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Abstract: Geographically weighted regression (GWR) is an inherently exploratory tech-
nique for examining process non-stationarity in data relationships. This paper develops
and applies a hyper-local GWR which extends such investigations further. The hyper-local
GWR simultaneously optimizes both local model selection (which covariates to include in
each local regression) and local kernel bandwidth specification (how much data should be
included locally). These are evaluated using a measure of model fit. By allowing models
and bandwidths to vary locally, it extends the "'whole map model” and ’constant bandwidth
calibration” under standard GWR. It provides an alternative and complementary interpre-
tation of localized regression. The method is illustrated using a case study modeling soil
total nitrogen (STN) and soil total phosphorus (STP) from data collected at 689 locations in
a watershed in Northern China. The analysis compares linear regression, standard GWR
and hyper-local GWR models of STN and STP and highlights the different locations at



which covariates are identified as significant predictors of STN and STP by the different
GWR approaches and the spatial variation in optimal bandwidths. The hyper-local GWR
results indicate that the STN relationship processes are more non-stationary and localised
than found via a standard application of GWR. By contrast, the results for STP are more
confirmatory (i.e. similar) between the two GWR approaches providing extra assurance
to the nature of the moderate non-stationary relationships observed. The overall benefits
of hyper-local GWR are discussed, particularly in the context of the original investigative
aims of standard GWR. Some areas of further work are suggested.

Keywords: Loess Plateau; GWR; model selection; spatial analysis

1 Introduction

Geographically Weighted Regression (GWR), as first described in Brunsdon et al [1], is a
commonly used approach in spatial analysis. It has at its core the idea that global or whole
map statistical models may make unreasonable assumptions of spatial non-stationarity
amongst the processes under investigation [32]. The intention of GWR was to provide
an exploratory approach to explore the spatial nature of relationships between (response
and predictor) variable and, in so doing to provide a better understanding of the process
under consideration. It conceptual elegance: local regression models are constructed at
different locations using data under a moving window or kernel, which are weighted by
the distance to the kernel center such that data furthest away contribute less to the overall
model. Because of this, the geographically weighted (GW) framework has been extended to
include different types of models including GW principal components analysis [23], GW
summary statistics [4], GW discriminant analysis [5], GW variograms [20], GW Structural
Equation Models [10] and applied in domains with little tradition of local statistical ap-
proaches (eg [11, 12, 15]). The fundamental aims of GWR and GW frameworks are thus to
explore spatial relationships in data and processes.

One of the key parts of any GW analysis is to determine an optimal kernel size or band-
width, as this controls how much data are included in each local model and the degree of
smoothing / localness in the GW model. Gollini et al [19] provide a full discussion but
in essentially the bandwidth determines the scale at which each localized model operates.
Smaller bandwidths result in greater local variation in the outputs and larger ones result
in outputs that are increasingly closer to the global measure. Optimum kernel bandwidths
can be found by minimizing a model fit diagnostic and most GWR implementations use a
leave-one-out cross-validation (CV) score, the Akaike Information Criterion (AIC) [1] or a
corrected version of the AIC [26]. Essentially what these do is, for each bandwidth a local
model is constructed at each location and then the model fit is calculated from all local
models for the bandwidth. The bandwidth with the best (lowest) score is selected.

Thus a standard implementation of GWR frequently determines which covariates to in-
clude using a model selection procedure and then determines the optimal bandwidth using
a model fit procedure. These are both global in nature: the same covariates and bandwidth
are specified for each local regression of GWR. GWR generates coefficient estimates at each
location and these are commonly mapped to show the spatial variation in the degree to
which change covariates = are associated with changes in y.
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This paper proposes an enhancement to standard applications of GWR that allows both
model selection and bandwidth to vary locally. The aim of hyper-local approaches to GWR
is to provide a still deeper understanding of the spatial nature of the processes under inves-
tigation. As with GWR, hyper-local GWR applies a local regression under a moving win-
dow or kernel at each location under consideration, but it simultaneously optimizes both
the local regression model and the local kernel bandwidth. This is entirely novel: although
model selection in GWR has been done [41], it has not been combined with non-constant
bandwidth selection where bandwidths are truly local and unique (i.e. [33, 34]). Local
model selection helps in the identification of which covariates are important in explaining
the variation in the dependent variable and where they are important. The corresponding
local bandwidths in turn provide insight into the local scales of influence. The hyper-local
GWR approach provides an alternative interpretation of localized regression by extending
GWR through local model selection and local bandwidth optimization. It complements
and enriches a standard application of GWR.

