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Abstract
This paper develops a localized approach to elastic net logistic regression, extend-
ing previous research describing a localized elastic net as an extension to a local-
ized ridge regression or a localized lasso. All such models have the objective to cap-
ture data relationships that vary across space. Geographically weighted elastic net 
logistic regression is first evaluated through a simulation experiment and shown to 
provide a robust approach for local model selection and alleviating local collinear-
ity, before application to two case studies: county-level voting patterns in the 2016 
USA presidential election, examining the spatial structure of socio-economic factors 
associated with voting for Trump, and a species presence–absence data set linked to 
explanatory environmental and climatic factors at gridded locations covering main-
land USA. The approach is compared with other logistic regressions. It improves 
prediction for the election case study only which exhibits much greater spatial het-
erogeneity in the binary response than the species case study. Model comparisons 
show that standard geographically weighted logistic regression over-estimated rela-
tionship non-stationarity because it fails to adequately deal with collinearity and 
model selection. Results are discussed in the context of predictor variable collinear-
ity and selection and the heterogeneities that were observed. Ongoing work is inves-
tigating locally derived elastic net parameters.
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1 Introduction

This paper develops a geographically weighted elastic net logistic regression 
(GW-ENLR). The context and rationale for this binary response predictor or 
classifier derive from two areas of interest or concern in regression modelling 
in geography: (a) non-stationarity in data relationships and (b) collinearity and 
model selection in the predictor variable data set. For issue (a), this can be dealt 
with using an explicitly local framework such as the geographically weighed 
(GW) modelling approach proposed by Fotheringham et al. (2002), where issue 
(b) is now similarly localized commonly requiring some penalized regression 
adaptation.

In applications of regression to spatial data, two effects are often of most con-
cern: (1) spatial autocorrelation in the error term and (2) spatial heterogeneity of 
the regressions coefficients. The former contradicts the underlying assumptions 
of independence and identically distributed errors, whilst the latter contradicts 
the assumption of fixed data relationships, when applying a standard regression. 
The former commonly requires the incorporation of a stationary autocorrelation 
parameter in the regression model, whilst the latter allows the regression coeffi-
cients to vary across space—i.e. they are non-stationary. In either case, the objec-
tive is the same, that is to provide more accurate or realistic coefficients together 
with associated measures of uncertainty. Often it is difficult to identify or sepa-
rate one effect from the other, as both effects tend to be strongly inter-linked (e.g. 
Anselin 1990) and some models aim to capture both effects (e.g. Brunsdon et al. 
1998). The focus of this paper lies with effect (1) in accounting for spatial het-
erogeneity between response and predictor data relationships. In this respect, a 
GW modelling approach is followed, where localized versions of a generalized 
linear model (GLM) with a logit link function (Fotheringham et  al. 2002) are 
applied (i.e. a GW logistic regression, GW-LR, as the response is binary) and 
developed (i.e. via the new geographically weighted elastic net logistic regression 
(GW-ENLR) model), which are themselves extensions of the classic GW regres-
sion (GWR) (Brunsdon et al. 1996) for a Gaussian response.

Model selection is an important component of any regression model construc-
tion. It involves identifying which predictor variables to include and/or tech-
niques for transforming and reducing the predictor subset. In the context of this 
study, model selection is directly linked to the reduction in unwanted collinearity 
effects among the predictors. Failure to correctly specify a model when collinear-
ity is present can result in a loss of precision and power in the coefficient esti-
mates—leading to poor inferences. This risk commonly increases as more predic-
tors are introduced. Collinearity occurs when pairs of predictor variables have 
a strong positive or negative relationship with each other and is typically con-
sidered a potential problem when these data pairs have correlations of less than 
− 0.8 or greater than + 0.8, say. Approaches for addressing collinearity include 
transformations of the predictors such as that found in principal components 
analysis (PCA) regression, so that the transform negates collinearity altogether, 
or a related approach, such as that provided by partial least squares regression 
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(e.g. Frank and Friedman 1993). In this study, a penalized approach is taken via 
the elastic net, a hybrid of ridge regression and the lasso (i.e. the least absolute 
shrinkage and selection operator) (Zou and Hastie 2005). Only the lasso and the 
elastic net additionally provide a model selection function.

