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Wheat has been domesticated into a large number of agricultural environments and has the ability to adapt to diverse en-

vironments. To understand this process, we survey genotype, repeat content, and DNA methylation across a bread wheat

landrace collection representing global genetic diversity. We identify independent variation in methylation, genotype, and

transposon copy number. We show that these, so far unexploited, sources of variation have had a significant impact on the

wheat genome and that ancestral methylation states become preferentially “hard coded” as single nucleotide polymor-

phisms (SNPs) via 5-methylcytosine deamination. These mechanisms also drive local adaption, impacting important traits

such as heading date and salt tolerance. Methylation and transposon diversity could therefore be used alongside SNP-based

markers for breeding.

[Supplemental material is available for this article.]

One of the most important questions in plant breeding is the na-
ture of the genomic variation that has been selected for improving
phenotypes. Although it is likely that all forms of genomic change
contribute to performance variation and to hybrid vigor, the role
of epigenetic variation in crop improvement is not well under-
stood, despite being widespread and highly variable (Springer
and Schmitz 2017). It is now clear that epigenetic variation can
be stably inherited and that spontaneous epialleles are rare
(Johannes et al. 2009; Hofmeister et al. 2017). Therefore, epigenet-
ic variants could potentially be used in breeding programs and
their contributions to trait variation assessed alongside classical ge-
netic variation. To identify new sources of variation for crop im-
provement and to understand the contributions of variation to
traits, it is important to assess both genomic and epigenetic varia-
tion in crop species.

Epigenetic states of genes in crop plants have been shown to
have a major influence on traits. Gene body methylation (gbM)
can influence splice-site efficiency by differential methylation of
splice acceptor sites, indicating that epiallelic variationcancontrib-
ute to differential mRNA accumulation (Regulski et al. 2013). In
domesticated polyploid cotton and wild relatives, there is exten-
sive epigenetic variation, with methylation differences between
homoeologous genes. One example is COL2D that is repressed by
methylation inwild relatives but is activated by loss ofmethylation
in allotetraploid cotton, influencing flowering time in domesticat-
ed lines (Song et al. 2017). The causal gene of amajor QTL enhanc-

ing resistance tomaize stalk rot, ZmCCT, is in two epigenetic states.
One has a CACTA-like transposable element (TE) upstream of the
ZmCCT promoter and one without that has enriched methylated
CG that suppressed expression and increased disease susceptibility
(Wang et al. 2017). Similar mechanisms of epigenetic change in
gene expressionmediated by retrotransposons adjacent to promot-
ers have also been noted in wheat (Kashkush et al. 2002). Tissue-
culture induced reduction in methylation of a retrotransposon in
the intron of an oil palmDEFICIENS gene alters splicing and causes
premature termination (Ong-Abdullah et al. 2015). This epigenetic
mechanismcontributes to themantledphenotype that limits clon-
al propagation of this key global crop.

Analyses of DNAmethylation patterns in numerous plant ac-
cessions and species are starting to reveal the extent of epigenetic
variation and the mechanisms involved in generating and main-
taining it. In plants, cytosinemethylation of DNA occurs typically
at CpG residues but can also occur at CHG and CHH sites (where
H represents adenine, cytosine, or thymine). Two general patterns
of DNAmethylation have been identified in plants—transposable
element methylation patterns (teM) and gene body methylation
patterns. In Arabidopsis thaliana accessions, it was shown that in-
creased gbM is related to constitutive gene expression patterns
and that teM epialleles of genes tend to be expressed at lower lev-
els. Geographic origin was a major predictor of DNA methylation
levels and of altered gene expression caused by epialleles (Dubin
et al. 2015; Kawakatsu et al. 2016). It is clear that natural epigenetic
variation provides a source of phenotypic diversity alongside
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genetic variation; however, currently, little is known about this
epigenetic variation and its interaction with genetic diversity in
hexaploid wheat populations.

The genomes of crop plants such as maize and wheat are
mainly composed of massive tracts of diverse retroelements and
DNA repeats that comprise up to 80%of the genome. These repeats
are highly methylated to suppress expression and transposition to
maintain genome stability (Kim and Zilberman 2014).Wheat is an
allopolyploid, comprised of three independently maintained A, B,
and D subgenomes that are functionally diploid (Marcussen et al.
2014). Epigenetic mechanisms have been invoked to explain the
emergence of key agronomic traits upon formation of hexaploid
bread wheat and to explain alterations in gene expression of
homoeologous genes upon polyploidization (Song and Chen
2015). Previously, we showed that methylation patterns differ
across the A, B, and D subgenomes and in broad terms reflect pat-
terns of methylation of progenitor species (Gardiner et al. 2015).
Here, we extend our analyses to a core collection of diverse bread
wheat landraces in the Watkins collection (Wingen et al. 2014).
Landraces are locally adapted wheat varieties that have not been
subject to selective breeding and represent a pool of diversity re-
flecting their wide adaptation to different growing environments.
Such diversity is beginning to be used in breeding programs; there-
fore, it is timely to assess and understand both the genomic and
epigenomic diversity in this population. We hypothesize that
the Watkins collection will be not only genetically but epigeneti-
cally diverse. As such, we assess this epigenetic diversity and deter-
mine if, similar to Arabidopsis, it is linked to geographical origin or
environmental factors.

Results

Methylation and genotype analysis across a wheat landrace

diversity panel

To study epigenetic variation across gene-rich regions of the 17-Gb
allohexaploid wheat genome, we used genomic enrichment
(Agilent SureSelect) followed by bisulfite treatment and Illumina
HiSeq paired-end sequencing. Capture probes were designed (12-
Mb capture targeting 36 Mb) as described in our previous work
(Supplemental Fig. S1 from Olohan et al. 2018).

To accurately applyMethylSeq to a diversity panel, we require
bisulfite-treated and untreated sequence data for eachwheat acces-
sion to identify C-T SNPs, which would otherwise be incorrectly
classified as unmethylated cytosines. This was achieved using a
modified sequence capture protocol (Darst et al. 2010; Olohan
et al. 2018) that generates two libraries for sequencing from one
capture; a bisulfite-treated and an untreated library for each acces-
sion. Post-sequencing, the untreated data sets were aligned to the
TGAC v1 Chinese Spring reference sequence, and SNP calling was
performed (Methods; Clavijo et al. 2017). We identified 716,018
SNPs, on average, per accession at ≥5×, of which 316,767 were ho-
mozygous. The homozygous SNPs from each Watkins accession
individually were used to correct the Chinese Spring reference ge-
nome to generate an accession-specific reference sequence for each
of the 104 lines; this corrected referencewas then implemented for
mapping the corresponding bisulfite-treated data set (Methods).