2 Methods

Linear regression, GWR and the proposed hyper-local GWR were used to construct models
of soil total nitrogen (STN) and soil total phosphorus (STP). The analyses used the data
described in Wang et al (2009).

2.1 Data and study area

The data reports measurements made at 689 locations in the Liudaogou watershed, within
the Loess Plateau, located 14 km west of Shenmu County, Shaanxi Province, China. Wang
et al [38] provide a full description but in brief, this is a small watershed with an altitudinal
range of 1081m to 1274m, a semi-arid climate with mainly grassland land use. The data
were collected at locations on an approximate 100m by 100m grid (Figure 1) and analyzed
in the laboratory to provide measurements of covariates commonly associated with STN
and STP: soil organic carbon (SOCgkg), clay (ClayPC), silt (SiltPC), sand (SandPC), nitrate
nitrogen (NO3Ngkg) and ammonium (NH4Ngkg). Some of the variables were transformed
using natural logs (STN, SOCgkg, NO3Ngkg, NH4Ngkg) and square roots (STP, ClayPC),
as was done by [38].

2.2 Linear regression and GWR

A standard linear regression for spatial data is specified as follows:

Yi = Po + Zﬂjl"ij +e (1)

j=1

where for observations indexed by i = 1, ...n, y; is the response variable, x;; is the value
of the ;" predictor variable, mis the number of predictor variables, 3 is the intercept term,
B; is the regression coefficient for the j'" predictor variable and ¢; is the random error term.
GWR is similar in form to linear regression, except that GWR calculates a series of local
linear regressions rather than one global one. A GWR model has locations associated with
the coefficient terms:
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Figure 1: The sample locations and some context from the OpenStreetMap Bing layer

m
Yi = Bo(ui, vi) + Z Bj(ui,vi)wij + € 2)

j=1
where (u;,v;) is the spatial location of the i, observation and ;(u;, v;) is a realization
of the continuous function §;(u, v) at point . The geographical weighting results in data
nearer to the kernel center making a greater contribution to the estimation of local regres-
sion coefficients at each local regression calibration point k. For this study, the weights

were generated using a bisquare kernel, which for the bandwidth parameter is defined by:

wi = (1 — (dz’k/""k)2)2 if d;j. < 1, wi = 0 otherwise (3)

where the bandwidth can be specified as a fixed (constant) distance value, or in an
adaptive, varying distance way, where the number of nearest neighbors is fixed (constant).

In this case, fixed, distance-based kernel bandwidths were determined using the AIC-
based model fit procedure. Fixed bandwidths were chosen to provide direct understand-
ings of the spatial scales of relationship non-stationarity and because the data locations are
regularly spaced.

2.3 Hyper-local GWR

In a hyper-local GWR, both the bandwidth and the regression model selection are opti-
mized locally rather than globally across all local models as in a standard GWR. A sequence
of bandwidths was investigated (from 200 m to 3700 m in steps of 50 m, n = 63) and at each
location regression models of STN and STP were constructed using weighted data falling
under the kernel. Then a stepwise AIC model selection procedure was applied. Thus for
each location, 63 local regression models of STN and STP were constructed, for which 63
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AIC scores were calculated. The ‘best’ model and bandwidth combination at each location
was that with the lowest AIC.

3 Results

3.1 Linear Regression

Linear regression models of STN and for STP were constructed from the six covariates and
a stepwise AIC model selection procedure was applied. Tables 1 and 2 summarize the
coefficient estimates and the selected covariates.

Full Selected

Estimate  Std. Error t value Pr(>1tl) Estimate Std. Error t value Pr(>1tl)
(Intercept) -3.823 1.134 -3.371 0.001 0.011 0.035 0.314 0.754
SOCgkg 0.688 0.040 17.291 0.000 0.050 0.007 6.762 0.000
ClayPC 0.081 0.084 0.960 0.337 . . . .
SiltPC 0.028 0.010 2912 0.004 0.004 0.001 4.678 0.000
SandPC 0.016 0.011 1.442 0.150 . . . .
NO3Ngkg  0.125 0.029 4.251 0.000 0.002 0.001 1.936 0.053
NH4Ngkg -0.138 0.074 -1.877 0.061 . . .

