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Abstract 25 

We are witnessing an unprecedented rise in the rate of emergence of pathogenic fungi that 26 

are resistant to the limited number of commonly used antifungal agents. For example, the 27 

azoles are used for human and animal healthcare, for plant crop protection and in 28 

antifouling coatings and timber preservation. The ubiquity and dual-use of azoles has 29 

hastened the independent evolution of resistance in many environments. One consequence 30 

is an increasing risk emerging from naturally occurring ‘opportunistic’ and antifungal 31 

resistant pathogens, which challenge human healthcare. To avoid a global collapse in our 32 

ability to control fungal infections and to avoid critical failures in healthcare and food 33 

security, we must improve our stewardship of extant chemicals, promote novel antifungal 34 

discovery and leverage emerging technologies for alternative solutions. 35 

 36 

Introduction 37 

The rapid emergence of multidrug resistant pathogenic fungi and the better-publicised 38 

threat of antibiotic resistant bacteria both pose a considerable threat to disease control 39 

across diverse anthropogenic systems. These microbes respond adroitly to human-induced 40 

natural selection through chemical treatments, and nimbly hijack human globalisation 41 

pathways (1), so disseminating the problems world-wide. Today, crop-destroying fungi 42 

account for perennial yield losses of around 20% worldwide, with a further 10% loss post-43 

harvest. Fungal impacts on human health are currently spiralling and global mortality 44 

caused by fungal diseases now exceeds that for malaria, or breast cancer, and is comparable 45 

to tuberculosis and HIV (2). These infections have, hitherto, been greatly neglected relative 46 

to other classes of infectious disease, despite occurring in more than a quarter of the 47 

world’s population. 48 

The first antifungal chemicals used in human healthcare, Nystatin and the polyenes, were 49 

discovered in the 1950s, whilst copper and sulphur fungicides were first used to control crop 50 

disease over 150 years ago. Today, systemic fungicides and antifungals are frontline 51 

treatments for fungal diseases in both humans and plants. This control can, however, be 52 

ephemeral as a result of the rapid development of resistance against the chemicals. Fungi 53 

have highly plastic genomes and reproduce rapidly producing large populations. The 54 
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combination of these properties quickly generates variants, selected for resistance. In plant 55 

pathogens, the pace of breakdown is enhanced by monoculture cropping practices, as large 56 

swathes of genetically uniform crops provide ideal feeding and breeding grounds for the 57 

rapid emergence of fungicide-resistant variants. In humans, long periods of prophylactic 58 

treatment in at-risk patients can similarly lead to the emergence of antifungal resistance (3). 59 

Resistance to all licensed systemic antifungals has been documented in clinical pathogens, 60 

although the rate of emergence varies between drug classes (Fig. 1) (3). Likewise, despite 61 

the wider range of fungicides licenced for use in agriculture, resistance to each main class of 62 

fungicides has emerged in some major pathogens (Fig. 1). This threat is exacerbated by the  63 

additional threat of withdrawal of some chemical classes due to regulatory changes in, for 64 

example the EU. 65 

figure_1.ai
 66 

Antifungals for the treatment of fungal diseases in the clinic and the field 67 

The chemical control of fungal pathogens that cause diseases in animals and crops has 68 

progressed from the use of inorganic chemistries, through organic surface protectant 69 

chemistries, to systemic-acting fungicides. There are approximately nine-fold more 70 

antifungal compounds available to control crop diseases than to treat systemic animal 71 

infections. Licenced treatments in humans are limited to four frontline classes of drugs (Fig. 72 

1). The polyenes (such as amphotericin B) disrupt the structure of cell membranes by 73 

sequestering the fungal membrane sterol ergosterol. The pyrimidine analogue 5-74 

fluorocytosine (5-FC) blocks pyrimidine metabolism and DNA synthesis. The newest class of 75 

antifungals, the echinocandins, inhibit (1-3)--D glucan synthase and disrupt cell wall 76 

biosynthesis. The fourth and most widely used class of fungicides - the azoles, block 77 

ergosterol biosynthesis through inhibition of lanosterol 14--demethylase. Most fungicides 78 

for crop disease target mitochondrial function, the cytoskeleton, or ergosterol biosynthetic 79 

pathways (Fig. 1), although some specialist chemistries, such as the aza-naphthalenes for 80 

powdery mildew control, target other pathways.  81 
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It is important to highlight that the azoles are the dominant chemistry in the treatment of 82 

fungal infections in crops, humans and livestock, with 5 licenced clinical azole antifungals 83 

and 31 for crop protection.  84 

Parallel drivers of fungicide resistance in the clinic and the field 85 

Human population growth, urbanisation and economic prosperity have fuelled demands for 86 

