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Abstract

The use of radar as an observational tool in entomological studies has a long

history, and ongoing advances in operational radar networks and radio-fre-

quency technology hold promise for advances in applications such as aerial

insect detection, identification and quantification. Realizing this potential

requires increasingly sophisticated characterizations of radio-scattering signa-

tures for a broad set of insect taxa, including variability in probing radar wave-

length, polarization and aspect angle. Although this task has traditionally been

approached through laboratory measurement of radar cross-sections, the effort

required to create a comprehensive specimen-based library of scattering signa-

tures would be prohibitive. As an alternative, we investigate the performance of

electromagnetic modelling for creating such a database, focusing particularly on

the influence of geometric and dielectric model properties on the accuracy of

synthesized scattering signatures. We use a published database which includes

geometric size measurements and laboratory-measured radar cross-sections for

194 insect specimens. The insect anatomy and body composition were emulated

using six different models, and radar cross-sections of each model were

obtained through electromagnetic modelling and compared with the original

laboratory measurements. Of the models tested, the prolate ellipsoid with an

internal dielectric of homogenized chitin and hemolymph mixture best repli-

cates the measurements, providing an appropriate technique for further mod-

elling efforts.

Introduction

It has been over 60 years since Crawford (1949) first

identified the presence of insects during radar observa-

tions and, in a remarkably prescient comment, he

suggested that special-purpose radars might thereby pro-

vide the capability of remote insect monitoring. Realizing

the benefits of this new observational technique for char-

acterizing aerial fauna aloft occurred sometime later – the

first dedicated radar-entomological field studies took place
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in 1968 (Schaefer 1976). Since the time of these pioneer-

ing studies, radars of several configurations (e.g. scanning,

profiling, transecting and tracking), wavelengths and

transmitter powers have been used in hundreds of ento-

mological research studies (over 250 publications contain-

ing significant radar entomology content are listed on the

Radar Entomology Website [http://radarentomology.c

om.au/bibliography/]). Many of these studies have used

specially developed ‘entomological’ radars (Drake and

Reynolds 2012), which have acquired quantitative esti-

mates of insect activity unobtainable by any other means,

and revealed unanticipated behavioral phenomena (e.g.,

Hu et al. 2016; Reynolds et al. 2016, 2017; Wainwright

et al. 2017). In parallel efforts in the atmospheric sciences,

airborne insects were also detected by early meteorologi-

cal research radars and, after initial controversy over

their biological origin (see Chapt. 15 in Drake and Rey-

nolds 2012), atmospheric research radars have signifi-

cantly contributed to our knowledge of insect migration

(e.g. Russell and Wilson 1997; Geerts et al. 2006; Brown-

ing et al. 2011; see Chapt. 11 and 15 in Drake and Rey-

nolds 2012).

Since the 1990s, special-purpose entomological radars

have principally used a ‘ZLC configuration’ (zenith-

pointing linear-polarized (narrow-angle) conical scan)

(Chapt. 5 in Drake and Reynolds 2012; Drake 2014,

2016), which lend themselves to autonomous operation.

These radars interrogate individual insects (above ~
2 mg mass) as they transit the vertical beam, and pro-

vide (inter alia) information on the size and the shape

of the target.

Despite the specialized utility of these units, their rela-

tively small surveillance area restricts large-scale monitor-

ing, and the ongoing costs associated with deployment,

maintenance and data analysis from networks of these

radars may be outside of current practical capability.

Consequently, there has been much recent emphasis on

using operational networks of weather surveillance radars

(WSRs) for regional and continent-wide monitoring of

flying animals (Gauthreaux et al. 2008; Chilson et al.

2011; Dokter et al. 2011; Kelly et al. 2012; Shamoun-Bar-

anes et al. 2014; Bauer et al. 2017). The great advantage

here is that extensive radar networks are already in exis-

tence and that their operation and maintenance costs do

not have to be borne by the biological research commu-

nity. Additionally, WSR networks are currently being

upgraded to dual-polarization systems, and this technol-

ogy will greatly improve our ability to distinguish birds,

bats and insects, and different forms of precipitation

in routine weather radar observations (Chandrasekar

et al. 2013; Melnikov et al. 2014, 2015; Stepanian et al.

