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Abstract 11 

The dzud are extreme weather events in Mongolia of deep snow, severe cold, or 12 

other conditions that render forage unavailable or inaccessible, which in turn, result 13 

in extensive livestock deaths. Mongolia is economically vulnerable to extreme events 14 

due to an increase in non-professional herders and the livestock population, that a 15 

de-regularised industry has brought about. Thus it is hugely informative to try to 16 

understand the spatial and temporal trends of livestock population change. To this 17 

end annual livestock census data are exploited and a geographically weighted 18 

principal components analysis (GWPCA) is applied to goat data recorded from 1990 19 

to 2012 in 341 regions. This application of GWPCA to temporal data is novel and is 20 

able to account for both temporal and spatial patterns in goat population change. 21 

Furthermore, the GWPCA methodology is extended to simultaneously optimise the 22 

number of components to retain and the kernel bandwidth. In doing so, this study not 23 

only advances the GWPCA method but also provides a useful insight into the spatio-24 

temporal variations of the Mongolian goat population. 25 

 26 

 27 
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Introduction 31 

It is important to evaluate the impacts of disasters to improve and support 32 

agricultural planning. In Mongolia, deep snow, severe cold and associated 33 

conditions, called dzud, occur repeatedly and make forage unavailable or 34 

inaccessible to livestock. This results in high livestock mortality (Fernandez-35 

Gimenez, Batbuyan, and Baival 2012; Fernández-Giménez et al. 2015) and huge 36 

economic losses, as livestock in Mongolia represents 16% of national GDP (UNDP 37 

and NEMA 2010). Traditional nomadic pastoralism is one of the most sustainable 38 

ways of life on grasslands and sparsely vegetated lands, as are commonly found in 39 

Mongolia (Millennium Ecosystem Assessment 2005; Research Institute for Humanity 40 

and Nature 2012). Vegetation availability depends on the impacts of livestock 41 

grazing which has been well managed by nomadic herders over thousands of years 42 

(Research Institute for Humanity and Nature 2012), and is not suited to intensive 43 

livestock and crop production. In particular, excessive livestock populations, whether 44 

managed commercially or traditionally, endangers sustainability (Geist and Lambin 45 

2004; Suttie, Reynolds, and Batello 2005). Recent changes to the Mongolian 46 

livestock industry, which has become swamped with non-professional herders due to 47 
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de-regularisation, has made the grasslands vulnerable to environmental change and 48 

to extreme weather events. Thus there is a clear need to understand the spatio-49 

temporal trends in Mongolia’s livestock populations, accounting for the impacts of the 50 

dzuds. 51 

Data on livestock populations (sheep, goat, horse, cattle and camel) are 52 

collected for 341 regions (a second administrative subdivision level, called soum) in 53 

Mongolia by the official statistics service. For this study, goat data for a 23 year 54 

period 1990-2012, covering two devastating duzds during 2001-2 and 2009-10, was 55 

analysed. A geographically weighted principal components analysis (GWPCA) was 56 

used with the aim of generating spatio-temporal insights about goat populations, 57 

particularly for abrupt changes caused by dzuds. A standard principal components 58 

analysis (PCA) provides a useful starting point to reduce the dimensionality of the 59 

temporally-indexed goat data and to observe major trends. However, PCA ignores 60 

any spatial structure in the data (Demšar et al. 2013), whilst GWPCA is explicitly 61 

designed to do so (Fotheringham, Brunsdon, and Charlton 2002; Lloyd 2010; Harris, 62 

Brunsdon, and Charlton 2011; Harris et al. 2015). 63 
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GWPCA constructs local PCAs from subsets of the data under a moving 64 

window or kernel where the data are weighted by their distance to the kernel centre. 65 

Critical factors in the operation of GWPCA are the specification of the kernel 66 

bandwidth, which controls the degree of localness, and choosing the number of 67 

components to retain (NCR). Bandwidth optimization routines exist, but are 68 

dependent on the NCR value, that has to be pre-specified (Harris et al. 2011; 2015). 69 

This paper addresses this technical limitation of GWPCA and proposes two novel 70 

methods to determine the bandwidth and NCR value simultaneously. In doing so, a 71 

better understanding of the spatio-temporal dynamics of the Mongolian goat 72 

populations in relation to the duzds is provided. 73 

This article is organised as follows. Firstly, background information on 74 

Mongolian livestock populations is presented, together with introductions to PCA and 75 

GWPCA. Secondly, the study data is described. Thirdly, PCA and the GWPCA 76 

methodology are formally presented. Fourthly, the results of applying PCA and 77 

GWPCA to the goat population data are given, including the outcomes of the dual 78 

bandwidth and NCR optimisations for GWPCA. Finally, a summary, discussion and 79 

concluding remarks section is given. 80 
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 81 