increasing quantity and variety of food. Intensive agriculture has too often responded to this 87 

demand with crops bred for maximum productivity under the protection of broad-scale 88 

pesticide applications, inadvertently breeding out the plants’ own defences. In parallel, the 89 

number of humans at risk from fungal infections is rising rapidly, as susceptible populations 90 

increase, either through age, medical interventions or HIV infection. Medical advances 91 

leading to greater initial survival of cancer or organ transplants can unfortunately leave 92 

patients susceptible to secondary attack from opportunistic fungi, leading to increasing use 93 

of antifungal drugs in clinical practice. Consequently, we are now witnessing an 94 

unprecedented worldwide increase in antifungal resistance, through both space and time 95 

(Fig. 2; Supp Table1). 96 

Figure 2 lin.ai
 97 

The main drivers that underpin these changes are explored in Fig. 3. The global movement 98 

of people and trade in produce has hastened the free-flow of fungal pathogens from 99 

country to country, bringing new pathogens into contact with naïve hosts (1). In the clinical 100 

setting, new species of multidrug resistant pathogenic fungi are emerging. Candida auris, 101 

first described in Japan in 2009 following isolation from a patient’s ear, is responsible for a 102 

rapidly increasing number of hospital-acquired invasive infections around the world (4). This 103 

fungus is now resistant to all clinical antifungals (5) and presents a particular threat to 104 

intensive-care units since it can survive normal decontamination protocols (6). The 105 

emergence of resistance in Candida glabrata has coincided with this species becoming the 106 

predominant bloodstream pathogen recovered from patients, due largely to the increasing 107 

prophylactic use of echinocandins and azoles (7). There is also a growing threat from 108 

filamentous pathogenic fungi which are intrinsically-resistant to a broad range of 109 

antifungals; for example Aspergillus terreus (8), Scedosporium spp. (9), Fusarium spp (10) 110 

and members of the mucorales (11). Simultaneously, we are witnessing the relentless 111 
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emergence of new races of plant-infecting fungi able to overcome both host defences and 112 

chemical treatments (12), as well as the evolution of these traits in existing major pathogens 113 

(13)(14). The first case of resistance against the MBCs was reported in 1969 (15) and now 114 

MBC resistance is known in over 90 plant pathogens (16). Azole resistance in a plant 115 

pathogen was first reported in 1981 (17), but azole resistance is generally partial, in contrast 116 

to the complete control failures seen for MBCs (18). QoI resistance was reported in field 117 

trials even before commercial introduction, and in wider field populations within two years 118 

of release (19). A new generation of SDHI fungicides has been introduced from 2007, but by 119 

2017, resistant field isolates had been found in 17 pathogen species (20). Pathogens with 120 

resistance against MBCs, azole, QoIs and SDHIs include the major wheat pathogen 121 

Zymoseptoria tritici, banana black sigatoka pathogen Mycosphaerella fijiensis, cereal 122 

powdery mildews Blumeria graminis, the emerging barley pathogen Ramularia collo-cygni 123 

and the apple scab fungus Venturia inaequalis. In Botrytis cinerea (a generalist pathogen 124 

that causes grey mould, particularly on soft fruits), resistance has been reported against 15 125 

different classes of systemic and protectant fungicides (21). 126 

figure3.ai  127 

Parallel evolution of resistance mechanisms in the clinic and the field 128 

The strong and highly specific selective pressure exerted on fungi by single-site-inhibiting 129 

fungicides has resulted in similar adaptations arising over time in disparate fungal species. 130 

Indeed, this parallel evolution extends across clinical and plant pathogenic fungi, with the 131 

same key resistance mechanisms occurring independently in both. 132 

Mutations resulting in conformation changes to the drug target site constitute the most 133 

common resistance mechanism in pathogenic fungi. They have been reported in candin-134 

resistant clinical pathogens; MBC, QoI and SDHI-resistant plant pathogens; and azole-135 

resistant strains in field and clinic. A single mutation, G143A in cytochrome b, has emerged 136 

in the field in over 20 species under selection by QoIs (14). Moreover, the Y137F 137 

substitution in CYP51 has been found in multiple plant pathogens with partial azole 138 

resistance, and Y132F occurs at the equivalent residue in C. albicans (22). Promoter changes 139 

resulting in upregulation of the fungicide target are also common across clinical and plant 140 

pathogenic fungi (23). In A. fumigatus, tandem repeats in the CYP51A promoter region 141 
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occur together with downstream SNPs in the coding region, conferring a multi-azole 142 

resistance phenotype (24). 143 

A third resistance mechanism involves reducing intracellular drug accumulation, through 144 

upregulation of efflux pumps. The upregulated efflux pumps may be ABC transporters or 145 

major facilitators, and their upregulation may result from promoter insertions or 146 

transcription factor gain-of-function mutations (3, 25).  147 

Further resistance mechanisms have so far been identified only in clinical pathogens. 148 