2016). Initial studies have revealed vast potential for ento-

mological application, including taxonomic identification,

behavioral characterization, surveillance and monitoring

of broad-scale movement (Rennie et al. 2010; Leskinen

et al. 2011; Melnikov et al. 2015; Boulanger et al. 2017;

Westbrook and Eyster 2017), but significant foundational

work is still required before widespread adoption of these

capabilities is possible.

The capacity of a radar target, such as a flying animal,

to reflect signals back in the direction of the radar recei-

ver is determined by its backscattering radar cross-sec-

tion (RCS) (Knott 2012). This property will depend on

the target’s size and shape, the dielectric material within

the target, the radar wavelength, aspect angle, polariza-

tion (orientation of the E-field) and any time-dependent

motions of parts of the body with respect to each other

(due to, for example, wing beating) (Drake and Rey-

nolds 2012). Radar cross-sections of animals are difficult

to measure (see, for example Mirkovic et al. 2016 for

some of the issues), and while laboratory or field mea-

surements of insect RCSs have been made (e.g. Riley

1985; Wolf et al. 1993; Hobbs and Aldhous 2006; Drake

et al. 2017), insect aerial fauna are very diverse and no

direct RCS measurements exist for most species. More-

over, most of the existing measurements pertain to a

particular viewing angle (e.g. a ventral view) or wave-

length (usually X-band), while biological data obtained

from WSRs would involve a range of aspects, and other

wavelengths (C- and S-bands). Finally, we note that rou-

tinely available WSR data on high-altitude animal move-

ments will not necessarily be accompanied by ancillary

(e.g. visual) observations or associated trapping studies,

which often form part of research campaigns with spe-

cial-purpose ornithological or entomological radars. It is

therefore important to be able extract the maximum

amount of target identification information from the

weather radar data itself.

Existing polarimetric Doppler weather radar networks

have the potential to be used as quantitative surveil-

lance networks for high-flying insects, but for this capa-

bility to be realized will require full RCS signatures for

the numerous insect taxa likely to be present at alti-

tude. Moreover, these RCSs will be needed for the

range of different orientations wavelengths and polariza-

tions that make up operational radar networks. The

only practical way to gain RCSs across such a range of

insect species, radar wavelengths and polarizations in a

standardized way is via simulation. The above-men-

tioned ‘ZLC configuration’ entomological radars provide

an estimate of the RCS size and two shape parameters

for each successfully analysed target. Clearly, any conve-

nient means of generating RCS size and shape charac-

teristics of known insect species, which can be directly

compared with the outputs from these radars, would

be invaluable.
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Our goal is to determine the performance and limita-

tions of electromagnetic modelling techniques for emulat-

ing the scattering characteristics of insects, thus

determining the most acceptable modelling method for

creating a comprehensive database of insect scattering sig-

natures. To achieve this aim we test six different anatomy

and body composition models of insect specimens using

body measurements and laboratory-measured RCSs from

a published database. The RCSs for each model are calcu-

lated using electromagnetic modelling software and com-

pared against the laboratory-measured values for each

insect specimen.

Materials and Methods

Overview

The modelling software used herein is the WIPL-D

implementation of the method of moments (described

by Mirkovic et al. 2016). Within this framework, a

three-dimensional object is represented by a set of inter-

connected plates which define the shape of the object.

The internal composition of the object is defined in

terms of dielectric permittivity (Mirkovic et al. 2016).

An incident electromagnetic field is also defined by the

user, which allows for investigation of scattering that

results from different radar wavelengths, polarizations

and at different incident aspect angles. The currents

induced across each plate, due to the incident wave, are

calculated from boundary conditions, and inserted into

Maxwell’s equations, yielding the resultant scattered elec-

tromagnetic field. This process can be repeated to pro-

duce a comprehensive set of scattering characteristics

across a range of incident aspect angles, wavelengths

and polarizations. Moreover, this software-based tech-

nique is reproducible, enabling replication of these

methods on other specimens with confident inter-com-

parability.

There are two major considerations when creating the

digital model using this technique. The first is the level

of anatomical detail that is included in the digital repre-

sentation of the animal. In an extreme case, all external

physical characteristics could be replicated (e.g., as in

Mirkovic et al. 2016), but this is a tedious process and

may not be necessary for small insect targets. The other

extreme is to omit all anatomy, reducing an animal to

a sphere of some fixed radius. A popular compromise is

the use of a prolate spheroid to emulate the cigar-like

body shape of flying insects (e.g., Melnikov et al. 2015).

