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Abstract Entomophagy, the consumption of insects, is promoted as an alternative

sustainable source of protein for humans and animals. Seminal literature

highlights predominantly the benefits, but with limited empirical support and

evaluation. We highlight the historical significance of entomophagy by humans

and key opportunities and hurdles identified by research to date, paying

particular attention to research gaps. It is known that insects present a

nutritional opportunity, being generally high in protein and key micronutrients,

but it is unclear how their nutritional quality is influenced by what they are fed.

Research indicates that, in ideal conditions, insects have a smaller environmental

impact than more traditional Western forms of animal protein; less known is

how to scale up insect production while maintaining these environmental

benefits. Studies overall show that insects could make valuable economic and

nutritional contributions to the food or feed systems, but there are no clear

regulations in place to bring insects into such supply systems. Future research

needs to examine how the nutritional value of insects can be managed

systematically, establish clear processing and storage methodology, define rearing

practices and implement regulations with regard to food and feed safety. Each of

these aspects should be considered within the specifics of concrete supply and

value chains, depending on whether insects are intended for food or for feed, to

ensure insects are a sound economic, nutritional and sustainable protein

alternative – not just a more expensive version of poultry for food, or soya for

feed.
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Introduction

Entomophagy, the eating of insects, is not a new

phenomenon for humans, with archaeological evidence
demonstrating that humans have evolved as an ento-

mophagous species (Sutton 1995; Raubenheimer &

Rothman 2011). More recently, for several hundreds
of years, humans have been making use of a range of

insects as a food source, which is naturally high in

protein and micronutrients. In parts of Central Africa,
at times, up to 50% of dietary protein comes from

insects, and their market value is higher than many

alternative sources of animal protein (Paoletti &
Dreon 2005; Raubenheimer & Rothman 2011). It has

been estimated that entomophagy is practiced in at

least 113 countries with over 2000 documented edible
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insect species (Jongema 2017), and the United Nations

has recommended the practice as a potential solution
to the shortage of world food supplies (van Huis

2013).

Whether the wider adoption of entomophagy could
help alleviate growing pressure on the environment

from food production, and reduce malnutrition in

both developed and developing countries, is a topic of
extensive debate. This narrative review aims to high-

light some of the opportunities and hurdles associated

with entomophagy with respect to malnutrition and
food security. The paper will explore the history, cul-

ture and customs surrounding the collection and eat-

ing of insects; the main nutritional and environmental
benefits of entomophagy; and the barriers to the wide-

spread implementation of entomophagy and the steps

necessary to counter them. It is intended as a narrative
review and as such is not wholly exhaustive of the lit-

erature. Rather, it provides a general overview of the

state of research on edible insects and current chal-
lenges due to the lack of research.

History of insect consumption by humans

Insect species that have become the most commonly
consumed are popular due to their size and availabil-

ity (Bukkens 1997). Insects need to be large enough to

make the effort of catching them worthwhile and easy
to locate, preferably in predictably large quantities.

Thus, popular insects species for consumption fall into

the following categories: beetles (Coleoptera, 31%);
caterpillars (Lepidoptera, 18%); bees, wasps and ants

(Hymenoptera, 14%); grasshoppers, locusts and crick-

ets (Orthoptera, 13%); cicadas, leafhoppers, planthop-
pers, scale insects and true bugs (Hemiptera, 10%);

termites (Isoptera, 3%); dragonflies (Odonata, 3%);

and flies (Diptera, 2%) (Jongema 2017). Insects are
consumed at various life-stages and with numerous

methods of preparation including raw, fried, boiled,

roasted or ground.
In Thailand, for example, 150 different insect spe-

cies, mostly wild-harvested, are consumed and are a

vital staple in the diet (Yhoung-Aree 2010). Ento-
mophagy has also been shown to be a successful

method of crop pest control. In 1978, a locust

(Patanga succincta) outbreak in Thailand resulted in a
government campaign to promote the locust’s edibil-

ity. They became such a popular snack that they are

now no longer a crop pest, and their market value
means that some farmers now grow crops specifically

to feed them (Hanboonsong 2010). An increasing
demand for insects as food in Thailand has resulted in

a shift from wild collection to the development of

mass-rearing facilities, with crickets being the most
commonly reared species by individual farmers for

whom they provide a valuable source of additional

income (Hanboonsong 2010). Similarly, in Kenya and
Burkina Faso, there is a rich history of consuming

insects, the most popular in Kenya being palm weevil

(Rhynchophrus Phoenicis) larvae, which are both
wild-harvested and semi-cultivated by the chopping

down of raffia trees (Kelemu et al. 2016). In Burkina

Faso, the most commonly consumed insect is the Shea
tree caterpillar (Cirina butyrospermi), which is consid-

ered a pest to the tree plantations grown for the pro-

duction of shea butter (Anvo et al. 2016). The larvae
are usually boiled in water and then fried in butter for

immediate use or boiled and sun-dried to be sold in

the market.
Native human populations in the majority of Africa

and Asia, and in large parts of South America, con-

sume various species of insects in a multitude of
dishes. However, until recently, the consumption of

insects was generally decreasing, partly due to the

spread of Western views of insects as a source of fear
and disgust, particularly in the context of food (Looy

et al. 2014). Insects can be seen as a ‘starvation food’,
to be eaten only in times of extreme food shortage

(Kinyuru et al. 2011; Looy et al. 2014). Individuals

engaging in entomophagy have been considered as ‘ru-
ral’, ‘barbarian’ or engaging in ‘primitive peoples’

practice’ (Megido & Sablon 2014; Verbeke 2015).