Background 82 

Livestock populations in Mongolia 83 

Nomadic pastoralism has provided a sustainable way of life for thousands of 84 

years in Mongolia (Research Institute for Humanity and Nature 2012). Although 85 

Mongolian grasslands have been well-managed, there are concerns about the 86 

impacts of increases in livestock populations. The lives of nomadic pastoralists have 87 

been strongly influenced by political changes, especially the move from a planned 88 

economy to a free-market economy in 1992 (Fernandez-Gimenez 2006). Prior to 89 

this, livestock production was managed centrally and nomadic herders raised state-90 

owned livestock, restricting excessive livestock production. The government 91 

encouraged herders to organize their collectives locally, and gave salaried 92 

(professional) herders the responsibility of breeding livestock. Collectives were self-93 

regulated in their land use and their seasonal long-distance travel, resulting in good 94 

pasture maintenance with advance preparedness for keeping livestock secure from 95 

extreme events (Fernandez-Gimenez 2006). Since the transition to a free-market 96 

economy, pastures have been managed by individual herders, leading to serious 97 
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sustainability and land management issues, as herders are now focussed on profit 98 

and their number has more than doubled (Togtokh 2008) – all of which makes the 99 

livestock industry more vulnerable. Five main livestock types are found in Mongolia 100 

(sheep, goat, horse, cattle and camel), and the country-wide goat population has 101 

rapidly increased since the government policy change in 1992 (Figure 1). This 102 

increase is primarily due to the strong demand for goat cashmere (Saizen, 103 

Maekawa, and Yamamura 2010), but unfortunately, the rate of increase threatens 104 

livestock sustainability and the nomadic lives of herders. 105 

Livestock losses occur during periods of the dzud as a result of deep snow and 106 

severe cold (Fernandez-Gimenez, Batbuyan, and Baival 2012; Tsutsumida and 107 

Saizen 2014). Additional pressure is also placed on herders as the dzud directly 108 

results in reduced opportunities for grazing in the summer that follows, as a result of 109 

droughts. Effects of this combination of winter dzuds and summer droughts can be 110 

seen in Figure 1 for the years 2001-2 and 2009-10, where declines in the sheep and 111 

goat populations are clearly evident. As a result of the 2009-10 dzud, approximately 112 

20% of the country’s livestock population were killed, affecting 28% of Mongolia’s 113 

human population (Fernandez-Gimenez, Batbuyan, and Baival 2012; Fernández-114 
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Giménez, Batkhishig, and Batbuyan 2012). The increase in non-professional 115 

herders, with limited knowledge in traditional herding, has compounded this livestock 116 

loss in the dzud years (UNDP and NEMA 2010). 117 

Little attention has been paid into the geographical dynamics of the Mongolian 118 

livestock population, over this 23-year period of change. Although some research 119 

has been conducted, notably by Saizen, Maekawa, and Yamamura (2010) who 120 

found areas of goat population increase to be independent of land cover. Saizen, 121 

Maekawa, and Yamamura (2010) also noted that in more severe conditions, goat 122 

herders were not restricted to the grazing pastures close to Ulaanbaatar, as goats 123 

are more resilient to severe conditions, and the fact that a key goat product, 124 

cashmere, is relatively portable. Liu et al. (2013) investigated the relationship 125 

between goat population density and various climatic factors and suggested that the 126 

marked increase in goat population density was a key non-climatic factor affecting 127 

grassland degradation. Hilker et al. (2014) observed that livestock population 128 

increases, associated with vegetation greenness, were primarily in the western part 129 

of Mongolia. Thus previous research has tended to focus on environmental issues 130 

and not the vulnerability of the livestock populations due to dzuds, even though they 131 
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are relatively common. This study seeks to address this oversight by investigating 132 

the spatio-temporal pattern of goat population change in relation to the varying 133 

impacts of dzuds, via a GWPCA approach. 134 

 135 

PCA and geographically weighted PCA 136 

PCA is standard information reduction technique, commonly employed in many 137 

areas of data analysis. It transforms a set of m correlated variables into a new set of 138 

m uncorrelated variables called components. The components are linear 139 

combinations of the original variables and can allow for a better understanding of 140 

differing sources of variation and key trends in data. Its use as a dimension reduction 141 

technique is viable if the first few components account for most (say, 80 to 90%) of 142 

the variation in the original data. Component scores and component loadings data 143 

are produced, where the latter display how much each of the original variables 144 

attribute to the dimensional variance of the overall data. For details, see Jolliffe 145 

(2002). 146 

There are a number of ways that a PCA can be usefully applied to multivariate 147 

spatio-temporal data sets, such as the livestock data sets for this study (when all five 148 
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livestock types are considered). Demšar et al. (2013) provide a review in this 149 

respect, where the many dimensional groups can be treated in a variety of ways. 150 