R?:0.610 adj R?%:.0.607, AIC:1123.7 R?:0.141 adj R%:0.137 AIC:586.1

Table 1: Summary of the coefficient estimates arising from the Full and AIC selected linear
regression models of STN.

Full Selected

Estimate  Std. Error t value Pr(>1tl) Estimate Std. Error t value Pr(>1tl)
(Intercept) -0.078 0.163 -0.479 0.632 0.201 0.014 14.542 0.000
SOCgkg 0.047 0.006 8.195 0.000 0.014 0.002 6.861 0.000
ClayPC 0.011 0.012 0.905 0.366 -0.005 0.002 -3.124 0.002
SiltPC 0.007 0.001 5.247 0.000 0.004 0.000 11.206 0.000
SandPC 0.005 0.002 3.145 0.002
NO3Ngkg -0.001 0.004 -0.169 0.866 . . . .
NH4Ngkg  0.026 0.011 2.482 0.013 0.001 0.001 2.276 0.023

R%:0.404 adj R*:0.399 AIC:-1548.2 R%:0.326 adj R*:0.322 AIC:-1178.9

Table 2: Summary of the coefficient estimates arising from the Full and AIC selected linear
regression models of STP.

In the case of STN, the full model is being driven by SOCgkg along with SiltPC and
NO3Ngkg are significantly associated with STN and model is similar to that described
in Wang et al (2009) with an of 0.61 and all of the covariates positively associated with
STN except NH4Ngkg. The AIC selected model did not include the ClayPC, SandPC and
NH4Ngkg covariates. Observe that NO3Ngkg is not significantly associated with STN in
the AIC selected model (at the 95% level). The significant predictors of STP in the full
model were SOCgkg, SiltPC, SandPC and NH4Ngkg with an value of 0.40, again similar
to the findings of Wang et al (2009). The selected model did not include the covariates for

JOSIS, Number N (YYYY), pp. xx—yy



6 AUTHOR1, AUTHOR2

NO3Ngkg and SandPC, but all retained covariates were significant. In both cases the se-
lected models reflect the impact of silt and soil organic carbon in increasing the soil surface
area supporting higher absorption capacities, and thus concentrations of STN and STP, as
noted by Wang et al (2009). The AIC selected models are more parsimonious model but
with weaker R? and adjusted R? values as would be expected.

Note that the selected model does not necessarily include covariates that are signif-
icantly different from zero (via their t-values) and that covariate with non-significant t-
values in the full model may be included in the selected model and may become significant
(e.g. the ClayPC covariate for the STP regression). The key point is that the variance in STN
and STP can be explained by two competing, but equally valid linear regression models.
This concept is repeated locally in the subsequent GWR analyses and is a cornerstone of
this paper.

3.2 Standard GWR

Linear regression models assume that the contributions to the model made by the differ-
ent covariates are the same across the study area. In reality, this assumption of process
spatial invariance may be violated. GWR seeks to quantify the spatial variation in the
data relationships. In a standard GWR analysis, covariate selection is typically undertaken
globally and the same regression model is constructed locally using local weighted data
subsets. The local coefficient estimates are commonly mapped and local covariate selection
(and goodness of fit evaluations) can be done by identifying local covariate t-values that
indicate coefficients to be significantly different from zero (e.g. Harris et al. 2010b).

The optimal bandwidths for GWR models of STN and STP were found at 1026m and
1629m, respectively. These were used to calibrate the GWRs constructed at each of the
sample locations in Figure 1. The local coefficient estimates from these are summarized in
Tables 3 and 4. The GWR coefficients for STN show considerable spatial variation (via the
inter-quartile range, IQR) and much less is found in the local STP models, as also reflected
in its larger bandwidth. For example, in the STN GWR model the coefficient estimates for
SandPC and NO3Ngkg have IQRs of 0.0156 and 0.1247, respectively, while in the STP GWR
model these have relatively small IQRs (0.0023 and 0.0077, respectively).

Min. 1stQu. Median Mean 3rd Qu. Max. IQR Global
Intercept -11.8600 -4.9410 -2.8260 -3.0400 -0.8880 2.0820 4.0530 -3.8229
SOCgkg 0.4050 0.6137  0.6730 0.6760  0.7509 0.9294 0.1372 0.6882
ClayPC -0.3965 -0.0162  0.0865 0.0752  0.1630 05661 0.1792 0.0811
SiltPC -0.0295 0.0012  0.0166 0.0201  0.0390 0.0898 0.0378 0.0284
SandPC -0.0414 -0.0092  0.0068 0.0099  0.0316 0.0917 0.0408 0.0156
NO3Ngkg -0.1191 0.0399  0.0909 0.1282  0.1666 0.6079 0.1267 0.1247
NH4Ngkg -0.8360 -0.2313  -0.1115 -0.1661 -0.0395 0.1237 0.1918 -0.1384

Table 3: The distributions of the coefficient estimates arising from a GWR model of STN.

