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ARTICLE INFO ABSTRACT

Keywords: The insecticidal properties of many anthelmintics pose a risk to dung fauna through the effects of drug residues
Anthelmintic resistance in dung on the activity, oviposition and development of dung-dwelling invertebrates. Reductions in dung fauna
Heh’ni"th' ) numbers can inhibit dung degradation, which may impact biodiversity and nutrient cycling on farms. A simu-
Antiparasitic lation model was created to predict the impact of antiparasitic drugs on cattle dung fauna, and calibrated using
;Z;ﬁ;:d selective treatment published data on the dung-breeding fly Scathophaga stercoraria. This model was then tested under different
Agriculture effective dung drug concentrations (EC) and proportions of treated cattle (PT) to determine the impact under
Environment different application regimens. EC accounted for 12.9% of the observed variation in S. stercoraria population

size, whilst PT accounted for 54.9%. The model outputs indicate that the tendency within veterinary medicine
for targeted selective treatments (TST), in order to attenuate selection for drug resistance in parasite populations,
will decrease the negative impacts of treatments on dung fauna populations by providing population refugia.
This provides novel evidence for the benefits of TST regimens on local food webs, relative to whole-herd
treatments. The model outputs were used to create a risk graph for stakeholders to use to estimate risk of

anthelminthic toxicity to dung fauna.

1. Introduction

Anthelmintic drugs are widely and routinely administered to
grazing livestock to control gastrointestinal nematodes and other
parasites. Anthelmintics are typically not fully metabolized within the
host animal and residues of the drugs are often excreted in dung
(McKellar et al., 1993) (and urine (McKellar, 1997)) and can therefore
exert non-target effects on invertebrate fauna which spend part, or all,
of their life cycle in dung (Floate, 1998a, 1998b; Gover and Strong,
1995; Madsen et al., 1990; Sommer et al., 1992; Sutton et al., 2014) and
also on soil invertebrates (Scheffczyk et al., 2016). Such effects include
inhibited motility, oviposition, emergence, and reduced dung pat co-
lonisation (Floate, 1998a, 1998b; Gover and Strong, 1995; Suarez et al.,
2003). Invertebrate dung fauna significantly contribute to the de-
gradation of dung through physical processes and therefore reductions
in the activity and populations of degradative fauna can to slow dung
degradation (Madsen et al., 1990; Wall and Strong, 1987) with poten-
tial knock-on effects on important local processes., including local
ecology (Beynon, 2012; Strong, 1993; et al., 2012; Wall and Beynon,
2012) and epidemiology. In recent years, the mounting resistance of
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gastrointestinal parasites of domestic livestock to anthelmintic drugs
has led to a shift away from whole-herd treatments, and re-
commendations for targeted selected treatment (TST) (Charlier et al.,
2014) of only part of the herd. This strategy aims to generate refugia
from drug exposure among parasite populations, slowing the develop-
ment of resistance. In principle, refugia from drug residues ought also to
be generated for dung fauna, supporting their populations; however, to
date no systematic attempts have been made to evaluate this possibility.

The ability to assess and predict the impact of anthelmintics and
other routine veterinary medicines on the wider environment is es-
sential for informed drug development and policy in agriculture. In
particular, parasite control practices that slow the development of re-
sistance to commonly administered anthelmintics are essential to sus-
tainable livestock production systems. However, the scale and com-
plexity of the drug-dung-fauna system is challenging to observe and
quantify in vivo and is difficult to fully represent under controlled la-
boratory conditions. Modelling techniques are the best alternatives to
address these issues by allowing for the manipulation of a wide range of
variables specific to individual field scenarios, and rapid assessments of
the potential impacts of new parasite control and other management
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practices on dung fauna. Boxall et al. (2007) developed a screening
index for assessing the impact of veterinary medicines on dung flies.
The index was simple and allowed for estimates to be calculated with
relatively small amounts of data, allowing for rapid screening of mul-
tiple drugs. The index assessed impact by multiplying three variables:
proportion of cattle treated, proportion of time of faunal contact with
dung, and dung toxicity. A central assumption was that the three
variables are equally weighted, but this assumption inadvertently cre-
ates a potential mathematical ceiling to drug toxicity. Vale and Grant
(2002) took a different approach in their development of a model to
assess the impact of insecticide-contaminated dung on dung fauna. The
model considered a broad and novel range of variables including the
response to distinct adverse ecological events on insect life cycle stages
and dung-insect interactions which aided the understanding of the
importance of refugia for the ecology different species of invertebrates.