The second consideration is the dielectric composition

of the digital model. For example, the model can be

defined as being water, muscle, insect chitin or some

other dielectric medium (Chapt. 4 in Drake and

Reynolds 2012). We surmise that some combination of

a general body geometry and dielectric composition

should yield scattered waves that are representative of

true insect characteristics.

Reference dataset

To determine the best model configuration for emulating

the scattering characteristics of insects, we use a collated

dataset of ventral X-band measurements from 194 insect

specimens at two orthogonal polarization alignments as a

reference against which to compare modelling results

(Drake et al. 2017). These 194 specimens span a diverse

set of species, masses, and body shapes, ranging from a

1.8-mg diamondback moth (Plutella xylostella) to a 4.12-g

migratory locust (Locusta migratoria). From these data,

we consider each specimen’s physical measurements of

body length (along the anteroposterior axis), body width

(along the lateral axis), and body mass. Note that mea-

surements along the dorsoventral axis were not collected

for these specimens. We also use the measured RCS of

each specimen, taken from the ventral viewing angle (i.e.,

below, looking upwards) with the polarization of the inci-

dent electric field parallel to the insect anteroposterior

axis (along-body RCS, herein), as well as parallel to the

insect lateral axis (across-body RCS). To facilitate com-

parisons, we group the 194 specimens into eleven taxo-

nomic categories: grasshoppers and locusts (Orthoptera;

Acrididae); green lacewings (Neuroptera: Chrysopidae);

nymphalid butterflies; noctuid moths; pyralid and plutel-

lid moths; geometrid moths; craneflies (Diptera; Tipuli-

dae); hoverflies (Diptera: Syrphidae); curculionid and

carabid beetles (Coleoptera); ladybird beetle (Coleoptera:

Coccinellidae); honeybees and wasps (Hymenoptera) (see

Table 1).

Model variations

To determine the most appropriate model configura-

tions, we test three body geometries and two internal

compositions. In increasing order of complexity, the

three body geometries are defined as the following. The

first uses the measured body length and width of each

insect specimen to define major and minor axis sizes of

a prolate spheroid (equi-size prolate spheroid). The per-

formance of the equi-size prolate spheroid model is

investigated in terms of percentage mass error as

described below. The second uses the measured body

length and width of each specimen to define the axis

ratio of a prolate spheroid, but the spheroid is scaled in

absolute size until its mass, based on the density of the

internal composition, equals that of the measured

ª 2018 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 3
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specimen. This model is referred to as the equi-mass

prolate spheroid and its performance is assessed via per-

centage size error below. The third uses the measured

size of the insect specimen’s body length and width,

combined with the measured mass, to define three inde-

pendent axes of a prolate ellipsoid. From the measured

length (l), width (w), mass (m) and an assumed internal

density (d), the dorsoventral height of the prolate ellip-

soid is defined as,

h ¼ ð6mÞ=ðpdlwÞ (1)

We note here that l, w and h are the measured diame-

ters of each specimen along the three axes, and not the

corresponding radii. By providing this third degree of

freedom, these ellipsoids are equal in mass, length and

width to the measured insect specimens.

For each of the three geometries described above we

consider two possible internal compositions, to give six

total models. The first, and simplest, is water, having an

X-band dielectric permittivity of 60.3 � j33.1 and density

of 1 g/cc. The second substance is a homogenized blend

of lesser grain borer beetles (Rhyzopertha dominica),

described by (Nelson et al. 1998), and has permittivity of

34.3 � j18.6 and density of 1.26 g/cc. The primary diver-

gence of this substance from water is due to the chitin

content of insect exoskeletons, which is less reflective at

radio frequencies and denser than pure water. For brevity,

we will refer to this homogenized substance as “insect

paste”.

Comparison methods

Before conducting any electromagnetic scattering analysis,

it is useful to consider how well each model recreates the

physical specimen that it is meant to emulate. That is,

when creating an equi-size model based on physical

dimensions, how accurate is the resulting mass of the

model compared to the physical specimen? Similarly,

when constructing equi-mass models, how do the result-

ing sizes compare to specimen measurements? Taking the

measured values of insect mass, length and width as the

referenced truth, we define the model percent error of a

given specimen attribute as

Percent error ¼ 100 � ðmodeled-measuredÞ=measured:

(2)

Use of percent error, as opposed to absolute error, is

intended to provide normalization, such that the model

performance can be compared among diverse size ranges.