Activation of stress response pathways by Hsp90 can unleash cryptic diversity, potentiating 149 

the evolution of resistance to azoles, echinocandins and polyenes in Candida and Aspergillus 150 

species (26). Structural genomic plasticity can result in resistance, with chromosome arm 151 

duplications leading to efflux pump and target-site overexpression in C. albicans (25, 27).  152 

Hypermutator strains of C. glabrata and Cryptococcus were recently reported, with the 153 

potential to evolve rapidly in response to host and drug selection (28, 29). 154 

 155 

Dual-use of azoles in the clinic and the field  156 

The azoles are the most widely-deployed class of fungicides in crop protection, totalling, for 157 

example, over 26% of all fungicides across the European Union (30). Azoles are also frontline 158 

drugs that protect humans and animals against pathogenic fungi. However, dual-use may 159 

have promoted azole resistance in an opportunistic pathogen of humans, threatening our 160 

ability to use this important class of drugs (30, 31). The saprotroph Aspergillus fumigatus 161 

colonises decaying vegetation in fields, forests and compost heaps and also infects 162 

immunocompromised humans. Multi-azole-resistant A. fumigatus has been recovered from 163 

both environmental and clinical samples across multiple continents. In the Netherlands, 164 

over 25% of Aspergillus infections carry azole-resistance alleles. Azoles are increasingly 165 

failing as frontline therapies, with associated patient mortality approaching 100% (32). 166 

Population genomic analyses have shown that azole-resistant alleles in A. fumigatus are 167 

associated with selective sweeps in regions of high azole-usage such as India (33). 168 

Moreover, recombination also occurs, generating new combinations of azole-resistance 169 

alleles (33). Investigations are now underway to assess the relative contributions of clinical 170 

and environmental selection to azole-resistant A. fumigatus, and to identify the most 171 
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problematic environmental applications of azoles. The potential conflict between the level 172 

of agricultural use and the durability of clinical effectiveness of azoles highlights how limited 173 

the antifungal toolbox is, where neither “side” can afford to lose a mode of action. Medicine 174 

and food security are both vital to human health (34), and both fields are in urgent need of 175 

a wider range of options to control fungal diseases. 176 

 177 

However, most cases of fungicide and antifungal resistance across field and clinic appear to 178 

have arisen by the repeated independent evolution of resistance to successive fungicides 179 

within numerous fungal species. This is where evolution of antifungal resistance differs 180 

fundamentally from antibacterial resistance, which is frequently transferred between 181 

animals and humans via the ‘mobilome’ of plasmids and phage (35). There is some evidence 182 

of horizontal gene transfer among fungi, (36) but this occurs on longer timescales than gene 183 

transfer among bacteria and the dynamics of resistance arising by this route is thus far 184 

negligible. 185 

 186 

Prospects for diversifying the toolbox for fungal control 187 

To counter the escalating risks of fungal disease we need to discover antifungal chemistries 188 

with novel modes of action, hinder the emergence of resistance in extant chemistries by 189 

better stewardship, and develop novel disease control strategies to avoid over-reliance on 190 

fungicides: 191 

Development of novel antifungals: The rate of emergence of fungicide resistance (Fig. 2) is 192 

greater than the pace of fungicide discovery, and the long registration process for new 193 

compounds adds further delays. This parallels the situation for antibiotics. There is thus a 194 

need for increased research activity to develop new antifungal drugs (37). Recently, there 195 

has been significant progress in this field, with at least 11 antifungals in Phase I-II clinical 196 

trials and at least 2 in the AgChem pipeline.  Several of these are derivatives of commonly 197 

used antifungal chemicals, such as ergosterol biosynthesis and cell wall biosynthesis 198 

inhibitors, engineered for higher efficacy, whilst others have new modes of action. Further, 199 

combining molecular modelling, combinatorial chemistry and high-throughput screening has 200 

the potential to develop chemistries with reduced resistance risk due to the complexity of 201 

the molecular changes required (38). 202 
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Stewardship of existing compounds: Robust global strategies are needed to slow the 203 

development of antifungal resistance. Combining different modes of action either in 204 

mixtures, or as alternating treatments, may slow the emergence of resistance. A clinical trial 205 

has shown that combinations of fluconazole, flucytosine and amphotericin-B can effectively 206 

treat HIV-associated cryptococcal meningitis (39). In agriculture, mixtures of fungicides with 207 

different modes of action are already widely recommended (40), with some formulations 208 

only available as mixed products. Where target-site mutations confer high levels of 209 

resistance lower doses of antifungals should be favoured (41, 42). However, this results in a 210 

trade-off between immediate effectiveness of treatment and slowing the selection of 211 

resistance. There is also a need to improve molecular diagnostics, both for the identification 212 

of fungal pathogens so antifungals can be used appropriately, and for the detection of 213 

specific resistance-alleles as the monitoring of resistance is a vital part of stewardship (43). 214 

