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• Sediment source fingerprinting
methods have become complex and in-
accessible.

• SIFT is comprehensive, user-friendly
and free sediment fingerprinting soft-
ware.

• Multiple source group classifications
and composite fingerprints are used.

• Different methods of uncertainty analy-
sis are used to validate each model.

• Localised sources were identified to
contribute to channel bed
sedimentation.
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The mitigation of diffuse sediment pollution requires reliable provenance information so that measures can be
targeted. Sediment source fingerprinting represents one approach for supporting these needs, but recent meth-
odological developments have resulted in an increasing complexity of data processingmethods rendering the ap-
proach less accessible to non-specialists. A comprehensive new software programme (SIFT; SedIment
Fingerprinting Tool) has therefore been developedwhich guides the user through critical data analysis decisions
and automates all calculations. Multiple source group configurations and composite fingerprints are identified
and tested using multiple methods of uncertainty analysis. This aims to explore the sediment provenance infor-
mation provided by the tracers more comprehensively than a single model, and allows for model configurations
with high uncertainties to be rejected. This paper provides an overview of its application to an agricultural catch-
ment in the UK to determine if the approach used can provide a reduction in uncertainty and increase in preci-
sion. Five source group classifications were used; three formed using a k-means cluster analysis containing 2, 3
and 4 clusters, and two a-priori groups based upon catchment geology. Three different composite fingerprints
were used for each classification and bi-plots, range tests, tracer variability ratios and virtual mixtures tested
the reliability of each model configuration. Some model configurations performed poorly when apportioning
the composition of virtual mixtures, and different model configurations could produce different sediment prov-
enance results despite using composite fingerprints able to discriminate robustly between the source groups. De-
spite this uncertainty, dominant sediment sourceswere identified, and those in close proximity to each sediment
sampling locationwere found to be of greatest importance. This newsoftware, by integrating recentmethodolog-
ical developments in tracer data processing, guides users through key steps. Critically, by applying multiple
model configurations and uncertainty assessment, it delivers more robust solutions for informing catchment
management of the sediment problem than many previously used approaches.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction
Numerous studies have now used sediment source fingerprinting to
investigate specific catchment management problems (Collins et al.,
2010a; Gellis and Walling, 2011; Miller et al., 2015; Owens et al.,
2017; Collins et al., 2017), yet its application as a standard research
tool remains limited. As such, Mukundan et al. (2012) highlighted the
need to streamline the sediment fingerprinting approach before it can
have wider application as part of a regulatory framework for catchment
management issues.

Since the publication by Mukundan et al. (2012), several sediment
fingerprinting papers have highlighted uncertainties associated with
certain procedural steps, such as tracer conservativeness, tracer correc-
tions, weightings and statistical operations (Koiter et al., 2013; Smith
and Blake, 2014; Laceby and Olley, 2015; Pulley et al., 2015a; Laceby
et al., 2017; Collins et al., 2017; Owens et al., 2017). This questioning
of procedures in the sediment fingerprinting approach is necessary for
the science to move forward but it is also necessary to communicate
to land managers a streamlined and robust procedure. Collins et al.
(2017) recently proposed a methodological decision-tree to aid in the
application of sediment fingerprinting for catchment management,
which identified the numerous and challenging decisions which must
be considered.

One fundamental requirement underpinning successful sediment
source fingerprinting is that selected tracers can robustly discriminate
between potential sediment sources (Foster and Lees, 2000). It has,
however, been shown that simply achieving discrimination in a linear
discriminant analysis is not in itself sufficient for reliable source appor-
tionment (Rowan et al., 2000; Sheriff et al., 2015; Pulley et al., 2015a).
For example, equifinality problems with source apportionment have
long been recognised (Rowan et al., 2000; Small et al., 2002). In addi-
tion, tracer concentrations can be controlled by numerous environmen-
tal factors, such as geology (Laceby and Olley, 2015), soil type,
hydrology and topography (Blundell et al., 2009; Jordanova et al.,
2012), anthropogenic pollutants (Foster and Charlesworth, 1996) and
land use (Walling et al., 1993), which will often result in high within-
source group variabilities if broad source groups such as those based
on land use or surface/subsurface sources are used (Pulley et al.,
2016). A low between-source group variability in tracer concentrations
will also cause tracer non-conservatism to have a larger effect on un-
mixing model outputs, as the sediment provenance signal used for dis-
crimination is small (Collins et al., 2010a, 2010b; Sheriff et al., 2015;
Pulley et al., 2016).

In response to the need to streamline sediment sourcefingerprinting
data processing for accessible use by end users, a comprehensive new
software programme (SIFT; SedIment Fingerprinting Tool) has been de-
veloped in R with a user-friendly GUI based around the Shiny package.
SIFT guides the user through all critical data analysis decisions without
the requirement for specialist knowledge. By way of example, this
paper demonstrates the utility of SIFT for applying a combination of
multiple different models and uncertainty assessment techniques to
the same dataset to produce a more robust interpretation of sediment
source fingerprinting results than the use of a single model.

2. Study area

The studyused todemonstrate SIFTwas conducted in a small tributary
of the River Nene in the East Midlands of the UK (Fig. 1). The 15.3 km2

catchmentwas selected based on its heterogenous geologywhich is likely
to exhibit large contrasts in topsoil properties allowing for evaluation of
optimum source classification, discrimination and apportionment using
SIFT. The lower catchment is composed of outcrops of Jurassic oordial
ironstone and Lias mudstone. The middle of the catchment is underlain
by Jurassic Blisworth formation and Cornbrash limestone, with Jurassic
Kellaways member sandstone at the upper edge of this deposit. The
upper catchment is underlain by Quaternary Oadby member diamicton
and Jurassic Lias mudstone. The mudstone and diamicton geologies are
classified as the same “clays” geology for this study as previous research
within theNene basin found them to be indistinguishable usingmagnetic,
radionuclide and geochemical tracers (Pulley, 2014). Soils in the lower
catchment overlying limestone, ironstone and sandstone are freely
draining loamy soils, and soils in the upper catchment overlying
diamicton are loamy and clayey with poor drainage.

The study area has a mean annual rainfall of 638 mm (Pulley et al.,
2015a). Land use is dominated by cultivationwith 28% of the catchment
used as improved grassland. Most grassland fields showed evidence of
having been cultivated in the recent past as part of crop rotation.
Much of the area underlain by ironstone is utilised as grassland, unlike
those underlain by sandstone, limestone and clays which are mostly
cultivated. There is evidence of historical limestone quarrying in the
lower catchment with a large number of limestone cobbles present in
cultivated fields. The catchment is gently sloping (mean 3.3°) with
steeper areas of land close to the river channel (6 to 10°). Landunderlain
by limestone and ironstone is generallymore steeply sloping than sand-
stone and clays. There are wide (3–5 m) buffer strips of woodland or
grassland adjacent to river channels throughoutmost of the catchment;
however, some ditches in cultivated fields had buffers b1 m wide. Dur-
ing the time of sampling (August–September 2016), cultivated soils
were dry with deep cracking present. There was no visual evidence of
gully or rill erosion within the catchment.

3. Methods

3.1. Field and laboratory methods

Samples of potential sediment sourceswere retrieved from four pre-
determined groups; ironstone (18 samples), sandstone (20 samples),
limestone (20 samples) and clay (mudstone and diamicton) topsoils
(20 samples), and channel banks (20 samples) (Fig. 1). Each topsoil
sample was a composite of five subsamples collected from within a
3 m radius of the sampling point. Topsoils were collected from the top
2 cm of the soil profile as this is the limiting depth of erosion (Walling
andWoodward, 1995). Channel bank samples were collected as a com-
posite of three subsamples fromwithin 2 m of the sampling point. Only
the lower 2/3 of the typically ~30 cm high banks was sampled to im-
prove the likelihood of effective discrimination between surface and
subsurface sources. All samples were collected using an enamelled
stainless-steel trowel.

Samples of sediment deposited on the channel bed were retrieved
from five locations (Fig. 1) using the bed disturbance method of
Lambert and Walling (1988), recently tested by Duerdoth et al.
(2015). These were a composite of three repetitions within a 5 m
reach of river channel. It was observed that samples Bed 4 and Bed 5
were from an area of the river bed which experienced significant sedi-
mentation due to river modification and dense aquatic vegetation.
These sediments appeared to be stored under anoxic conditions with
the potential for processes of dissolution diagenesis to affect their asso-
ciated tracers.