The along- and across-body RCS values calculated using

the electromagnetic modelling software are also compared

to the corresponding laboratory-measured values mea-

surements using (2).

Results

Comparison of physical attributes

When taking the specimen length and width as the fixed

metrics for making an equi-size prolate spheroid model,

the resulting model mass will often deviate from the mea-

sured specimen mass (Fig. 1A and B). In this case, posi-

tive percent errors indicate equi-size models that result in

mass overestimates compared to the measured masses.

That is, an error of 100% indicates that the model mass

is double that of the measured specimen. Similarly, nega-

tive percent errors indicate models with masses that are

underestimates of the measured specimen, such that an

error of �50% indicates a model that is half the mass of

the measured specimen. Percent errors in mass are largely

consistent within taxa, with extrema at each tail being

comprised of Orthoptera (mean error, water-filled:

�57.21%; mean error, insect-filled: �46.09%) and lady-

birds (mean error, water-filled: 202.03%; mean error,

insect-filled: 280.56%). Taxa with minimum percent

errors are lacewings (mean error, water-filled: �1.97%;

mean error, insect-filled: 23.52%), craneflies (mean error,

water-filled: 17.39%; mean error, insect-filled: �47.91%)

and honeybees/wasps (mean error, water-filled: �8.70%;

mean error, insect-filled: �15.03%).

When taking specimen mass and aspect ratio (i.e., pro-

portion of length to width) as fixed metrics for an equi-

mass prolate spheroid model, the resulting absolute size

will often deviate from the measured specimens (Fig. 1C

and D). As the aspect ratio is maintained as a constant,

the percent errors shown in Figure 1C and D are identical

for both body length and width. In this case, positive per-

cent errors indicate equi-mass models that result in size

overestimates compared to the measured sizes. That is, an

error of 100% indicates that the model size (i.e., length

and width) is double that of the measured specimen. Sim-

ilarly, negative percent errors indicate models with sizes

that are underestimates of the measured specimen, such

that an error of �50% indicates a model that is half the

size of the measured specimen. Again, percent errors in

size are largely consistent within taxa, with extrema at

each tail being comprised of Orthoptera (mean error,

water-filled: 35.15%; mean error, insect-filled: 25.13%)

and ladybirds (mean error, water-filled: �30.76%; mean

error, insect-filled: �35.90%) and minimum errors associ-

ated with lacewings (mean error, water-filled: 0.89%;

mean error, insect-filled: �6.59%), craneflies (mean error,

water-filled: 3.30%; mean error, insect-filled: �4.36%)

and honeybees/wasps (mean error, water-filled: 3.73%;

mean error, insect-filled: �3.96%).

For a prolate ellipsoid model, the body length, width and

mass can all be fixed with respect to the specimen
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measurements and used to infer the specimen height (i.e.

dorsoventral dimension). This additional degree of freedom

should enable more realistic body geometry for emulating

the specimen. This inferred body height can be compared to

the body width that has served as a proxy for height in the

previous models to see how the two compare (Fig. 1E and

F). In this case, percent errors near zero indicate that ellip-

soid heights are nearly equal to their widths, approximating

spheroids. Non-zero percent errors indicate ellipsoids that

are increasingly different from their spheroidal approxima-

tions. In these cases, a positive percent error indicates an

ellipsoid having larger inferred height than width, while a

negative percent error indicates an ellipsoid having larger

width than inferred height. Not surprisingly, this technique

indicates that Orthoptera are the most vertically elongated

of the taxa (mean error, water-filled: 154.15%; mean error,

insect-filled: 101.71%), while ladybirds are the most hori-

zontally elongated (i.e. flattened) taxa (mean error, water-

filled: �66.77%; mean error, insect-filled: �73.62%). The

most spheroidal taxa are lacewings (mean error, water-filled:

3.04%; mean error, insect-filled: �18.22%), pyralid/plutellid

moths (mean error, water-filled: �21.90.%; mean error,

insect-filled: �38.01%), craneflies (mean error, water-filled:

22.47%; mean error, insect-filled: �2.80%) and honeybees/

wasps (mean error, water-filled: 12.82%; mean error, insect-

filled: �10.46%).

