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In this short review, we highlight three functional genomic

technologies that have recently been contributing to the

understanding of the molecular mechanisms underpinning

insecticide resistance: the GAL4/UAS system, a molecular tool

used to express genes of interest in a spatiotemporal controlled

manner; the RNAi system, which is used to knock-down gene

expression; and the most recently developed gene editing tool,

CRISPR/Cas9, which can be used to knock-out and knock-in

sequences of interest.
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Introduction
Functional genomic technologies make use of the data

produced by genomic and transcriptomic projects to try to

elucidate the role played by genes of interest in in vivo
systems. This can be done by systematically knocking-

down, knocking-out or over-expressing specific targets.

Not surprisingly, due to the vast array of functional

genomic tools available, Drosophila melanogaster has been
at the forefront of these studies. However, advances in

germline transformation technologies in non-model

insects and the development of technologies that do

not require germline transformation have recently

expanded the applicableness of functional genomics.

Here we briefly review these technologies and how they

have been applied to the study of the mechanisms of

insecticide resistance in insect pests and disease vectors.

The GAL4/UAS system
Nearly 20 year ago Fischer et al. demonstrated that it was

possible to make use of the yeast transcription factor

GAL4 in the fruit fly D. melanogaster to activate the
www.sciencedirect.com
expression of a reporter gene inserted next to an upstream

activation sequence (UAS) [1]. This work paved the way

for the development of one of the most powerful func-

tional genomics technologies, the GAL4/UAS system [2].

In their landmark work, Brand & Perrimon developed a

binary system that allows spatiotemporal control of tar-

geted gene expression in D. melanogaster. The system can

be used to express any gene of interest (GOI), including

lethal ones, as GAL4-drivers and UAS-GOI constructs are

usually integrated in separate transgenic strains (Figure 1).

The authors then took another major step forward by

generating a library of driver strains expressing GAL4

under the control of random enhancer sequences found in

the genome of D. melanogaster. By further screening this

library with the help of a UAS-LacZ reporter line, they

could identify the embryonic expression pattern driven

by some of these enhancers. Since then, a vast number of

‘trapped’ enhancer GAL4 strains have been generated

and are now available for the scientific community (for a

comprehensive review of the GAL4/UAS system see

[3,4]).
In pioneering work investigating the resistance of wild

populations of D. melanogaster to dichloro-diphenyl-tri-

chloroethane (DDT), Darbon et al. used the GAL4/UAS

system to demonstrate that a single cytochrome P450

gene, CYP6g1, which was differentially expressed in a

DDT resistant population, was responsible for conferring

resistance to that insecticide [5]. By overexpressing UAS-
CYP6g1 under the control of a heat-shock inducible

GAL4 driver (Hsp-GAL4) and showing that these flies

became more resistant to DDT than control flies, the

authors provided a clear correlation between CYP6g1
expression and resistance toDDT. In a subsequent study,

the overexpression of UAS-CYP6g1 under the control of a

tubulin GAL4 driver (TubP-GAL4) was used to demon-

strate that, in addition to DDT, this P450 conferred cross-

resistance to the organophosphorus (OP) compound mal-

athion and to the neonicotinoid insecticides, acetamiprid,

imidacloprid and nitenpyram [6]. Later it became clear

that the insecticide resistance phenotype associated with

CYP6g1 was mainly due to the insertion of the long

terminal repeat (LTR) of an Accord retrotransposon

upstream of the gene, resulting in an increased CYP6g1
expression in major detoxification tissues. To confirm the

role played by the Accord LTR in DDT resistance, flies

expressing UAS-CYP6g1 under the control of an Accord
LTR-GAL4 driver (6g1HR-GAL4-6c) were shown to

becomemore resistant to insecticides compared to control

flies [7].
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The GAL4/UAS binary targeted gene expression system. The system consists of a transgenic strain in which coding sequence for the yeast

transcription factor, GAL4, is under the control of a promoter or enhancer of interest, Driver, and a second transgenic strain in which the GAL4

target, Upstream Activating Sequence (UAS), controls transcription of a gene of interest (GOI). GOI is only transcribed in the F1 progeny from