Source and sediment sampleswere oven dried at 40 °C and sieved to
38 μmto limit the potential for particle size related uncertainties (Pulley
and Rowntree, 2016; Laceby et al., 2017). Organic matter was removed
using hydrogen peroxide (H2O2) treatment (Pulley et al., 2018). Ap-
proximately 5 g of sediment was added to 30 ml of 33% H2O2 and was
left at room temperature for 12 h before being heated at 70 °C until
dry. The prepared samples were packed into transparent polythene
sample bags and scanned to a pdf file using a Cannon MG5600 colour
scanner. The images were imported into GIMP 2 open source image
editing software and red, green and blue intensities for each sample
were recorded on a scale of 0–255 in the RGB colour model. Using
these RGB values, the colour indices shown in Supplementary
Table 1A were calculated (Viscarra Rossel et al., 2006; Ray et al.,
2004). The magnetic signatures shown in Supplementary Table 1B



Fig. 1. The study catchment and sampling points.
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weremeasured following themethods of Foster et al. (2008). Analytical
uncertainties (coefficients of variability)were established as 0.4% (Red),
0.6% (Green) and 0.6% (Blue), together with 0.8% (χlf), 15.59% (χfd),
2.30% χARM, 1.96% SIRM, 3.36% (BackIRM), and 4.72% (HIRM).

3.2. The SIFT sediment source tracing data processing methodology

The tracer data processingmethodology in SIFT used is loosely based
upon the decision-tree recently proposed by Collins et al. (2017), with
the aim of producing a robust assessment of uncertainty. Due to the ef-
ficiency of the R programming language, the software allows for multi-
ple models with multiple different source group configurations and
composite fingerprints to be run together with efficient processing
times. Due to this functionality, a composite result comprising multiple
model outcomes can be developed, providing greater insight into sedi-
ment provenance than the use of a single source group classification
method which is common to the majority of studies published to date.
The capacity to run multiple un-mixing model structures also allows
for model configurations with high associated uncertainties which are
assessed using multiple criteria including virtual mixtures to be
rejected. The following sections describe each stage of themethodology
in the SIFT software and justify their inclusion. Fig. 2 shows a flow dia-
gram of each stage in the SIFT methodology.

3.2.1. Tracer data preparation

3.2.1.1. Removal of any sediment samples with multiple tracer values out-
side of the range found in the source samples. It is initially tested whether
eachmeasured tracer in each sediment sample falls within the full min-
imum tomaximum range of values found in the source samples (Foster
and Lees, 2000). This stage of the methodology is aimed at removing
any target sediment samples that have likely been heavily affected by
tracer non-conservatism. Retaining such samples would likely result
in erroneous sediment provenance conclusions.

3.2.1.2. Source group classification. The samples in the initial five geology-
based source groups were included in a preliminary linear discriminant
analysis (LDA) to gain an indication of the potential for the measured



Fig. 2. Flow diagram of the stages of the SIFT methodology.
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tracers to discriminate between these groups. Discrimination was eval-
uated using a bi-plot of the two largest discriminant functions and a
confusion matrix. Where discrimination was judged to be unsuccessful,
two or more source groups were combined into a single group. This
stage of the methodology is aimed at limiting the potential for poor
source group discrimination to undermine robust source apportion-
ment. Two geology-based source group classifications were manually
assigned at this stage in the SIFT methodology; Classification 1, where
few source groups were strongly discriminated, and Classification 2,
where more source groups were selected, and good discrimination
was less certain although still likely.

Three additional source group classificationswere generated using a
k-means cluster analysis based on the methods ofWalling et al. (1993),
Walling andWoodward (1995) and Pulley et al. (2016) (Table 1). Solu-
tions with two, three and four source groups were generated by the
cluster analysis output, which did not incorporate any a-priori criteria
such as land use or geology. The optimal cluster classifications were
identified by repeating the cluster analysis five times and selecting the
solution with the highest value of the between-cluster sum of squares
/ the total sum of squares (total within-cluster sum of squares + the
Table 1
The five source group classifications used.

Classification Structure

Two-cluster Each source sample is assigned into one of two clusters
according to the results of a k-means cluster analysis.

Three-cluster Each source sample is assigned into one of three clusters
according to the results of a k-means cluster analysis.

Four-cluster Each source sample is assigned into one of four clusters
according to the results of a k-means cluster analysis.

Geology
classification 1

The original four geology source groups are combined to
produce as many new source groups as possible with the
requirement of very strong discrimination between them.

Geology
classification 2

The original four geology source groups are combined to
produce as many new source groups as possible with the
requirement of moderate discrimination between them.
between-cluster sum of squares). Where a cluster group was generated
containing fewer than five source samples, the analysis was repeated up
to five additional times to attempt to identify solutions with more nu-
merically balanced clusters.

3.2.1.3. Assessment of misclassified source samples. A second LDA includ-
ing all tracers was then used to identify any source samples which are
likely to bemisclassified in the two geology-based source classifications.
Samples were evaluated using a scatter plot of the two largest discrim-
inant functions, with samples identified as potentially misclassified in
the analysis output highlighted in the colour of the source group they
are a best fit to. In addition, a map of the catchment with misclassified
samples highlighted is produced. Where it is clearly identified that the
samples are misclassified for a genuine reason, samples are reclassified
into their correct group. Where a sample has outlying tracer values
which cannot be attributed to misclassification, it is removed to avoid
introducing high within-source variability. Possible genuine reasons
for sample misclassifications include: (1) outcrops are small or irregu-
larly shaped causing the geology shown on the map to not reflect that
actually present; (2) an underlying rock type covers too small an area
to significantly impact the properties of its overlying soils; (3) soil ero-
sion is causingmaterial from upslope to form a blanket over native soils,
meaning that the underlying geology is not reflected by the sample col-
lected; (4) if channel banks are shallow and share their properties with
surface material, and; (5) if channel bank collapse and slumping causes
banks to be composed of displaced surface material. There is no test for
outliers in the source groups as the un-mixingmodelling approach does
not assume a normal distribution, and therefore the potential for out-
liers to introduce uncertainty is minimised; however, outlying samples
can be optionally removed at this point.

3.2.2. Tracer variability ratios and conservatism testing
The ability of the tracers to discriminate robustly between the source

groups/clusters comprising each of the five classification schemes was
assessed by calculating tracer variability ratios (Pulley et al., 2015a).
This represents the ratio of the percentage difference in median tracer
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concentration between a pair of source groups and the mean of the
within-source group coefficient of variation.

X max−X min
� �

=X min
� �

=X cov

where Xmax is the maximum mean tracer concentration of either
source group,Xmin is theminimummean tracer concentration of either
source group, andXcov is themean coefficient of variation for the pair of
source groups (calculated as the median absolute deviation divided by
the median).

A ratio lower than 1 indicates that the noise of within-source group
variability is larger than the between-group signal, which is likely to re-
sult in very high uncertainty associated with un-mixing model outputs
(Pulley et al., 2015a). For this reason, any tracer with a mean variability
ratio of below 1, when considering all pairs of source groups, was re-
moved from further use. In addition, any tracer with a maximum ratio
of below 2, when considering all pairs of source groups, was also re-
moved from use to further limit uncertainty in un-mixing model
outputs.

3.2.2.1. Bi-plot based conservatism assessment. The first test for tracer
non-conservatism is based upon the use of bi-plots (Oldfield and Wu,
2000; Laceby et al., 2015; Pulley et al., 2015b). Pairs of tracers signifi-
cantly correlated within the source sample dataset with an r2 higher
than 0.8 are plotted against each other with the sediment samples over-
laid onto the same plot. This determines if the relationships between
pairs of tracers present in the source samples aremaintained in the sed-
iment samples. If a relationship is maintained, it suggests a high degree
of tracer conservatism; alternatively, if the relationship is not main-
tained, tracers in question were removed from further analysis.

3.2.2.2. Range tests and rejection of non-conservative tracers. To further
minimise the likelihood of non-conservative tracers being used in the
un-mixing model, it is determined if the concentrations of each tracer
within the target sediment samples fall within the medians +/− one
median absolute deviation (MAD) and the minimum – maximum
range of the source groups (Foster and Lees, 2000; Collins et al.,
2010a, 2010b; Wilkinson et al., 2013). If each tracer concentration in
N40% of the sediment samples fell outside of the median +/− one
MAD, and the tracer concentration in 80% of target sediment samples
fell outside the full range of the source samples, that tracerwas removed
from further use. The low 40% thresholdwas selected to allow some lee-
way in tracer inclusion as if sediment originates from an area of the
catchment with highly distinctive tracer values, then a tracer could fall
outside of the median +/− one MAD range whilst still being conserva-
tive and a useful discriminator. The 80% threshold was set to allow for
one sediment sample to fail the minimum-maximum range test as if
one sediment sample is heavily affected by some form of non-
conservatism it may be unique to that sample rather than affecting
the entire sediment dataset.

3.2.3. Mapping of source and tracer characteristics

3.2.3.1. Mapping source sample group membership. The group/cluster
membership of each source sample in each of the five source group clas-
sifications is plotted onto a map of the catchment. The three-different
cluster analysis derived source groupswere compared to catchment ge-
ology, land use and topography so that any correspondence of a cluster
group with a specific landscape feature could be identified. This infor-
mation is aimed at aiding the interpretation of the cluster results.