 215 

Integrated disease management: To reduce our reliance on chemical control alone we must 216 

develop more non-chemical control measures, to use where effective fungicides are no 217 

longer available, or to use in combination with fungicides to reduce the selective pressure 218 

on each component. In crops, the development of innate disease resistance through the 219 

selection of major pathogen-resistant (R) alleles is widely used to breed disease resistant 220 

cultivars. However, this approach is slow, with a 20 year lag from finding a suitable disease 221 

resistance gene to releasing it in commercial lines. Marker-assisted breeding can speed up 222 

the recombination of multiple disease resistance alleles, but still takes around a decade (44). 223 

Transgene cloning or gene editing is faster still (circa 2 years), but no crops with transgenic 224 

antifungal disease resistance have yet been released commercially. The high degree of 225 

specificity between host and pathogen in major R genes (45) means pathogens can also 226 

rapidly evolve to overcome this control measure. However, “evolution-smart” disease-227 

resistant crops with pyramided pathogen resistance genes or mosaic deployment of 228 

resistant varieties may provide greater durability of disease control. Minor resistance genes 229 

(r), such as the antifungal chitinases and glucanases, carry the advantage of broad spectrum 230 

activity (46), but suffer the possible disadvantage of yield penalties as well as incomplete 231 

protection. Further sources of genetic disease resistance can be found in the gene pools of 232 

crop wild relatives, which may be introduced to modern crop varieties through introgression 233 

or transgenesis (44). 234 
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 235 

In humans, advances in combination anti-retroviral therapy to halt HIV-AIDS progression, 236 

gene therapies under development for cystic fibrosis, or tissue engineering for rejection-free 237 

transplants, can reduce vulnerability to fungal infections in such patient cohorts. Also, the 238 

first antifungal vaccine,  against C. albicans, is undergoing clinical trials (47) and the use of 239 

bioengineered T cells to augment host immunity is being explored (48). Finally, the 240 

identification of human genetic biomarkers associated with susceptibility to fungal diseases, 241 

for example PTX3 SNPs and A. fumigatus (49), provides a new path to identify patient groups 242 

in which antifungal treatments could be reduced.  243 

The rapidly growing fields of synthetic biology and epigenomics are converging on antifungal 244 

treatments using RNA interference (RNAi). Bidirectional cross-kingdom microRNA (miRNA) 245 

trafficking between plants and fungi is being developed as a novel strategy to tackle 246 

pathogens (50), such as Botrytis cinerea which uses miRNA virulence effectors to silence 247 

host plant immune genes (51, 52). Current research avenues include identifying new targets 248 

for RNAi; and, crucially, developing systems for the stable and targeted delivery of RNA 249 

silencing, through genetic engineering of the host plant or exogenous application of 250 

synthetic RNA (51-53). Whilst such approaches have not yet been utilised to treat fungal 251 

infections in the clinic, the discovery and use of RNAi as a clinical antifungal approach 252 

represents a potentially transformational approach to tackling human fungal infections. 253 

Conclusion 254 

In both fungi and bacteria, the emergence of resistance has outpaced the supply of new 255 

antimicrobial compounds. There is an urgent need to increase the pipeline of new active 256 

compounds, to improve anti-resistance stewardship of existing products, and to diversify our 257 

control toolbox with the development of novel non-chemical control methods. 258 
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 1192 

 1193 

Figure Legends 1194 

 1195 

Figure 1. Current antifungal drug classes used against plant and animal fungal infections, 1196 

and their known resistance mechanisms. There are six main classes of fungicides. These are 1197 

the morpholines, which inhibit two target sites within the ergosterol biosynthetic pathway, 1198 

Δ14-reductase and Δ8-Δ7-isomerase (this reduces the risk of target-site resistance, but their 1199 

intrinsic antifungal activity spectrum is narrower); the azoles used also in animal infections), 1200 

which target the ergosterol biosynthetic pathway; the MBCs (benzimidazoles), which 1201 

interfere with the cytoskeleton by binding to β-tubulin, so preventing the assembly of 1202 

microtubules; the QoIs (strobilurins), and SDHIs (succinate dehydrogenase inhibitors), which 1203 

both inhibit the electron transfer chain of mitochondrial respiration, with the SDHIs 1204 

inhibiting complex II (succinate dehydrogenase) and the QoIs inhibiting complex III 1205 