Thus, the negative portrayal of entomophagy by the
media and failure to embrace this practice by Western-

ers and the media has resulted in a decline in insect

consumption, with negative health consequences for
communities that relied on the nutrition that insects

provided (Hanboonsong et al. 2013; Verbeke 2015).

However, new data suggest that in certain countries,
such as Thailand and Laos, the demand for insects is

on the rise (Durst & Hanboonsong 2015). These

changing attitudes may be due, at least in part, to the
increased acceptance that consumption of insects does

not only occur in developing countries in times of star-

vation (Kinyuru et al. 2011).
There are many examples of insects being eaten as

part of everyday diets. For example, in Japan, insects

form part of the traditional diet (Bukkens 1997), with
55 edible species documented in 1919. Although these

numbers have dropped, due to environmental and

societal changes, there are still a handful of species
eaten today, often as delicacy/luxury food items

(Nonaka 2010). Wasps are the chosen delicacy in

Japan and deeply entrenched in the food culture, with
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an annual festival celebrating their consumption dur-

ing which individuals compete to see who has the big-
gest wasp nest, either wild-harvested or cultivated.

Communities come together to celebrate the wasp har-

vest, exchange knowledge on collection and cultiva-
tion methods and eat various wasp delicacies (Nonaka

2010). Farmers also continue to make efforts to

improve on wasp husbandry methods, which are often
unsuccessful and costly, indicating that enjoyment and

tradition are the primary motivators for the keeping

of wasps (Payne & Evans 2017).

Opportunities

Nutrition

Insects are a source of energy, protein, fat, minerals and

vitamins (Rumpold & Schl€uter 2013a), with the energy

content being on a par with other fresh meat sources
(per fresh weight); the exception being pork due to its

high fat content (Rumpold & Schl€uter 2013a). Mean

estimates show energy levels to be around 400–
500 kcal per 100 g of dry matter, making it comparable

with other protein sources (Payne 2016).

Macronutrients

Levels of protein, fat and energy vary across insect spe-

cies and also within species depending on what the

insects have fed on, stage of development, sex and
environmental factors (Bukkens 1997; Ramos-Elorduy

et al. 2002; Finke & Oonincx 2014). However, general

ranges have been estimated as shown in Table 1.
Protein is a significant component of edible insects,

comprising between 30% and 65% of the total dry

matter. The quality of protein is determined by both the
amino acid composition and the digestibility of the pro-

tein, expressed as a percentage of that of an ‘ideal’ pro-

tein (Belluco 2013). Between 46% and 96% of all
amino acids are present in insect protein, although there

are limited amounts of tryptophan and lysine (Bukkens

1997; Ramos-Elorduy et al. 1997), and digestibility is
estimated to be between 77% and 98% for most species

(Ramos-Elorduy et al. 1997). The suitability of insect

protein for human nutrition is yet to be assessed, but
studies with juvenile rats have demonstrated that crick-

ets (Acheta domesticus) offer a superior source of pro-

tein when compared to a plant source (soy protein)
(Belluco 2013). Human trials of insect consumption

remain a significant research gap, and definitive recom-
mendations regarding insects as nutritionally suitable

for humans currently cannot be made.

After protein, fat is the next main component of

insects. The unsaturated fatty acid profile is similar to

that of poultry and white fish but contains more
polyunsaturated fatty acids (PUFAs) than either poultry

or red meat (Rumpold & Schl€uter 2013a). Omega-3

fatty acids, eicosapentaenoic acid (EPA) (C20:5) and
docosahexaenoic acid (DHA) (C22:6) being the pri-

mary types, are essential for normal cellular function-

ing and must be supplied by the diet. Insects contain
little to no traces of EPA and DHA but do contain

linoleic acid (C18:2) and occasionally linolenic acid

(C18:3), which humans can synthesise to make arachi-
donic acid (C20:4) and EPA (Rumpold & Schl€uter

2013a; Calder 2017). It must be noted that the fat

profiles of insects are highly dependent on their

Table 1 Protein, fat and energy content of some insects. Data

from Rumpold & Schl€uter (2013a). Specific species were selected

as examples if they deviated significantly from the average, or are

one of the most popularly consumed species. If there was more

than one entry for a specific species, the average was calculated

Protein

(% dry

matter)

Fat (% dry

matter)

Energy

(kcal/100 g)

Coleoptera (adult beetles,
larvae)

40.69 33.4 490.3

Rhynchophorus phoenicis

(palm weevil larvae)

32.86 36.86 478.87

Tenebrio molitor (mealworm

larvae)

48.35 38.51 557.12

Diptera (flies) 49.48 22.75 409.78

Hemiptera (true bugs) 48.33 30.26 478.99

Hymenoptera (ants, bees) 46.47 25.09 484.45

Oecophylla smaragdina

(weaver ant)

53.46 13.46

Isoptera (termites) 35.34 32.74

Lepidoptera (butterflies, moths) 45.38 27.66 508.89

Bombyx mori (silkworm larvae) 61.8 8.81 389.6

Cirina forda (shea caterpillar) 47.48 11.5 359

Galleria mellonella

(waxworm larvae)

38.01 56.65 650.13

Samia cynthia ricinii (ailanthus

silkworm pupae)