3.2.3.2. Mapping the mean percentage differences between source and sed-
iment sample tracer concentrations. The percentage differences between
the concentrations of the tracers in sources and sediments are calcu-
lated and mapped to give a preliminary indication of how likely each
source sample is to contribute sediment to the river (Pulley et al.,
2017). These maps are also used to assess to what extent each of the
five source classifications fit the measured tracers. The source and sed-
iment tracer values are normalised to between 0 and 1 by dividing
each value by the maximum found for that tracer in the source dataset.
The absolute difference between the mean concentration of each tracer
in sediment samples and each individual source sample is calculated
and expressed as a percentage of the mean concentration in the sedi-
ment samples (Pulley et al., 2017). Differences were first calculated as
a mean for all tracers, and then were calculated for individual tracers
to allow for the identification of any tracers which highlight different
source samples to others and may be particularly useful for source
discrimination.

3.2.4. Determining and assessing composite fingerprints

3.2.4.1. Source discrimination. Three composite fingerprints were pro-
duced for each of the five source classifications to assess variation in
sediment provenance estimates dependent on the tracers used
(Collins et al., 2012). Rather than basing the different composite finger-
prints upon different statistical procedures they were, instead, based
upon the conservatism of tracers and their ability to discriminate the
sources in question. Each of the three composite fingerprints was deter-
mined using a stepwise LDA to identify the composite fingerprint best
able to discriminate between the source groups for each of the five
source classification schemes (Collins et al., 1997). In the stepwise pro-
cess, a 0.1% improvement in overall discrimination was required for an
additional tracer to be included in the compositefingerprints. Each step-
wise LDAwas repeated three times and the solution able to achieve the
highest discrimination was retained for use in the un-mixing model. If
composite fingerprints were formed containing fewer than two tracers,
the LDAwas repeated to attempt to determine afingerprint containing a
greater number of tracers, as lower uncertainties have been shown to be
associated with larger fingerprints (Small et al., 2002; Sheriff et al.,
2015). After performing the initial LDA the option exists to run a second
LDA including only poorly discriminated source groups to attempt to
improve overall discrimination. In the case of the study dataset how-
ever, this stage did not provide any additional benefit. Different tracers
were forced into the LDA solution to form the three different composite
fingerprints for each source group classification.

(i) The first fingerprint is a basic fingerprint selected using the LDA
output, but with an option to include additional tracers via man-
ual forcing. Forced inclusion is based upon an examination of the
differences between sources and sediments maps, and by exam-
ining plots of the percentile distributions of each tracer in the
source groups. Any tracer which is particularly effective at dis-
criminating a specific source group can be forced into the com-
posite fingerprint.

(ii) A “conservative” fingerprint is formed by forcing in any tracers
which passed the bi-plot conservatism test. This composite fin-
gerprint aims to capture the tracers most likely to be unaffected
by organic matter, particle size and diagenesis effects.

(iii) A “high variability” fingerprint is formed by forcing in the tracers
with the highest variability ratios to attempt to achieve the low-
est range of uncertainty in model outputs and limit the potential
for uncertainties associated with sediment delivery from only a
small area of the catchment which may have outlying tracer
values. In this case study, one tracer was forced into the high var-
iability fingerprint for each source group present, starting with
the highest ratio tracer and working down a ranked list.

3.2.4.2. Bi-plots of sources and sediments. Bi-plots of the two largest dis-
criminant functions generated by the LDAs were produced for each of
the three composite fingerprints for each of the five source classifica-
tions. Samples belonging to each of the source groups were colour
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coded and the DF scores for the sediment samples were calculated and
included in the plot. These plots provide an indication of sediment prov-
enance which can be compared to the un-mixing model results as a
form of model validation.

3.2.5. Un-mixing modelling
The un-mixing model is based upon a modified version of the

frequentist model developed by Collins et al. (1997), with Monte Carlo
uncertainty analysis (Rowan et al., 2000) (assistance with successfully
coding the model in r was given by Gorman-Sanisaca et al., 2017).
Prior to un-mixing, all source and sediment tracer concentrations are
rescaled between 0 and 1 by dividing by the maximum value found in
the source samples for each tracer. No data corrections for organic mat-
ter and particle size were used in the model as the sample preparation
in this study was designed to limit the potential for these uncertainties.
Themodel was alsomodified so thatwhen two tracers in a source group
were significantly correlated with an r2 N 0.8 the same correlation was
maintained in the generated Monte Carlo random numbers (Laceby
andOlley, 2015). TheMonte Carlo iterations also produce randomnum-
bers following the same distribution as the tracer concentrations in the
sampled source groups (Pulley et al., 2017), rather than assuming a nor-
mal distribution or using location and scale estimators (Rousseeuw and
Croux, 1993) such as median and median absolute deviation. Specifi-
cally, for each tracer ~5% of the Monte Carlo iterations fell between the
0th and 5th percentile values in each source group, ~5% from the 5th–
10th percentile values, etc. This sampling method is included because
using a distribution which is not representative of the real distribution
of tracer concentrations in the source group is potentially amajor source
of uncertainty. No weightings for organic matter and particle size were
used as the sample preparation method was aimed at limiting the po-
tential for these uncertainties.

The unmixing-model was run for 3000model iterations; for each it-
eration, the goodness-of-fit (GOF) was calculated as the root mean
square of relative errors between themodelled and the actual sediment
tracer properties (Motha et al., 2003). Any model iteration with a GOF
below 0.35 was rejected as a non-viable solution. The percentage of
model iterations passing this GOF threshold and their mean GOF were
recorded formodel evaluation. The 0.35 limit was selected through pre-
liminary trials on the dataset as a higher threshold often resulted in no
model iterations passing for some samples.

3.2.6. Model testing and weighting

3.2.6.1. Testing of the model configurations using virtual mixtures. Virtual
sample mixtures consisting of the tracer concentrations of hypothetical
mixtures of different sources which have been mathematically
Fig. 3. Bi-plot of the two largest discriminant functions generated by the init
calculated also represent a means to assess if the general modelling ap-
proach is likely to deliver an acceptably low range of uncertainty.
Equifinality problems with source apportionment (Rowan et al., 2000;
Small et al., 2002), the effects of sediment delivery from only a small
part of a catchment, the effects of a highwithin source group variability,
or the potential impact of tracer non-conservatism can all be assessed
using these mixtures.

The tracer values of virtual mixtures were calculated to evaluate
model accuracy and uncertainty (Lees, 1997; Franks and Rowan, 2000;
Haddadchi et al., 2014; Palazón et al., 2015). These consisted of 100%
contributions from each source group (the source group median),
equal proportions of each source group (the mean of the source group
medians) and equal proportions of each source group but with a ran-
domly selected percentile value (0th–100th in intervals of 5%) for
each tracer from each source group. The un-mixed composition of the
virtual mixtures was compared to their actual composition to deter-
mine if source apportionment was accurate (the dominant sediment
source was correctly identified). Models failing to achieve this were
discarded.

3.2.6.2. Testing of model weightings to improve virtual mixture apportion-
ment accuracy. The virtual mixtures can be used to trial a variety of
weightings to determine if they improved source apportionment accu-
racy. The first weighting trialled was a variability ratio weighting, calcu-
lated by dividing themean variability ratio for each tracer by the largest
mean variability ratio for any tracer within the composite fingerprint.
This ratio was aimed at representing a combination of the discrimina-
tory efficiency and within-source group variability weightings devel-
oped by Collins et al. (2010b). The second set of weightings trialled
were manually selected based upon three criteria. Firstly, the tracers
most strongly correlated with the second discriminant function for
each composite fingerprint were weighted as these were often impor-
tant discriminators between poorly discriminated sources, but only rep-
resented a small percentage (b20%) of total discriminatory power.
Therefore, these weightings were aimed at compensating for the domi-
nating effects of tracers which are only able to discriminate easily sepa-
rated source groups. Secondly, the percentile distributions of each tracer
in each source group classificationwere examined to identify the tracers
best able to discriminate between poorly differentiated source groups.
The order of highest – lowest concentration of each tracer in the source
groups was particularly noted, as if the order is the same for all tracers,
problems of equifinality are likely to be present when un-mixing sedi-
ment provenance. Thirdly, the mapped differences between sources
and sediments for each tracer were used to identify the tracers best
able to identify sediment contributions from specific sources or areas
of the catchment. Each tracer selected was given 3× its normal
ial LDA of the five geology-based source groups, with confusion matrix.



Fig. 4. The mapped cluster analysis based sediment source classifications.
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weighting in the un-mixing model. The option exists in the software to
trial multiple weightings and selects the set which perform optimally.
Each source group classification and composite fingerprint was
Fig. 5. Bi-plots (A) andmaps (B) of potentially misclassified source samples as identified by the
group the sample is a better fit in. (For interpretation of the references to colour in this figure
examined separately, and weightings were only used for those models
where it showed a clear improvement in source apportionment preci-
sion and accuracy.
LDA. A labelled sample was potentially misclassified. The label colour identifies the source
legend, the reader is referred to the web version of this article.)



Table 2
Median, median absolute deviation, mean and maximum variability ratios for all pair combinations of source groups; ratios in bold pass the threshold values for further inclusion in the
apportionment modelling.