these crosses in which one copy of each construct is present. In the F1 progeny, GAL4 is produced (1), binds to the UAS (2) and activates the

expression of GOI (3). F1 flies are used in bioassays.
There are now numerous further examples of the use of

the GAL4/UAS system in D. melanogaster to assess the

contribution of individual detoxification enzymes to resis-

tance in pest insects. GAL4-driven expression of

CYP12a4 to the midgut and Malpighian tubules of fruit

flies resulted in resistance to the insect growth regulator

lufenuron [8]. The GAL4 system has additionally been

used to functionally validate three distinct detoxification

enzymes from three biologically different pests: a carbox-

ylesterase gene (aE7) conferring resistance to OPs in the

Australian sheep blowfly, Lucilia cuprina; a glutathione S-

transferase gene (GstE2) from the malarial mosquito,

Anopheles gambiae, conferring resistance to DDT; and a

cytochrome P450 gene (CYP6cm1) from the silverleaf

whitefly, Bemisia tabaci, responsible for resistance to imi-

dacloprid [9]. It was further employed to confirm the role

of two alleles of the P450 genes CYP6P9a and CYP6P9b in
driving resistance to pyrethroids in field populations of

the malaria vector Anopheles funestus [10], and to demon-

strate that overexpression of the glutathione S-transferase

gene, GSTe2, caused resistance to DDT [11]. Moreover,

the expression of the P450 gene CYP6ER1 in transgenic

flies under the control of the GAL4/UAS system demon-

strated that it is responsible for strong resistance to the
Current Opinion in Insect Science 2018, 27:103–110
neonicotinoid insecticide imidacloprid in the brown

planthopper Nilaparvata lugens, a major rice pest [12�].
A follow-up study showed that CYP6ER1 is duplicated in

resistant brown planthopper strains, with individuals car-

rying paralogs with and without the gain-of-function

mutations responsible for conferring imidacloprid resis-

tance [13].

Examples of the use of the GAL4/UAS system in insects

other thanD. melanogaster are rarer and the reasons for that
can be related to three main constraints of non-model

insects — technical difficulties of keeping large numbers

of mutant stocks, unavailability of transformation tech-

nologies and husbandry protocols, and scarceness of

genomic data. Despite these difficulties the technology

has been developed in a few other insects. As early as

2003, Imamura et al. reported the establishment of a

GAL4/UAS binary expression system in the silkworm

Bombyx mori [14]. This moth-based transformation system

has been further refined by studies evaluating the tran-

scription-activation efficiency of different GAL4 variants

[15] and, more recently, optimising transcriptional and

translational enhancers to improve in vivo heterologous

protein expression [16]. GAL4–UAS has also been
www.sciencedirect.com
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Basic mechanisms of RNA interference (RNAi). Double-stranded RNA

(dsRNA) is cleaved into fragments of around 21 nucleotides (the small

interfering RNAs, or siRNAs) by the enzyme Dicer. siRNAs antisense

strands couple to the RNA-induced silencing complex (RISC) and

convey it to target mRNA, blocking and degrading it.
developed in the red flour beetle, Tribolium castaneum,
using established GAL4 variants [17], and in several

mosquito species (Anopheles gambiae, Anopheles stephensi,
Aedes aegypti), which are important insect vectors of

human disease, to regulate the expression of integrated

transgenes [18–21]. GAL4–UAS was most recently

employed to investigate the regulation of a gut-specific

carboxypeptidase gene expression in Aedes aegypti [21],
but will also have utility in the future to investigate

insecticide resistance mechanisms.