Here, we test the hypothesis that the proportion of cattle treated
(PT) with anthelmintics has a greater influence on Scathophaga ster-
coraria populations than the strength of drug residue in dung (EC). We
build on previous theoretical and modelling approaches to create a new
modelling approach to simulate the drug-dung-fauna system and eval-
uate the potential impacts of antiparasitic drug use in grazed cattle
production systems. We use the model to consider how varying treat-
ment regimens administered by veterinarians for the purpose of live-
stock health and welfare have non-target influences on dung in-
vertebrates, and to provide a risk graph to inform stakeholders in
sustainable livestock production systems.

2. Methods
2.1. Model description

A simulation model was created using NetLogo 5.0.4 (Wilensky,
1999) to estimate the impact of a hypothetical anthelmintic that ex-
pressed insecticidal properties when excreted in dung by cattle in a
grazed field, upon a model dung invertebrate. A 2-dimensional virtual
pasture system was created, occupied by a herd of cattle and a popu-
lation of the model invertebrate. All actions and interactions presented
were simulated hourly time-steps for each individual cattle or in-
vertebrate, as appropriate.

2.2. Model components

The model simulated the interaction between a model dung in-
vertebrate and cattle defecation behaviour, and the potential for in-
vertebrate survival to be changed by different concentrations of an-
thelmintic residues in the dung.

The model invertebrate was the yellow dung fly Scathophaga ster-
coraria. The model utilized published data (Table 1) to simulate the life
cycle of S. stercoraria in a temperate cattle grazing system. Scathophaga
stercoraria is a well-studied dung fauna species, for which detailed in-
formation on life cycle parameters is widely available. The species is
highly abundant across the northern hemisphere, and some of its life
cycle stages are dependent on dung.

The model cattle were based on published data on temperate
grazing commercial beef and dairy herds (Table 1). There were two
components to cattle behaviour: (1) defaecation frequency, and (2)
randomized movement across a field. The cattle were treated or un-
treated with a hypothetical anthelmintic, producing toxic or non-toxic
dung, respectively. The proportion of cattle treated (PT) ranged from 0
to 1 in increments of 0.1 and was specific as an independent variable in
each simulation,

The rate of defecation of model dung by the model cattle and its
mean carrying capacity for S. stercoraria was based on published data
for temperate commercial beef and dairy systems (Table 1). The model
dung were toxic or non-toxic. The strength of the toxicity, i.e. effective
concentration (EC) ranged from O to 1 in increments of 0.1 and was
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Table 1

Model variables and values used for simulations. Mean values are fixed constants other
than those with a standard deviation (S.D.) which were random variables within a
standard normal distribution generated by random number generator using NetLogo
5.0.4. Sources: !* Blanckenhorn, (1997), % Blanckenhorn et al. (2010), 3 Rombke et al.
(2009), * Martin et al. (2004), > Aland et al. (2002), & Gary et al. (1970), 7- Oudshoorn
et al. (2008), 8 Sahara et al. (1990), 9 Villettaz Robichaud et al. (2011), 10 Floate (1998),
11 Vale and Grant (2002), > Geiger (2010), '* Parker (1970).

Variable®""® Value
Dung fauna (S. stercoraria)

Adult life span (emergence to death)? 44 days
Juvenile period (egg to emergence)® 22 days
Female:male ratio® 1:1

Dung preference® 0

Progeny to reach adulthood* 10.8 (2.9)
Cattle and dung

Mean daily defecation rate (pats per day)>~° 11.2 (2.4)
Dung attractive period (with drug residue) to S. stercoraria®%!! 5 days
Dung attractive period (no drug residue) to S. stercoraria®'* 5 days
Mean dung pat carrying capacity for juveniles'? 4.3
Season length!® 6 months
Number of cattle 20

specific as an independent variable in each simulation. The dung be-
came unattractive for S. stercoraria regardless of toxicity after a simu-
lated 120 h.

A starting population of 100 individuals of S. stercoraria, covering a
random distribution of ages within typical life expectancy for S. ster-
coraria, were simultaneously introduced to the system. They actively
sought out cattle dung in order to produce off-spring with no preference
for toxic or non-toxic dung. Population fitness responses of the S. ster-
coraria to contact with toxic dung was based on the interaction between
PT and the specific EC.

Primary assumptions were:

(i) the model dung toxicity retained a constant toxicity for 120 h
(ii) there were no sub-lethal effects of the anthelmintics upon S. ster-
coraria
(iii) there were no other sources of mortality exist for S. stercoraria
other than toxicosis or exceedance of life span
(iv) the population of S. stercoraria is isolated.

No values or weightings of variables within the model were assumed
or given arbitrary values.