A B

C D

E F

Figure 1. Percentage errors arising from comparisons between modeled geometries and measurements of physical specimens from various insect

taxa (see text).
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Comparison of radar cross-sections

In addition to comparing the measured physical charac-

teristics of the specimens against their modelled equi-size,

equi-mass and ellipsoidal counterparts, we can also com-

pare the measured and modelled radar cross-sections.

Table 1 shows summary error statistics for the along-body

and across-body radar cross-sections for each of the ele-

ven taxon groups and all six model types. As with the

statistics presented for the physical attributes, positive

RCS percent errors represents a modelled RCS that is lar-

ger than the measured value and negative error values

indicate that the modelled RCS is underestimated com-

pared to the measurements (e.g., an error of 100% means

that the modelled RCS is twice as large as the correspond-

ing measurement, while an error of �50% indicates that

the modelled RCS value is half of the measured value).

When comparing the results for models that differ only

in internal composition, the insect-paste-filled models

produce lower mean errors than the water-filled models

in almost all cases (Table 1). Moving from a composition

of water to insect paste affects the modeled specimens in

two ways: reducing the permittivity, which affects all three

sets of models, and increasing the density, which affects

only the equi-mass and ellipsoidal models. The effect of

the reduced permittivity can be seen by comparing the

results of the two equi-size models as these differ only in

permittivity. Reducing the permittivity reduces the

modelled RCS values, and since the modelled RCS is

overestimated when compared to the measurements for

most of the groups, reducing the permittivity has the

overall effect of lowering the error in the RCS. For the

equi-mass models, moving from water to insect paste also

has the effect of reducing the model sizes in all three

dimensions. Similarly for the ellipsoidal models, increas-

ing the density has the effect of reducing the size of the

models in the dorsoventral axis. This reduction in model

size compounds the effect of the reduced permittivity and

further reduces the RCS compared to the equi-size mod-

els leading to lower overall RCS errors values for these

models. There are a few exceptions where the water-filled

models result in lower RCS errors than the insect-paste-

filled models, but these reflect the limited cases in which

the RCS is overestimated by the model compared to the

measurements (e.g., the across-body RCS for the pyralid/

plutellid moth category, and the ladybird RCS using the

equi-mass model).

The RCS errors are also presented graphically in Fig-

ure 2, in which the error shown is the raw error (mod-

elled value minus measured value) normalized by the

mean RCS for each group to facilitate easier comparison

among groups. Considering the water-filled and insect-

paste-filled models separately, the highest average RCS

error for both of the internal materials is found to occur

when the insects are represented using the equi-size

model (Table 1, Fig. 2). The mean along-body RCS errors

Figure 2. Normalized along-body (A) and across-body (B) RCS errors for each of the six models, separated by insect groups. The raw errors

(modelled RCS value minus measured RCS value) were normalized by the corresponding mean measured along- or across-body RCS for that

insect group.
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A B

C D

E F

Figure 3. Comparisons between modelled and measured radar cross sections. Along-body RCSs are shown in the left column and across-body

RCSs in the right column. The groups shown are Orthoptera (A, B), ladybirds (C, D) and Hymenoptera (E, F).
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are lowest for the equi-mass model, although this is likely

biased by some of the groups (e.g., ladybirds and hover-

flies) reporting negative along-body RCS errors with the

equi-mass model. In terms of across-body RCS the ellip-

soidal model produces the lowest average errors for both

the water and insect-paste interior materials.

Three of the groups – Orthoptera, ladybird beetles and

Hymenoptera – serve to illustrate the main cases of model

performance. The modelled and measured RCSs for each

specimen from these three groups are shown in Figure 3,

with the along-body RCSs shown in the left-hand column

and the across-body RCSs in the right-hand column. It is

clear from Figure 3 that model performance varies across

groups, with causes related to differences in the insects’

physical characteristics. For example, when modelling

Orthoptera (Fig. 3, top row) the equi-mass models (green

and cyan) typically overestimate RCS, resulting in points

above the one-to-one line. For ladybirds, however, the

effect is reversed (Fig. 3, middle row), with equi-mass

models consistently underestimating RCS (green and

cyan), resulting in points below the one-to-one line. In

contrast, RCS values for the Hymenoptera (Fig. 3, bottom

row) are very similar for all models, with all approxi-

mately falling near the one-to-one line. This ‘collapse’ of

all six models to similar RCS values indicates that a pro-

late spheroid is a good approximation for the Hymenop-

tera, which validates the low physical errors seen for all

models for this group in Figure 1. Conversely, wide vari-

ability of modeled RCSs for ladybirds and Orthoptera

demonstrates that some model types do not accurately

capture the scattering characteristics of these groups.