Bisulfite-treated DNA from single seedlings was examined for
104 core lines from the Watkins landrace collection plus the refer-
ence variety Chinese Spring (Supplemental Table S1; Supplemen-
tal Note S1A). We scored methylation at an average of 10.9 M
cytosines per accession (Supplemental Table S2; Supplemental

Note S1B), and across all accessions, on average 98.7% of cytosine
bases were successfully bisulfite-converted (Supplemental Table
S3; Supplemental Note S1C).

Genetic variation across the Watkins collection clusters across

large geographical regions

From the 716,018 SNPs that were identified on average per acces-
sion, 53,341 SNP sites were identified across the 105 accessions,
where all showed mapping coverage at ≥5×, and ≥1 accession
had a SNP. For each SNP, the alternate allele frequency per acces-
sion was used for hierarchical clustering of the accessions
(Methods). Using genotype information for clustering, accessions
originating from Europe and the Mediterranean tend to cluster to-
gether, while accessions from larger geographic regions in Asia and
Russia show higher diversity (Fig. 1A,B).

The Watkins collection clusters into two main ancestral
groups; cluster 1 with 80 accessions (73.8% derived from Europe,
Middle Eastern, and South Mediterranean/African regions), while
cluster 2 has 24 accessions (87.5% mainly Asian) (Supplemental
Table S4). Additional clustering models supported this genotype-
based population structure and it also resembles that from previ-
ous analyses of the Watkins collection using array SNP data
(see Supplemental Note S2; Supplemental Fig. S1; Wingen et al.
2014; Winfield et al. 2017).

SMPs are variable and methylation profiles of accessions

from smaller countries are more likely to cluster together

Global methylation patterns in Chinese Spring align closely to
those of other plant species and previous analyses of Chinese
Spring (Supplemental Note S3; Supplemental Fig. S2; Supplemen-
tal Table S5; Li et al. 2012; Gardiner et al. 2015). To assess epigenet-
ic variation across the Watkins collection, we identified 853,932
cytosines that were mapped to ≥10× in all 104 accessions plus
Chinese Spring. Of these cytosines, 359,500 (42.1%) were classi-
fied as single methylation polymorphism sites (SMPs) between
the accessions (Supplemental Table S6;Methods). Althoughmeth-
ylation variability is high, the SMPs do not preferentially target
any of the methylation contexts (CpG, CHG, or CHH) (Supple-
mental Table S6).

Interrogation of the 359,500 SMP sites showed that 0.5% had
highmethylation conservation between accessions (methylated in
≥90%); theseweremainly at CpG sites (86.2%)with a bias for tran-
scribed regions (80.2%). Focusing on CpG sites, 13.9% of SMPs
were methylated in ≥90 accessions, highlighting the increased
stability of CpG sites compared to non-CpG sites. However, most
SMPs (91.5%) are rare variants in <10% of the accessions. Unlike
highly conserved SMPs, these low-frequency SMPs show less bias
for transcribed regions (74.2%) and increased bias for non-CpG
sites potentially due to the more dynamic tissue specificity of
this methylation (82.5% at CHH sites and 16.4% at CHG sites).
Accession-specific SMPs were identified from the 359,500 SMPs
(Methods); on average, each accession showed methylation at
26,980 SMP positions, with a range of 11,279–64,659 SMPs per ac-
cession (Supplemental Table S7).

To analyze inter-accession variation in SMPs, for all 359,500
SMP sites, epiallele frequency per accession was used for hierarchi-
cal clustering for CpG and non-CpG sites individually (Fig. 2;
Supplemental Note S4; Supplemental Fig. S3). When we order
SMP sites by their total methylation across the accessions (Fig. 2,
vertical axes), for CpG sites, there is a tendency for sites to
show extremes of either high- or low-level methylation, with
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typicallymoremethylation in transcribed regions and lessmethyl-
ation in nontranscribed regions. Conversely, non-CpG SMP sites
tend to show higher methylation in nontranscribed regions.
Clustering the data sets by accession (Fig. 2, horizontal axes), in-
ter-accession variation is less obvious for non-CpG sites, where
most of the methylation is low-level or potentially tissue-specific
(Fig. 2C). However, more inter-accession methylation variation
can be observed at CpG sites with both high- and low-level
methylation; therefore, accessions can be informatively compared
(Fig. 2A).

For CpG methylation, hierarchical clustering of accessions
correlates with their geographical proximity. Accessions from
within the same country of origin tend to show higher linkage
and cluster together closely, with 90.3%of the 31 regions analyzed
containing a majority of accessions (≥50%) from one linkage clus-
ter (Fig. 1C,D). From the top hierarchical level epigenetic popula-
tion structure of the Watkins collection, accessions cluster into
two groups composed largely of accessions frommixed geographic
locations; cluster 1 containing 12 accessions derived from 50%
Asian and 50% European/Middle Eastern locations, and cluster 2
containing 93 accessions derived from 41% Asian and 59%
European/Middle Eastern locations (Fig. 1; Supplemental Table
S8). This population structure differs from the genotype-based
population structure (Fig. 1E); although both split into two sub-
populations at the top hierarchical level, for genotype, these sub-
populations showed one population from mixed geographic
locations, while the other was of Asian origin. We statistically
compared the two cluster configurations (Fig. 1B,D); the cluster
configuration in the combined SMP and SNP trees (Fig. 1E) was
nonrandom (one-sample runs test with 39 runs: Z=−2.53, P=
0.011). This supports the existence of an association between the
clustering patterns of SMPs and SNPs.