The success and challenges of RNAi
RNAi interference (RNAi) is an evolutionary conserved

gene silencing mechanism in which short interfering

RNA (siRNA) molecules mediate sequence-specific deg-

radation of messenger RNA (mRNA) before it is can be

translated into polypeptide. It was first discovered in the

free-living nematode Caenorhabditis elegans, when Fire

et al. noted that introducing a double-stranded RNA

(dsRNA) that was homologous in sequence to a specific

gene resulted in the silencing of that gene [22]. The

process starts when dsRNA is cleaved by a RNase III

(Dicer) into 21–25 nt-long siRNA duplexes. These siR-

NAs are incorporated in the RNA-induced silencing

complex (RISC), which discards the passenger strand,

and binds to the target mRNA, cutting it and thereby

hindering translation (Figure 2) [23,24]. RNAi was rapidly

adopted as a functional genomic tool as, in theory, the

expression of any gene can be supressed provided the

sequence of that gene is known. Another advantage of

RNAi is its non-dependency on germ line transformation

technologies. Instead, there are several different ways of

delivering the dsRNA and siRNA. Most RNAi studies in

non-transformable insect species have delivered dsRNA

through either microinjection or feeding. However, other

methods such as topical application [25], delivery via
transgenic plants [26] and aerosolized siRNAs bound to

nanoparticles have also been shown to be effective in

some insects [27,28]. Numerous factors can influence

RNAi’s performance and successful knock-down using

RNAi has proven challenging in some organisms includ-

ing several insect species [29,30]. A recent report has

linked the lower sensitivity of lepidopterans to RNAi to

the up-regulation of an order-specific nuclease that is able

to digest dsRNA before it is processed by Dicer into

siRNA [31]. Despite the challenges, RNAi has been

successfully employed in both nuisance and agronomic

insect pests to study the mechanisms involved in insecti-

cide resistance, particularly those mediated by detoxifi-

cation enzymes.

To investigate the role of P450s in pyrethroid resistance

in the bed bug Cimex lectularius, micro-injected dsRNA

was used to knockdown ClCPR, the NADPH cytochrome

P450 reductase required for the functioning of P450s.

ClCPR knockdowns in deltamethrin-resistant populations

caused a decrease in resistance to that insecticide,
www.sciencedirect.com
strongly suggesting that cytochrome P450s are involved

in metabolising deltamethrin [32]. A similar dsRNA

micro-injection approach was used in a series of elegant

studies by Li et al. to decipher the involvement of the

GPCR/Gas/AC/cAMP-PKA signalling pathway in reg-

ulating resistance-related P450 gene expression in

insecticide resistant populations of Culex quinquefascia-
tus [33–35]. In another mosquito species, Aedes aegypti,
micro-injected dsRNA, targeting two Epsilon GST

genes (GSTe2 and GSTe7), was shown to cause a higher

susceptibility to deltamethrin but not DDT in a resis-

tant strain overexpressing these GST’s [36].

The diamondback moth, Plutella xylostella, is a major pest

of cruciferous vegetables, notorious for its ability to

rapidly evolve resistance to insecticides. To investigate

the molecular mechanism of pyrethroid resistance in P.
xylostella, a droplet technique was employed to feed

permethrin resistant fourth-instars larvae with dsRNA
Current Opinion in Insect Science 2018, 27:103–110
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targeting the P450 CYP6BG1. The consequence of

CYP6BG1 knock-down in these larvae was an increase

in susceptibility to permethrin [37]. RNAi has also been

applied to investigate an insecticide resistance resurgence

in a Florida population of the Asian citrus psyllid, Dia-
phorina citri, a vector of Candidatus Liberibacter, the causal
agent of huanglongbing (one of the most destructive

diseases of citrus). Concomitant knock-down of the

expression of five CYP4 genes previously implicated in

resistance in this insect, by delivering dsRNA through

topical micro-applications, increased the susceptibility of

the insecticide-resistant populations to the neonicoti-

noid insecticide imidacloprid [25]. Similarly, knock-

down of two P450s, CYP6AY1 and CYP6ER1 by micro-

injection of dsRNA, in the brown planthopper N. lugens,
confirmed a functional role for these two enzymes in

imidacloprid resistance [38]. For the cotton aphid, Aphis
gossypii, carboxylesterase (CarE) expression and associ-

ated OP (omethoate) resistance was dramatically sup-

pressed in resistant individuals following ingestion of

dsRNA-CarE by oral sachet feeding (artificial diet and

parafilm) [39]. In another elegant study, employing

RNAi to knock down the expression of CYP6BQ9 in

Tribolium castaneum and the GAL4/UAS system to drive

the expression of this gene in D. melanogaster, Zhu

et al. provided compelling evidences demonstrating a
Figure 3
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major role for this P450 enzyme in deltamethrin resis-

tance [40��].