Overall, the ellipsoidal models (Fig. 3, blue and magenta)

are most accurate across all three groups. The only differ-

ence between the equi-size and prolate ellipsoid models is

the degree of freedom in varying the insect’s height, yet

we see significant differences in the resulting across-body

RCS values. This serves to demonstrate that knowledge of

an insect’s height is important even when considering a

ventral look angle, as elongation in the dorsoventral axis

will manifest in changes in both the along- and across-

body RCSs.

Discussion

Routine radar monitoring of airborne animal migrations

provides considerable benefits to a variety of stakeholders

in society (Bauer et al. 2017). However, fully realizing

these benefits necessitates improvements in our knowl-

edge of radar-scattering signatures of airborne animals.

This is vital for enhancing interpretations of biological

scatterers in the atmosphere in general, and for extracting

information on the airborne insect fauna in particular.

Here, we investigated the application of electromagnetic

modelling using WIPL-D software as a convenient way of

creating radar cross-sections for various flying insect taxa.

The comparison of our results with laboratory measure-

ments produced the following main findings.

In general, models using a prolate ellipsoid geometry

were best able to emulate the measured radar cross-sec-

tions across all taxa; there were clear additional improve-

ments when using a homogenized insect-paste instead of

water to represent dielectric properties of the insect bod-

ies. The performance of prolate spheroid models fell into

three main categories. For taxa having naturally spheroi-

dal body shapes, such as lacewings and Hymenoptera, the

prolate models performed well. In these cases, the ellip-

soid models assumed heights similar to their widths, thus

approximating spheroids such that all six models pro-

duced similar RCS errors. Taxa with body shapes elon-

gated in height and compressed in width, most notably

locusts and grasshoppers (Orthoptera), produced consis-

tent errors when using prolate spheroid models; the

errors could, nonetheless, be accounted for by detailed

consideration of typical body-shapes of the taxa con-

cerned. For example, when using an equi-size model,

height is underestimated by the orthopteran specimen

width, resulting in underestimates of mass and RCS.

When using an equi-mass model with constant aspect,

too much mass was distributed over the width and

length, while not enough was distributed over the height,

resulting in overestimates in overall size and RCS. Con-

versely, taxa with a flattened shape, such as ladybirds and

hoverflies, had the opposite trends. When using an equi-

size model, the height is overestimated by the width,

resulting in overestimates of mass and RCS. When using

an equi-mass model with constant aspect, too much mass

is distributed over the height, while not enough is dis-

tributed over the width and length, resulting in underesti-

mates in size and RCS. Most of the other taxa are less

extreme examples of one of these three cases.

The results of our experiment show that it should be

possible to input relatively simple physical measurements

of insects, i.e., body length, width and height (which we

have shown here to be important) into electromagnetic

models; these will then able to produce reliable radar

scattering cross-sections for those taxa without the need

for direct RCS measurements which require specialized

equipment and are often experimentally difficult to per-

form. Improved accessibility of standardized RCS mea-

surements from a large range of insect taxa will greatly

advance the quantitative aspects of radar aeroecology, by

allowing for more accurate estimation of aerial densities

of the biological scatterers actually observed by weather

surveillance radars.

In addition, the association of target properties with

RCS size and shape values, achieved through calculations
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using electromagnetics theory, will be directly applicable

to studies using special-purpose entomological radars. For

example, suppose an insect species is suspected to be

migrating in a particular season (evidenced perhaps by its

presence in trap catches), but the species is not among

the few for which a measured RCS exists. Some simple

measurements of its morphological dimensions combined

with the modelling techniques described here would

quickly provide an emulated target to compare with the

ones detected by the ZLC entomological radar.

Further extension of this research could focus on incor-

porating the RCS values produced by electromagnetic

modelling software with typical volume densities of air-

borne insects derived from aerial trapping studies. This

would allow for the calculation of theoretical reflectivities

for groups aerial fauna of known species composition and

typical density, which could then be compared with

reflectivities of biota recorded by weather surveillance

radars. Applications such as these could serve to reveal

the dominant taxa inhabiting the airspace from radar

observations, while providing an avenue towards radar-

based classification methods, and represent a foundational

step towards realizing the full potential of weather radar

technology in entomology.
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