To determine the similarity of the epigenetic/genotypic pro-
files, frequency estimates were calculated for SNPs and SMPs across
the genome. No correlation between genotype and epigenotype
was detected at this resolution (Supplemental Fig. S4). We con-
structed distancematrices for the 18,965CpGSMP sites and a com-
parably sized subset of the 53,341 variable SNP sites. Comparisons
were then made using the nonparametric Mantel test to compute
Pearson product-moment correlation between the matrices
(Methods). A weak positive correlation of 0.394 was observed be-
tween the matrices (α=0.05, P<0.001) (Supplemental Fig. S5).
Since this correlation is low, genotype and methylation are likely
to be linked, but methylation can also develop independently of
genetic variation. To corroborate this, we noted a broad-range ten-
dency for accessions clustering closely by SMP profile to show sim-
ilar levels of methylation overall (Fig. 2A; Supplemental Fig. S6A).
However, by ordering accessions based on genotypic information
and comparing their methylation profiles, only closely related ac-
cessions share similar methylation levels (Fig. 2B; Supplemental
Fig. S6B).

In summary, themethylation profiles of native accessions for
mid/smaller-sized countries, e.g., the UK, Greece, Afghanistan,
Cyprus, and Italy, are more likely to cluster together. These lines
most likely evolved in similar environmental conditions and
have similarly adapted methylation profiles. Conversely, we see
accessions from geographically distant locations with compara-
ble methylation; this may represent conserved environmental
conditions that have resulted in a similar adaptive change inmeth-
ylation profiles. For accessions where we have more accurate posi-
tional information for geographical origin, this association
between methylation and more local adaptation (within a coun-

try) is clearer (see Supplemental Table S9; Supplemental Note S5;
full passport data for the Watkins lines is available at https://
www.jic.ac.uk/GERMPLASM/Cereal%20Collections%20Public%
20GRU.html).

Distinctive patterns of methylation are associated with different

classes of gene function

Our analysis of the landraces clustered accessions with similar
patterns of methylation into eight distinct groups (Fig. 1D). To
assess if these clusters represented any functional consequences
of gene methylation, genes that were methylated within each
cluster were analyzed by Gene Ontology (GO) enrichment for
molecular functions (topGO, P<0.05) (Alexa et al. 2006). At
this level of analysis, all eight clusters had distinctive profiles of
enriched GO terms across multiple functional categories of genes
(Supplemental Tables S10, S11). To ascertain if there were any
functional consequences of gene methylation patterns within
these clusters, information on differential gene expression was
included in these analyses and is shown later in Supplemental
Tables S24–S26.

Tri-genome is the most stable form of methylation

Weclassifiedmethylation as tri-genome (in three subgenomes), bi-
genome, and uni-genome (in two or one subgenome, respectively)
(Methods; Supplemental Table S12). Supplemental Table S13 de-
tails differentially and tri-genome methylated CpG, CHH, or
CHG sites averaged across the accessions. The observed methyla-
tion landscape largely reflects that seen in our previous analysis
(Supplemental Note S6; Gardiner et al. 2015).

To assess the relative stability of uni-, bi-, and tri-genome
methylation across the Watkins collection, we identified posi-
tions that were uni-, bi-, or tri-genome methylated in one or
more of the accessions. From these positions, we selected all sites
that had mapping coverage ≥10× in all accessions, independent
of their methylation status. Figure 3A highlights a median of
20.95% of accessions showing conserved tri-genome methylation
compared to only 2.85% of accessions with conserved uni- or bi-
genome methylation. Furthermore, 14.3% of tri-genome sites
were methylated in the majority of accessions (≥90%), whereas,
on average, only 1.08% of uni- and bi-genome sites showed
methylation conservation on this scale (Supplemental Table
S14). Tri-genome methylation is significantly more conserved
across the accessions compared to uni- and bi-genome methyla-
tion, respectively (bi-genome t=74.66, df = 16,508, P-value<2.2
×10−16; uni-genome t=67.56, df = 17,848, P-value <2.2 ×10−16),
and this tri-genome methylation is evenly distributed across the
genome (Methods; Supplemental Fig. S7, track 1, 5, and 9).
Gene Ontology enrichments, for genes associated with the
most stable subset of tri-genome methylation (in ≥90% of acces-
sions), included core biological activities within the plant, such as
phosphorylation, intracellular transport, transcription regulation,
oxidation-reduction, proteolysis, and methylation (Supplemental
Table S15).

Genome-specific methylation associates with homoeologous

SNPs

We analyzedmethylation variationwhere all accessions contained
the same sequence. Looking at the cytosine residue sites that were
mapped to ≥10× in all of the accessions, most (89.0%) shared the
same genetic sequence, i.e., cytosineCpG/CHG/CHHcontext, and
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were therefore used to identify 359,500 SMPs. Methylation is a
source of variation in the absence of genetic variation; however,
we also assessed the impact of SNPs on methylation. Across all
the accessions, at cytosine sites showing tri-genome methylation,
the average percentage of sites where a SNP altered the cytosine
context between the subgenomes of wheat is unsurprisingly low
(3.50%)—methylation levels at these positions are conserved be-
tween the genomes. Conversely, at uni-genomemethylation sites,
it is more common to see a homoeologous SNP between the subge-
nomes of wheat that differentiates the methylated genome from
the other two subgenomes (at 65.1% of uni-genome methylated
sites). This SNP typically infers a CpG site from a non-CpG site
(96% of the time).

Ancestral methylation can be hard-coded as SNPs

As per the methodology for the 104 Watkins accessions and
Chinese Spring, we generated genotype andmethylation informa-
tion for the subgenome D ancestor (Aegilops tauschii accession
AL8/78) to allow comparisonwithWatkins accessions.We observe
that ancestral methylation significantly increases the chance of
encountering a different allele in hexaploid bread wheat by ap-
proximately fourfold (t=−30.42, df = 103, P-value <2.2 ×10−16).
It shows a predominance for C-to-T/G-to-A transitions that
is also statistically significant (t=−283.7129, df = 103, P-value
<2.2 × 10−16) (Supplemental Note S7A; Fig. 3B,C). These C-to-T/
G-to-A transitions are characteristic of the deamination of a meth-
ylated cytosine. This apparent preferential deaminationof 5-meth-
ylcytosine to thymine has been observed in other organisms
and in Arabidopsis, where it contributed to bias in spontaneous
nucleotide mutation (Duncan and Miller 1980; Ossowski et al.
2010). Furthermore, there was highmethylation stability in wheat
where most methylation was conserved between Ae. tauschii and
subgenome D (83.7%). There was a low level of methylation gain
in subgenome D compared to Ae. tauschii (3.1%) (Supplemental
Note S7B).