Two-cluster

Median χlf χfd χARM SIRM BackIRM HIRM R G B HRGB IRGB SRGB SI HI CI RI
Cluster 1 (35 samples) 0.72 43.57 6.32 7.33 6.01 0.68 182.1 147.1 124.4 2.98 151.73 28.75 0.19 4.03 0.11 0.84
Cluster 2 (64 samples) 0.34 16.85 2.73 4.08 3.09 0.49 187.3 158.2 135.05 1.26 160.22 24.85 0.16 3.46 0.08 0.64

Median absolute deviation
Cluster 1 0.53 46.23 6.35 6.03 5.32 0.38 4 3.11 3.11 0.37 2.77 2.59 0.02 0.2 0.01 0.05
Cluster 2 0.19 13.64 2.28 2.32 2.12 0.18 5.93 4.89 4.74 0.78 4.87 2.52 0.01 0.27 0.01 0.07

Mean variability ratio 1.7 1.7 1.43 1.15 1.2 0.8 1.06 2.9 2.85 3.66 2.3 1.64 2.38 2.59 2.83 3.8
Max variability ratio 1.7 1.7 1.43 1.15 1.2 0.8 1.06 2.9 2.85 3.66 2.3 1.64 2.38 2.59 2.83 3.8

Three-cluster

Median Xlf xfd XARM SIRM BackIRM HIRM R G B HRGB IRGB SRGB SI HI CI RI
Cluster 1 (11 samples) 1.35 108.71 14.46 16.64 13.85 1.39 183 145.4 121.2 3.13 149.53 31.4 0.2 4.05 0.11 0.89
Cluster 2 (38 samples) 0.45 22.9 3.28 5 4 0.52 182.3 149.2 127.1 2.62 152.67 28 0.18 3.91 0.1 0.78
Cluster 3 (50 samples) 0.34 16.59 2.73 4.01 3.09 0.5 187.15 160.8 137.8 1.06 161.95 24.7 0.15 3.36 0.08 0.62

Median absolute deviation
Cluster 1 0.36 24.56 7.21 4.08 2.47 0.33 3.71 5.11 2.82 0.72 4.47 1.19 0.01 0.29 0 0.05
Cluster 2 0.3 21.8 2.96 3.38 2.91 0.21 5.93 5.04 5.19 0.52 4.15 1.26 0.01 0.23 0.01 0.09
Cluster 3 0.16 11.78 1.95 2.23 1.89 0.17 5.49 5.34 4.45 0.54 5.31 1.74 0.01 0.17 0.01 0.04

Mean variability ratio 4.69 7.04 4.39 4.86 5.43 3.95 0.64 2.08 2.96 3.88 1.82 3.55 4.13 2.33 5.54 4.02
Max variability ratio 7.89 11.86 7.08 7.86 8.81 6.24 0.92 3.1 4.93 5.27 2.65 5.01 6.07 3.37 8.22 7.06

Four-cluster

Median Xlf Xfd XARM SIRM BackIRM HIRM R G B HRGB IRGB SRGB SI HI CI RI
Cluster 1 (31 samples) 0.54 28.37 3.8 5.35 4.24 0.54 182.1 148.2 125.5 2.8 151.77 28 0.18 4 0.1 0.81
Cluster 2 (47 samples) 0.3 14.8 2.55 3.89 2.9 0.46 187.1 157.6 134.9 1.3 159.9 25.2 0.16 3.47 0.08 0.65
Cluster 3 (10 samples) 1.41 112.15 15.42 16.72 13.85 1.41 182.45 143.7 121.2 3.21 148.43 31.1 0.2 4.16 0.11 0.89
Cluster 4 (11 samples) 0.57 35.1 6.03 5.71 4.6 0.57 189.7 165.9 144.5 0.58 166.8 22.2 0.13 3.21 0.07 0.55

Median absolute deviation
Cluster 1 0.29 23.71 3.67 3.18 2.76 0.22 4.45 3.11 2.97 0.37 2.72 1.26 0.01 0.2 0.01 0.05
Cluster 2 0.14 10.21 1.97 2.04 1.61 0.16 5.93 3.26 3.41 0.59 3.11 1.33 0.01 0.2 0.01 0.04
Cluster 3 0.34 16.59 4.08 4.08 2.47 0.3 4.23 5.26 3.85 0.72 5.54 1.45 0.01 0.24 0.01 0.06
Cluster 4 0.32 26.51 4.65 1.71 1.65 0.11 3.26 2.67 3.85 0.3 2.37 3.85 0.02 0.13 0 0.02

Mean Variability Ratio 4.68 7.07 4.6 4.67 5.41 4.11 1.09 3.87 4.04 8.26 3.39 3.03 3.99 3.45 6.33 6.58
Max Variability Ratio 10.46 15.71 9.75 10.42 11.88 9.25 2.01 6.64 6.57 12.39 6.3 5.35 5.98 6.05 11.6 12.54

Geology classification 1

Median Xlf Xfd XARM SIRM BackIRM HIRM R G B HRGB IRGB SRGB SI HI CI RI
Ironstone 1.18 102.32 13.64 13.15 10.94 1.18 183 145.4 121.2 2.94 149.53 31.28 0.2 4.01 0.11 0.89
Sand, lime, clay and banks 0.36 17.64 2.73 4.47 3.36 0.5 184.7 156.75 134.05 1.61 158.67 25.67 0.16 3.57 0.08 0.67
Median absolute deviation
Ironstone 0.55 66.32 8.74 5.97 4.72 0.38 4.52 6.15 4.97 0.52 4.65 1.37 0.01 0.21 0.01 0.06
Sand, lime, clay and banks 0.21 14.12 2.26 2.73 2.25 0.18 5.93 7.04 6.75 1.02 7.02 3.04 0.02 0.34 0.02 0.08
Mean variability ratio 4.34 6.63 5.45 3.65 4.1 3.96 0.33 1.79 2.32 2.03 1.62 2.69 3.2 1.65 2.77 3.52
Max variability ratio 4.34 6.63 5.45 3.65 4.1 3.96 0.33 1.79 2.32 2.03 1.62 2.69 3.2 1.65 2.77 3.52

Geology classification 2

Median Xlf Xfd XARM SIRM BackIRM HIRM R G B HRGB IRGB SRGB SI HI CI RI
Ironstone 1.18 102.32 13.64 13.15 10.94 1.18 183 145.4 121.2 2.94 149.53 31.28 0.2 4.01 0.11 0.89
Sandstone 0.37 19.58 3.49 4.75 3.59 0.57 190.4 161.4 138.7 1.65 162.97 27.45 0.16 3.56 0.09 0.62
Lime, clay and banks 0.35 16.73 2.46 4.06 3.07 0.46 183.3 154.9 132.2 1.57 157.33 25.65 0.16 3.59 0.08 0.68
Median absolute deviation
Ironstone 0.55 66.32 8.74 5.97 4.72 0.38 4.52 6.15 4.97 0.52 4.65 1.37 0.01 0.21 0.01 0.06
Sandstone 0.11 10.83 1.54 2.15 1.83 0.13 4 4.15 6.82 0.7 3.31 2.74 0.02 0.18 0.02 0.09
Lime, clay and banks 0.23 16.82 1.97 2.65 2.27 0.15 5.63 8.01 7.12 1.19 6.47 2.52 0.02 0.41 0.02 0.11
Mean variability ratio 3.44 4.74 4.61 2.83 3.1 3.43 1.11 1.93 2.05 1.53 2.06 1.96 2.18 1.3 1.96 2.4
Max variability ratio 5.93 7.81 6.86 4.14 4.64 4.98 1.77 3.23 3.2 2.65 3.5 3.09 3.34 2.4 2.94 3.65

for
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3.2.6.3. Assessment of model goodness-of-fit. The sediment samples were
run through the un-mixing model with each of the five source group
classifications and three different composite fingerprints which pro-
duced an acceptable result for the virtual mixtures. Weightings were
applied where they were shown to improve source apportionment.
Any model where all of the Monte Carlo iterations fell below the 0.35
threshold was judged to have been unsuccessful and so was rejected.

3.2.7. Sediment provenance results

3.2.7.1. Presentation of sediment provenance results. The median, 25th
and 75th percentile proportions are presented for each sediment

Bold values signify values exceeding the threshold of 1 for the mean variability ratio and 2
sample for each source classification and composite fingerprint to sum-
marise the un-mixing model results. These results were interpreted in
the context of any sources of uncertainty identified in previousmethod-
ological steps and to determine if the results conform to what might be
expected with the spatial distribution of the source groups and the ob-
served catchment characteristics.

3.2.7.2. Combination of all model results to map the likely contribution of
each source sample to sediment provenance. The average percentage con-
tribution of each source sample to each sediment sample is calculated
from every model producing an acceptable result when apportioning
the composition of the virtual mixtures, and an acceptable GOF. These

the maximum variability ratio.