This study applies a PCA to the goat population data, collected over a 23-year time 151 

period. Thus the application of PCA is to a set of 23 time-stamped geographic 152 

variables, where each variable measures goat population for a different year. This 153 

means that the PCA only accounts for the temporal correlations in the data. 154 

PCAs have been used to identify spatio-temporal data characteristics in many 155 

scientific fields (e.g. Felipe-Sotelo et al. 2006; Lasaponara 2006; and see Demsar et 156 

al. 2013 therein). For example, Lasaponara (2006) applied PCA for the evaluation of 157 

vegetation anomalies from multi-temporal remote sensing data; and found that the 158 

first principal component (PC1) related to a general vegetation distribution pattern, 159 

while the second (PC2) indicated a decreasing trend of vegetation amount. In the 160 

atmospheric sciences, PCAs are commonly applied to spatio-temporal (univariate) 161 

data, and is referred to as an empirical orthogonal function (EOF) analysis (e.g. 162 

Obled and Creutin (1986)). However for EOFs, the time series data is sufficiently 163 

long enough to consider PCA in Q-mode (rather than the usual R-mode), thus spatial 164 

correlations are captured as the data matrix is transposed. If the livestock population 165 
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data of this study was considered temporally long enough (i.e. collected over 100 166 

years, say), then such an application of Q-mode PCA could also have been 167 

considered. Instead, an R-mode PCA is applied and thus only temporal correlations 168 

in the goat data are captured. Note that applications of PCA to spatio-temporal data 169 

entails that Q-mode PCA is often referred to as S-mode PCA, where "S" denotes 170 

spatial, and R-mode PCA is often referred to as T-mode PCA, where "T" denotes 171 

temporal. The idea being that Q-mode and R-mode PCAs are reserved for attribute 172 

sub-space applications with no spatio-temporal context. 173 

However, a standard (R-mode) PCA application to this study’s goat data does 174 

not account for any spatial effects, because it only ensures a non-spatial linear 175 

transform (Demšar et al. 2013). In order to deal with such a naïve application, but 176 

from a spatial effects point of view only, GWPCA can be used. This adaptation of 177 

PCA provides a better description of any spatial phenomenon in the structure of the 178 

data. It uses a moving window weighting technique and constructs a localized PCA 179 

at all target locations (e.g. a grid, such as the application by Comber, Harris, and 180 

Tsutsumida (2016)). It is important to note, that although spatio-temporal correlations 181 

in the goat population data are captured via GWPCA, only spatial dependencies in 182 
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the data are fully captured. Temporal dependencies such as those between 183 

neighbouring years, are not fully captured nor are true spatio-temporal 184 

dependencies. That requires a further extension to GWPCA to a full spatio-temporal 185 

approach, similar that proposed for GW regression by Huang, Wu, and Barry (2010). 186 

Thus in this study, both PCA and GWPCA are applied in order to provide a better 187 

understanding of the dynamics of the Mongolian goat population data, at a soum-188 

level scale, across the period 1990–2012. 189 

 190 

Study data 191 

Annual livestock population data were obtained from the National Statistical 192 

Office (NSO) of Mongolia for the period 1990–2012. Populations were summarized 193 

per soum, an administrative sub-division area. Since local governments collect taxes 194 

from herders according to herd size, the data are assumed to reflect livestock 195 

numbers reasonably well (Saizen, Maekawa, and Yamamura 2010). Administrative 196 

boundaries slightly changed during the 23-year study period. To cater for this, the 197 

data were merged accounting for all 341 soums, using the most recent boundaries. 198 

Thus all data are taken into account when a soum changed or was incorporated into 199 
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a neighbour. Missing data that arose because of these changes, were infilled using a 200 

probabilistic PCA method provided in the pcaMethod R package (Stacklies et al. 201 

2007). This infilling was fairly minor and was not considered an issue for subsequent 202 

analyses. 203 

As would be expected, the goats data are highly correlated, especially across 204 

adjacent years as shown in Figure 2, with the weakest correlations between the dzud 205 

year of 2002 and all others, and the dzud year of 2010 and all others. Intuitively, this 206 

correlation analysis for the temporally-indexed goats data, directly implies that goat 207 

population change does not increase or decrease at the same rate across all 341 208 

soums. This in turn, provides some insight into the expected value of a spatial 209 

analysis of the goats data, via a GWPCA. 210 

 211 

Methods 212 

Principal components analysis (PCA) 213 

Given an 𝑛	
  ×	
  𝑚 dimensional data matrix 𝑋, a PCA to this data consists of 214 

conducting this transformation:  215 

 𝐿	
  𝑉	
  𝐿( = 𝑆          (1) 216 
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where 𝐿 is the matrix of eigenvectors with 𝑛	
  ×	
  𝑚 dimension, 𝑉 is the diagonal 217 

matrix of eigenvalues, and 𝑆 is the variance–covariance matrix with 𝑚	
  ×	
  𝑚 218 

dimension. 𝑉 indicates the eigenvalues of the PCs, representing the axes of a new 219 

dimension. Each column of 𝐿 represents the loadings corresponding to a PC. The 220 