Differentially methylated region profiles reflect SMP profiles

Gene expression changes are often associated with methylated re-
gions rather than single methylated nucleotides. Using nonover-
lapping 100-bp windows across the genome, differentially
methylated regions (DMRs) were identified in the CpG, CHG,
and CHH contexts between each accession and Chinese Spring
(Methods; Eichten et al. 2016). Per accession, on average 58.7
CpG (range 37–89), 13.4 CHG (range 8–23), and 20.1 CHH
DMRs (range 0–168) were identified (Supplemental Table S16).
In total, 2356 DMRs of 100 bp were identified across the acces-
sions compared to Chinese Spring (491 CpG, 96 CHG, and 1769
CHH DMRs). Of these, 1901 DMRs associated with 1744 genes
and 71 DMRs were located in promoter regions associated with
64 genes. For all 2356 DMR sites, similarly to the analysis for
SMP sites, the percentage difference in methylation per accession
compared to Chinese Spring was used to cluster the accessions
(Supplemental Fig. S8). A strong positive correlation exists be-
tween the clustering of CpG SMPs and DMRs and similar trends
are observed with DMRs as was seen for SMPs (Supplemental
Note S8).

For all accessions, we summarized the number of differen-
tially methylated genes (DMGs) by methylation context, i.e.,
genes with a DMR compared to our reference Chinese Spring
(Supplemental Fig. S9A). Variation between accessionswas highest
for CHH DMGs, while the number of genes showing differential

methylation in the CpG and CHG contexts is more stable across
accessions. CHH variability may reflect the reported dynamic na-
ture of CHH methylation during plant development (Bouyer
et al. 2017). There was no evidence of bias in themethylation con-
texts CpG/CHG/CHH between the wheat A, B, and D subgenomes
(Supplemental Figs. S9B–D, S10A–C).

Accessions cluster by preferentially targeted genes

and gene families

Accessionswere clustered based on similarities in the proportion of
the number of genes that are methylated in each gene family (Fig.
3D, vertical dendrogram; Supplemental Note S9). We observe in-
ter-accession variation in gene families highly targeted formethyl-
ation. However, a number of gene families are preferentially
targeted for methylation across multiple accessions with a high
proportion of genes in the family methylated (Fig. 3D, horizontal
dendrogram, colored red in heatmap). GO enrichment analysis re-
vealed the most common molecular functions associated with
highly methylated gene families within and between accessions
(Supplemental Tables S17, S18). Hexokinase activity and glucose
binding were the top enriched molecular functions for highly
methylated gene families conserved between accessions (Supple-
mental Table S18). These terms are linked to cellular glucose ho-
meostasis and support the hypothesis that some gene families
are consistently targeted by methylation across the Watkins
collection.

We performed GO enrichment analyses on gene families that
were less targeted by methylation within and between accessions
(Supplemental Tables S19, S20). NAD binding and N-methyl-
transferase activity were the top enriched molecular functions
for low-level methylated gene families conserved between acces-
sions (Supplemental Table S20). Enriched GO terms for highly
methylated gene families and less methylated families did not
overlap, suggesting that genes of the same molecular function
are either consistently methylated or nonmethylated across the
accessions.

Finally, we focused on CpGmethylated genes, appearing in a
high, medium, or low number of accessions (Methods). Supple-
mental Figure S11 shows the distribution of the number of genes
in the three groups: high, medium, and low; ∼35% of the 2145
CpGmethylated genes were present in ≥90 accessions. Previously,
we observed that few (0.5%) SMPs were methylated in at least 90%
of the accessions, but this analysis considered CpG and non-CpG
sites. For CpG sites, 13.9% of SMPs were methylated in ≥90 acces-
sions. Therefore, at the gene level, we see a ∼2.5-fold increase in
methylation conservation across accessions compared to SMPs
(13.9%–35%). This demonstrates an increased tendency for meth-
ylation targeting the same genes across accessions even if the spe-
cific cytosine sites differ. Furthermore, the enriched molecular
functions within the high,medium, and low groupswere different
with no overlaps (Supplemental Table S21).

Differential methylation correlates with changes

in gene expression

To test the correlation between methylation and gene expression
across the Watkins collection, we performed RNA-seq analysis, us-
ing 14-day-old wheat seedlings on 12 accessions in triplicate,
which represent phenotypic tails for height, heading date,
thousand-grain weight, and grain width (Supplemental Table
S22). We generated gene expression level estimates to allow
pairwise comparisons and identify differential gene expression
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between the accessions. All pairwise comparisons use the three
replicates per accession to ensure statistically robust calls
(Methods). Across the sample-set, 105,425 wheat genes were ana-
lyzed and, comparing the 12 accessions, 16,112 were differentially
expressed; 32.3% from the A-genome, 44.6% from the B-genome,
and 23.1% from the D-genome (15.3% of analyzed regions) (P-val-
ue < 0.05).

We normalized allelic gene expression so that per site cumu-
lative expression values for the A, B, andD subgenomes were equal
to 100%. The average expression level of subgenome A across the
289 tri-genome sites associated with promoter regions was
34.22%, subgenome B 33.43%, and subgenome D 32.35%, dem-
onstrating approximately balanced allelic expression in the subge-
nomes. The average expression level of the methylated genome
across the 128 promoter-associated uni-genome methylation sites
was 28.82% while that of the other genomes was, on average,
35.59%. Therefore, there was a decreased expression of the pro-
moter-methylated subgenome in comparison to the other two
subgenomes (P<0.0001, t=5.95, df = 254).

Previously, we identified DMRs across the accessions by com-
paring nonoverlapping 100-bp windows with Chinese Spring
(Methods). Here, we focused on the 12 accessions that were ana-
lyzed by RNA-seq and implemented pairwise comparisons to iden-
tify DMRs to allow correlation with differential gene expression
from the same pairwise comparison. Inter-accession pairwise com-
parisons yielded an average of 58.9 CpG, 11.2 CHG, and 30.0 CHH
DMRs per comparison (Supplemental Table S23); 32.3% of the
DMRs were associated with differentially expressed genes. This re-
flects a more than twofold enrichment in the proportion of genes
overall that show differential gene expression. All differentially ex-
pressed genes that correlated with DMRs were subjected to the en-
richment of molecular functions and biological processes using
topGO (P<0.05) (Supplemental Tables S24–S26; Alexa et al.
2006). DMRs that correlate with differential gene expression are
more likely to be influencing this expression change, and here,
CpGDMRs showenrichment for biological processes related to ho-
meostasis and essential housekeeping. Conversely, non-CpG
methylation associates with differentially expressed genes in bio-
logical processes related to stimuli response.