The spatial variations in the coefficient estimates arising from the two GWR models are
mapped in Figures 2 and 3 and indicate the relative importance of the contribution made
to each local model by each covariate at each location. They confirm that there is much
greater spatial variation in the relationships associated with STN than with STP.
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Min. 1stQu. Median Mean 3rd Qu. Max. IQR Global
Intercept -0.7236  -0.2119 -0.1046 -0.0683  0.0640 0.6685 0.2759 -0.0781
SOCgkg 0.0183  0.0371  0.0410 0.0422  0.0487 0.0599 0.0116 0.0469
ClayPC -0.0673 -0.0130 0.0132 0.0063 0.0261 0.0598 0.0391 0.0110
SiltPC 0.0024 0.0059 0.0081 0.0078 0.0098 0.0119 0.0039 0.0074
SandPC 0.0029  0.0038  0.0050 0.0051  0.0061 0.0104 0.0023 0.0049
NO3Ngkg -0.0096 -0.0016 0.0027 0.0031 0.0061 0.0434 0.0077 -0.0007
NH4Ngkg -0.1505 0.0000 0.0186 0.0180 0.0412 0.0722 0.0412 0.0263

Table 4: The distributions of the coefficient estimates arising from a GWR model of STP.

The t-values in Figures 2 and 3 provide an indication of where local coefficients are sig-
nificant and thus where a covariate is an important predictor of STN or STP. This provides
an indication of local covariate selection from the full model and is analogous to the global
full models reported in Tables 1 and 2. For example, it is evident in both GWR models that
SOCgkg is strongly and significantly associated with STN and STP across all locations, but
the strength of this association varies spatially. Whereas significant coefficient estimates
of NO3Ngkg are highly localized in each GWR model indicting strong associations in the
north east and center of the study area with STN and strong associations in the north with
STP. In general, significant relationships are much more localized for STN than for STP.

3.3 Hyper-local GWR

The GWR analysis applied the same kernel bandwidth and included the same full set of
covariates in each local regression model. Figures 2 and 3 display the spatial distribution
of the GWR coefficient estimates and a degree of local model selection is possible through
exploration of the local ¢-values associated with the local coefficient estimates. This is a
standard application of GWR, supporting investigations of process heterogeneity with re-
spect to spatially-varying relationships.

The hyper-local GWR approach provides an alternative interpretation of localized re-
gression through local model selection and local bandwidth optimization. It builds on pre-
vious GWR studies that have identified analytical advantages when locally-determined,
non-constant bandwidths are applied [33, 34] and when covariate selection is determined
locally (e.g. [41]). It combines these localized characteristics but the ultimate objective is
entirely different to the studies of Paez and Wheeler: Paez et al [33, 34]. were concerned
about modeling a non-stationary error variance in GWR via a parametric approach and
Wheeler [41] sought to address local collinearity in GWR via a lasso approach.

For each of the 689 data points, the hyper-local GWR identified the components of the
best fitting model for each of the 63 bandwidths (from 200 m to 3700 m in intervals of 50
m) and the associated AIC score. Thus it was possible to determine the best fitting model,
with the lowest AIC score at each location.

3.3.1 Local bandwidth selection

Figure 4 shows bandwidths with the lowest AIC scores from the hyper-local GWR mod-
els of STN and STP. They exhibit different spatial patterns and characteristics. The STN
bandwidths range from 200-1800 m, with larger bandwidths (say, 1000-1800 m) traversing
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Figure 2: Spatial variation in coefficient estimates from a standard GWR model of STN.
Significant t-values are indicated by the black shaded points.

from the south-east to the north-west. This suggest that local regressions in this area band
are informed by data subsets of a similar size to that found with standard GWR (with its
constant bandwidth of 1026 m). Elsewhere, the bandwidths are much smaller (200-1000
m), so that local regressions in these areas are informed by much smaller data subsets.
The distribution of bandwidths in the hyper-local GWR model, is on the whole indicative
of increased localized spatial heterogeneity in data relationships, which is more than that
suggested by the standard GWR analyses, above.