Issues of collinearity can be compounded under GW regression models, which 
use subsets of the data to construct a series of localized regressions. This is because 
predictor variables in the local subset may be collinear even when collinearity is not 
observed globally (Wheeler and Tiefelsdorf 2005; Wheeler 2013). For these reasons, 
a number of extensions have been proposed to address local collinearity includ-
ing ridge GWR (Wheeler 2007; Brunsdon et al. 2012; Bárcena et al. 2014; Gollini 
et al. 2015) and the ‘adjusted/enriched data subset’ GWR models of Brunsdon et al. 
(2012) and Bárcena et al. (2014). For addressing collinearity and model selection, 
the GW lasso model has been a natural development (Wheeler 2009; Wang and Li 
2017) and more recently, the GW elastic net (Li and Nam 2018), where local col-
linearity and local model selection are addressed. All such models are for Gaussian 
response variables only.

For other response types, via a GW GLM framework, only a GW logistic lasso 
exists (Yoneoka et  al. 2016). This paper now extends this suite of GW GLM 
approaches further by proposing an elastic net adaptation to GW-LR (GW-ENLR).1 
It applies this new model to two geographical case studies, one using election data 
and the another using environmental data, with the aim of improving prediction/clas-
sification accuracy and improving understanding of the processes being modelled 
through the local selection of key predictors that best explain the process, locally. 
Furthermore, and unlike the studies of Yoneoka et al. (2016) and Li and Nam (2018) 
with their respective GW logistic lasso and Gaussian-response GW elastic net mod-
els, this study evaluates the new GW-ENLR model through a simulation experiment, 
as similarly advocated in the Gaussian-response GW lasso study of Wheeler (2009).

2  Background: collinearity, ridge regression, the lasso and elastic net

Reliable inference from any regression relies somewhat on the independence of 
the predictor variables. If these are correlated or collinear (i.e. the columns of the 
design matrix have an approximate linear dependence), then the regression can 
become sensitive to random errors in the observed response producing a large 
variance and reducing model inferential power. Thus, model reliability and pre-
cision are affected, resulting in unstable coefficient estimates, inflated standard 
errors and inferential biases (Dormann et al. 2013). Critically, model extrapola-
tion may be erroneous and there may be problems in separating predictor vari-
able effects (Meloun et  al. 2002). For this study, a penalized approach is taken 
to address adverse effects of predictor collinearity. In particular, an elastic net 
approach is followed, which is itself an extension or hybridization of the lasso 

1 Such a model has been suggested (e.g. Yoneoka et al. 2016) but not yet been implemented, demon-
strated or objectively evaluated, as is the case here.
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and ridge regression. Both the lasso and the elastic net also provide predictor var-
iable subset selection.

Ridge regression (Hoerl 1962; Hoerl and Kennard 1970) addresses predictor 
collinearity by altering the estimator to include a small change to the values of 
the diagonal of the cross-product matrix, referred to as the ridge. The off-diag-
onal elements of the cross-product matrix describe the co-variation in the pre-
dictor variables for any regression, where the effect of the additional ridge term 
is to increase the difference between the diagonal and off-diagonal elements of 
the matrix, thereby reducing the collinearity among the predictors. Unfortunately, 
there is a cost to implementing these small changes to the diagonal: the estima-
tor becomes biased and the standard errors of the estimates (and t values) are 
no longer available (which is similarly the case for the lasso and the elastic net). 
Lasso approaches (Tibshirani 1996) provide model selection and dimensional-
ity reduction in order to overcome model over-fitting and predictor variable col-
linearity, respectively. The lasso is a shrinkage estimator and generates coeffi-
cient estimates that are biased to be small, effectively including a penalty term 
to constrain them. It resembles ridge regression, but operates by simultaneous 
continuous variable shrinkage and automatic predictor variable selection. It has 
some limitations as noted by Zou and Hastie (2005): saturating with short fat data 
(p > n); randomly selecting one of the correlated predictor variables; is potentially 
dominated by the ridge when the data are long and thin (n > p). The elastic net 
(Zou and Hastie 2005) is a hybrid of ridge regression and lasso regularization. 
Like the lasso, elastic net can result in model reduction by generating zero-valued 
coefficients so that the corresponding predictor variable drops. Empirical stud-
ies have suggested that the elastic net technique can outperform the lasso (with 
respect to prediction accuracy) on data with highly correlated predictors (Fried-
man et al. 2010).