The CRISPR revolution
CRISPR/Cas (Clustered Regularly Interspaced Short Pal-

indromic Repeats/CRISPR associated proteins) is an

adaptive immune system found in bacteria and archaea

that has been repurposed into a technology for editing the

genome of other living organisms (for a perspective on the

discovery and development of CRISPR/Cas as a genome

editing tool see [41]). Cas9 is a DNA endonuclease

associated with the CRISPR/Cas system found in Strep-
tococcus pyogenes. This enzyme can be targeted to specific

sequences of DNA by a short guideRNA molecule

(gRNA), where it generates a double strand break

(DSB) within that target site. Imprecise repair of DSBs

can create null alleles. Alternatively, DSBs might be

repaired by the homology-directed repair pathway, in

which case, a donor template with homology to the

damaged DNA can be manipulated to integrate specific

alterations to that gene (Figure 3). CRISPR/Cas9 has

proven a transformative technology, enabling directed,

high precision genome modification of, and gene editing

in, virtually any living organism [42]. Compared to other

genome editing technologies such as ZFNs and TALEN,

it is relatively simpler as it does not require repeatedly
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designing and expressing new nucleases. Instead, it only

requires producing short target-specific gRNAs that asso-

ciate with Cas9 to confer the desired site specificity, thus,

making it an ideal laboratory tool. This system has already

been successfully applied in several insect species

(recently reviewed in [43–46]). For the model insect D.
melanogaster, the techniques are already very advanced,

making it possible to precisely manipulate the genome in

a way that leads to changes in gene expression and to the

production of altered proteins [47]. The utility of this

ground-breaking technology to investigate insecticide

resistance mechanisms, in a defined genetic setting, is

unparalleled and presents new and exciting opportunities

to dissect the molecular basis of resistance (which may

often be complex) into its component parts.

CRISPR/Cas9 has recently been used to investigate the

mechanism underpinning resistance to spinosad, an eco-

nomically important bio-insecticide. Resistance to this

insecticide has already evolved in multiple pest insects

and is associated with alterations of its target, the Alpha6

subunit of the nicotinic acetylcholine receptor (nAChRs).

Chemical mutagenesis experiments in D. melanogaster
identified the mutation P146S in DmAlpha6 that con-

ferred high levels of resistance to spinosad [48�]. To

confirm the involvement of this mutation in the resistance

phenotype, Somers et al. generated a CRISPR/Cas9-

induced P146S fly strain resistant to spinosad [48�]. Tak-

ing a similar approach, Zimmer et al. functionally vali-

dated a candidate mutation (G275E) previously associ-

ated with field resistance to spinosad in the western flower

thrips, Frankliniella occidentalis [49,50].

Diamide insecticides, which are potent activators of

insect Ryanodine Receptors (RyRs), are widely used to

control lepidopteran pests. Resistance to these insecti-

cides has been associated with mutations in the RyR gene

of P. xylostella and the tomato leafminer, Tuta absoluta
[51–54]. To assess the contribution of three candidate

resistance mutations G4946E, I4790M and G4946V to the

resistance phenotype, CRISPR/Cas9 was employed to

introduce these mutations in the RyR of D. melanogaster.
G4946E caused lethality in transgenic flies and could not be

assessed, whereas G4946V flies were viable and presented

high levels of resistance to flubendiamide and chlorantra-

niliprole, and moderate levels of resistance to cyantranili-

prole. Whilst wild type D. melanogaster already carries

I4790M, the reversion of this, by gene editing, to

M4790I induced higher levels of susceptibility to fluben-

diamide but less to chlorantraniliprole and cyantraniliprole

[55�]. Although functionally inactive in gene edited flies,

the G4946E mutation, when introduced by CRISPR/Cas9

into the beet armyworm, Spodoptera exigua, also conferred

high levels of resistance to diamides [56�].