54.7 25.6 463.63

Odonata (dragonflies, damselflies) 55.23 19.83 431.33

Orthoptera (crickets,
grasshoppers, locusts)

61.23 13.41 426.25

Acheta domesticus

(house cricket adult)

65.04 22.96 455.19

Schistocerca sp. 61.05 17 427

Sphenarium purpuracens

(chapulin adult)

61.33 11.7 404.22

Ruspolia differens (brown longhorn

grasshopper)

44.3 46.2
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feedstuff. For example, a study has shown that levels

of EPA and DHA can be increased in black soldier
flies by feeding them fish offal (St-Hilaire et al. 2007).
More research is needed to draw clear conclusions on

the availability of specific fats in insects.
Overall fat content is also highly variable among

insects, ranging from 7 to 77 g/100 g of dry weight,

with larvae generally having a higher overall content
than adults (Ramos-Elorduy et al. 1997). Insect larvae
and some soft-bodied adult insects, such as termites,

have the highest levels of fat, and insects with a hard
exoskeleton, such as crickets and grasshoppers, are at

the lower end (Bukkens 1997).

Micronutrients

Although micronutrient levels vary greatly across

insect species, some species do have consistently higher

levels of certain micronutrients. Table 2 summarises
the average levels of minerals and vitamins in a range

of commonly consumed insect species. A large varia-

tion is often seen within a single species due to envi-
ronmental factors and contaminants, particularly

metal, acquired during processing.

Iron has been shown to range from 18 to
1562 mg/100 g dry matter across insect species, with

low levels in ants, mid-levels in termites and the

highest levels in crickets (Christensen 2006). Metal
contaminants may account for some of the reported

variation in levels of iron. Although iron levels in

insects are high, especially when compared to plant-
based food sources generally consumed in place of

meat, no research has identified the type of iron

found in insects. ‘Haem’ iron, present in animals

(with a blood circulatory systems and haemoglobin),
is more bioavailable and absorbed more uniformly in

the human body than the ‘non-haem’ iron found in

plants (Kongkachuichai & Napatthalung 2002;
Hurrell & Egli 2010). Insects do have a circulatory

system, but this does not involve haemoglobin and so

the availability of their iron is unknown, although it
has been suggested to have a bioavailability more

similar to that of the iron found in meat rather than

plants. For example, one study examined the
bioavailability of iron in maize-field grasshopper

(Sphenarium purpurascens), black crickets (Gryllus
bimaculatus), mealworms (Tenebrio molitor) and buf-
falo worms (Alphitobius diaperinus). Buffalo worms

and sirloin meat were found to have the highest

levels of iron bioavailability, with buffalo worms
slightly higher than sirloin meat, while the other

insects displayed a mid-range of iron bioavailability

between the highest and lowest samples (whole
wheat) tested (Latunde-Dada & Yang 2016). It

should be noted these in vitro studies of a Caco-2

cell model and no human or animal trials have been
conducted to date.

Zinc, calcium and vitamin A have all been found in
insects, but data on the quantities present are limited.

Crickets have been reported to contain zinc in the

range of 8-25 mg/100 g dry matter (Christensen 2006)
and ants, termites and crickets to contain calcium in

the range of 33–341 mg/100 g dry matter, with crick-

ets having the highest levels. Vitamin A has been
found to range from 3 to 273 lg/100 g dry matter

across insect species (Christensen 2006).

Table 2 Mineral and vitamin A content in popularly consumed insect species. All minerals in mg/100 g dry matter except vitamin A

(lg/100 g dry matter). Data from Rumpold and Schl€uter (2013a)

Species Calcium Potassium Magnesium Phosphorus Sodium Iron Zinc Manganese Copper Vitamin A

Rhynchophorus phoenicis (African

palm weevil larvae)

131.05 1617 82.7 518.5 48.4 22.75 21.15 2.15 1.6 11.25

Tenebrio molitor (mealworm larvae) 45.77 828.28 215.89 722.74 133.16 5.46 12.53 1.14 1.62

Oecophylla smaragdina

(weaver ant)

63.85 749 96.05 726.5 225 65.4 13.5 7.68 1.52

Agro (termites) 132 161 14.3

Bombyx mori (silkworm larvae) 102.31 1826.59 287.86 1369.94 274.57 9.54 17.75 2.49 2.08 273.99

Cirina forda Westwood (shea

caterpillar)

17.48 1100.91 34.72 480.92 130.39 23.93 6.44 7 2.99

Galleria mellonella (waxworm larvae) 59.28 532.53 83.07 834.94 39.76 6.57 7 0.32 0.62 4.5

Samia ricinii (silkworm pupae) 72.2 182.5 577 23.7 7.13 2.58 1.78

Acheta domesticus (house cricket adult) 171.07 1126.62 94.71 832.9 435.06 8.75 20.22 3.35 1.43 24.33

Sphenarium purpuracens (chapulin adult) 112 377 424 609 18 42

Ruspolia differens (brown longhorn

grasshopper)

24.5 259.7 33.1 121 229.7 13 12.4 2.5 0.5 280
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Overall, the nutritional status of insects is highly

variable, depending on different species, diets and life-
stages. Additionally, little is known about the

digestibility and availability of nutrients from insects

for humans or for animals.