PCs are ordered according to the size of eigenvalues, meaning that PC1 221 

corresponds to the largest eigenvalue, and PC2 corresponds to the second largest, 222 

and so on. Transformed component scores in matrix 𝑇 is represented by 223 

 𝑇 = 𝑋𝐿         (2) 224 

where 𝑇 consists of a linear combination of the original values, which in this study is 225 

the multi-temporal goat population data with 𝑛 = 341 and 𝑚 = 23. 226 

 227 

Geographically weighted principal components analysis (GWPCA) 228 

A GWPCA utilises a kernel weighting approach where localised PCs are found 229 

at target locations. At a target location, neighbouring observations are weighted by a 230 

distance-decay weighting function, and then a standard PCA is locally applied to its 231 

own specific weighted data subset. The size of the window over which this localised 232 

PCA might apply is controlled by the kernel's bandwidth. Small bandwidths lead to 233 
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more rapid spatial variation in the results whereas large bandwidths yield results 234 

increasingly close to the global PCA solution. This study identifies an adaptive 235 

bandwidth corresponding to a bi-square kernel, a discontinuous function that 236 

generates distance-decaying weights data points within the set bandwidth. 237 

Observations outside of the bandwidth’s range receive weights of zero, and hence 238 

the discontinuity. For details, see Gollini et al. (2015). 239 

Thus for coordinates (𝑢, 𝑣) at spatial location 𝑖, GWPCA involves the 240 

conception that the goat population time series variables	
  𝑥3 have a certain 241 

dependence on their locality where 𝜇(5,6) and 𝛴(5,6), are the GW mean vector and 242 

the GW variance–covariance matrix, respectively. This GW variance–covariance 243 

matrix is calculated by  244 

 𝛴(5,6) = 𝑋(	
  𝑊(5,6)	
  𝑋        (3) 245 

where	
  𝑊(5,6) is a diagonal matrix of geographical weights that are generated by the 246 

chosen kernel weighting function. The GWPCA at spatial location 𝑖 can be 247 

computed using 248 

 𝐿	
  𝑉	
  𝐿(|(𝑢3, 𝑣3) = 𝛴(5:,6:)        (4) 249 
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where 𝑢3, 𝑣3  is the GW variance-covariance at that location. The scores matrix at 250 

the same location can be found using 𝑇 𝑢3, 𝑣3 = 𝑋𝐿 𝑢3, 𝑣3 . On dividing each local 251 

eigenvalue by 𝑡𝑟 𝑉 𝑢3, 𝑣3 , localized versions of the proportion of the total variance 252 

(PTV) in the original data accounted for by each component can be found. Thus at 253 

each of the 341 sums of this study (i.e. the target locations), a GWPCA provides 23 254 

components, 23 eigenvalues, a component loadings set of size 341 × 23, and a 255 

component scores set of size 341 × 23. 256 

Bandwidth selection is crucial for the application of any GW model. For 257 

GWPCA, bandwidth selection can be guided by a ‘leave-one-out’ residual (LOOR) 258 

approach, where scores data are assessed for goodness of fit (GoF) against 259 

observed data. The optimal bandwidth is one that corresponds to LOOR data that 260 

provides the smallest GoF statistic. This cross-validation procedure and extensive 261 

commentaries on choosing bandwidths are provided in Harris et al. (2015). Of note is 262 

that the NCR value is decided upon a priori and an optimal bandwidth cannot be 263 

found if all 𝑚 components are retained. Thus the results of this residual-based 264 

bandwidth selection procedure are somewhat dependent on a user-specified value 265 

of NCR. To counter this dependency, this study proposes two alternative techniques 266 
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to determine the bandwidth and the NCR value, concurrently. These methodological 267 

advances are described and implemented below. 268 

 269 

Geographically weighted correlation analysis 270 

A GW correlation analysis (Harris and Brunsdon 2010) on the outputs from the 271 

PCA with the raw data is also conducted. Here for variables 𝑥 and 𝑦 at spatial 272 

location 𝑖 where the geographical weights 𝑤3? again accord to a bi-square function, 273 

definitions for a GW standard deviation and a GW correlation coefficient, are 274 

respectively 275 

 𝑠 𝑥3 =
𝑤3? 𝑥? − 𝑚 𝑥3

B
C
?DE

𝑤3?C
?DE

     (5) 276 

and  277 

 𝜌 𝑥3, 𝑦3 = 𝑐 𝑥3, 𝑦3
𝑠 𝑥3 𝑠 𝑦3

     (6) 278 

, where a GW mean is 279 

 𝑚 𝑥3 =
𝑤3?𝑥?C

?DE
𝑤3?C

?DE
     (7) 280 

and a GW covariance is 281 
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 𝑐 𝑥3, 𝑦3 =
𝑤3? 𝑥? − 𝑚 𝑥3 𝑦? − 𝑚 𝑦3C