Conversely, the STP bandwidths range from 1500 -3700 m and are much larger almost
everywhere than the constant bandwidth for standard GWR at 1629 m. Thus, most local
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Figure 3: Spatial variation in coefficient estimates from a standard GWR model of STP.
Significant t-values are indicated by the black shaded points.

regressions of hyper-local GWR are informed by much larger data subsets. Only to the
center of the study area are bandwidths from hyper-local GWR of similar size to a standard
GWR. The larger bandwidths indicate reduced spatial heterogeneity to that found with
standard GWR, and suggests spatial homogeneity in the relationships (i.e. tending to the
global regression).
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Figure 4: Spatial variation in local bandwidth size (in metres) of the hyper-local GWR mod-
els of STN and STP.

3.4 Local covariate selection and distribution of coefficient t-values

Investigating the spatial variation in bandwidth size is only one aspect of hyper-local GWR
and should be coupled with consideration of local covariate selection. Table 5 summarizes
how many times each covariate was selected using stepwise AIC at each of the 689 loca-
tions in the hyper-local GWR models. There are a number of interesting points. STN model
selection for the global regression (Table 1 excluded ClayPC, SandPC and NH4Ngkg, while
these are now selected in 522, 641 and 439 out of 689 hyper-local models, respectively. STP
model selection for the global regression (Table 2) excluded SandPC and NO3Ngkg, while
these are now selected in 689 and 170 out of 689 local models, respectively. Additionally,
three covariates were always selected regression (SOCgkg, SiltPC and SandPC), whereas
for STN none were. This suggests that there are potentially interesting local interactions
between covariates which are missed in standard GWR in which all six covariates are in-
cluded in the model for all 689 local regressions.

Figures 5 and 6 indicate where different covariates were selected for inclusion in the
local regression models under the hyper-local GWR and where the associated coefficient
estimates were found to be locally significant via their t-values. When these are compared
with maps of t-values in Figures 2 and 3 for standard GWR, some large local differences
are evident, especially for the STN process.

For example, in the STN processes (comparing Figures 2 and 5), SandPC is a significant
covariate in most locations in hyper-local GWR model. In the standard GWR model (Figure
2 it only significant in two sub-regions to the north and center of the study area. Whilst,
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STN STP
SOCgkg 657 689
ClayPC 522 527
SiltPC 505 689
SandPC 641 689
NO3Ngkg 476 170
NH4Ngkg 439 425

Table 5: Number of sample locations where different covariates were selected in hyper-local
GWR.

NH4Ngkg in the standard GWR model of STN is significant in the north-west of the study
area, but has a much wider significance in the hyper-local GWR model. These results in-
dicate that when the bandwidth and covariate selection tends to be more localized under
the hyper-local GWR, then significant non-stationary relationships result, that are not ap-
parent with standard GWR. Similar interpretations of these findings for STN relationships
with SiltPC, NO3Ngkg and ClayPC while it appears that STNAAZs relationship to SOCgkg
is consistent across both GWR forms. Note also that hyper-local GWR tends to provide
spatially-disjoint areas of covariate selection and coefficient significance, reflecting highly
localized processes. For the STP process, comparing Figures 3 and 6, there are very sim-
ilar patterns for significant coefficients from hyper-local GWR and from a standard GWR
for all six covariates, although NO3Ngkg, SandPC, ClayPC and NH4Ngkg show enlarged
localized areas of significance under the hyper-local model. Note that NO3Ngkg is only
selected in 170 sample locations in hyper-local GWR (see Table 5) and these center in the
north, precisely where standard GWR shows the NO3Ngkg relationships as significant.

Clearly, these results indicate that when the bandwidth and covariate selection tend
towards the global solution, as with the hyper-local GWR of STP the non-stationary rela-
tionships that result from a hyper-local GWR are broadly similar for both forms of GWR.
However, where localized spatial heterogeneity is present in data relationships, as with
STN, the hyper-local GWR provides a more spatial nuanced indication of the localization
than a standard GWR analysis.