Environmental considerations

The environmental impact of food production is

increasingly being brought to the forefront of sustain-
ability debates, particularly surrounding the reduction

of carbon dioxide (CO2) emissions. However, there

are two other important environmental factors often
ignored: water and land use. It is predicted that by

2025, at least 1.8 million people will be living in

regions with inadequate freshwater supplies and a fur-
ther two-thirds of the global population will be in

areas under pressure from dwindling water resources

(FAO 2012). Freshwater is a finite resource, of which
an estimated 70% is used by the livestock and agricul-

ture industries (Doreau et al. 2012). Agriculture uses

water directly to grow crops and indirectly to grow
fodder for the production of livestock.

Land and water use

Land availability is an issue that frequently arises in
the discussion of sustainable agriculture. As the

demand for meat grows, there is increasing pressure

on producers to farm more livestock, which requires
more land. The increase in livestock requires more

feed, which in turn leads to farmers increasing the

amount of land being cropped, often involving defor-
estation or an increase in fertiliser use. Currently, the

livestock sector uses about 70% of available agricul-

tural land worldwide (Oonincx & de Boer 2012).
Figure 1 shows the maximum documented levels of

land, feed and water use for the three main groups of

livestock and two insect species, Locusta migratoria
and T. molitor. For insects, data are estimates based

on available feed conversion values and calculations of

land and water needed to produce the feed.
The key variable in how much water is required to

produce livestock is the ‘feed conversion efficiency’,

which measures the amount of food needed to pro-
duce a given amount of the final product (meat, eggs,

etc.). Insects are significantly more efficient than other

livestock in terms of feed conversion because they are
cold-blooded and rely on their environment to control

metabolic processes, such as body temperature (van

Huis 2013). To date, one study has examined the
water footprint, taking into account the entire

production system, of commercially produced insects.

Miglietta (2015) found that for mealworms, within a
commercial system, the water footprint per ton was

larger than that for production of pigs and chickens.

This data must be looked at within the context of the
percentage of the animal which is edible, as insects are

considered to be 80-100% edible compared with other

livestock at 40%–50% (Lundy & Parrella 2015).
When the data are re-examined, taking into account

the percentage of the animal that is edible, mealworms

have a lower water footprint than the other livestock
(Miglietta 2015). Only limited data are available

about the feed conversion efficiency, land requirements

and water use of insects, and more data are required
for commonly farmed species before recommendations

can be made.

Emissions

There is consensus that the biggest contributor to

global climate change is greenhouse gas emissions

(GHGs), predominantly CO2, nitrous oxide and
methane, from fossil fuels and agricultural and indus-

trial processes (Sachs 2015). The agricultural sector

contributes the most to GHG emissions, with livestock
accounting for an overall 18% of CO2 equivalents

(van Huis 2013; Sachs 2015). Studies, considering

only husbandry conditions, have found that insects
perform favourably when compared to beef cattle and

pigs (Figs 2 and 3).

Overall, preliminary results suggest that insects pro-
duce far fewer GHGs than standard large livestock

and are approximately on par with chickens on a per

kilogram (kg) basis. However, studies of larger scale
production have reported less optimistic figures and

shown that values are largely dependent on the type

of feed. A life-cycle assessment of a commercial
cricket farm in Thailand found that cricket production

had a smaller environmental footprint than did broiler

chicken farms and that the largest footprint hot spots
were in relation to grain feed production for both

systems (Halloran et al. 2017). No other data are

currently available regarding GHGs from insect
production, and concrete statements cannot be made

regarding their environmental benefit over other live-

stock. This is in part due to industrial-scale insect pro-
duction relying on the same grain feed used for

livestock, and it has been suggested by Lundy and

Parrella (2015) that feeding bio-waste could make
insect production more environmentally viable. Lundy

and Parrella (2015) used three organic waste sources
as feed: a low-quality unprocessed food waste, a
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predominantly straw-based feed and a filtrate from

food waste processed via enzymatic digestion. It was

found that crickets did not grow on the two unpro-
cessed feeds, but the processed filtrate gave harvestable

size insects with food efficiency equal to, or better

than, chickens. Insects can be competitive as an alter-
native protein source only if they can outperform

chickens. It has been demonstrated that black soldier

flies can be reared on faecal waste, making them ideal
for aiding manure disposal (van Huis 2013). Overall,

organic waste is probably the best option for insect

rearing, but the specific sources need to be determined
for each species.

Another factor to consider in the livestock industry

is the global warming potential associated with

transport, slaughter and storage of meat, which con-

tributes 17%–25% of GHGs (Oonincx & de Boer

2012). As there is currently no uniform method for
processing insects, such equivalent values cannot be

assessed. It is also unclear whether future regulations

will restrict insect slaughter at the production facility
(as they do with livestock), which would introduce

transport costs.

Use in animal feed

The cost of producing meat, fish and soya bean meal
as feed for animals accounts for 70% of the produc-

tion costs of livestock (van Huis 2013). Insects, on the

other hand, are comparably high in nutrients, have a

Figure 1 Amount of land, feed and water needed to produce 1 kg of live animal weight and percent of the animal which is edible. Data from Hoekstra

(2012), Hoekstra and Mekonnen (2012), Mekonnen and Hoekstra (2010, 2012), Oonincx and de Boer (2012) and van Huis (2013). [Colour figure can be

viewed at wileyonlinelibrary.com]
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low environmental impact, require less space and are

already part of the natural diets of pigs, poultry and

fish, making them an ideal feed alternative (Rumpold
& Schl€uter 2013b). Incorporating insects into broiler

poultry feeds has been reported to result in no reduc-

tion in growth rates and in some cases increased chick
growth rates (Rumpold & Schl€uter 2013b). Replace-

ment of soya bean oil with black soldier fly larvae has
been shown to have no influence on growth or perfor-

mance of broiler chickens, suggesting it is a viable

alternative (Schiavone et al. 2017).
In laying hens, better feed conversion was seen in

hens with insect meal in their diet; however, there was

more variation in egg sizes (Marono 2017). Similar
results of increased feed conversion and growth rates

on insect meal diets compared to a standard soya bean

control were seen with Barbary partridges (Loponte
2017).