Fig. 6. Bi-plots of source (black) and sediment (red) samples, plots bordered in red failed to achieve the required correlation coefficient for progressing in the analysis. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 3
The percentage of sediment samples falling within the maximum+ one MAD to minimum− one MAD range of values for each tracer in the source classifications.

χlf χfd χARM SIRM BackIRM HIRM R G B HRGB IRGB SRGB SI HI CI RI

Two-cluster 83 100 100 83 83 83 83 67 67 83 67 100 67 83 67 67
Three-cluster 100 100 100 83 83 83 83 67 67 83 67 100 67 83 67 67
Four-cluster 100 83 100 83 83 83 83 83 83 83 83 100 100 83 83 83
Geology classification 1 100 100 100 83 83 83 67 67 67 67 67 100 67 67 83 67
Geology classification 2 100 100 100 83 83 83 83 67 67 83 67 83 67 83 67 83
Percent within minimum - maximum 100 100 100 100 83 100 83 83 100 83 83 100 100 100 100 100
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maps provide a simple yet detailed visualisation of the probable sources
of each sediment sample.

4. Results

4.1. Sediment sample screening and source group classification

Tracer concentrations in sediment samples Bed 1, 2, 4 and 6 fell
within the fullminimum tomaximum range found in the source groups,
and as such these sampleswere retained for further analysis. For sample
Bed 5, R, G, HRGB and IRGB fell outside of the range of values found in
the source samples, and for Bed 3 BackIRM fell outside of this range, in-
dicating the non-conservatism of these tracers in these samples. How-
ever, as most of the measured tracers fell within the range of the
source groups, these samples were retained for further analysis.

The initial LDA identified that the two largest discriminant functions
(DFs) were responsible for 86% of source discrimination (Fig. 3). DF1
primarily provided discrimination between Ironstone topsoils and the
other sources. Sandstone topsoils were reasonably discriminated by
DF2 but, overlapped slightly with other sources. Discrimination be-
tween limestone topsoils, clay topsoils and channel banks wasminimal.
Fig. 7.Mean percentage differences between each source sam
As such, the first geology-based source group classification aimed at
achieving the best discrimination possible was:

Group 1: Ironstone and Group 2: Sandstone, Limestone, Clays and
Channel Banks.

The second geology-based source classification with a greater num-
ber of individual groups comprised:

Group 1: Ironstone, Group 2: Sandstone, and Group 3: Limestone,
Clays and Channel Banks.

In all three-cluster analysis derived source classifications, ironstone
topsoils were mostly concentrated within the membership of one par-
ticular cluster (clusters 1, 1 and 3; Fig. 4). However, this cluster also con-
tains some samples from the middle catchment in the two-cluster
solution, and in all three cluster derived classifications some samples
originally classified as ironstone are not included. In addition to the
ironstone dominated cluster, the three-cluster solution divides themid-
dle and upper catchment into two sources which appear unrelated to
geology. However, it is of note that cluster 2 contains most channel
bank samples in the lower half of the catchment and cluster 3 contains
ple and the mean of all sediment samples for all tracers.
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most channel bank samples in the upper catchment. The four-cluster
classification is similar to the three-cluster solution; however, it iden-
tifies an additional small source cluster with its samples primarily lo-
cated in the centre of the catchment.

4.2. Misclassified samples

Sample S1 (sandstone) was identified as potentially misclassified
and was a better fit to the ironstone source group in both of the
geology-based source classifications (Fig. 5). This sample was, however,
distant from areas of ironstonewithin the catchment, so it was removed
from further use. In both source classifications, the Ironstone samples
I18 and I19were identified as a better fit as sandstone, clay or limestone
samples. As these samples were on the boundary of the two geologies,
and likely represented topsoil properties not reflecting the ironstone
bedrock shown on the geology map, both were reclassified. There
were a number of potentially misclassified samples between the sand-
stone group and clays, limestone and channel banks group in geology
classification 2. These were, however, judged to reflect poor source dis-
crimination and therefore these were not reclassified.

4.3. Summary statistics and variability ratios

Mean variability ratios for all pairs of all tracers were 2.1 for the two-
cluster classification, 3.8 for the three-cluster classification, 4.6 for the
four-cluster classification, 3.1 for geology classification 1 and 2.5 for
Fig. 8. Mean percentage differences between each source sample
geology classification 2 (Table 2). Both two source group solutions had
lowvariability ratioswith the geology-based Classification 1 performing
slightly better than the two-cluster classification. Geology classification
2 also had low variability ratios, which likely reflected the limited dis-
crimination between the sandstone group and the clay, limestone and
channel banks group. Most tracers passed the required mean ratio of 1
and maximum ratio of 2 thresholds in all five source classifications.

4.4. Bi-plot conservatism testing

Most of themineralmagnetic tracerswere significantly correlatedwith
each other (p b 0.05; r2 N 0.8), andmost of the colour traces were also sig-
nificantly correlated (Fig. 6). There were no significant correlations be-
tween individual magnetic and colour tracers. Most tracers in the
sediments followed the relationships observed in the sources apart from
samples Bed 3 and 5. Sample Bed 5 was previously identified as having a
number of colour tracers which fell outside of the minimum-maximum
range found in the source samples, and SIRM and IRM-100 in sample
Bed3werehigh. Therefore, it is likely thatmost of the tracers used are con-
servative in four of the six samples but the results for samples Bed 3 and 5
should be carefully evaluated to identify if they are likely to be reliable.

4.5. Range test

All tracers passed the range test in all source groups by exceeding
the 40% of sediment samples falling between the highest source group
and the mean of all sediment samples for individual tracers.



Table 5
The optimum composite fingerprints identified by the LDA.

Basic

Two-cluster B, HI, RI
Three-cluster HI, SIRM, BackIRM, G, HRGB
Four-cluster RI, SIRM, BackIRM, G, HRGB, R
Geology classification
1

SIRM, BackIRM, HRGB, SI, CI

Geology classification
2

B, HI, RI, SIRM, BackIRM, G, HRGB, SI, CI, χlf, χfd, χARM,
SRGB

Conservative

Two-cluster B, HI, RI, G, HRGB, SI, CI, IRGB
Three-cluster B, HI, RI, SIRM, BackIRM, G, HRGB, SI, CI, χlf, χfd, χARM, SRGB,

IRGB, HIRM
Four-cluster B, HI, RI, SIRM, BackIRM, G, HRGB, R, SI, CI, χlf, χfd, χARM,

SRGB, IRGB, HIRM
Geology
classification 1

B, RI, SIRM, BackIRM, HRGB, SI, CI, χlf, χfd, χARM, SRGB, HIRM

Geology
classification 2

B, HI, RI, SIRM, BackIRM, G, HRGB, SI, CI, χlf, χfd, χARM, SRGB,
IRGB, HIRM

High variability

Two-cluster B, RI, HRGB
Three-cluster RI, BackIRM, G, CI, χlf, χfd
Four-cluster B, RI, BackIRM, G, HRGB, χfd
Geology classification 1 BackIRM, SI, χfd, χARM
Geology classification 2 B, HI, RI, SIRM, BackIRM, χlf, χfd, χARM
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median + one MAD to the lowest source group median – one MAD
range for each tracer (Table 3). Colour tracers again performed poorly
with sample Bed 5, andmagnetic tracers performed poorly with sample
Bed 3. The magnetic tracers χlf, χfd, χARM as well as SRGB, performed
best with a total of 97–100% of sediment samples falling within the re-
quired range. Blue, SRGB and HRGB performedworst with only 70.2% of
samples falling within the required ranges. Tracer values in most sedi-
ment samples fell within the full minimum – maximum range in the
source groups. Exceptions were BackIRM for sample Bed 3, and R, G,
HRGB, IRGB for sample Bed 5. The 80% pass rate thresholdwas exceeded
by all tracers.

4.6. Mapped differences between sources and sediments

Mapping themean percentage difference between all tracer concen-
trations of each source sample and the mean for all sediment samples
identified that the ironstone source samples in the lower catchment
are very dissimilar to the sampled sediments (Fig. 7). The samples in
the middle and upper catchment and the channel bank samples in the
lower catchment have the most comparable properties to the sampled
sediments. However, there is some variability within the middle to
upper catchment, with some samples being more dissimilar to the sed-
iments than others.

When examining individual tracers, χARMwasmost effective at iso-
lating ironstone source samples but showed little variation in the source
samples retrieved from the middle and upper catchment (Fig. 8).
BackIRM has more variability in the middle and upper catchment and
is therefore likely to discriminate sources other than ironstone topsoils.
Similarly, Blue is able to differentiate between samples throughout the
entire catchment, but with a different trend to χARM and with smaller
percentage differences. Unlike the other tracers, Red is comparable in al-
most all sources and sediments explaining its poor variability ratios. The
other tracers showed comparable trends to one of the four examples
presented.