Collinearity can be a more difficult problem to address in localized regressions 
such as GWR and GW GLMs, as region-specific subsets of the data may exhibit 
collinearity, even when none is observed globally. In this respect, various GW 
ridge, GW lasso and GW elastic net models have been proposed (Wheeler 2007, 
2009; Brunsdon et  al. 2012; Bárcena et  al. 2014; Gollini et  al. 2015; Yoneoka 
et al. 2016; Wang and Li 2017; Li and Nam 2018). This study extends this exist-
ing suite of models through the development of a GW elastic net logistic regres-
sion (i.e. GW-ENLR) for understanding local structure in the data and supporting 
local variable selection, when the response variable is of a binary form.

3  Methods

To situate the new GW-ENLR approach, details on logistic regression (LR), elas-
tic net logistic regression (ENLR) and GW logistic regression (GW-LR) are also 
provided. These regressions will also be fitted to the case study data sets, for con-
text and to demonstrate the benefits of the new GW-ENLR model.
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3.1  Logistic regression (LR)

An LR is a specific GLM with a logit link function of any number Q which is 
defined as:

where yi1 is a 0/1 indicator at location i, β0 is the intercept term, xik is the value of 
the kth predictor variable at location i, m is the number of predictor variables and 
βk is the regression coefficient for the kth predictor variable. Observe that although 
the data are associated with locations (or observations) i, spatial effects are not 
accounted for in this basic regression (i.e. spatial effects are naively assumed as 
being unimportant).

3.2  Elastic net logistic regression (ENLR)

The elastic net (Zou and Hastie 2005; Hastie and Qian 2014) is a model selection 
technique, that seeks to identify which predictor variables to include in a regression 
model. For a parameter α strictly between zero and one, and a nonnegative regu-
larization parameter λ, the elastic net objective function for an LR (ENLR) uses the 
negative binomial log-likelihood:

where N is the number of observations (or sample locations in this study’s context), 
the coefficients β0 and β are scalar and m-vector, respectively, and α and λ denote 
L1- and L2-norms, respectively. The problem is solved over a grid of values of λ cov-
ering the entire range. The elastic net penalty is controlled by α, and bridges the gap 
between the lasso and ridge regression: the elastic net is equivalent to the lasso when 
α = 1 and as α decreases towards zero, the elastic net approaches a ridge regres-
sion. The tuning parameter λ controls the overall strength of the penalty and thus 
determines which predictors should remain in the regression. The choice of λ can be 
guided via an optimum value found by a n-fold cross-validation (CV) minimization 
approach (see Hastie and Qian 2014), whose outcome can be tailored (i.e. set higher 
or lower) depending on the number of predictors that the analyst wishes to retain. If 
λ is set to zero, then the elastic net is simply equivalent to its standard regression (in 
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this case, an LR). The lasso and ridge regression penalties are often referred to as 
the L1-norm and L2-norm penalties, respectively (i.e. the elastic net is a combination 
of L1-norm and L2-norm penalties). In applications of ENLR, it is also possible to 
set limits on the coefficients themselves (e.g. for instances where only positive coef-
ficients are sought) and find the associated penalties, accordingly. It is also possible 
to apply separate penalty factors to each coefficient, which can be useful when a 
given predictor is so important, it needs to be retained in the model, regardless.

3.3  GW logistic regression (GW‑LR)

For GW models, a moving-window kernel is used, where data falling under the ker-
nel are weighted by their distance to the kernel centre using a distance–decay func-
tion. These weighted data subsets are then used to calculate location-specific models 
or statistics, for example, basic local linear regressions with GWR (Brunsdon et al. 
1996), local summary statistics (Brunsdon et  al. 2002), local PCAs (Harris et  al. 
2011), and more recently, local contingency matrices (Comber et al. 2017). Outputs 
from a GW model are then mapped to provide an assessment of process heteroge-
neity, for example the local coefficients from GWR, the local loadings from a GW 
PCA.