Aquaculture (the farming of fish, crustaceans and

other aquatic animals) is one of the fastest growing
industries. However, a major hurdle to sustainable

growth of the industry is the cost of feeds, particularly

fishmeal and fish oil (van Huis 2013). Approximately
10% of fish production is recycled into fishmeal, and

ocean fish stocks are being depleted by overfishing to

provide the feed. Increasing restrictions on unregulated
fishing and catch quotas have forced the aquaculture

industry to search for alternative high-value protein

sources for feed, which is where insects can play a
valuable role. The use of insects in fish feed is not new

and is widely practised by smallholder farms in Africa

and Asia, who feed insects (when seasonally available)

or hang lights over fish ponds to attract insects

(van Huis 2013). Predominantly, black soldier flies,

housefly larvae, silkworms and mealworms have been
used in aquaculture feeds, but feeding trials have given

mixed results in relation to both protein content and

the ratio of EPA and DHA lipids to other nutrients.
Freshwater fish with omnivorous diets appear to do

better on insect diets, with trials that have replaced
25% of fishmeal with black soldier flies or locusts

showing no adverse growth effects for tilapia (van

Huis 2013; Makkar 2014). Similarly, up to 75% of
fishmeal in Nile tilapia diets has been replaced with

housefly maggot meal without any adverse effects

(Wang 2017). Results with mealworms fed to catfish
have shown successful replacement of 40%-80% of

the normal diet without adverse effects (Makkar

2014). Replacing fishmeal in carnivorous fish diets has
proven more difficult. Trials with sea bass show suc-

cess when up to 19.5% of the fishmeal is replaced

with black soldier fly larvae (Magalh~aes et al. 2017),
and for gilthead sea bream, a replacement of up to

25% or 50% of fishmeal with mealworm meal gave

positive results (Iaconisi 2017; Piccolo 2017).

Economics

In addition to the environmental and nutritional bene-

fits of feeding insects to humans or livestock, there are

also economic benefits. The clearest economic picture
of the edible insect trade comes from South-East Asia,

where there are well-established farms and trade

routes (Fig. 4) and where researchers have
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documented the trade most thoroughly, particularly in

Thailand.
Export and import of insects for food plays a strong

economic role throughout South-East Asia – the

import market in Thailand alone is valued at 1.14
million USD/year (Hanboonsong et al. 2013). Figure 5

shows the market values for various commonly con-

sumed insect species in Thailand compared to the
market values for various other staple food sources.

Given that the market value for insects often

exceeds that of other standard protein sources, insect
farming can provide a stable income for established

farmers. Medium-sized farms, which produce roughly

500–750 kg of crickets, four to five times a year, can
get net incomes of 4270–9970 USD in a country

where the average yearly gross national income per

capita is approximately 5640 USD (World Bank
2016). Although data on the insect market in Africa

are limited, the financial benefits of insect trading are

evident in Namibia where collections and sales of
mopane caterpillars (Gonimbrasia belina) provide

valuable income (a 50 kg bag sells on average for

71.43 USD) and act as a barter item (Thomas 2013).
Estimates place the value of insects as food and feed

for the combined market in the US, Belgium, France,

UK, The Netherlands, China, Thailand, Vietnam,
Brazil and Mexico at 25.1 million GBP for 2015, with

a predicted growth to 398 million GBP by 2023. This

growth is predicted to be largely driven by increased
consumer awareness and acceptance of insects as food,

Figure 4 Collection and distribution chains of insects in Southeast Asia, reproduced with permission (Hanboonsong et al. 2013). [Colour figure can be viewed

at wileyonlinelibrary.com]
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as well as use in animal feed (Global Market Insights

Inc. 2015). In South Korea, the market, which

includes insects for food, feed and medicine, is valued
at 109 million GBP for 2017 with predictions that by

2020, it will have quadrupled to 348 million GBP,

predicted to be driven by increased acceptance from
the global community that insects play a vital role in

global food security (Han 2017). These growth predic-

tions present a great opportunity for new businesses,
particularly in developing countries.

Hurdles to the use of insects as food
and feed

Although a myriad of opportunities exists for ento-
mophagy, there are significant hurdles to overcome as

a result of the lack of research and the need for inno-

vation within the sector. Major issues include the
possibility that insects may contain ‘anti-nutrient’

properties, concerns around food safety related to

storage and allergic reactions, consumer acceptability
and ambiguous or non-existent regulation.