?DE
𝑤3?C

?DE
  (8)  282 

Throughout this study, GWPCA and GW correlations use functions (or adapted 283 

functions) from the GWmodel R package (Gollini et al. 2015). 284 

 285 

Results 286 

The global PCA 287 

In order to understand any GW model output, it is always important to fit the 288 

usual global model for context. In this respect, a PCA was conducted on the 23 289 

temporal variables describing goat populations. Table 1 shows that the first two PCs 290 

have eigenvalues greater than unity, and for these two PCs, the cumulative PTV 291 

exceeds 90%. This implicitly assumes a uniform temporal trend in goat population 292 

across all 341 sums over the 23-year period. The PCA loadings given in Table 2 293 

indicate that the five of the most influential years are 1996-1999 and 2001 for PC1; 294 

1990-1991 and 2010-2012 for PC2. 295 

 296 

A GW correlation analysis on the PCA scores and raw data 297 
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As the component loadings in Table 2 are the (global) correlation coefficients 298 

between the component scores and the raw data, a GW correlation analysis on this 299 

data can be used to investigate whether the correlations change across study region. 300 

Figure 3 maps the GW correlations between the PCA scores data for PC1 to PC3, 301 

and the raw data from the three most influential years. The GW correlations were 302 

found using a user-specified bandwidth of 10% (i.e. each local correlation uses the 303 

nearest 34 data pairs). As would be expected, spatial coherence for such 304 

correlations is highest for PC1, but diminishes through PC2 to PC3. This suggests 305 

that the PCA is missing some spatial structure in the data, and as such, an 306 

application of GWPCA is worthwhile. Intuitively, this is expected, as the spatio-307 

temporal trend in goat populations is not expected to be uniformly the same across 308 

all of Mongolia (as similarly suggested for observations made above, with respect to 309 

Figure 2). 310 

 311 

GWPCA calibration with dual bandwidth and NCR optimization 312 

As outlined above, in order to calibrate a GWPCA, first the NCR value needs to 313 

be user-specified and only then, can an optimal GWPCA bandwidth be found via 314 
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cross-validation. In previous GWPCA studies, NCR is commonly chosen according 315 

to a 80% or 90% threshold of the cumulative PTV from the global PCA. Thus in this 316 

study, NCR = 1 or 2 would be appropriate (see Table 1). This bandwidth selection 317 

approach is far from ideal, as can be seen in Table 3, where different ‘optimal’ 318 

bandwidths (found by the cross-validation procedure) simply correspond to different 319 

choices of NCR (in this case, NCR values from 1 to 10). Furthermore, the results 320 

suggest a tendency to a global PCA process for the study data, as eight out of ten 321 

bandwidths are taken at 341 suggesting a kernel bandwidth that contains all of the 322 

soums data. If this is truly the case (see note 1), then there appears no value in 323 

applying GWPCA, and the localized analysis should cease at this juncture. 324 

However, the choice of bandwidth can be investigated more deeply. This is 325 

because the results presented in Table 3 are not directly comparable, as given 326 

‘optimal’ bandwidths correspond to minimized GoF statistics (not shown) where the 327 

NCR-specific LOOR data sets have been summarized by their mean. To ensure that 328 

the minimized GoF statistics are comparable across different values of NCR, the 329 

LOOR data can be summarized instead by their coefficient of variation (CoV) to 330 

provide relative (and thus comparable) GoF statistics for each bandwidth and for 331 
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each NCR value. This leads to a dual optimization approach as shown in Figure 4(i), 332 

where the aim to concurrently find the bandwidth and the NCR value that 333 

corresponds to minimum GoF (LOOR CoV) value. Again considering only NCR 334 

values from 1 to 10, and a clear minimum GoF is reached at 1.296 corresponding to 335 

a bandwidth of 247 nearest neighbours and an NCR value of 5. Each individual line 336 

in the plot of Fig 4(i) corresponds to a different bandwidth choice, from 5 to 341. This 337 

constitutes the first extension to the existing bandwidth selection procedure. 338 