(cytochrome b, Quinone outside binding pocket) and the anilinopyrimidines which may 1206 

target mitochondrial signalling pathways.  1207 

 1208 

Figure 2. Fungal species with reported antifungal resistance, by country. Increasing colour 1209 

intensity (red scale) reflects growing number of reports. Plant map reports spatio-temporal 1210 

records of resistance of crop pathogens to azoles. Human map reports spatio-temporal 1211 

records of resistance of the pathogens Aspergillus fumigatus; Candida albicans, C. auris and 1212 

C. glabrata; and Cryptococcus gattii and C. neoformans to azoles. Database derived from 1213 

peer-reviewed publications as of March 2018, reporting cases of resistance occurring up to 1214 

2017 available in Supplementary Information 1. 1215 

 1216 

Figure 3. Evolutionary drivers of antifungal resistance: heritable variation, high reproductive 1217 

output and differential survival. 1218 
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Supplementary content 1221 

Supplementary Table 1. Published reports of azole fungicide resistance in plant and clinical 1222 

pathogens, as illustrated in Figure 2. Plant records comprise spatio-temporal reports 1223 

(country and year) of resistance to azoles in any plant pathogen species. Human records 1224 

comprise spatio-temporal reports (country and year) of azole resistance in the pathogens  1225 

Candida albicans, C. glabrata, C. auris, Cryptococcus spp., and Aspergillus fumigatus. 1226 

Database derived from peer-reviewed publications as of March 2018, reporting cases of 1227 

resistance occurring up to 2017. 1228 

  1229 

Supplementary content 1230 

 1231 

Supplementary Table 1. Published reports of azole fungicide resistance in plant and clinical 1232 

pathogens, as illustrated in Figure 2. Plant records comprise spatio-temporal reports 1233 

(country and year) of resistance to azoles in any plant pathogen species. Human records 1234 

comprise spatio-temporal reports (country and year) of azole resistance in the pathogens 1235 

Aspergillus fumigatus; Candida albicans, C. auris and C. glabrata; and Cryptococcus gattii 1236 

and C. neoformans. Database derived from peer-reviewed publications as of March 2018, 1237 

reporting cases of resistance occurring up to 2017. 1238 

 1239 

Pathogen Country Year 1 Reference 

Clinical pathogens    

Aspergillus 
fumigatus United States 1989 (54) 

 Sweden  1995 (55) 

 Netherlands 1998 (56) 

 Italy 1998 (57) 

 Japan 1998 (58) 

 United Kingdom 1999 (59) 

 France 1999 (60) 

 Turkey 2000 (61) 

 Norway 2001 (62) 
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 Spain 2003 (63) 

 Iran 2003 (64) 

 Australia 2004 (65) 

 India 2005 (66) 

 Belgium  2006 (67) 

 Poland 2006 (68) 

 Denmark 2007 (69) 

 China 2008 (70) 

 Morocco 2010 (71) 

 Germany 2011 (72) 

 Taiwan 2011 (73) 

 Kuwait 2013 (74) 

 Tanzania 2013 (75) 

 Colombia 2015 (76) 

 Romania 2015 (77) 

 Pakistan 2016 (78) 

 Switzerland 2016 (79) 

 Argentina 2017 (80) 

    

Candida albicans United Kingdom 1984 (81) 

 USA 1984 (82) 

 Germany 1985 (83) 

 Switzerland 1990 (84) 

 Poland 1990 (85) 

 France 1991 (86) 

 Italy 1992 (87) 

 Spain 1992 (88) 

 Scandinavia 1992 (89) 

 South Africa 1992 (90) 

 Austria 1992 (91) 

 Ireland 1992 (92) 

 China 1994 (93) 

 Sweden 1995 (94) 

 Finland 1995 (95) 

 Greece 1996 (96) 

 Lebanon 1996 (97) 

 Japan 1996 (98) 

 Argentina 1997 (99) 

 Netherlands 1997 (99) 

 Australia 1997 (99) 

 Portugal 1997 (99) 

 Thailand 1997 (99) 

 Venezuela 1997 (99) 

 Turkey 1997 (99) 

 Czech Republic   1997 (100) 

 Singapore 1997 (100) 
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 India 1997 (101) 

 Canada 1997 (102) 

 Brazil 1998 (103) 

 Israel 1998 (104) 

 Philippines 1998 (105) 

 Colombia 1999 (100) 

 Ecuador  1999 (100) 

 Hungary 1999 (100) 

 Peru 1999 (100) 