Anti-nutrient properties

Chitin is a structural nitrogen-based carbohydrate
found in the exoskeleton of insects, which may have

‘anti-nutrient’ properties due to potential negative

effects on protein digestibility (Belluco 2013). One

study of seven insect species found 2.7–49.8 mg

chitin per kg fresh weight and 11.6–137.2 mg/kg in
dry matter (Finke 2007). A study comparing dried

honey bees and honey bee protein concluded that the

removal of chitin improved the quality of the insect
protein as measured through protein digestibility,

amino acid content, protein efficiency ratio and net

protein utilisation (Ozimek et al. 1985). On the other
hand, chitin is notably high in fibre, and chitin

extracts from the exoskeletons of shellfish have been

approved by relevant authorities and are readily used
in Japan as a source of fibre in cereals (DeFoliart

1992). Although chitin is usually considered to be

indigestible by humans (Bukkens 1997), chitinolytic
enzymes, produced by bacteria from human gastroin-

testinal tracts, have recently been found, suggesting

that chitin and chitosan can be digested (Paoletti
et al. 2007; Du�skov�a et al. 2011; Rumpold &

Schl€uter 2013a).

In a 2-week trial with healthy adult males, chitosan,
a derivative of chitin, ingested at a dose of 3–6 g/day,

resulted in a significant decrease in total serum choles-

terol and an increase in serum high-density lipoprotein
(HDL)-cholesterol (Koide 1998). It has also been sug-

gested that for poultry, chitin has a positive effect on

the immune system and thus may reduce the need for
antibiotic use (van Huis 2013). However, the effect of
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long-term ingestion of chitin is unknown (Koide

1998), and more research is required in this area to
understand the impact of chitin on human health and

animal health.

The potential toxicity of some compounds in insects
is also of concern. There are two categories of toxic

insects: cryptotoxics and phanerotoxics. Cryptotoxics

contain toxic substances from either direct synthesis
or by accumulation from their diet. Phanerotoxics

have specific organs that synthesise toxins (Belluco

2013). Commonly consumed insect species are not in
either category, and studies of the levels of hydro-

cyanide, oxalate, phytate, phenol and tannins in edi-

bles insect species have found that values fall well
below levels of toxicity for human consumption (Ekop

et al. 2010; Shantibala & Lokeshwari 2014). Analysis

of the larvae of Cirina forda has confirmed that oxa-
late and phytic acid levels are well within safe ranges

and that they contain no tannins (Omotoso 2006). A

further clinical trial that fed Sprague-Dawley rats
varying levels of freeze-dried mealworm powder over

a 90-day period found no toxic effects (Han 2016).

Overall, data on anti-nutrient properties of edible
insects are limited, and more research is required.

Microbial risks

Spore-forming bacteria and enterobacteriaceae have
been reported in mealworms and crickets, with higher

levels found in insects that had been crushed – likely

due to the release of bacteria from the gut (Klunder
2012). For the species examined (Gryllotalpa africana,
R. phoenicis, Bematistes alcinoe), the main bacteria

identified were from the genera Bacillus and Staphylo-
coccus, and the majority of the microbes were sapro-

phytes (Amadi & Kiin-Kabari 2016). Analysis of

edible insects for the Belgian market identified that all
untreated fresh insect samples had an aerobic meso-

philic microorganism, yeast and mould count higher

than the Good Manufacturing Practice limits for raw
meat (FDA 2017); however, introducing a simple

blanching step in the processing reduced levels to

below accepted limits (Megido 2017). Further research
indicates that treating insects the same as other food-

stuffs of animal origin during processing (i.e. washing

and thorough heating) sufficiently reduces the risk of
bacteria-borne disease (Grabowski & Klein 2016).

While harmful bacteria such as Salmonella have

been detected in insects that were in close contact with
livestock (Belluco 2013), research suggests that the

majority of the contamination comes from the gut
microbiota of the insect (Rumpold 2014). Starving

insects for 24–48 hours prior to slaughter has been

suggested as a way to reduce harmful bacteria in the
gut, although the one published study in this area

reported that this approach had no significant impact

on microbiota levels (Wynants 2017), and unpublished
studies also support this finding (Larouche et al.
2017). Some risk of mycotoxins has been identified,

but this has been studied only in the two emperor
moth species (Imbrasia belina and Bucnaea alcinoe),
with strains identified predominantly in the intestinal

tract or from outside contamination (Simpanya &
Allotey 2000; Braide & Oranusi 2011). These risks

may be mitigated with evisceration and appropriate

processing steps, as is done with other meat sources.
Studies on the level of organic and metal contami-

nants (e.g. polychlorinated biphenyl, DDT, dioxin

compounds, heavy metals) in both whole edible insects
and insect-based food items in Belgium found that all

contaminant levels were generally lower than that was

found in other common animal products (Poma
2017). This study indicates that consuming insects

presents no more of a microbial or contaminant risk

than consuming other meat sources, when the same
good practice standards of preparation are applied.

Little is known about how to safely store insects to
reduce microbial risk. Research has shown that freshly

boiled insects spoil rapidly at room temperature

(28°C) but remain stable at 3–5°C over a 2-week per-
iod; microbial levels in dried insects have also been

reported to be stable at room temperature (Klunder

2012).
The European Food Safety Authority (EFSA) pub-

lished a risk profile examining hazards relating to

insects as food and feed, considering the entire pro-
duction chain. EFSA came to the overall conclusion

that if the currently permitted feed materials are used

as the growth substrate for the insects, the possible
occurrence of significant microbial hazards is compa-

rable to other sources of protein of animal origin

(EFSA 2015). Further systematic work is required to
establish the safe shelf-life of edible insects, both for

human and animal consumption.