3.5 Comparisons of global and local model fit

The final analysis compared the three different regression models in the degree to which
they (in-sample) predict STN and STP. The scatterplots in Figure 7 show fitted values
against observed values for these six models. For STN, the model fits improve with increas-
ing spatial nuance, from linear regression (full model), to standard GWR and to hyper-local
GWR (R? of 0.61, 0.68 and 0.94, respectively). Rather surprisingly, there is little improve-
ment in model fit from the linear regression to standard GWR. The strong predictive per-
formance of hyper-local GWR can be attributed to the local tightening of bandwidths and
variable selection. For STP, the model fits do not improve in the same way. There is a
moderate increase from linear regression (full model) to standard GWR but then a small
decrease to the hyper-local GWR (R? of 0.40, 0.47 and 0.45 respectively). The decrease in
R? observed for hyper-local GWR simply reflects that this model is actually not as local as
standard GWR, as the bandwidths for hyper-local GWR tend to be larger and the process
tends towards the global fit.
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Figure 5: The spatial distribution of the selected covariates included in each hyper-local
GWR model of STN, with those with significant t-values are indicated by a larger symbol.

Care must be taken in the interpretation of model fit results, as any form of localised
regression will tend to provide an improved prediction accuracy, the more complex it gets
(hence the strong performance of hyper-local GWR for STN). Furthermore, although hyper-
local GWR is shown to improve fit for the STN process, this has little predictive value, as
hyper-local GWR cannot be used as an out-of-sample predictor. This is because the out-
of-sample prediction does not have its own local bandwidth, whereas for standard GWR,
the global bandwidth can be used [22]. Thus, hyper-local GWR is solely for guiding spatial
exploration and inference only, as demonstrated in this study.

It is important to investigate local model fit characteristics so that the outputs in Figures
2 to 6 can be placed in better context and geographically contrasted. Figure 8 compares the
local R? values for standard GWR and hyper-local GWR models for STN and STP and
indicates that hyper-local GWR provides a better fit in 503/689 and 5/689 locations for
STN and STP, respectively. Thus, for the STN process, the local regressions of standard
GWR could be considered sub-optimal in 73% of the locations, whilst for the STP process,
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Figure 6: The spatial distribution of the selected covariates included in each hyper-local
GWR model of STP, with those with significant t-values are indicated by a larger symbol.

the local regressions of standard GWR are in general, reasonable. The magnitude of the
differences are much greater for STN than for STP. If Figure 8 is compared with Figure 4,
the areas where a hyper-local approach provides a better model fit for STN directly corre-
spond to those where a much smaller local bandwidth was selected. This behavior is not
so apparent for the STP process.

The maps in Figure 8 confirm what has already been described. For STN, hyper-local
GWR suggests a more localized relationship process where local model fit can improve
using fewer data points and fewer covariates. Standard GWR is under-fitting the true non-
stationary relationship process and this effect is not uncommon (e.g. [24]). Conversely,
it is always possible that hyper-local GWR is over-fitting. The STN process is in general,
well-informed by the six covariates. For STP, hyper-local GWR suggests more moderately
spatially-varying relationships but where local model fits are similar (slightly weaker) to
that found for standard GWR. Thus, the application of hyper-local GWR provides little
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Figure 7: Fitted values for STN and STP arising from linear regression, standard GWR and
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STN STP
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Figure 8: Maps of the difference in local R? values under standard GWR and hyper-local
GWR models. Locations in red indicate where a hyper-local GWR model resulted in a
better fitting model and (black for GWR) and the size of the plot characters indicate the
magnitude of the difference.

value to an extended use of nearby data points with often fewer covariates for its local
regressions. The STP process, is in general, not well-informed by the six covariates.

4 Discussion

GWR is an inherently exploratory approach for examining and investigating process non-
stationarity in data relationships. The proposed hyper-local GWR extends these investi-
gations further. It provides an alternative and complementary interpretation of localized
regression by locally selecting the most parsimonious model (by local sample and covariate
size), for which spatially distributed coefficient estimates and t-values can also be found.
The local selection of the most parsimonious model is analogous to what is commonly done
in a global analysis, where a summary of the full model is presented alongside a reduced,
selected covariates model.

The investigations show that where the non-stationarity of relationships tend towards
the global, as with STP, the results are similar to a standard GWR (compare Figures 3
and 6). However, where localized spatial heterogeneity and spatial non-stationarity are
present, as with STN, the hyper-local GWR provides a more spatially nuanced indication
of the localization than a standard GWR analysis (compare 2 and 5). Thus the hyper-local
GWR results can be used to guide the direction of the next steps. Further analysis of the
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STN could consider adopting a more sophisticated spatially-varying coefficient model (e.g.
[18]), including models that accounts for non-linearity (e.g. [2]. Further analysis of STP
could consider a spatially-autocorrelated regression given that its GWR analyses were not
entirely promising (e.g. [24]).