4.7. Source discrimination

Therewere generally strong correlations between all colour aswell as
all magnetic tracers, resulting in comparable percentile distributions for
each tracer type (Fig. S1). Therefore, only results for one magnetic and
one colour tracer are presented. With the mineral magnetic tracers,
there was generally a large difference between source groups/clusters
representing ironstone and the other source groups, but non-ironstone
sources were poorly separated. Colour tracers separated the non-
ironstone sourcesmore effectively; however, all tracers placed the source
groups into the same highest to lowest order, suggesting that problems of
equifinality may be present in the final outputs. SIRM and BackIRMwere
forced into the basic LDA composite fingerprints for three and four cluster
source classifications, as an initial runof the SIFT software identifiedprob-
lems associated with equifinality were present where magnetic tracers
were under represented. HRGB was also forced into each composite fin-
gerprint as the best colour discriminator.

The stepwise LDA identified composite fingerprints able to achieve
good source discrimination (N80%) for most of the five source classifica-
tions and composite fingerprint types (Table 4). The one poor discrimi-
nator was the high variability fingerprint for source Classification 2. It is
of note that only colour tracers passed the range test for the two-cluster
classification and therefore no magnetic tracers are present in its
Table 4
The percentage of source samples correctly classified into their respective groups by optimum

Signature Two-cluster Three-cluster Four

Basic 90.2 89.6 89.6
Conservative 95.9 91 89.3
High variability 90.1 90.5 87.3
composite fingerprints (Table 5). As all tracers passed the bi-plot con-
servatism test all tracers were included in the conservative fingerprints
making these the largest (Table 5).

4.8. Bi-plots of sources and sediments

Only plots for the basic composite fingerprints are shown as all three
fingerprints generally produced a similar plot for each source classifica-
tion (Fig. 9); however, all plots are provided in the online Supplemen-
tary information (Fig. S2). As only two source groups are present in
the two-cluster and Geology classification 1 there is only a single DF.
For the other classifications the two largest DFs are shown.

The two-cluster classification plot indicates that Cluster 2, which is
primarily composed of non-ironstone sources, is likely to dominate con-
tributions to the bed sediment samples. Reasonable discrimination be-
tween the two sources is present, with only one source sample
overlapping the two clusters. The three-cluster solution also shows
good discrimination. DF1 linearly discriminates between all three clus-
ters and DF2 provides the separation of clusters 1 and 3, and cluster 2,
which is necessary to avoid equifinality related uncertainties. However,
DF2 represents only 8.79–9.13% of the total discriminatory power. A
mixture of clusters 2 and 3 likely dominates contributions to three of
the sediment samples, and cluster 3 appears to dominate contributions
to two samples. For the four-cluster solution, clusters 1 and 2 appear to
dominate contributions to three samples, and inputs from cluster 4
dominate contributions to two of the samples. DF1 is again able to dis-
criminate linearly between the four clusters. DF2 representing 20% of
total discrimination, discriminates clusters 1 and 4 from clusters 2 and
3. Discrimination between clusters 2 and 3 is limited to a small amount
by DF1, suggesting that apportionment of contributions from these
sources may have high associated uncertainties.
composite fingerprints selected by the stepwise LDA.

-cluster Geology classification 1 Geology classification 2

97.6 83.8
96.6 82
97.1 74.6



Fig. 9. Bi-plots of the two largest discriminant functions for the source groups and sediment samples with the final composite fingerprints for each source classification.
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Geology classification 1, with two source groups, shows good dis-
crimination and sediment provenance dominated by non-ironstone
sources. Geology classification 2 shows notably poorer discrimination
between the source groupswhen compared to the other source classifi-
cations. Discrimination between the sandstone topsoil and limestone,
clays and channel banks group is poor, and is only provided by DF2,
which accounts for ~5% of total discriminatory power. A mixture be-
tween sandstone soils and limestone, clays and channel banks appears
to dominate contributions to the sediment. Samples Bed 3 and Bed 5
fall outside of the range of the source samples in some plots, confirming
the non-conservatism of magnetic and colour tracers in these samples.

4.9. Virtual mixtures

Virtual mixture apportionment with the two-cluster classification
produced the correct composition of themixtures (Fig. S3). Uncertainties
for the mixtures of 100% of each cluster were low; however, with the
equal proportions of each cluster they were high. The artificial mixtures
consisting of random percentiles overestimated contributions from clus-
ter 2 by 10–20% (Fig. S3). Source apportionment for the three-cluster so-
lution was again generally accurate but with a higher associated range of
uncertainty. Uncertainty was especially high when apportioning a 100%
contribution from cluster 2, with significant estimated contributions
from cluster 3. The mixtures of equal proportions of each cluster were
again generally accurately apportioned, but with slight (~5%) over and
underestimated contributions from clusters 2 and 3, depending upon
which of the three fingerprints were used (Fig. S3).

With the four-cluster classification, the un-mixing model correctly
identified contributions from clusters 3 and 4. However, when appor-
tioning contributions from clusters 1 and 2, uncertainties were high
with significant overlap between the probability density functions
(pdfs) for the two sources. It is therefore apparent that the three-
cluster solution is the optimum for this specific dataset, as the four-
cluster solution starts to exceed the discriminatory ability of the tracers.



Table 6
The results of the manually selected 3× weightings on virtual mixture source apportionment.

Tracers
weighted

Improved basic fingerprint
apportionment

Improved conservative fingerprint
apportionment

Improved high variability fingerprint
apportionment

Two-cluster RI Yes Yes Yes
Three-cluster HRGB, CI Yes Yes No
Four-cluster χARM, BackIRM No No No
Geology classification 1 BackIRM Yes Yes No
Geology classification 2 BackIRM, G No – –
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For the geology-based classifications, Classification 1 produced compa-
rable results to the two-cluster groups but with a higher range of uncer-
tainty. Source apportionment with all three fingerprints for geology-
based Classification 2 was unsuccessful. A 100% contribution from
clays, limestone and channel banks was not represented the un-
mixing model results and equal proportions of the mixtures produced
an output heavily biased towards high sandstone topsoil contributions.

4.10. Weightings

The tracer variability ratio weighting had little effect on the virtual
mixture model pdf outputs and therefore was not used for sediment
Fig. 10. Estimated bed sediment provenance using the two-cluster source
source apportionment (Table 6). The manual weightings based upon
the tracers most strongly correlated with DF2, the percentile distribu-
tions of each tracer in each source group classification and the mapped
differences between sources and sediments were more effective
(Table 6).

4.11. Goodness-of-fit

For the cluster analysis derived source classifications, N50% of model
iterations exceeded the 0.35 GOF threshold (Fig. S5). The exceptionwas
sample Bed 5,where in all but four of themodels run, all iterations failed
to achieve a GOF higher than 0.35 and therefore were rejected. The
classification; median with 25th and 75th percentile uncertainties.
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mean GOF of the model iterations passing the threshold was high
(N0.75). Only the basic Geology classification 2 fingerprint produced a
poorer (~0.6) result. Due to the poor performance of Geology classifica-
tion 2, its results were not considered for further analysis.

4.12. Sediment provenance

The apportionment results (Fig. 10) produced for the two-cluster
source classifications suggested comparable contributions from cluster 1
and cluster 2 for samples in the lower half of the catchment (Bed 1–3),
suggesting that localised topsoil inputs from cluster 1 are of importance
here. Cluster 1 is far less important in the upper catchment samples
(4–6), which is likely due to the lack of area covered by this cluster in
the upper catchment. The high cluster 1 contributions to sample Bed 6
suggest significant channel bank inputs. All three composite fingerprints
produced similar results although contributions varied by ~20%.

When using the three-cluster classification, the uncertainties associ-
ated with conservative and high variability fingerprints were high for
sample Bed 2 (Fig. 11). Thiswas primarily because of the sediment sam-
ple falling between the two sources in the bi-plots, meaning that multi-
plemodel solutions could be ‘mathematically correct’. As such, the basic
Fig. 11. Estimated bed sediment provenance using the three-cluster so
fingerprint is likely the only result presented that provides information
on the provenance of this sample. The presence of χlf, χfd, χARM and
BackIRM in the conservative and high variability fingerprints, but not
basic fingerprints, is the likely cause of this high uncertainty as these
tracers have no ability to discriminate between clusters 2 and 3 and
likely dilute the more effective colour tracers.

Cluster 1 represents primarily Ironstone samples in the lower catch-
ment and all models suggest low contributions from this source. The
highest contributions from ironstone samples are to sample Bed 3 sug-
gesting that localised inputs from ironstone outcrops in channel banks
or topsoil close to this sampling location many be of importance. This
finding builds upon that identified for the two-cluster analysis, by sug-
gesting that topsoil inputs in the lower catchment are primarily from
soils which are not over the ironstone geology. There is a large discrep-
ancy between the results for sample Bed 3with the three compositefin-
gerprints. The basic fingerprint estimated a higher contribution from
cluster 1 than the other fingerprints. This is likely due to the probable
non-conservatism of magnetic tracers (SIRM and BackIRM). Sample
Bed 4 is entirely dominated by cluster 2 inputs. No result was produced
for sample 5 other than using the high variability fingerprint resulted in
very high uncertainty. For sample Bed 6, cluster 2 is predominantly
urce groups; median with 25th and 75th percentile uncertainties.
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made up of channel bank samples and cluster 3 is composed of topsoils;
therefore, the results suggest comparable inputs from both sources.