2.3. Application of modeling approach

The model was run 605 times. Each run simulated 4380h (6
months) using all combinations of 11 PT values and 11 EC values, to-
taling 121 unique sets of parameter values. There were five repeats of
each set, with variable outcomes depending on values simulated from
normal distributions: the mean of each set of repeats was used for
statistical analyses. The Anderson-Darling normality test was conducted
on residuals for the dependent variable of final population size at the
end of the simulated period to ensure appropriateness for parametric
testing. This was followed by Pearson’s correlation analyses of final
population size versus PT and EC. Multiple regression analyses were
then conducted to attribute how much of the variation in final popu-
lation size was due to PT and EC, respectively.

A number of individual paired simulations were run to evaluate the
index created by Boxall et al. (2007). These simulations were performed
in pairs in which the product of PT and EC were equal, but the in-
dividual values of PT and EC in each pair were not equal. To achieve
this the values for PT and EC of pair 1 were switched to form pair 2
(Table 2). For the Boxall et al. (2007) model to agree with the presented
model, there should be no significant different between pairs that meet
the aforementioned assumptions. Final population numbers from
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Table 2
Values of PT and EC for paired simulations in order to evaluate Boxall et al. (2007) model.

Group A Group B
Pair no. EC PT EC PT
1 0.0 1.0 1.0 0.0
2 0.1 0.9 0.9 0.1
3 0.2 0.8 0.8 0.2
4 0.3 0.7 0.7 0.3
5 0.4 0.6 0.6 0.4

simulations were then subject to the Paired T-test.

3. Results

The distribution of final population sizes across all simulations was
non-normal (Anderson-Darling, p = < 0.005). The data shows two
distinct groupings based on final population size, one at 0 and the other
in the region of 3100-4300 (Fig. 1). This latter group, the ‘maximum
fitness’ group, had a normal distribution (p = 0.383). Quartiles for the
maximum fitness group were measured as Q0 = 3259, Q1 = 3597,
Q2 = 3703, Q3 = 3798, Q4 = 4197. PT and EC combinations that
resulted in final populations of < QO, and therefore outside of this
group, were considered as high risk. Combinations that fell between QO
and Q1 were considered medium risk, and all over combinations re-
sulting in final populations > Q1 were considered low risk (Fig. 2).

In general, incremental increases in PT and EC at low levels had
little effect on final population size (no. of individuals), but a tipping
point was reached beyond which the population decreased ex-
ponentially (Table 3). Rising EC values from 0.0 to 0.5 brought about
gradual decreases in final population size; however, as EC exceeded 0.5
its effect on population size reduced. In contrast, rising PT values of
0.0-0.5 had little impact upon population sizes, but as PT exceeded 0.5
there was a rapid drop in population size.

The residuals of the complete data for all experimental runs were
normally distributed (as tested by Anderson-Darling test, p = 0.281)
and thus no transformation was required for parametric analyses. A
Pearson’s correlation analysis showed that final population size was
significantly correlated with PT (—0.694, p = < 0.001) and EC
(—0.336, p = < 0.001). A subsequent multiple regression calculated
the total variance of final population explained by PT and EC together,
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R?, to be 67.8% (p < 0.001). Further individual regressions showed
that PT explained 54.9% (p = < 0.001) and EC explained 12.9%
(p = < 0.001) of total variance in final population size.

The paired t-tests, for the purpose of evaluating Boxall et al., showed
a statistically significant intra-pair difference (t = 2.43, p = 0.023) and
therefore the Hy was rejected in favour of the H,, that there is an intra-
pair difference. That is: simulations of which the sum of PT and EC are
equal do not yield equal results.

4. Discussion

In this study, we used a novel simulation to test the hypothesis that
PT had a greater impact on the population size of S. stercoraria than EC.
The outcomes of 605 simulations of 121 parings of PT and EC indeed
indicate that this hypothesis can be accepted. The distribution of data
predicted that populations of S. stercoraria were generally resilient and
can maintain stable numbers up until a tipping point at which mortality
becomes probable. As such, our model develops the concept of the
screening level index (Boxall et al., 2007) through simulation modelling
using published data about key life cycle parameters that could strongly
influence drug-insect interactions. We propose that this new approach
provides a better justified mechanistic framework for impact assess-
ment, which will improve recommendations of use of veterinary med-
icines with consideration for livestock dung ecology and wider impacts
on the environment.