 Iceland 1999 (106) 

 Malaysia  2001 (100) 

 Russia 2001 (100) 

 Slovakia  2001 (100) 

 Libya 2001 (107) 

 Saudi Arabia 2001 (107) 

 Denmark 2003 (108) 

 Chile 2003 (109) 

 Nigeria 2004 (110) 

 Korea 2004 (111) 

 Mexico 2005 (112) 

 Kuwait 2005 (113) 

 Niger 2005 (110) 

 Tunisia 2006 (114) 

 Lithuania 2006 (115) 

 Cuba 2007 (116) 

 Ethiopia 2008 (117) 

 Romania 2008 (118) 

 Lebanon 2008 (119) 

 Iran 2008 (120) 

 Pakistan 2009 (121) 

 Kenya 2010 (122) 

 Cameroon 2012 (123) 

 Egypt 2013 (124) 

 Uganda 2013 (125) 

 Serbia 2015 (126) 

 New Zealand 2015 (127) 

    

Candida auris Japan 2008 (128) 

 Pakistan 2008 (128) 

 Korea 2009 (129) 

 South Africa 2012 (128) 

 India 2012 (128) 

 Venezuela 2012 (128) 

 USA 2013 (130) 

 Colombia 2013 (131) 

 Kuwait 2014 (132) 
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 UK 2015 (133) 

 Panama 2016 (134) 

 Norway 2016 (129) 

 Kenya 2016 (129) 

 Spain 2017 (129) 

 Germany 2017 (129) 

    

Candida glabrata Germany 1985 (83) 

 UK 1988 (135) 

 Switzerland 1990 (84) 

 Ireland 1991 (136) 

 USA 1993 (137) 

 France 1993 (138) 

 Italy 1994 (139) 

 Spain 1994 (140) 

 China 1996 (93) 

 Japan 1996 (98) 

 Chile 1996 (141) 

 Greece 1996 (96) 

 Lebanon 1996 (97) 

 India 1997 (101) 

 Netherlands 1997 (99) 

 Australia 1997 (99) 

 Portugal 1997 (99) 

 Philippines 1998 (105) 

 Israel 1998 (104) 

 Iceland 1999 (106) 

 Malaysia 1999 (142) 

 Brazil 1999 (143) 

 Taiwan 1999 (144) 

 Turkey 1999 (145) 

 Saudi Arabia 2001 (107) 

 Argentina 2001 (146) 

 Singapore 2002 (147) 

 Belgium 2002 (148) 

 Sweden 2003 (149) 

 Denmark 2003 (108) 

 Slovakia  2004 (150) 

 Korea 2004 (111) 

 Mexico 2005 (112) 

 Kuwait 2005 (113) 

 Nigeria 2005 (110) 

 Canada 2005 (151) 

 Lithuania 2006 (115) 

 Iran 2008 (120) 

 Tunisia 2009 (114) 
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 Kenya 2010 (122) 

 Finland 2011 (152) 

 Uganda 2013 (125) 

 New Zealand 2015 (127) 

    

Cryptococcus gattii USA 1965 (153) 

 Colombia 1989 (153) 

 France 1993 (154) 

 Zambia 1993 (155) 

 Taiwan 1997 (156) 

 Canada 1999 (153) 

 India 2006 (157) 

 Malaysia 2006 (158) 

 Brazil 2009 (159) 

 Australia 2010 (153) 

 Denmark 2016 (160) 

 Cameroon 2016 (161) 

    

Cryptococcus 
neoformans UK 1986 (162) 

 USA 1992 (163) 

 Spain 1994 (164) 

 Rwanda 1994 (165) 

 Congo 1994 (165) 

 Gabon 1994 (165) 

 Japan 1996 (166) 

 Uganda 1996 (162) 

 Brazil 1997 (167) 

 Cambodia 1998 (165) 

 Israel 1998 (168) 

 Italy 1999 (168) 

 Korea 2001 (169) 

 Taiwan 2002 (170) 

 Serbia 2002 (171) 

 Kenya 2003 (172) 

 Romania 2003 (173) 

 Kenya 2003 (172) 

 France 2003 (174) 

 South Africa 2005 (175) 

 Brazil 2006 (176) 

 India 2006 (157) 

 India 2006 (177) 

 Malaysia 2006 (158) 

 Colombia 2006 (178) 

 China 2009 (179) 

 Germany 2009 (180) 
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 Cameroon 2009 (181) 

 Australia 2010 (182) 

 Canada 2010 (182) 

 Thailand 2011 (183) 

 Argentina 2015 (184) 

 Denmark 2016 (160) 

    

Plant pathogens    

Blumeriella jaapii 1995 USA (185) 