For genes that were both differentially expressed andmethyl-
ated, there is also a bias for enriched GO terms with molecular
functions relating to metal ion transportation (Supplemental
Table S24). Enrichment for transporter and metal ion binding ac-
tivity was seen across SMP accession clusters (Supplemental
Tables S10, S11; Fig. 1D). This bias ofmethylation to affect gene ex-
pression in pathways related to detoxification andmetal ion trans-
portation could be an adaptive response to differences in the soil
composition in the country of origin of the accession (Supplemen-
tal Table S25; Supplemental Note S10). Furthermore, the methyla-
tion and gene expression correlations fit the directionality models
predicted by previous studies for methylation based on genic pos-
iton (Brenet et al. 2011;Maussion et al. 2014; Yang et al. 2014).We
focused on genes showing differential expression andmethylation
that had a clearly defined metal ion interaction. This narrowed
our analysis to: first, a sodium/hydrogen exchanger that showed
up-regulated expression from a (former) Yugoslavian accession
1190352 compared to the Cypriot accession 1190292. Up-regula-
tion of this exchanger is associated with adaptation to salt toler-
ance that is biologically relevant since Yugoslavia reportedly had
large areas of salt-affected soils when Cyprus was, at the time, un-
affected (Szabolcs 1974; Apse et al. 1999). Furthermore, leaves from
the Yugoslavian accession 1190352 show significantly higher Na

concentrations (average 2182.1 ppm) compared to accession
1190292 (average 1257.7 ppm; t= 5.013, df = 4, P-value =0.0074)
(Supplemental Fig. S12A; Methods). Secondly, the ATP-dependent
zinc metalloprotease ftsH 2 showed up-regulation in the Palestin-
ian accession 1190398 compared to a number of other accessions.
ftsH 2 is down-regulated after exposure of plants to elevated zinc
concentrations (Garcia et al. 2009). Here, the Palestinian accession
1190398 shows ftsH 2 up-regulation coupled with a lower average
leaf Zn concentration (48.63 ppm) compared to each of the
three accessions—1190141-China (66.64 ppm), 1190292-Cyprus
(68.55 ppm), and 1190352-Yugoslavia (75.28 ppm)—for which
leaf Zn concentrations were available. The differences in zinc con-
centrations were not significant, however; they fit the directional
model for zinc response (t=1.105, df = 10, P=0.2949) (Supplemen-
tal Fig. S12B; Methods).

Early heading date associates with SMP but not SNP profiles

The average expression levels per accession (across the replicates)
for the 16,112 differentially expressed genes in one or more of the
pairwise comparisons were used for hierarchical clustering (Fig.
3E). The barcodes in Figure 3E allow comparison of gene expres-
sion clusters with SNP/SMP clusters from Figure 1, B and D, re-
spectively. Accessions that cluster into the same clades by gene
expression profiles also cluster closely by SNP profile; 66.6%,
100%, and 40% of accessions within each dendrogram clade la-
beled 1, 2, and 3, respectively, in Figure 3E, are from a single con-
served SNP cluster. This is demonstrated in Figure 3E by
conserved color blocks in the SNP barcode within dendrogram
clades. These patterns are also apparent from correlating gene ex-
pression and SMP profiles but to a lesser extent where 33.3%,
50%, and 40% of accessions within each dendrogram clade la-
beled 1, 2, and 3, respectively, in Figure 3E are from a single con-
served SMP cluster.

Heading date associates with a distinct clustering of acces-
sions (Fig. 3E). The two accessions 1190209/1190034, with earlier
heading dates, show themost similar gene expression profiles of all
analyzed accessions. The accessions 1190481/1190181, with later
heading dates, cluster together almost as closely, but importantly,
they are segregated from 1190209/1190034. The two accessions
with earlier heading dates cluster into the same SMP clade but dif-
ferent SNP cladeswhile, conversely, the accessionswith later head-
ing dates cluster into the same SNP clade but different SMP clades.
This could indicate a common role for methylation in the estab-
lishment of an early heading date that correlates with gene expres-
sion profile.

We identified differentially expressed genes between early
and late heading accessions in a pairwise comparison matrix if
they were conserved across all replicates; 46 annotated genes
were identified (Supplemental Table S27). This includes genes pre-
viously linked to flowering time or heading date regulation, e.g.,
REVEILLE 8-like/LHY-CCA1-like 5 that is here down-regulated in
early heading date plants (Farinas and Mas 2011). Where methyl-
ation associates with these genes, it correlates with the expected
directional effect (Supplemental Note S11A). Furthermore, Supple-
mental Table S28 shows the most significantly enriched GO terms
and associated biological processes, respectively, for the 46 differ-
entially expressed genes (topGO, P<0.05) (Alexa et al. 2006).
Enriched processes are predominantly related tomeristem growth,
development, cell cycle process, and phase transition and there-
fore show biological relevance to the phenotype (Supplemental
Note S11B).
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Transposable element abundance is highly variable across the

Watkins collection

When using sequence capture typically a small proportion of the
resultant sequencing data is off-target since it has not been specif-
ically targeted by the probe set but has been carried through to se-
quencing as background noise during capture. Analysis of Chinese
Spring off-target sequence data demonstrates that it is unbiased
sampling of the genome, equivalent to low coverage shotgun se-
quencing of total wheat DNA, since proportions of TE types closely
match those seen in previous shotgun sequence data (Supplemen-
tal Table S29; Supplemental Note S12A; Brenchley et al. 2012).
To assess TE methylation levels for each Watkins accession, off-
target sequencing data was aligned to the wheat TREP database
of repeat sequences (Wicker et al. 2002). Across the Watkins
collection, transposons are highlymethylated compared to the en-
riched gene-rich regions (Supplemental Note S12B; Supplemental
Table S30). This hypermethylation of repeats is consistent with
other plant species and is associated with reducing transposon
mobilization.