A second alternative is to transfer the usual cumulative PTV approach for NCR 339 

selection to a local setting. Globally, a user-specified choice of NCR = 1 or 2 is 340 

based on the global cumulative PTV scree plot (e.g. Varmuza and Filzmoser (2009)). 341 

This approach can be transferred locally using the local cumulative PTV data from 342 

each local PCA from a series of GWPCAs. Local cumulative PTV data were 343 

calculated from GWPCAs calibrated with bandwidths ranging from 10 to a maximum 344 

of 341 and the resultant local scree plots are depicted in Figure 4(ii). Clearly, the 345 

local scree plots suggest that NCR = 2 is the point when some of the local 346 

cumulative PTV data exceeds a 90% threshold. Given this, NCR = 2 again appears 347 

appropriate for a GWPCA calibration. However, the bandwidth is still required, and 348 
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unlike the existing approach a bandwidth is identified that has the smallest GoF 349 

(LOOR mean) value, but crucially also corresponds to a localized cumulative PTV 350 

value exceeding 90% (for all NCR = 2). This indicates a relative tight bandwidth of 351 

198 nearest neighbours. 352 

Thus in summary, there are three possible bandwidths for GWPCA calibration: 353 

(a) 341 (via NCR = 1 or 2); (b) 247 (via NCR = 5); and (c) 198 (via NCR = 2). All 354 

three should be considered as entirely valid, but where approach (a), the existing 355 

approach, strongly suggests a stationary process with respect to a PCA. Given that 356 

approach (a) has drawbacks, not only with respect to NCR/bandwidth specification, 357 

but also (indirectly) due to current limitations in the GWPCA code (see note 1), it is 358 

dropped in favour of the two newly proposed approaches (b and c) which are both 359 

viewed as a methodological advance. In the spirit of spatial exploration, which all 360 

GW models are eminently designed for, both approaches were investigated further 361 

all of the subsequent GWPCA outputs described below are specified with either: (i) a 362 

bandwidth of 247 via a NCR value of 5; or (ii) a bandwidth of 198 via a NCR value of 363 

2. 364 

 365 
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PCA versus GWPCA results 366 

GWPCA is now applied to account for expected spatial heterogeneity in the 367 

annual goat population data during 1990-2012 with: (i) a bandwidth of 247 via a NCR 368 

value of 5 (call this ‘GWPCA-A’); and (ii) a bandwidth of 198 via a NCR value of 2 369 

(call this ‘GWPCA-B’). The GWPCA results are compared with those from global 370 

PCA, throughout. To compare GWPCA−A, GWPCA-B, and PCA, only the first two 371 

components (PC1 and PC2) from each calibration are considered. Observe that 372 

once a bandwidth is defined, local components up until any NCR value (in this case 373 

NCR = 23) can actually be found and investigated. So in this respect, the NCR 374 

values of 2 and 5 from the bandwidth selection procedure do not have to pervade the 375 

remainder of the analysis (e.g. Harris et al. 2015). 376 

 377 

Scores data 378 

PC1 and PC2 scores from GWPCA-A, GWPCA-B, and the global PCA are 379 

mapped in Figure 5. Observe that for GWPCA, a full, 𝑛 = 341 valued scores data 380 

set is available at each location, for each component. Thus, the GWPCA scores data 381 

that are mapped are only those that fully correspond to their location. PC1 scores of 382 
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GWPCA-A and GWPCA-B correlate with those from the global PCA, with 𝑟 = 0.846 383 

and 𝑟 = 0.742, respectively. PC2 scores of GWPCA-A and GWPCA-B correlate with 384 

those from the global PCA, with correlations of 𝑟 = 0.943 and 𝑟 = 0.872, 385 

respectively. These moderate to strong correlations simply reflect the relatively large 386 

bandwidth sizes used, and such correlations would tend to unity as the bandwidth 387 

increases. However these global correlations hide spatial detail, where the study’s 388 

aim is to see where the local spatial structure in the temporally-changing goat 389 

population (via the GWPCA outputs) differs to that found globally (via the PCA 390 

outputs). In this respect, the clearest regional differences in both the PC1 and PC2 391 

scores data appear in the north-eastern regions of Mongolia, bordering Russia and 392 

also the south-western regions bordering China. Thus the temporal dynamics of goat 393 

population change is likely to be clearly different in these regions to that expected 394 

nationally. 395 

 396 

Percentage PTV data 397 

Globally, the PTV for PC1, and the cumulative PTV for PC1 and PC2 398 

combined, are 84% and 92%, respectively. This suggests a high correlation amongst 399 
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the goat population data, year on year, throughout the 23-year period. However, the 400 

global PTV values (from PCA) implicitly assume that such relationships are constant 401 

across Mongolia - with relatively uniform changes in goat populations everywhere. 402 