Allergens

Many arthropods, which includes insects, arachnids,
myriapods and crustaceans, are known to induce aller-

gic reactions in susceptible individuals, caused by the

presence of tropomyosin, arginine kinase, glyceralde-
hyde 3-phosphate dehydrogenase and haemocyanin

(Belluco 2013; Srinroch 2015). Cross-reactive allergies
have been identified in crustaceans, cockroaches and
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dust mites. One study identified a positive cross-reaction

between mealworm proteins and individuals with
known dust mite and crustacean allergies (Verhoeckx

2013; Van Broekhoven et al. 2016). A study on crickets

(G. bimaculatus) showed a cross-reaction to crickets in
individuals with known prawn allergies (Srinroch

2015). In this study, an additional novel allergen was

identified in the cricket, hexamerin1B (Srinroch 2015).
A recent systematic review of studies examining cross-

reactivity/sensitivity with insects in individuals with

known arthropod allergies has indicated that all
patients demonstrated allergic reactions to insects

(Ribeiro & Cunha 2017). In addition to direct con-

sumption, there is evidence to support contact allergy
sensitivity in individuals frequently exposed to insects;

for example breeding farm workers (Jensen-Jarolim &

Pali-Sch€oll 2015).
The data on allergen risk to insects are limited as

the majority of trials to date have been conducted

with a small number of participants (n < 20); how-
ever, these studies point in the direction that individu-

als with crustacean allergies will react negatively to

insects and that there may be several additional novel
insect allergens to consider.

Mass production

For insects to be considered a viable microlivestock, it
must be possible to produce them on a large scale in a

sustainable, safe and efficient way. It is frequently for-

gotten that large-scale domestic rearing of insects has
been occurring for over 7000 years for sericulture

(silk), apiculture (honey), biological control of pests

and the production of medicinal products and shellac
(Rumpold & Schl€uter 2013b). Significant advances

have been made with artificial rearing diets and con-

trolled conditions for mass rearing. However, there
are still several hurdles preventing the scaling up of

insect farming for human and animal consumption.

First and foremost, an ideal candidate insect species
for mass rearing must be identified. Domestication has

occurred for several thousand years with silkworms,

and it has been documented that domestic silkworms
can no longer effectively cling to branches and would

die in the wild (Defoliart 1995). Crickets and palm

weevils are mass reared in Thailand, but they are not
the ideal species as they are reared on high-quality

chicken feed. The ideal insect species would have high

egg production, high egg hatch, a short larval stage,
optimum synchronisation of pupation, high weights of

larvae or pupae, a high productivity (i.e. high conver-
sion rate and high potential of biomass increase per

day), low feed costs, low vulnerability to diseases,

ability to live in high densities and a high-quality pro-
tein content (Rumpold & Schl€uter 2013b). The search

for such an insect continues, although the black sol-

dier fly (Hermetia illucens) does meet the above crite-
ria, the issue of optimisation of farming techniques

remains.

The majority of livestock and agricultural produc-
tion systems have some level of automation, reducing

the expense of manual labour. This is not the case for

the majority of insect farms where manual labour is
still required to complete tasks such as feeding, collec-

tion, cleaning and rehousing (Rumpold & Schl€uter

2013b). This dependence on manual labour means
that farm-reared insects are expensive, even when feed

costs are low. There are a handful of companies that

have developed automation, but these are still in trial
phases. Thus, in order for insects to be an attractive

alternative to protein sources such as beef and poultry,

automation must be further developed to bring down
the price of the end product.

In addition to the labour costs, the conditions in the

rearing facility such as temperature, light, humidity,
ventilation, rearing containers, population density,

oviposition sites, feed and water availability, feed
composition and quality and microbial contaminants

must be controlled at the optimum levels for success-

ful mass production (Rumpold & Schl€uter 2013b).

Processing

As with any livestock system, farmed insects must be

processed for human consumption or use in feed prod-

ucts. There are a myriad of standards governing the
processing of conventional livestock, but there are no

best practices in place for insects, largely due to the

lack of data on the impact of different processing
techniques on food safety and nutritional content. As

discussed above, trials have examined aspects of

microbial safety; however, there is still no standard
processing procedure in place for insect farmers. Ulti-

mately, an ideal insect production system would be as

shown in Figure 6 (i.e. an efficient system with a clear
set of standards and production protocols).

The only component not considered in Figure 6 is

the identification of ideal feeds, and this can be a
major hurdle to the sustainable mass production of

insects. At present, established insect farms use pre-

dominantly poultry feed, which results in a system not
significantly superior to poultry production. Utilising

bio-waste sources, particularly food waste, has been
lauded as the ideal for insect farming. However, aside
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from one trial (Lundy & Parrella 2015), research to

date on bio-waste feed sources for commonly con-

sumed edible insects has used small colony sizes, not
reflective of mass-rearing practices (e.g. Oonincx

2015).

Regulations

For countries where eating insects is traditional, there
are no regulatory hurdles to their production, market-

ing and consumption. However, in Western countries,

regulations present a significant barrier to the use of
insects in both feed and food. EFSA has stated that all

insect products for human consumption will be con-

sidered a ‘Novel Food’ and must be submitted for
Novel Food approval by 2018, with a 2-year transi-

tion period allowing already approved products to

stay on the market until 2020 (IPIFF 2017). However,
some European Union (EU) Member States have their

own legislation to circumvent this requirement. The

Netherlands is working closely with researchers to
draft legislation and, in Belgium, the Federal Agency

for Safety of the Food Chain has endorsed certain

insect species to be allowed as food (Belluco et al.
2017). With the occurrence of Brexit, it is unclear

whether the UK will still follow the EFSA ruling or

proceed with its own approval process under the Food

Standards Agency (FSA), where decisions would

presumably no longer need to be ratified by EFSA,
perhaps giving more legislative freedom.