    

Botryosphaeria 
dothidea 

2000 USA 
(186) 

    

Botryosphaeria 
theobromae 

2007 Brazil 
(187) 

    

Botrytis cinerea 
 

1990 Israel 
(188) 

 1992 Germany (189) 

 1997 France  (190) 

 2006 China (191) 

    

Calonectria 
pauciramosa 
 

2009 Italy 

(192) 

    

Calonectria polizzi 
 

2009 Italy 
(192) 

    

Cercospora beticola 1995 Greece (193) 

 2002 USA (194) 

 2007 Serbia (195) 

 2012 Germany (196) 

 2012 France (196) 

 2013 Italy (196) 

 2013 Switzerland (196) 

     

Cladosporium 
caryigenum 

2003 USA 
(197) 

     

Colletotrichum 
gloeosporioides 
 

1988 Costa Rica 

(198) 

 2001 Taiwan  (199) 

 2003 Mexico (200) 

 2013 China (201) 
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Colletotrichum 
nymphaeae 
 

2016 USA 

(202) 

     

Colletotrichum 
truncatum 
 

2013 China 

(203) 

 2016 USA (202) 

     

Erysiphe graminis f. 
sp. hordeii 
 

1980 UK 

(204) 

 1990 Italy (205) 

 1990 Spain (205) 

 1990 Austria (205) 

 1990 Germany (205) 

 1990 Poland  (205) 

 1990 Switzerland (205) 

 1990 France (205) 

 1990 Czech 
Republic/Slovakia (205) 

 1990 Denmark (205) 

 1991 Canada  (206) 

 2014 Australia (207) 

     

Erysiphe graminis f. 
sp. tritici 
 

1981 Germany 

(208) 

 1982 Netherlands (209) 

 1991 France (210) 

 1993 Czech Republic (211) 

 1993 Austria  (211) 

 1993 Hungary (211) 

 1993 Slovakia (211) 

 1994 China (212) 

 1997 UK (213) 

 2009 Australia (214) 

 2013 USA (215) 

 2016 Belgium (214) 

 2016 Poland  (214) 

     

Exserohilum turcicim 2009 USA (216) 

     

Fusarium asiaticum 2007 China (217) 
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Fusarium 
graminearum 

2008 China 
(217) 

 2008 Germany (218) 

 2010 Brazil (219) 

 2011 Italy (218) 

 2011 USA (220) 

 2014 Hungary (221) 

     

Fusarium 
moniliforme 

2013 China 
(222) 

     

Geotrichum 
candidum 

2007 USA 
(223) 

     

Golovinomyces 
cichoracearum 

2002 Czech Republic 
(224) 

     

Leptosphaeria 
maculans 
 

2013 Australia 

(225) 

Magnaporthe grisea 2017 China (226) 

     

Monilinia fructicola 
 

1992 New Zealand 
(227) 

 1995 USA (228) 

 2008 Brazil (229) 

 2010 Spain (230) 

     

Mycosphaerella 
fijiensis 

1994 Costa Rica 
(231) 

 2000 Cuba (232) 

 2008 Colombia (233) 

 2009 Honduras (234) 

 2009 Guatemala (234) 

 2010 Ecuador (235) 

 2010 Mexico (236) 

 2011 Dominican 
Republic (237) 

 2012 Philippines (234) 

 2014 Belize (234) 

 2014 Panama (234) 

 2016 Cameroon (238) 

 2016 Ivory Coast (238) 

     

Mycosphaerella 
musicola 

2014 Australia 
(234) 
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Mycovellosiella 
nattrassii 
 

1998 Japan 

(239) 

     

Penicillium 
digitatum 
 

1986 USA 

(240) 

 1989 Argentina (241) 

 1989 Cyprus (241) 

 1989 Greece (241) 

 1989 Israel (241) 

 1989 Italy (241) 

 1989 Morocco (241) 

 1989 Spain (241) 

 1989 Uruguay (241) 

 1990 Japan (242) 

 2011 South Africa (243) 

 2011 Chile (243) 

 2011 Australia (243) 

 2013 China (244) 

     

Parastagonospora 
nodorum 

1994 Switzerland 
(245) 

 2001 China (245) 

 2005 Denmark (245) 

 2005 Sweden (245) 

   (53) 

Penicillium italicum 1983 Egypt (246) 

 1989 Morocco  (241) 

 1989 Turkey  (241) 

 1989 Uruguay (241) 

 1994 USA (247) 

     

Phakopsora 
pachyrhizi 

2009 Brazil 
(248) 

     

Podosphaera 
aphanis 

2006 France   
(249) 

     