Benzoylureas (BPUs), buprofezin, and etoxazole are

insect growth regulators classified as having different
www.sciencedirect.com
modes of action. Amutation (I1042M) in the chitin synthase
1 (CHS1) gene of BPU-resistant P. xylostella was found to

occur at the same position as the I1017F mutation in the

two-spotted spider mite Tetranychus urticae conferring

etoxazole resistance [57]. Using a CRISPR/Cas9 approach

in D. melanogaster, Douris et al. introduced both substitu-

tions (I1056M/F) into the corresponding D. melanogaster
CHS gene. Homozygous lines bearing either of these

mutations were highly resistant to etoxazole, BPUs and

buprofezin, providing compelling evidence that all three

insecticides share the same molecular mode of action and

directly interact with CHS [58��]. Equivalent mutations

(I1043M and I1043L) found in Culex pipiens mosquitoes

resistant to the BPU diflubenzuron were also introduced

into the D. melanogaster CHS gene using CRISPR/Cas9

and shown to confer significant levels (Resistance Ratio

>2900 fold and >20 fold respectively) of resistance to

BPU [59]. CRISPR/Cas9 has also been used to examine

the relationship between detoxifying enzymes and pyre-

throid resistance in Culex quinquefasciatus.When the cyto-

chrome P450 gene CYP9M10 was targeted in a resistant

strain, the knockout individuals carrying no functional

CYP9M10 copy exhibited an �110-fold reduction in per-

methrin resistance [60�].

Transgenic crops expressing insecticidal toxins derived

from Bacillus thuringiensis (Bt) are often the mainstay for

the control of lepidopteran pest in several broad acre

crops. Resistance to Cry1-type toxins is mediated by

mutations in the midgut-associated cadherin (CAD) like

protein and/or the ATP dependent binding cassette

transporter ABCC2, both of which have been implicated

as receptors for Cry1 protein in Lepidoptera. The role of

CAD as a Cry1 receptor has been validated using a reverse

genetic (CRISPR/Cas9) approach, where disruption of

the CAD gene in a susceptible strain of Helicoverpa
armigera led to a highly resistant phenotype [61], whereas

for ABCC2 its role as a Cry1 receptor was identified using

the GAL4/UAS approach in D. melanogaster [62]. Very

recently, Jin et al. demonstrated the successful targeted

genomic deletions of both CAD and ABCC2 genes in H.
armigera with a mix of two gRNAs targeting different loci

[63]. High levels of resistance to the Bt toxin Cry2Ab has

been genetically linked with loss of function mutations in

another ABC transporter ABCA2. A CRISPR mediated

knockout of H. armigera ABCA2 was recently shown to

confer high levels of resistance to not only Cry2Ab but

also Cry2Aa [64].

Perspectives and future directions
For biochemists and molecular biologists working in the

field of understanding the fundamental basis of insecti-

cide resistance, there has for far too long been a reliance

on making correlative links between mutations or gene

expression alterations and the resistance phenotype.

However, advances in functional genomic technologies

have made it possible for scientists to start testing those
Current Opinion in Insect Science 2018, 27:103–110
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hypothetical correlations derived from genomic and tran-

scriptomic studies. We are now able to functionally vali-

date the role played by specific detoxification enzymes in

the resistance phenotype of insects by employing heter-

ologous expression (GAL4/UAS) and/or gene silencing

(RNAi) systems. Furthermore, genome editing technolo-

gies such as CRISPR/Cas9 can be used to introduce any

mutations that are implicated in insecticide resistance

into living insects. Moreover, it is now possible to start

combining various resistance mechanisms into controlled

genetic backgrounds to assess their interactions and asso-

ciated fitness costs.

D. melanogaster will keep pushing the frontiers in deci-

phering the molecular mechanisms involved in insecti-

cide resistance, as the genetic toolkits developed for this

model organism are still far more advanced than in any

other insect. However, the development of germ-line

transformation in non-model insects will facilitate these

studies to be carried out in the pest insects. CRISPR/Cas9

will certainly play a pivotal role in this field of research

and, in combination with other functional genomic tech-

nologies, will help decipher the molecular mechanism

underpinning insecticide resistance.
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