Mapping the corresponding localized PTV outputs from GWPCA shows where this is 403 

the case, and the degree to which it is not (Figure 6). 404 

Focusing on the third row only of Figure 6, regionally the temporal trend in goat 405 

population change is actually more uniform than that found globally in central 406 

northern regions (coloured dark green), where local PTV data are higher. 407 

Conversely, the temporal trend in goat population change is actually less uniform 408 

than that found globally in western regions (coloured dark pink), where local PTV 409 

data is lower. These changes in regional behaviour broadly confirms that observed 410 

for the scores data, above. The PTV maps in the first and second rows of in Figure 6 411 

provide detail of the component contribution to the cumulative PTV maps presented 412 

in the third row. Presenting the GWPCA outputs for GWPCA-A and GWPCA-B with 413 

their different bandwidths in this way re-affirms the findings, and quantifies how non-414 

stationarities can change at different spatial scales. 415 

 416 
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Loadings data 417 

In many ways the loadings data from a GWPCA are more difficult to interpret 418 

map than the scores and PTV data. In Harris, Brunsdon, and Charlton (2011), three 419 

visualizations were proposed, which can only be conducted on a component by 420 

component basis: (a) map the ‘winning variables’ - i.e. those that correspond to 421 

largest absolute loading; (b) map the loading sign patterns, e.g. for eight variables, 422 

there are 256 possible sign patterns; and (c) map all loadings together using 423 

multivariate glyphs, where a spoke’s length corresponds to the magnitude of the 424 

loading, whilst a spoke’s colour corresponds to the sign of the loadings. In this study, 425 

the GWPCA loadings data are visualized using the first option. These ‘winning year’ 426 

maps are presented in Figure 7 for PC1 and PC2. 427 

The ‘winning year’ for PC1 for GWPCA-A and GWPCA-B included 15 and 17 of 428 

the 23 years being selected. As so many different years ‘win’, this is viewed as a 429 

confirmation of the generally high correlation amongst the goat population data 430 

throughout the 23-year period. Differences between a year providing the highest 431 

loading or not, are often extremely small. Thus a ‘winning year or variable’ map 432 

tends to provide little useful information when this happens. 433 
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In this instance, greater insight stems from considering the ‘winning year’ maps 434 

for the next component (PC2). Now far fewer years are represented (3 to 6 of 23) 435 

and the dzud years of 2002 and 2010, strongly dominate in two clear regions; the 436 

west and south-west, and the east and north, respectively. This suggests that: (i) the 437 

dzud of 2002 and the associated goat population decline was more or less 438 

pronounced in the west and south-west than elsewhere; and (ii) the dzud of 2010 439 

and the associated goat population decline was more or less pronounced in the east 440 

and north than elsewhere. This strongly indicates that the severity of the dzuds in 441 

2002 and 2010 varied geographically. Visualizing the annual changes in the PCA 442 

and GWPCA loadings from PC1 and PC2 for GWPCA-A and GWPCA-B (Figure 8) 443 

shows the effects of the 2002 and 2010 dzud years on the loadings, with clear 444 

inflection points for both GWPCA fits. 445 

Figure 9 displays the loadings maps for PC2 of GWPCA-A only, for 2001-3, 446 

and 2009-11, covering the two dzuds periods. These maps suggest that the 2001-2 447 

dzud and the 2009-10 dzud have different regional and temporal characteristics. The 448 

impact of the 2001-2 dzud starts from central/western regions in 2001 and increases  449 

in western regions in 2002. The impact of the 2009-10 dzud appears first in western 450 
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regions in 2009 and then in eastern regions in 2010. This is in contrast to the 451 

reporting of dzuds and the devastating damage to livestock populations, which is 452 

typically referred to as impacting Mongolia as a whole, and uniformly. 453 

 454 

Discussion and conclusions 455 

Understanding the spatio-temporal characteristics of livestock population 456 

change is essential for environmental and disaster responses, to sustainably 457 

manage grassland environments and to minimize the impact of the dzud in Mongolia. 458 

Unfortunately, such analyses are rarely conducted, as they require skilled statistical 459 

expertise (Cheng et al. 2014; Shekhar et al. 2015). This study undertook such an 460 

analysis for annual goat population data, which are known to have increased over 461 

the study period, with abrupt declines following dzud events. The application of a 462 

geographically weighted PCA (GWPCA), a spatial version of PCA, to the temporally 463 

indexed goat data allowed an understanding of the spatial and temporal variations in 464 

goat population change across Mongolia over the 23 year study period. 465 

Mapping GWPCA scores data allowed regional differences to be observed, 466 

particularly in the north-eastern regions of Mongolia, bordering Russia and also 467 
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south-western regions bordering China. Thus the temporal dynamics of goat 468 

population change is likely to be different in these regions to that expected nationally. 469 