We observed high variability across theWatkins collection in
the proportions of reads aligning to each TE compared to Chinese
Spring (Methods; Supplemental Note S12C; Fig. 4A–I); expansion
of retrotransposons is most frequent, with 44.2% of accessions
showing an increase in mapped base-space of 2% or more com-
pared toChinese Spring, although large expansions of themapped
base space of 8%–10% are seen in DNA transposons in a small sub-
set of lines (Fig. 4A). TE expansions do not correlate closely with
gene-associated SNP/SMP clusters or geographical clustering. It ap-
pears that expansion within the TIR;CACTA group is responsible
for increasing the proportion of DNA transposons compared to
Chinese Spring in a subset ofWatkins accessions (Fig. 4B). This ex-
panded group of DNA transposons showed conservation of the
high methylation levels seen typically across TEs (Fig. 4I). SINE
and LTR;Gypsy retrotransposons show prominent and variable ex-
pansion compared toChinese Spring across theWatkins collection
(Fig. 4C) coupledwith conservation of the highmethylation levels
seen typically across TEs (Fig. 4G,H). These findings are consistent
with previous observations that LTR retrotransposons are epige-
netically controlled and a major contributor to genome size chan-
ge in plants (Lee and Kim 2014).

Discussion

Using sodium bisulfite treatment and targeted gene enrichment,
we observe high epigenomic diversity in the Watkins collection.
We identified three main sources of variation across wheat landra-
ces; high transposable element variability, alongside epigenetic
and genetic diversity. Although we found a general correlation be-
tween methylation patterns and genotypic variation, there was a
geographical component to methylation patterns that may indi-
cate a response to or selection by local environmental conditions.
Both methylation and genotype are influenced by the geographi-
cal origin of the accession, although genotypic profiles cluster
across wider geographic regions while the methylation profiles
of accessions tend to cluster into more local groups. Therefore,
we hypothesize that methylation acts as a fast-adaptive response
to environmental stimulus. Furthermore, we show that ancestral
methylation increases the chance of C-to-T or G-to-A transitions
in Chinese Spring wheat that are characteristic of the deamination
of a methylated cytosine and may demonstrate this transfer of
methylation to SNPs (Duncan and Miller 1980; Ossowski et al.

2010). This phenomenon could be an important driver of evolu-
tionary change.

We show that tri-genome methylation is more conserved be-
tween accessions and therefore the most stable form of methyla-
tion, while genome-specific methylation sites show enrichment
for homoeologous SNPs that differentiate the genome that is
methylated from the other subgenomes. This SNP typically infers
a CpG site from a non-CpG site. Tri-genome methylation corre-
lates with equal expression levels across the three subgenomes,
while uni-genomemethylation correlates with a significant reduc-
tion in expression of the affected subgenome compared to the oth-
er two subgenomes in promoter regions.

Watkins accessions were clustered according to methylation
profiles, and the clusters show unique profiles of enriched gene
function. These variations could contribute to the underlying phe-
notypic differences between the accessions. Using gene expression
analyses, we saw conserved methylation and gene expression pro-
files in accessions with an early heading date, suggesting that
methylation may play a role in the coordination of heading date
in wheat. DMRs linked directly to gene expression show a bias
for genes related to metal ion transportation that links to pheno-
typic change and could be part of an adaptive response that has
been maintained in certain accessions due to differences in the
soil composition in the country of origin of the accession.

In addition to epigenomic diversity across theWatkins collec-
tion, using Chinese Spring as a baseline, we observe the potential
expansion of retrotransposons SINE and LTR;Gypsy most fre-
quently, although some of the largest expansions are seen in a
small subset of lines in DNA transposons. These expanded groups
of TEs showed conservation of the high methylation levels seen
across TEs.

We explore genome-wide epigenetic, alongside genotypic
and TE variation across a diverse landrace cultivar collection and
open up a new level of genetic variation, which can be exploited
by breeders. This provides further opportunities to address impor-
tant biological questions such as the interaction between epitype
and genotype, the role of epigenetics in the domestication of
crops, and the stability of and long-term function of methylation
in a polyploid genome.

Methods

Design of the methylation enrichment system

The 12-Mb target sequence for this Agilent enrichment systemwas
generated as per Supplemental Figure S1 fromOlohan et al. (2018).
For the capture, 99,949 120-mer RNAbaitswere designed. The 120-
mer baits were uploaded onto Agilent’s eArray (online custommi-
croarray design tool) to allow submission for manufacture. Bait
“boosting” was selected to allow excess unused design space
(<1 Mb in this case) to be filled with repeat sequences of baits
that are predicted to perform less efficiently, i.e., those with an
above average GC content are “boosted” to ultimately gain even
depth of sequence coverage across the target region.

Preparation and mapping analysis of DNA samples

Single seedlings were examined for all 104 core lines from the A.E.
Watkins bread wheat landrace collection plus the reference variety
Chinese Spring (Supplemental Table S1). DNA was extracted from
seedlings, fragmented, and taken through a modified sequence
capture protocol to allow genetic and methylation analysis of
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the same enriched genomic DNA sample by splitting the sample
post-capture (Supplemental Methods; Olohan et al. 2018).

The non-bisulfite-treated paired-end sequencing data sets for
the accessionsweremapped to the TGAC reference sequence using
BWA MEM version 0.7.10 (Li and Durbin 2009). Mapping results
were processed using SAMtools (Li et al. 2009); any nonuniquely
mapping reads, unmapped reads, poor quality reads, and duplicate
reads were removed. SNP calling was carried out using the GATK
(McKenna et al. 2010) Unified genotyper (after Indel realignment),
which was used with a minimum quality of 30 and filtered using
standard GATK recommended parameters, a minimum coverage
of 5, and homozygous SNPs only selected (alternate allele in
≥80% of sequencing reads). Homozygous SNP alleles were used
to correct the TGAC reference sequence to generate an accession-
specific reference sequence for each analyzed accession that was
implemented for mapping the corresponding bisulfite-treated
data set to using Bismark, an aligner and methylation caller de-
signed specifically for bisulfite-treated sequence data (Krueger
and Andrews 2011).