For the four-cluster source classifications (Fig. 12), there were some
large discrepancies between the results of the two composite finger-
prints which passed the virtual mixture and GOF tests. For sample Bed
1, the basic fingerprint estimated largest contributions from cluster 1
and small contributions from the other clusters, and the high variability
fingerprint identified equal contributions from clusters 1 and 2 and little
contribution from clusters 3 and 4, albeit with a high range of uncer-
tainty. The one resultwith an acceptable range of uncertainty for sample
Bed 2 (basic fingerprint) identified a similar provenance to sample Bed
1, with clusters 1 and 2 dominating. As with the three cluster classifica-
tions (Fig. 11), this suggests little inputs from ironstone topsoils which
dominate the membership of cluster 3.
Fig. 12. Estimated bed sediment provenance using the four-clust
For Geology classification 1 (Fig. 13), the conservative and high vari-
ability fingerprints estimated a higher ironstone contributionwhen com-
pared to the basic fingerprint. The non-ironstone source group
dominated contributions to all sediment samples for the conservative
and high variability fingerprints, with only a small ironstone contribution
to sample bed 3. The dominance of ironstone contributions to sample Bed
3when using the basic composite fingerprint is likely caused by the non-
conservative SIRM and BackIRM making up 40% of the tracers used.

4.13. Mapped sediment provenance

The maps of the combined median contribution to the sediment
samples estimated by the reliable models (Fig. 14) provide a qualitative
summary of the overall results. The results for the conservative andhigh
er source groups; median with 25th and 75th uncertainties.
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variability fingerprints for the four-cluster solution, the basic Geology
classification 1 fingerprint and all Geology classification 2 fingerprints
were not included in this summary as their associated uncertainties
were judged to be too high. For sample Bed 1, low contributions from
ironstone samples and comparable contributions from elsewhere in
the catchment were estimated. The results for sample Bed 2, suggested
roughly equal inputs from across the catchment, apart from nearby
ironstone but with a smaller input from a patch of samples in the centre
of the catchment over the sandstone geology. Sample Bed 3, was esti-
mated to have low contributions from the entire catchment; although
as previously identified, SIRM and BackIRM are likely non-
conservative, and therefore the map may not accurately reflect actual
sediment provenance. It is also possible that highly localised ironstone
inputs dominate contributions to this sample causing the abnormality
in tracer concentrations. Samples Bed 4 and 5 suggested that topsoil
sources dominate in the upper catchment; however, high contributions
are also likely from a few channel bank samples. The results for sample
Bed 6 suggested contributions from both banks and surface sources
Fig. 13. Estimated bed sediment provenance using the Classificatio
with slightly higher inputs from surface sources. Table 7 summarises
the key results from each section.

5. Discussion

Numerous uncertainties were associated with this sediment finger-
printing study and these are common to applications of the approach.
However, by incorporating within SIFT the use of conservatism tests,
multiple source group classifications, virtualmixtures, bi-plots of source
and sediment samples, multiple composite fingerprints and data visual-
isation, the modelling results can be interpreted in context of these
uncertainties.

When considering the use of multiple different source group classi-
fications, the a-priori source groups proved of variable use as part of this
study. Using Geology classification 1, it was determined that ironstone
topsoils were minor sediment sources; however, one composite finger-
print suggested higher contributions than the others adding uncertainty
to the overall result. Geology classification 1 also only had ironstone and
n 1 source groups; median with 25th and 75th uncertainties.



Fig. 14.Mapped mean contribution of each source sample to the bed sediment samples predicted by the un-mixing models.
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non-ironstone sources as different groups, meaning that results do not
provide relevant information about source provenance in the upper
catchment where ironstone was not present. Geology classification 2
failed to produce models able to apportion accurately the composition
of the virtual mixtures, despite the LDA producing theoretically viable
fingerprints. Poor discrimination between all non-ironstone sources
using the available tracers was the cause of this result. The cluster anal-
ysis derived source groups also produced variable results. As with
geology-based Classification 1, the two-cluster classification separated
ironstone (cluster 1) from non-ironstone sources (cluster 2), but with
some added and subtracted samples from each group. The results of
the un-mixingmodels were more constant as within-source group var-
iability was lower. The consistency may, however, have been due to all
magnetic tracers failing to achieve a maximum variability ratio N2,
resulting in only colour tracers being used.

The bi-plot and range tests indicated that both colour and magnetic
tracers were non-conservative in some sediment samples. The use of
H2O2 and the tracing of a narrow particle size range were aimed at re-
ducing the potential for organic matter and particle size related uncer-
tainties but may have been insufficient to achieve this aim. It was also
observed that vegetation within the channel trapped large quantities
of sediment in anoxic conditionswhichmayhave caused thedissolution
of minerals within the sediment, producing a source of uncertainty the
sample preparation methodology was unable to account for. The use of
the bi-plot and range tests were therefore important so that the tracing
results could be interpreted in the context of these uncertainties.

The three-cluster Classification appears to be the optimal combina-
tion of highest variability ratios, accurate apportionment of the virtual
mixtures, high model GOF, and consistency between the results of dif-
ferent compositefingerprints,whilst dividing the catchment into source
groups sufficiently spatially-explicit for catchment management pur-
poseswhichwere predominantly ironstone toposils (cluster 1) and spa-
tially distinct patches of topsoils and channel banks (clusters 2 and 3).
The four-cluster source groups resulted in lower variability ratios than
the three-cluster solution and, as a result, a larger range of uncertainty
in virtual mixture and sediment source apportionment and poorer con-
sistency between the results derived using different composite finger-
prints was encountered. As the magnetic and colour tracers used were
mostly correlated with other tracers of the same type, only two major
discriminant functions were present using the available tracers and, as
a result, it is not surprising that effective source discriminationwas lim-
ited to three source groups. This was likely a result of equifinality where
multiple model solutions are mathematically correct using the limited
DFs (Rowan et al., 2000). The four-cluster groups were also difficult to
interpret for catchmentmanagement purposeswith only cluster 1 (pre-
dominantly ironstone) representing a distinct catchment characteristic,
although there was some spatial grouping of source samples belonging
to the other three clusters.

A limitationwith the cluster analysis derived source groupswas that
the sampling campaign did not effectively cover the entire catchment at
a high resolution. Therefore, there is some difficulty in interpreting
which areas of the catchment should be classified into each cluster
group so that catchment management interventions can be targeted.
A stratified sampling campaignwhich ensures all areas of the catchment
are sampled would be required to overcome this limitation. Whilst this
is achievable in small catchments, in larger basins, such a sampling
schemewould require significantlymore source samples to be collected
than when representing sources by land use or geology.

The identification of misclassified source samples as an initial stage
of the methodology appears a useful addition when a-priori source
groups are used, allowing for an increase in discrimination and decrease
in within-source variability. However, the need for personal judgement
as towhich samples aremisclassified potentially introduces uncertainty
if poorly discriminated samples are mistakenly misclassified. Therefore,
it is recommended that reclassification only be used where robust justi-
fication exists for each specific sample. Scale dependency can be a large



Table 7
A summary of key results.

Two-cluster Three-cluster Four-cluster Geology classification 1 Geology classification 2

Sediment sample
screening

For sample Bed 5, R, G, HRGB and IRGB fell outside of the range of values found in the source samples. For sample Bed 3 Back IRM fell outside of this
range.

Source group
classification

Cluster 1: Predominantly
contained lower catchment
topsoils, Cluster 2: Lower
catchment channel banks
and upper catchment
topsoils.

Cluster 1: Predominantly
ironstone samples, Clusters 2
and 3: divide the middle and
upper catchment into two
sources which appear
unrelated to geology but
appear spatially grouped.

Comparable to the
three-cluster solution,
however, it identified an
additional cluster of only
eight samples with its
samples primarily located in
the centre of the catchment.

Group 1: Ironstone and
Group 2: Sandstone,
Limestone, Clays and
Channel Banks.

Group 1: Ironstone, Group
2: Sandstone, and Group 3:
Limestone, Clays and
Channel Banks.

Misclassified samples Sample S1 (sandstone) was identified as potentially
misclassified and was a better fit to the ironstone group
so was deleted as it did not fall close to the area of the
catchment over ironstone, the Ironstone samples I18
and I19 were also identified as potentially misclassified
and fit better as sandstone, clay or limestone samples
and reclassified as they were close to the boundary of
two geologies

Mean variability ratios 2.1 3.8 4.6 3.1 2.5
Maximum variability
ratio

HRGB, 3.7 χlfd, 11.86 χlfd, 15.71 χlfd, 6.63 χlfd, 7.81

Tracers failing to
achieve the
variability ratio
threshold values

χlf, χlfd, χlARM, SIRM,
BackIRM, HIRM, R

R None R, IRGB R

Bi-plot conservatism
testing

For sample Bed 5 most colour tracers fall outside of the relationships found in the source samples. For sample Bed 3 SIRM and BackIRM fell outside of
the relationships in the source samples.