By mapping GWPCA variance proportion data, the temporal trend in goat population 470 

change was found to be more uniform, to that found globally, in central northern 471 

regions, whilst less uniform (to that found globally) in western regions. Visualizing the 472 

‘winning year’ maps for the GWPCA loadings, suggests that the dzud of 2002 and 473 

the associated goat population decline was more or less pronounced in the west and 474 

south-west regions and that the dzud of 2010 and the associated goat population 475 

decline was more or less pronounced in the east and north regions. This, in turn, 476 

suggests that the dzuds of 2002 and 2010 varied geographically in their severity. 477 

It has been reported that 7.7 million livestock died as a result of the 2001-2 478 

dzud and 9.7 million died as a result of the 2009-10 dzud (UNDP and NEMA 2010). 479 

This study helps to re-affirm that regionally-specific dzud preparation and response 480 

initiatives are required to support different landscape ecological characteristics and 481 

management strategies (Fernández-Giménez et al. 2015). This study did not 482 

consider change in livestock-type over space and time, and in this respect, future 483 

research will seek to explore the full data set of goats, sheep, cattle, camel and 484 
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horse. Such an analysis could be achieved via extending GWPCA to a full temporally 485 

and geographically weighted PCA form. 486 

This study’s application of GWPCA to temporally indexed spatial data is novel 487 

and adds to a growing portfolio of GWPCA uses, not only for spatial exploration 488 

(Lloyd 2010; Harris, Brunsdon, and Charlton 2011; Harris et al. 2015), but also for 489 

spatial anomaly detection (Harris, Brunsdon, et al. 2014; Harris et al. 2015), spatial 490 

network re-design (Harris, Clarke, et al. 2014), and spatial classification (Harris et al. 491 

2015; Comber, Harris, and Tsutsumida 2016). Furthermore, this study usefully 492 

extended the GWPCA methodology itself to simultaneously optimise the number of 493 

components to retain and the kernel weighting bandwidth. This is considered an 494 

important advance, and should be adopted in all subsequence GWPCA studies. 495 

 496 

Notes 497 

1 Observe that the current version of the GWmodel R package does not allow adaptive 498 

bandwidth values greater than the sample size to be optimally selected. Thus an 499 

adaptive bandwidth that is equal to the sample size only directly indicates a stationary 500 

spatial process provided a box-car kernel is specified. For any distance-decay kernel, 501 
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such as the bi-square, an adaptive bandwidth that is equal to the sample size can only 502 

suggest or allude to a stationary spatial process. 503 
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 646 

Figure captions  647 

Figure 1. Change in livestock populations across Mongolia during 1990–2012. 648 

 649 

Figure 2. Correlation matrix of annual goat population data (1990-2012), with the plot 650 

size proportional to the correlation. 651 

 652 

Figure 3. GW correlation maps between PC1-3 scores of the global PCA and the raw 653 

data of the corresponding most influential years (see also Table 2). 654 

 655 

Figure 4. GWPCA calibration: (i) GoF (via LOOR CoV) versus NCR values; and (ii) 656 

scree plots for local cumulative PTVs versus NCR values. The grey lines have a 657 

transparency term added to them. In (i) they represent bandwidths in a range of 5 to 658 

341 and (ii) in a range of 10 to 341. The black line in (i) represents the optimal 659 

bandwidth of 247 with NCR = 5, at the minimum GoF. Black line in (ii) represents the 660 

90% threshold of the cumulative PTV.  661 

 662 
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Figure 5. PC1 and PC2 scores maps for GWPCA-A (top row), GWPCA-B (middle 663 

row), and the global PCA (bottom row).  664 

 665 

Figure 6. GWPCA-A and GWPCA-B PTV maps for PC1 (top row), PC2 (middle row) 666 

and PC1/PC2 combined (bottom row). 667 

 668 

Figure 7. GWPCA-A and GWPCA-B ‘winning year’ maps (by highest loadings) for 669 

PC1 and PC2. Years when dzud occurred are highlighted in grey and black. 670 

 671 

Figure 8. GWPCA-A and GWPCA-B loadings for PC1 and PC2, displayed over the 672 

23 study years. The grey lines have a transparency term and represent the loading 673 

score at every soum. The black lines represent the loadings from the global PCA. 674 

Dark grey rectangles represent dzud periods 2001-2 and 2009-10. 675 

 676 

Figure 9. Maps for PC2 loadings from GWPCA-A over dzud periods of 2001-3 (top 677 

row) and 2009-11 (bottom row). 678 

 679 



 43 

 680 

View publication statsView publication stats

https://www.researchgate.net/publication/316558875