A GW-LR (Fotheringham et al. 2002) is similar in form to the LR model given in 
expression (2), except that a GW-LR has locations associated with the model inter-
cept and coefficient terms, as follows:

where βi0 is the intercept term at location i, and βik is the local regression coefficient 
for the kth predictor variable at location i. As a GW-LR provides local intercepts and 
local coefficients, they can be mapped, along with their standard errors to investi-
gate the nature and importance of relationship non-stationarity in the data (e.g. see 
Atkinson et al. 2003; Windle et al. 2010; Rodrigues et al. 2014).

The kernel bandwidth in any GW model can be defined as a fixed distance or 
as an adaptive distance where a fixed number of local data points are used for each 
local model calculation. The size of the bandwidth is critical as it controls how data 
nearer to the kernel centre contribute to the local calculation than data farther away. 
Small bandwidths give greater weighting to nearby data than large bandwidths do. 
If a bandwidth is very large relative to the sample area (for fixed) or the sample size 
(for adaptive), then the process under investigation is likely stationary and the usual 
global model suffices. Unless good reason to, it is usually ill-advised to choose a 
bandwidth subjectively, and for any GW regression, a bandwidth can objectively be 
found by minimizing a model fit diagnostic. Options include a onefold CV score 
(Brunsdon et al. 1996), which optimizes model prediction accuracy, and an Akaike 
information criterion (AIC) (Fotheringham et al. 2002) approach, which optimizes 
model parsimony by trading off prediction accuracy with model complexity. In this 
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study, a CV approach was used to calibrate the GW-LR models, all using a dis-
tance–decay bi-square kernel, where weights wi,j are calculated as follows:

where di,j is the distance from the centre of the kernel at location j, to the observa-
tion point at location i, and b is the bandwidth. Once the bandwidth is determined 
using only the observed data at locations j and i, that bandwidth can be used to find 
the GW model outputs at all locations (observed and unobserved).

3.4  GW elastic net logistic regression (GW‑ENLR)

The GW-ENLR model is a direct analogy to GW-LR in expression (4), but now with 
a locally defined elastic net form from expression (3). The implementation of GW-
ENLR simply requires the fitting of an ENLR to each location-specific GW data 
subset until all regression locations are visited. Thus, expression (3) is now location-
specific, with:

A key issue in any GW regression that seeks to address local collinearity and/
or local model selection is that the nature of collinearity/model selection will vary 
from data subset to subset (i.e. it is location-specific) and as such, is inherently 
dependent on the kernel bandwidth b, which sets the local scale of each individual 
regression fit. In this respect, the penalty parameters of a ridge, a lasso and an elastic 
are commonly jointly estimated with the bandwidth by minimizing some CV-based 
objective function. For such penalties, this optimization can be done in a global 
fashion (Wheeler 2007; Yoneoka et al. 2016; Wang and Li 2017; Li and Nam 2018) 
or a local fashion (Wheeler 2009; Brunsdon et al. 2012; Bárcena et al. 2014; Gollini 
et al. 2015), where the latter can always be set to default to the global approach. To 
date, the bandwidth has always been globally defined in a penalized GW regres-
sion,2 where the use of a fixed and an adaptive distance bandwidth provides different 
options in this respect.3 The local approach has the benefit in that it tries to ensure 
a given set of local penalties directly suit the local data structure, whilst the global 
approach only provides an ‘on average’ penalty solution (i.e. it is only locally appro-
priate in a broad global sense). Conversely, the global approach can provide results, 
that when mapped are more easily interpreted or compared, as the penalties are the 
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2 Only the studies of Brunsdon et al. (2012), and Bárcena et al. (2014) additionally investigate locally 
defined bandwidths to address local collinearity, but now without any penalty term.
3 Li and Nam (2018) experiment with fixed and adaptive bandwidths, sometimes referring to the latter as 
local. This is not exactly the case, as the former is globally set by distance, whilst the latter is globally set 
by the number of neighbours.
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same everywhere. Regardless of which approach is taken, the understanding of rela-
tionship non-stationarity should only ever be enhanced (not compromised) by the 
additional complexity of the penalized GW regression adaption. Comparison with 
the corresponding basic GW regression is always recommended.

