaps reflecting an
apparent association with enteric and pathogenic bacte-
ria. Distinct class A and class C gene ecotypes are
associated with marine and terrestrial environments but
within those studied here the marine systems Noosa
River and Columbia River estuaries appear to be partic-
ularly divergent, each dominated by quite different eco-
types, particularly of class C genes. Although NSAPs in
general do not appear to be abundant in the bathypelagic
marine environment, they are relatively more common
in marine rather than terrestrial systems. In comparison,
homologues from terrestrial systems appear more di-
verse, particularly those of class A genes, the dominant
ecotype and number of ecotypes varying from hydric
peat bog and paddy soils to tallgrass prairie and hot arid
desert environments.

The hydric peat bog from the Marcell Experimental
Forest is unique among the metagenomes studied here
in that class A gene homologues comprise a higher
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abundance — homologues of Caulobacter crescentus OR37 in
grassland in the case of Class A and reads placed at an internal
node, again in the grassland in the case of Class C. The size of the
symbol representing read placements is proportional to the nor-
malized relative abundance. For clarity, organisms harbouring
homologous gene sequences are only identified where they are
associated with read placements

proportion than class C. Previous studies have demon-
strated that acid phosphatases (Pfam family
PF01451.16) in general are more abundant than alkaline
phosphatases (PF00245.15) in this acid (pH 3.5-4.0)
oligotrophic soil (Lin et al. 2014). In contrast, Fricke
Cemetery prairie (pH = 6.5, Fierer et al. 2013), Uluru
(pH = 6.8, https://downloads.bioplatforms.
com/base/contextual/sample/102.100.100.8160) and
Rothamsted Highfield (pH 5.1-6.0, Gregory et al.
2016) soils are less acidic and in each case class C
homologues are more abundant than class A. This is
also the case with the other four environments
(unfortunately, pH is not consistently reported for the
datasets used in this study) where the pH of submerged
paddy soils is often in the range of 6—7 (Yu 1991) and
marine sediments are typically of circumneutral to alka-
line pH (Gaillard et al. 1989; Zhu et al. 2006).

Niche separation of class A and C NSAPs is evident
from comparison of Highfield soils (Figs. 5 and 6)
where three class A ecotypes showing homology to
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Fig. 6 Gene-conditional triplot based upon canonical correspon-
dence analysis of class A and C non-specific acid phosphatase
ecotypes from the Highfield Ley-Arable experiment presented in
Fig. 5, and edaphic factors. Individual ecotypes are represented as
circular data points and distinguished as either class A (grey) or
class C (blue) genes. Triangles represent the centroids of individ-
ual replicate plots of grassland (green), arable (yellow) and bare
fallow (brown) soils with regard to the ordination of relative
frequencies across gene ecotypes. Environmental factors - pH,

Caulobacter crescentus, a Brevundimonas clade and a
group of reads placed deep on the cladogram, are much
more abundant in grassland and arable soils compared to
bare fallow soil. Plant roots often generate sites of low
pH in soil (Hinsinger 2001) that may act as a niche for
class A NSAPs. Support for this comes from
zymographic imaging of phosphatase activity associat-
ed with the Lupin rhizosphere (Spohn and Kuzyakov
2013) which identifies acid phosphatase activity of in-
determinate origin associated closely with roots which is
expressed irrespective of P status (cf. phoC, a class A
NSAP of Morganella morganii) and alkaline phospha-
tase activity associated with the surrounding soil. Be-
sides the apparent association of the dominant class A
ecotypes with plants, contrasting management of
Highfield soils has other marked effects upon NSAP
abundance which again highlights trait differences be-
tween class A and class C genes. Unlike class A genes,
there is no significant effect of land management upon

NaOH-EDTA extractable orthophosphate (P), C,, and intra-
aggregate ratio - are represented as vectors and increase in the
direction of the vector: vector length indicates the degree of
correlation of each environmental variable with ecotype relative
frequencies. Total inertia constrained by the model = 0.2791
(p = 0.0029). The eigenvalue for Axis 1 = 0.186 (p = 0.0033),
representing 66.5% of the variance, and for Axis 2 = 0.054
(p = 0.160), representing 19.4% of the variance

class C gene abundance (Fig. 4). In fact, the relative
abundance of class C genes increases from grassland
soil to arable soil and is greatest in bare fallow soil;
despite overall microbial abundance being the least in
bare fallow soil (Hirsch et al. 2009; Hirsch et al. 2016).
It is clear that the outer-membrane associated class C
enzymes are less sensitive to the effects of reduced
nutrient availability and soil structure associated with
bare fallow management. Organic matter in this soil is
predominantly intra-aggregate (Hirsch et al. 2009) in
contrast to the other two soils: not only is there less P
overall and the lowest amounts of orthophosphate
monoester, but access to it is likely to be more challeng-
ing. A number of class C ecotypes are much more
abundant in bare fallow soil than either arable or grass-
land soils. These include homologues to Arenimonas
spp., Chlorobium spp., and Pedobacter spp. clades
amongst others. CCA ordination (Fig. 6) presents alter-
native possible explanations for separation of NSAP
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classes across the experiment: either class C genes are
more characteristic of acidic environments than class A
(counter to the consideration of pH above), or class C
genes are associated with environments in which organ-
ic material is difficult to access because of incorporation
in soil aggregates. Although pH and intra-aggregate
ratio are confounded in the Highfield plots, two inde-
pendent lines of evidence suggest the latter provides a
more satisfactory explanation to the distribution of the
two genes. The first is that reported in vitro pH optima
for PhoN, a class A NSAP (pH 5.5), and CppA, a class
C NSAP (pH 6.0) are similar (Reilly et al. 2009;
Makde et al. 2006), although the environmental pH
optima of the range of ecotypes described in this work
are difficult to assess (see for example Turner 2010).
The second line of evidence is that Class C proteins
are exoenzymes associated with the surface of the
outer membrane while Class A proteins for which
we were able to predict a subcellular location are
either periplasmic or associated with the cytoplasmic
membrane. This suggests that structure-related phe-
nomena, both in terms of occlusion of organic material
within aggregates and the presentation of enzymes on
the outer membrane surface interact, with the result
that class C genes are more dominant in bare fallow
soil. These data suggest that under conditions of poor
P-availability and access, free-living bacteria
encoding outer membrane-associated NSAPs have
an advantage over the more predominantly plant-
associating organisms harbouring intracellular
NSAPs. The ratio between the two enzymes appears
to be directly influenced by soil physicochemistry,
particularly soil structure.
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