For mapping analyses using Bismark, the nondirectional na-
ture of the library was specified, and subsequently SAMtools was
used to identify and remove duplicate reads. The Bismark methyl-
ation extractor tool was used to identify all cytosine residues with-
in the mapping and categorize the reads mapping to them as
unmethylated or methylated at that position while also detailing
which type of potential methylation site was present (CHH,
CHG, or CpG). This output can then be used to calculate the per-
centage of the reads that were methylated at each cytosine residue
site. Under the same rationale, differential methylation was iden-
tified between subgenomes and/or accessions at aminimumdiffer-
ence of 50% to ensure elimination of replicate variance and the
analysis of genuine methylation changes.

Alignment of the three subgenomes of wheat

The three subgenomes were aligned using the software NUCmer
from the MUMmer package that is specialized for the alignment
of incomplete genomes with large numbers of reference contigs
(Kurtz et al. 2004). After the alignment, using the MUMmer pack-
age, result files were filtered to determine a one-to-onemapping of
subgenome A to B and A to D, and indels were identified between
the sequences. Finally, for each subgenome A cytosine/guanine
position in the TGAC reference sequence, if this was in a region
showing an alignment with both subgenome B and subgenome
D, the corresponding position in subgenomes B and D was calcu-
lated. Indel information was used to ensure that single positions
were correctly translated between aligned subgenomes even if
alignments contained gaps.

Calculation of bisulfite conversion rate

Bisulfite treatment involves converting cytosine to uracil while
leaving 5-methylcytosine (5-mC) intact. Therefore, bisulfite con-
version rates can bemeasured bymapping reads to the chloroplast
genome, which is unmethylated, since we know that here all cyto-
sines should be converted to uracil (Fojtová et al. 2001; Lister et al.
2008). While we did not enrich for chloroplast DNA, because we
used total wheat DNA, a proportion of our off-target sequences
mapped to the wheat chloroplast genome. The off-target DNA
was mapped to an average of 66.5% of the chloroplast genome
across all accessions to 406×per accession (Supplemental Table S3).

Setting thresholds for calling methylation

To discriminate methylated CpG, CHG, and CHH sites from non-
methylated residues, we used standard thresholds for each catego-

ry based on previously published methodologies (Song and Chen
2015) that take into account the tendency for a high-level average
CpG methylation and low-level average non-CpG methylation
in gene-rich enriched data sets that was reflected in this study
(Supplemental Fig. S2). Thresholds of ≥75% methylation were
used to categorize the CpG data as methylated and thresholds of
≥10%methylation to categorize the CHG and CHH sites as meth-
ylated. However, this means that intermediate-level methylation,
which is likely to be associated with tissue-specific regulation,
was not fully described and is beyond the scope of this study.

Implementation of methylKit

The software methylKit (Akalin et al. 2012) was implemented to
identify regions of differential methylation using positional infor-
mation for each cytosine plus the number of reads hitting it per
subgenome and each read’s methylation status. Pairwise compari-
sons were used, and as such, Fisher’s exact test was used to discrim-
inate statistically significant differences (q<0.01 and methylation
difference of ≥50%). First, methylKit was implemented to define
differential methylation between the subgenomes of wheat, with-
in each accession, in regions where the three subgenomes could be
aligned. Differences were recorded at single cytosine residues be-
tween one genome and the other two (uni-genome methylation)
and vice versa (bi-genome methylation). Finally, after identifica-
tion of DMRs, methylKit was implemented with pairwise compar-
isons of accessions to define DMRs between the two accessions (q<
0.01 and methylation difference of ≥50%).

Identification of SMPs and SNPs

SMPs were identified by looking for sites that were covered by at
least 10 reads and were either called methylated (denoted as
100%), using our standard thresholds, or showed no methylation
(<1%), whichwe defined as an unmethylated site (denoted as 0%).
Any other sites with no coverage were listed as missing or, with in-
termediate methylation levels, were listed as heterozygous (denot-
ed as 50%). A general SMP was defined as any site with sufficient
coverage for all of the analyzed accessions where at least two acces-
sions were called methylated, at least two accessions were called
unmethylated, and where all accessions contained the same se-
quence as the Chinese Spring reference genome, i.e., no SNP alter-
ing the cytosine context between CpG, CHH, and CHG. An
individual accession SMP was defined as any site from the general
SMP list where the accession was denoted as being 100% methyl-
ated. SNPs were called as previously detailed. For clustering analy-
ses, 53,341 SNP sites were identified across the 105 accessions,
where all accessions showed mapping coverage at ≥5× and ≥1
accession was found to have a SNP, i.e., variable sites.

Dendrogram construction

If dendrograms accompany heat maps, then they have been pro-
duced using the R function heatmap.2 (R Core Team 2013) from
the gplots package with the default clustering parameters (com-
plete linkage method with Euclidean distance measure). The den-
drograms that lack heat maps were produced by first generating a
distance matrix with R’s dist function and passing this matrix to
the hclust function, both with their default parameters. Further-
more, the R package pvclust was implemented to generate the den-
drograms as detailed, however with the additional computation of
P-values for clusters; AU (approximately unbiased) P-values were
computed by multiscale bootstrap resampling (minimum boot-
strap number of 10,000).

The SNP-based tree (Fig. 1B) was cut into nine groups using
the R package cutree, and the SMP-based tree was similarly cut
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into eightmain groups to allow direct comparison of SMP and SNP
groups (Supplemental Methods).

We repeated the clustering analysis on the 53,341 SNPs using
a maximum likelihood (ML) modeling approach (Supplemental
Fig. S1; Supplemental Methods).

Distance matrix construction and comparison

Distance matrices were constructed individually for the 18,965
CpG SMP sites and a subset of 17,780 of the 53,341 variable SNP
sites using the R function dist (R Core Team 2013). These distance
matrices were then compared using the mantel.randtest function
in R to perform the Mantel test with 999 permutations. Distance
matrices were also converted to heat maps using the R function
heatmap.2 without dendrogram construction or clustering.

Construction of pseudochromosomes

We used 21 wheat chromosomal pseudomolecules that were creat-
ed by organizing and concatenating the TGAC genome assemblies
onto POPSEQ-based pseudomolecules using the software NUCmer
(Kurtz et al. 2004; Chapman et al. 2015; Gardiner et al. 2016). After
the alignment, using the MUMmer package, result files were fil-
tered to determine a one-to-one mapping of TGAC subgenome A
to POPSEQ-based subgenome A, B to B, and D to D. Relative
positions for the TGAC contigs along the POPSEQ chromosomal
pseudomolecules could then be used to order them into our chro-
mosomal pseudomolecules.