Similar rules surrounding novel food approval are

in place in North America. In Canada, regulatory
approval must come from the Canadian Food Inspec-

tion Agency and Health Canada, and in the US from

the Food and Drug Administration, as well as the
Ingredients Definition Committee of the Association of

American Feed Control Officials for feed ingredients.

The use of insects in animal feed has less challeng-
ing regulations to overcome and, as of July 2017,

insect proteins were approved for use in fish feed

within the EU. These insects must still be raised
according to the conventional livestock regulations,

meaning that they cannot be fed any form of waste

product, reducing the environmental benefit of rearing
insects as discussed above.

The regulatory issue of insect welfare is also one of

uncertainty. There is ample research and regulation
regarding the necessary welfare conditions for tradi-

tional livestock, but these regulations explicitly

exclude invertebrates, leading to debate about how to
proceed with farming insect ethically (De Goede et al.
2013). A recent review by L€ahteenm€aki-Uutela (2017)

Figure 6 Model insect production system, reproduced with permission from Rumpold and Schl€uter (2013b).
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examined the regulatory issues facing the EU, Canada,

the US, Mexico, Australia and China, outlining that at
this stage, rules on safety, marketing and farming are

largely missing. If a clear set of rules regarding insects

for food and feed can be established, it will facilitate
the sustainable growth of the insect business; however,

for now, with no clear rules, the insect business is left

in limbo.

Consumer acceptability

There are two distinct psychological reactions to

insects as a food source for humans. In countries
where entomophagy is the norm, insects are seen as a

valued protein source and knowledge on which species

are edible is considered local wisdom passed down
between generations. Conversely, in Western cultures,

insects can invoke visceral negative reactions: ‘deeply

embedded in the Western psyche is a view of insects
as dirty, disgusting and dangerous’ (Looy et al. 2014).
This view of insects as inedible is perpetuated by the

Western media through TV shows such as ‘Fear Fac-
tor’ and ‘I’m A Celebrity. . .Get Me Out Of Here!’
where contestants are forced to eat raw insects to

advance in the competition and show their daring.
One study reported that in Western societies, only

12.8% of males and 6.3% of females were likely to

adopt insects as a substitute for meat (Verbeke 2015)
and another that 19% of individuals were prepared to

eat insects as a meat substitute (Hartmann & Siegrist

2017). This presents the additional hurdle of how to
increase acceptance of entomophagy in Western

cultures.

To date, no socio-demographic factors have been
linked to the willingness to eat insects (Hartmann &

Siegrist 2017). Rather, the main influential factors

seem to be neophobia, familiarity, interest in the envi-
ronment, convenience and attachment to meat

(Verbeke 2015; Gere 2017). The more neophobic,

uninterested in the environment and attached to a diet
that contains meat the person is, the less likely they

are to be prepared to eat insects. However, if insects

are presented in a convenient, appropriate and famil-
iar form (e.g. insect flour in a cookie), the more will-

ing an individual may be to try it (Megido 2016;

Tan et al. 2017). Verneau (2016) demonstrated, in
Denmark and Italy, that presenting information about

the benefits of eating insects increases consumers’ will-

ingness to eat them, with the effect persisting for at
least 2 weeks after the experiment. However, another

study showed that providing false information about
insect flour being an ingredient in bread led to lower

scores of the bread’s flavour, even though the bread

did not actually contain the flour (Barsics et al. 2017).
Although acceptance of insects as a human food in

Western cultures is low, there is significantly more

support for insects as an animal feed. Two-thirds of
415 farmers surveyed in Belgium found it acceptable

to use insects in animal feed (Verbeke et al. 2015).

The PROteINSECT project reported that 66% of con-
sumers consider fly larvae as suitable feedstuff, over

80% want to know more about insects as feed, and

75% were happy to eat animals fed on insects (PROte
INSECT 2016). Perhaps the first step to increasing con-

sumer acceptability of entomophagy is through increased

use inanimal feed.

Conclusion

Research to date indicates that insects could play an

important role in addressing the impending protein
supply crisis. Overall, insects contain sufficient levels

of protein, fats and micronutrients to contribute to

improvements in global health and food security, both
via direct consumption and indirect use in feeds. In

addition, research has demonstrated that insects can

have a smaller environmental footprint and a higher
economic value than other livestock protein sources;

they are unlikely to pose significant microbial risks;

they appear to cause allergic reactions in individuals
with known arthropod allergies; and the majority of

people from Western societies are comfortable with

insects being used as animal feed but hesitant about
consuming them directly.

Future research should address questions related to

the scaling up of insect production to commercial
levels, such as: how can insect nutritional profiles be

improved in a systematic and consistent manner?;

how can the environmental footprint of insects
remain small when scaled up commercially?; how

can insects be fed on a commercial scale in a sustain-

able way?; what do the regulations around insect
farming, processing and storage need to cover?; are

there any harmful effects to human or animal popu-

lations from the consumption of large quantities of
insects?; what do insect supply and value chains look

like depending on the specific end uses?; and how

can the economic value of established insect supply
chains be protected so as not to damage livelihoods?.

Ultimately, only if insects are able to compete with

traditional Western livestock, particularly chickens,
or livestock feed within the supply-value chain and

environmentally, will they be considered a viable
alternative.
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