Pseudocercosporella 
herpotrichoides var. 
herpotrichoides 

1985 France 
(250) 

 1986 Germany (251) 

 1986 UK (251) 
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 1992 South Africa (252) 

 2000 New Zealand (253) 

 2015 Czech Republic (254) 

     

Pseudocercosporella 
herpotrichoides var. 
acuformis 

1984 Germany 
(251) 

 1986 UK (251) 

 1986 France (251) 

     

Puccinia horiana 1992 Netherlands (210) 

 1997 Germany (255) 

 1999 UK (256) 

     

Puccinia striiformis 1997 UK (257) 

     

     

Puccinia triticina 1997 France (258) 

 1997 Germany (258) 

 1997 UK (258) 

 2007 Brazil (259) 

     

Pyrenopeziza 
brassicae 

2003 UK 
(260) 

     

 1984 New Zealand (261) 

Pyrenophora teres 1986 UK (262) 

 1991 USA (263) 

 1991 Germany (263) 

 1992 Canada (264) 

 1996 South Africa (265) 

 2007 Poland (266) 

 2013 Australia (267) 

 2017 France (196) 

     

Pyrenophora tritici-
repentis 

1990 Germany 
(268) 

     

     

Ramularia collo-
cygni 

2015 Germany 
(207) 

 2016 Denmark (214) 

 2016 Sweden (214) 

 2017 Ireland (196) 

 2017 Belgium (196) 

 2017 France (196) 
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 2017 Austria (196) 

 2017 UK (196) 

    

Rhizoctonia solani 2011 USA (269) 

 2013 India (270) 

     

Rhynchosporium 
commune 

1985 UK 
(271) 

 1988 New Zealand (261) 

 1995 South Africa (272) 

 1999 Switzerland (273) 

 2005 Spain (273) 

 2008 France (271) 

     

Sclerotinia 
homoeocarpa 

1992 USA 
(274) 

 1994 Canada (275) 

 2001 Italy (276) 

     

Septoria pyricola 2006 Greece (277) 

     

Sphaerotheca 
clandestina 

2005 USA 
(278) 

     

Sphaerotheca 
fuligenea  

1981 Netherlands 
(279) 

 1982 Greece (280) 

 1982 Israel (280) 

 1982 Jordan (280) 

 1982 Spain (280) 

 1982 Syria (280) 

 1983 Norway (279) 

 1983 UK (279) 

 1986 USA (281) 

 1989 Japan (282) 

 1993 Australia (283) 

 2001 Czech Republic (224) 

 2008 South Korea (284) 

     

Sphaerotheca mors-
uvae 

1988 Poland 
(285) 

     

Sphaerotheca 
pannosa  

1999 Israel 
(286) 

     

Stagonosporopsis 2013 USA (287) 
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caricae 

 2016 Brazil  (287) 

     

Uncinula necator 1988 Portugal (288) 

 1989 France (288) 

 1989 USA (289) 

 1990 Italy (288) 

 1996 Switzerland (290) 

 1996 Israel (290) 

 1996 India (290) 

 1996 Austria (291) 

 1998 South Africa (292) 

 1998 Australia (293) 

 2008 Chile (294) 

     

Venturia inaequalis 1984 Canada (295) 

 1985 Germany (296) 

 1985 France (297) 

 1986 Italy (298) 

 1988 USA (299) 

 1990 New Zealand (300) 

 2000 Czech Republic (301) 

 2001 Poland (302) 

 2002 Australia (303) 

 2007 UK (304) 

 2008 Chile (305) 

 2009 Serbia (306) 

 2010 Uruguay (307) 

 2016 Japan (214) 

     

Venturia nashicola 1995 Japan (308) 

     

Zymoseptoria tritici 1991 UK (309) 

 1992 Denmark (310) 

 1993 France (311) 

 1996 Germany (311) 

 1999 Switzerland (312) 

 2003 Ireland (313) 

 2007 Belarus (314) 

 2007 Belgium (314) 

 2007 Finland (314) 

 2007 Latvia (314) 

 2007 Norway (314) 

 2007 Poland (314) 

 2007 Sweden (314) 

 2008 Tunisia (315) 
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 2009 Russia (316) 

 2009 Czech Republic (316) 

 2009 Austria (317) 

 2009 Lithuania (318) 

 2012 Ukraine (319) 

 2012 USA (320) 

 2012 Australia (321) 

 2013 New Zealand (322) 

 2014 Netherlands (214) 

 2014 Luxembourg (214) 

 2014 Estonia (323) 

 2015 Hungary (324) 

     

    

 1240 
1 Year of collection of earliest resistant isolate where given (latest year in range where only 1241 
multi-year pooled data are reported); otherwise, year of publication. 1242 
 1243 