Range test All tracers passed the range test for source classifications by tracer values in 40% of sediment samples falling within the median +/− one MAD range
of the source groups and in 80% of sediment samples falling within the minimum to maximum range of the sources.

Mapped differences
between source and
sediment tracer
concentrations

Ironstone source samples in the lower catchment are very dissimilar to the mean tracer values of the sampled sediments, BackIRM has more
variability in the middle and upper catchment whilst XARM shows little variability, Blue is able to differentiate between samples throughout the
entire catchment, but with a different trend to χARM

Distributions of tracers
in source groups

With the mineral magnetic tracers there was a large difference between the percentile distribution of values in the source groups/clusters
representing ironstone and the other source groups. In contrast non-ironstone sources were poorly separated. Colour tracers separated the
non ironstone sources more effectively; however, all tracers placed the source groups into the same highest to lowest value order, suggesting that
problems of equifinality may be present in model outputs when a large number of source groups are used.

Source discrimination
(percent correctly
classified) (basic,
conservative, high
variability
fingerprints)

90.2%, 95.9%, 90.1% (only
contains colour tracers)

89.6%, 91%, 90.5% 89.6%, 89.3%, 87.3% 97.6%, 96.6%, 97.1% 83.8%, 82%, 74.6%

Bi-plots of sources and
sediments

Cluster 2 likely dominates
contributions to the bed
sediment, discrimination
appears good.

A combination of clusters 2
and 3 likely dominates
contributions to three of the
sediment samples and
cluster 3 appears to
dominate contributions to
two samples. Discrimination
is good however,
discrimination between
clusters 2 and 3 is only
achieved using DF2, which
represents 8.79–9.13% of the
total discriminatory power

Clusters 1 and 2 appear to
dominate contributions to
three samples and inputs
from cluster 4 dominate
contributions to two of the
samples. DF2 representing
20% of total discrimination,
is able to discriminate
clusters 1 and 4 from
clusters 2 and 3.
Discrimination between
clusters 2 and 3 is limited to
a small amount by DF1,
therefore equifinality related
uncertainties are likely in
model outputs.

Sediment provenance is
dominated by
non ironstone sources
and source
discrimination is good.

Ironstone contributes
significantly to one
sediment sample. The other
sediment samples are likely
composed of a combination
of sandstone, limestone
clays and channel banks.
Discrimination between
ironstone topsoils and other
sources is good,
discrimination between the
sandstone topsoil and
limestone, clays and channel
banks group is poor and is
only provided by DF2, which
accounts for ~5% of total
discriminatory power.

Virtual mixture source
apportionment

Un-mixing models produced
the correct provenance of
the virtual mixtures.
Uncertainties for the
mixtures of 100% of each
cluster were low; however,
with the equal proportions
of each cluster they were
high.

Mixture apportionment was
generally accurate but with a
higher associated range of
uncertainty than the
two-cluster classification.
Uncertainty was especially
high when apportioning a
100% contribution from
cluster 2, with significant
estimated contributions
from cluster 3 present.

The un-mixing models
correctly identified
contributions from clusters 3
and 4. However, when
apportioning contributions
from clusters 1 and 2
uncertainties were high, with
significant overlap between
the probability density
functions for the two sources.
The conservative fingerprint
failed to identify Cluster 1 as
the dominant source when
100% of the mixture was
composed of this cluster.

Produced comparable
results to the
two-cluster groups but
with a higher range of
uncertainty.

Source apportionment with
all three fingerprints for
geology-based Classification
2 was unsuccessful. A 100%
contribution from clays,
limestone and channel
banks was not represented
in the un-mixing model
results and a mixture of
equal proportions of the
sources produced an output
heavily biased towards high
sandstone topsoil
contributions.

Weightings A weighting of RI increased A weighting of HRGB and CI No composite fingerprint A weighting of BackIRM No composite fingerprint
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Table 7 (continued)

Two-cluster Three-cluster Four-cluster Geology classification 1 Geology classification 2

the accuracy of mixture
apportionment for all three
fingerprints.

improved mixture
apportionment with the
Basic and Conservative
fingerprints.

improved mixture
apportionment. Use of the
Conservative fingerprint was
discontinued due to its poor
performance.

increased the accuracy
of mixture
apportionment for the
Basic and Conservative
fingerprints.

improved mixture
apportionment. Due to the
poor performance of
Classification 2, its results
were not considered for
further analysis.

Goodness of fit For the cluster analysis derived source classifications, N50% of model iterations exceeded the 0.35 GOF threshold. With the exception of those for
sample Bed 5 where in all but four of the models run all iterations failed to achieve a GOF higher than 0.35 and therefore were rejected. The mean GOF
of the model iterations passing the threshold was high (N0.75). GOF for geology classification 1 was generally lower than for the cluster-based
classifications, the conservative fingerprint for sample Bed 5 had no iterations which exceeded the 0.35 threshold.

Sediment provenance For sediment samples in the
lower half of the catchment
and sample Bed 6 in the
upper catchment similar
contributions were
estimated to originate from
cluster 1 and cluster 2.
Cluster 2 dominated
contributions to samples Bed
4 and 5 in the middle
catchment. All three
composite fingerprints
produced similar results
although contributions
varied by ~20%.

Contributions from cluster 1
are low in all models apart
from sample Bed 3 with the
basic fingerprint. Topsoil
inputs in the lower
catchment are primarily
from areas which are not
over the ironstone geology.
Sediment contributions to
sample Bed 3 likely originate
from localised channel bank
inputs. Bed 3 basic
fingerprint estimates a much
higher contribution from
cluster 1 than the other
fingerprints, but consistency
is reasonable for all other
samples. Uncertainties
associated with conservative
and high variability
fingerprints were high for
sample Bed 2. Both clusters 2
and 3 are important
sediment sources.

There were some large
discrepancies between the
results of the two composite
fingerprints used. Clusters 2
and 3 appear to dominate
contributions in to samples
Bed 1, however, the basic
fingerprint estimated high
contributions from cluster 1.
For samples Bed 2, 3, and 5
there was either very poor
consistency between the
composite fingerprints or no
model with an acceptable
GOF could be produced. For
sample Bed 4 cluster 4 which
covers a small area in the
centre of the catchment
dominates contributions,
and for Bed 6 cluster 2
dominates.

Ironstone topsoils a
minor source in all but
sample Bed 3. The basic
fingerprint estimates a
larger contribution from
ironstone than the other
fingerprints.

No result produced
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source of uncertainty in predicted source apportionment and is likely to
depend on the specific nature of sediment delivery and the variability in
source properties in a catchment (Biddulph et al., 2017). Sample Bed 3
may possibly have originated primarily from only a local source such
as an ironstone outcrop in the channel banks, explaining its very high
magnetic properties and highlighting the need to examine point source
samples close to the retrieved sediment samples. The measured χlf
(1.26) and SIRM (28.79) of sample Bed 3 are comparable to the iron-
stone topsoil samples reported by Pulley (2014); χlf (2.63) SIRM
(27.77). Sample 5 was identified by themass conservation tests as hav-
ing non-conservative colour. It is likely that reducing anoxic conditions
were present on the bed causing the dissolution of the light absorbing
minerals in the sediment. The methodology used was not able to miti-
gate these changes but could limit the potential for erroneous conclu-
sions to be derived using this sample.

The current SIFT software is only useful with discrete tracers. Some
researchers have used alternative spectra-based fingerprints.
Poulenard et al. (2009), for example, used infrared spectrometry and
partial least squares regression, whereby the whole spectrum was
used instead of selecting discrete tracers. For NIR spectra to be used in
SIFT individual discrete peaks must be identified (Collins et al., 2013).

Overall, the sources of bed sediment appear localised to each bed
sediment sampling location. Therefore, the results of this work
would best be combined with an analysis of the quantities of bed
sediment along reaches to identify where bed sedimentation is
most substantial so that management can be targeted accordingly.
It remains important to include multiple channel sampling locations
in a source fingerprinting study as a means of addressing the scale
dependency problem. This result suggests that sediment is likely de-
posited onto channel beds during periods of low flow from well-
connected sources, rather than being deposited during the falling
limb of a high flow event following mobilisation and delivery from
distal sources.
6. Conclusions

This trial of the multiple unmixing model and uncertainty assess-
ment approach used in the SIFT software identified that some un-
mixing model configurations produced highly uncertain results, and
therefore, its use of multiple different model configurations and assess-
mentsmay be essential to produce robust results for some datasets. The
current version of SIFT can be accessed from the Rothamnsted Research
website at: www.rothamsted.ac.uk/facilities-and-
resources#DATAREPOSITORIESMODELSANDSOFTWARE-3. An image of
each page of SIFT (v1.0) is provided in the online supplementary
material.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.04.126.
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