Of course, of the three penalized approaches, the elastic net provides the greatest 
challenge when used in a GW regression, as the bandwidth b, the tuning parameter 
λ (reflecting the strength of the penalty) and the parameter α (reflecting a lasso or 
ridge regression) all need to be derived in some manner. In the Gaussian-response 
case, Li and Nam (2018) provide a CV-based coordinate decent solution, where b 
and α are globally derived, but instead of globally deriving λ, the number of pre-
dictor variables retained for each local regression is globally derived instead. The 
latter of which indirectly assures local values of λ, whereas if λ were to be globally 
derived, then the number of retained predictors for each local regression would be 
location-specific instead.

For this GW-ENLR study, a basic onefold CV approach is used to find the band-
width b only (i.e. the same as that used in GW-LR), where the elastic net parameters 
α and λ are both globally preset through a series of preliminary investigations of the 
GW-ENLR outputs. This is considered appropriate in the spirit of spatial explora-
tion and sits with this study’s goal with respect to the introduction of GW-ENLR. 
Adaptation of the sophisticated CV-based calibration procedure provided by Li and 
Nam (2018) in their Gaussian-response model (discussed above) should be straight-
forward for the purposes of GW-ENLR. However, such an adaptation would only 
provide global solutions, whereas true local solutions, especially akin to that pro-
vided by Brunsdon et al. (2012); Bárcena et al. (2014); Gollini et al. (2015) would 
present a challenge. That said, work is ongoing for investigating locally derived α 
and λ elastic net parameters, through extending the locally compensated ridge GWR 
model, introduced in Brunsdon et  al. (2012) and fully described in Gollini et  al. 
(2015).

4  Case studies

To demonstrate the value of the new GW-ENLR method, two United States (US) 
data sets were selected: (a) socio-economic data linked to voting patterns for the 
2016 US presidential elections at the US county level, and (b) US environmental 
data of species presence–absence linked to climatic data. Here LR, ENLR, GW-LR 
and GW-ENLR are all used to analyse the extent to which the predictor data sets can 
help classify Trump supporting counties and help predict species presence–absence, 
respectively. For applying the GW-based models, the expectations are that relation-
ships in these data sets are non-stationary. The respective binary responses were: (1) 
Trump support, with a value of one indicating that Trump received the most votes 
in a county, zero otherwise, and (2) species absence, with a value of one indicating 
species absence, zero otherwise. Each data set has five predictor variables, where a 
certain degree of collinearity is expected, warranting a penalized component to the 
study models.
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The predictors used to examine county-level Trump support and species pres-
ence–absence were selected simply to illustrate the GW-ENLR method. The focus 
of the paper is not to show insight into these phenomena or describe them. Rather, 
the aim is to use case studies from socio-economic and environmental domains for 
illustration purposes. The predictors for voting were selected because they have been 
identified by others as factors in Trump support. The species data predictors were 
selected as the key drivers of plant development (and therefore reproduction and per-
sistence)—thus these should act as valuable explainers of species presence–absence.

4.1  US election data

The US election data were constructed from two sources. First, voting data for each 
of the 3,108 mainland counties in the US was downloaded from Tony McGovern’s 
Github site (McGovern 2017) and then linked to county outlines in the maps R pack-
age (Becker et al. 2016). Next the population census data was downloaded for each 
county from the US Census Bureau ‘QuickFacts’ website (US Census 2017) and the 
following five predictor variables were extracted for each county:

• % Employed: In civilian labour force, total, percentage of population age 
16 years + , 2011–2015;

• % College Education: Bachelor’s degree or higher, percentage of persons age 
25 years + , 2011–2015;

• % Over 65: Persons 65 years and over, percentage, 1 July 2015;
• Population Density: Population per square mile, 2010;
• % White: White alone, percentage, 1 July 2015.

These socio-economic attributes were then linked to the US counties. A binary 
response variable was created to indicate whether the county was a Republican, 
Trump supporting county or not. This indicated the counties where Trump received 
the most votes. The voting patterns (response) and socio-economic attributes (pre-
dictors) are mapped in Fig. 1.