Cow pats in grazed systems without drug residues may provide an
important reservoir of biodiversity, allowing maintenance populations
of coprophagic fauna that are important for ecosystem services in-
cluding nutrient cycling, carbon cycling and soil quality, e.g. dung
beetles and insect larvae. Therefore, TST, as opposed to a whole-herd
treatment, is recommended to reduce the impacts of drug treatment on
local ecosystems, with additional economic benefits through reduced
inputs on-farm (Charlier et al., 2012), ecosystem service delivery, and
ensuring sustainable parasite control options in the longer term through
slowing of anthelmintic resistance. However, in our model, S. stercor-
aria populations were assumed to be isolated, but wider consideration
of the spatial variation in the local food web including the availability
of drug-free dung in the wider environment would more closely re-
present the complexity of farming systems.

Our model provides a framework that is adaptable to dung-breeding
insect species other than S. stercoraria. Its application to other target

Fig. 1. Distribution of final population sizes of S.
stercoraria from all (605) simulations of PT and EC
pairings.
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Fig. 2. Risk thresholds for the impact of anthelmintics on S. stercoraria. “Low Risk” refers to PT (proportion of treated cattle) and EC (effective concentration) combinations that result in
final populations exceeding Q1 of the maximum fitness group, “Medium Risk” to those falling between Q0 and Q1 and “High Risk” to those falling below QO.

species, however, would require further empirical information on the
toxicity of various drugs, as faecal residues, on specific fauna.
Moreover, life cycle parameters specific to other species would be re-
quired, although the model could also be used to explore parameter
space and identify broad characteristics of species that are likely to be
vulnerable to anthelmintic residues in dung, and the extent to which
these might be attenuated by TST. Since the model framework was
developed using a bottom-up approach, it lends itself to constructive
adaptation and expansion. With sufficient observational data there is
scope for future models, within such a framework, to increase in
complexity and realism. Expansion of the model to represent multiple
invertebrates at farm level would enable holistic landscape-scale impact
assessments and attenuation strategies.

The use of veterinary medicines, with non-target insecticidal prop-
erties, is ubiquitous and therefore the applicability of observed results
may be equally wide, and this model framework can be adapted to any
system, anywhere, given workable parameter estimates. The data from
the literature that provided the foundation for the model was pre-
dominantly derived from studies in temperate regions, and we

Table 3

recognize that climatic differences may have a significant impact on the
ecotoxicity of such medicines (Kryger et al., 2005). Moreover, the
model was based upon a set-stocked system but could be modified to
represent more extensive systems, including ranch/range rearing of
cattle in the USA, South America, and Australia. The model provides a
framework for the development of future similar work and could be
applied to scenario-testing using the specific characteristics of different
cattle production systems across the world.

Despite the high profile, global threat of drug resistance, the long-
term impacts of drugs, especially antiparasitics with non-target in-
secticidal properties, are largely unknown. The topic is a key area for
future work to enable effective assessment and regulation of the use of
veterinary medicines, with regards to their impact on all aspects of
biodiversity (Adler et al., 2016). Future work should also include eco-
nomic analysis, in order to balance short-term production gains with
longer term environmental impacts. There is likely to be a utilitarian
argument to use veterinary medicines in a more sustainable manner,
including the utilization of preventative and non-pharmaceutical
methods (Kaplan and Vidyashankar, 2012; Papadopoulos, 2008;

Mean simulated final population size for varying proportions of cattle treated (PT) and effective dung drug concentrations (EC). PT and EC range from 0 to 1.0 in intervals of 0.1, so
simulations were conducted for 121 scenarios, representing every PT and EC value combination.

PT
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
EC 0.0 3678 3676 3701 3763 3645 3739 3770 3696 3590 3642 3608

0.1 3675 3681 3734 3699 3652 3765 3767 3650 3574 3598 3713
0.2 3764 3697 3692 3685 3659 3629 3741 3635 3044 1353 338
0.3 3789 3753 3655 3777 3659 3777 3409 2950 1422 0 0
0.4 3859 3721 3758 3722 3603 3789 2784 1756 0 0 0
0.5 3667 3620 3705 3807 3294 3325 2112 0 3 0 0
0.6 3658 3661 3701 3777 3783 3147 1481 85 0 0 0
0.7 3738 3786 3816 3723 3755 2902 1385 762 0 0 0
0.8 3750 3661 3671 3655 3660 3310 1634 744 4 0 0
0.9 3761 3665 3689 3724 3178 2594 1586 8 0 0 0
1 3790 3680 3754 3564 3745 2337 0 724 0 0 0
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Wolstenholme et al., 2004). The emergence of part-herd anti-parasitic
treatments, or TST, is an example of a more efficiently targeted ap-
proach to chemical utilization in agricultural systems, which has po-
tential long-term economic benefits, as well as reduced environmental
impacts. The current model shows this synergy in quantitative terms for
a model insect species, and provides a framework for impact assessment
and optimization of TST strategies across a wider range of dung fauna,
including those of conservation relevance.
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