Identification of DMRs

We focused on the 853,932 cytosine residue sites that were
mapped to a minimum of 10× in all of the 104 accessions plus
Chinese Spring. Using these sites, DNA methylation for the three
contexts (CpG/CHG/CHH) was averaged independently across
nonoverlapping 100-bp windows. A window was only considered
if a minimum of five cytosines were included in the region. This
yielded 2277 CpG, 3721 CHG, and 44,371 CHHwindows for anal-
ysis. For every window, each accession was compared individually
withChinese Spring (see implementation ofmethylKit) to identify
DMRs. For CpG and CHG sites, a DMR was called if a region
showed a difference in methylation of at least 50% (q-value <
0.01). However, for CHH sites, a DMR was called if a difference
of at least 15% was observed (with one accession showing “low”

or ≤5% methylation and a q-value of <0.01).

Association between SMP and SNP clusters and enrichment

for molecular functions

Gene set enrichment analysis (GSEA) was performed on the eight
main SMP clusters that are shown in Figure 1D using the R package
topGO (Supplemental Methods; Alexa et al. 2006).

The arrangement of accessions in the merged SMP (Fig. 1D)
and SNP (Fig. 1B) trees in Figure 1E were assessed for randomness
using the randomness test (Supplemental Methods).

Enrichment analysis for the methylated genes in three groups

(high, medium, and low)

We calculated the number of genes targeted bymethylation by tal-
lying all CpGmethylated genes with copy number≥1 that are pre-
sent in at least one accession. These genes were categorized into
three groups, namely, those with (1) high representation in most
accessions (appear in 90 or more accessions, i.e., high group), (2)
medium representation across accessions (appear in 40–90 acces-
sions, medium group), and (3) low representation across acces-
sions (appear in less than 40 accessions, low group). All genes in

these groups were those targeted by CpG methylation. The genes
in each group were collated as gene sets and analyzed for the en-
richment of significant molecular functions and corresponding
overrepresented GO terms. This analysis aids assessing any differ-
ences in the enrichment of gene sets from the groups, thereby en-
abling inference into the gene methylation profiles within each
group. This also shines light into what enriched molecular func-
tions can be associated with any phenotypic differences as a result
of the underlying methylation profiles of targeted genes within
each group.

Data filtering and inference: association between methylation

and gene families

To investigate the association of methylation with gene families,
we extracted family clusters (Supplemental Methods). In all acces-
sions, gene families with an average of ≥25% representation of
genes targeted by methylation were considered for GSEA using a
targeted and nontargeted approach. The heatmap.2 function
(gplots R package) was used to generate dendrograms. A distance
matrix was first generated using the dist function and then passed
to the hclust function for hierarchical clustering.

Generation of RNA-seq data for 12 accessions for differential gene

expression analysis

Three seedlings were examined for all 12 lines from the A.E.
Watkins bread wheat landrace collection (Supplemental Table
S22). Total RNA was extracted from the areal tissue of these 14-
day-old wheat seedlings grown at a constant 24°C under long
days using Qiagen RNeasy plant mini-kits. Library preparation
and RNA-seq was performed by the Earlham Institute platforms
and pipelines using the HiSeq 4000. Raw sequencing reads were
trimmed for adapter sequence and also for regions where the aver-
age quality per base dropped below 15 (Trimmomatic version 0.32)
(Bolger et al. 2014). After trimming, reads below 40 bp in length
were eliminated from the data set. Trimmed reads for each sample
were individually aligned to the Chinese Spring wheat reference
genome using the splice-aware aligner HISAT2 (Pertea et al.
2016). Uniquely mapped reads were selected and duplicate reads
filtered out to yield a “finalmapped reads set” per sample. The pro-
gram StringTie was implemented to assemble transcripts, guided
by the read alignments to the reference genomes, and to estimate
their abundances for each sample. Transcript assemblies or gene
structure annotations could then be collated across the samples
to form an analysis-specific gene annotation summary, i.e., a com-
prehensive list of all genes showing expression in at least one sam-
ple in the study. StringTie was then used to calculate gene and
transcript abundances for each sample across the analysis-specific
annotated genes. Finally, Ballgown allowed visualization of results
and identification of differential expression between accessions
(Pertea et al. 2016). Differential gene expression was called be-
tween accessions at a threshold of P<0.05, taking into account
all three replicate samples per accession to confirm a call.

Ionomics

Twelve plants for each Watkins accession were grown in groups of
four, and these were pooled (to give three replicate sets of plants,
each replicate originating from one “cigar roll”). All plants were
grown on a standard nutrient solution (Bai et al. 2013). For the
three replicates of each Watkins accession, elemental analysis
was performed on an ICP-MS (inductively coupled plasma mass
spectrometry), and normalized concentrations of the samples
were obtained as per the methods from Hosmani et al. (2013).
Twenty elements (Li, B, Na, Mg, P, S, K, Ca, Mn, Fe, Co, Ni, Cu,
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Zn, As, Se, Rb, Sr,Mo, andCd)weremonitored, ofwhichNa and Zn
were used here.

Transposon analysis

For each Watkins accession, the cumulative coverage from the
alignment of off-target reads to the TREP database was normalized
to 50,000,000 bp to match Chinese Spring most closely. Chinese
Spring was also normalized to 50,000,000 bp. For each transposon
type, the base-space alignment coverage for Chinese Spring was
subtracted from the corresponding Watkins accession value to
yield a comparative value, i.e., negative meaning the transposon
showed higher coverage in Chinese Spring and positive meaning
the Watkins accession showed higher coverage. These values
were used to construct Figure 4A–C. Note that for Figure 4A, since
only two transposon type categories are compared, an increase in
one type compared to Chinese Spring is coupled with a propor-
tional decrease in the other group, and as such, this plot shows
an apparent symmetry in the increase/decrease of TEs.

Data access

DNA sequence reads from this study have been submitted to the
European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/)
under accession number PRJEB23320. The 12-Mbp sequence cap-
ture probe set is available in Supplemental File S1.
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