Determining local bandwidth size and local covariate selection is also in the same
spirit as (but with entirely different objectives to) the GWR models of Paez et al. [33, 34],
Wheeler [41] and Yoneoka et al. [42], some of which are analogous to developments in lo-
cal (attribute-space) regression [28, 37] from which GWR originates [7, 30]. The exploratory
and enhanced spatial nuance of hyper-local GWR reflects recent developments within the
broad family of GWR methods that has promoted wider consideration of scale. These in-
clude hierarchical GWR models [25] and also flexible bandwidth GWR models [17, 27, 29]
that select different bandwidths for each dependent/independent data relationship, rather
than for each location as here. These multi-scale GWR models are closely aligned to the
spatially-varying coefficient models of Gelfand et al [18] and Murakami et al [31].

There are a number of considerations relating to the GWR models applied and demon-
strated in this study. The first is collinearity. Standard GWR and hyper-local GWR are not
designed to address collinearity issues, but here hyper-local GWR could be adapted to mit-
igate against such issues, in a similar manner to that proposed for standard GWR (e.g. [2,
6, 39]). The second concerns multiple hypothesis tests (MHTs), where GWR ¢-values were
presented in an uncorrected form that inherently leads to the false discovery rate problem.
Here the MHT corrections suggested by da Silva and Fotheringham [13] could be adopted
for both standard and hyper-local GWR t-value outputs. A third consideration is the choice
of kernel, the bandwidth type (fixed by distance, as used here, or fixed by sample size) and
the choice of distance metric, all of which effect perspectives of coefficient non-stationarity,
where it would be interesting to examine the degree of difference between the STN and
STP standard and hyper-local GWR models under such different parameterization choices.
Gollini et al. [19] provides overviews of these considerations. A fourth and more salient
consideration for the research described in this paper is the use of AIC scores to select
both local bandwidths and local regression models. AIC [1, 26] seeks to optimise model
parsimony by trading off prediction accuracy and complexity. Other measures of fit could
be applied including some kind of cross-validation measure of residual errors. There have
been a number of arguments made in the context of information theory about the choice of
model selection method and their associated measures of fit. Future work will investigate
CV approaches as they would be expected result in different local model selection. In terms
of information criteria, alternatives to AIC exist such as Bayesian Information Criterion
(BIC) and Deviance Information Criterion (DIC) [35]. The key in determining which model
selection method to use is to understand the logics of each approach and how they relate
to the study objectives and even the underlying objectives of data collection. For example,
AIC and BIC provide different approaches for model comparison [8]. BIC seeks to deter-
mine the 4AYtruedAZ model and, if any particular candidate model represents the genuine
data-generating mechanism, BIC will select such a model. It is said to be asymptotically
consistent because it seeks to select the true model. By contrast AIC seeks to pragmatically
select a model by trading-off explanations of the data with prediction strength. Despite
these theoretical differences Spiegelhalter et al [36] note that aAYit is perhaps therefore
rather surprising how often these two criteria produce similar rankings of candidate mod-
elsaAZ (p. 486) with the only real differences found in the size of the penalty scores [14].
Future work for both hyper-local and standard GWR will investigate the use of different
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model selection criteria, the logics associated with the local models being constructed and
under-lying process spatial heterogeneity.

5 Conclusions

Local statistical approaches such as GWR are inherently exploratory in nature. They seek
to confirm or refute spatial heterogeneity in spatial data structure, processes and statistical
relationships. The hyper-local GWR approach described in this paper provides a useful
counter view of local regression modeling to that found with standard GWR. Standard
GWR applies the same regression model at each location and uniformly sets the same
kernel bandwidth everywhere. The hyper-local GWR approach evaluates different ker-
nel bandwidths at each location and selects the most parsimonious local regression. Where
spatial non-stationarity exists, the hyper-local GWR provides a more spatially nuanced in-
dication of the localization than a standard GWR analysis and can be used to suggest the di-
rection of further analyses and investigations. Undertaking a hyper-local GWR alongside a
GWR allows coefficient estimates, t-values and bandwidths to be compared for differences
and similarities. Specifically, a dual GWR approach that examines the spatial distribution
of local covariate selection and the local bandwidth size supports a deeper understanding
of the local and scale-related characteristics of the spatial process under investigation.
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