Fig. 1  The election data and socio-economic attributes from the US population census
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4.2  US species data

A second US data set was extracted from the ecospat R package (Broennimann 
et  al. 2016). The ecospat.testNiche.nat data set covers no specific year and is 
described as being ‘test data for the niche dynamics analysis in the native range of 
a hypothetical species’. It includes environmental predictor variables and a binary 
response variable indicating species presence/absence records for the occurrence 
of a number of species at 3,259 locations on a grid. The data cover the continent 
of North America, with an approximate grid spacing of 37.2 km and only records 
for the mainland US were extracted. In this analysis, the following five environ-
mental attributes were considered as predictors of species presence–absence:

• Degree-days above 5 °C;
• Annual amount of precipitation;
• Potential evapotranspiration;
• Annual variation of precipitation;
• Annual mean temperature.

The spatial distributions of the presence–absence indicator and the environ-
mental predictor variables are shown in Fig. 2.

4.3  Global relationships

An initial data exploration was undertaken to examine the global relationships 
between the five predictor variables and the binary responses for US counties 
supporting Trump and for US species presence–absence. The conditional box-
plots in Fig.  3 clearly show that most of the predictor variables can be used to 
discriminate between their respective binary responses, for each case study. The 
weakest discriminatory powers in this global assessment are found for Annual 

Fig. 2  The presence/absence species data and the environmental predictor variables
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Fig. 3  Conditional boxplots showing the discriminatory powers of each predictor with respect to: a coun-
ties supporting Trump (blue) versus not supporting Trump (red), and b species presence (blue) versus 
species absence (red) (colour figure online)

Fig. 4  The correlation matrices of the predictors for a the election case study, and b the species case 
study. Note that, insignificant correlations are indicated with cross; the following abbreviations have been 
used: Pop. for population, precip. for precipitation, PET for potential evapotranspiration



 A. Comber, P. Harris 

1 3

variations in precipitation and Annual amounts of precipitation in explaining the 
species presence–absence response.

Global collinearity for each case study was measured via the design matrix condi-
tion number (CN) where a CN greater than 30 suggests the presence of ‘significant’ 
collinearity amongst the predictor variables (Belsley et al. 1980; Gollini et al. 2015). 
These were found to be 18.5 and 31.0 for the election and species case study, respec-
tively. The correlation matrices for the predictors are also given in Fig. 4, for both 
case studies. Clearly, there is some evidence of global collinearity, supporting the 
use of penalized regressions to the species data set. This is less evident in the elec-
tion data set, but as with both studies, collinearity may be stronger locally than that 
observed globally.

4.4  Study regressions: LR, ENLR, GW‑LR and GW‑ENLR

A series of regression analysis were undertaken to compare the LR, ENLR, GW-LR 
and GW-ENLR models as described in Sect. 3. For both case studies, the predictor 
variables were linearly rescaled to [0.001, 1], and in the case of the species pres-
ence–absence data, absence was modelled. To determine the optimal bandwidth for 
GW-LR and for GW-ENLR, in each of the case studies, sequences of bandwidths 
were passed to GW-LR and GW-ENLR and the same leave-one-out CV procedure 
applied. The US election case study applied an adaptive bandwidth ranging from 1 
to 100% in steps of one percentage point and the US species case study applied a 
fixed bandwidth ranging from 50 to 4,600 km in steps of 50 km. For each case study, 
the optimal bandwidths were those that resulted in the highest proportion of correct 
(leave-one-out) classifications/predictions and were passed to the final GW-LR and 
GW-ELNR calibrations.

The optimal (adaptive) bandwidth for the election GW-LR model was estimated 
at 11%: 327 counties out of 3,108, whereas the optimal (fixed) bandwidth for the 
species presence–absence GW-LR model was estimated at 418 km, or approximately 
9% of the maximum potential bandwidth of 4,600 km. This suggests that there is a 
high degree of spatial variation in the association between the predictor variables 
and the response variable in both the election and species presence–absence case 
studies. Interestingly, the optimal (adaptive) bandwidth for the election GW-ENLR 
model increases to 15% of nearest data, whilst the optimal (fixed) bandwidth for 
the species presence–absence GW-ENLR model has a relatively large increase to 
1,119 km. This suggests that failing to adequately deal with collinearity (and model 
selection), the perception of relationship non-stationarity is stronger than it actually 
is.

Plots of the bandwidth versus the proportions of correctly predicted data points 
(i.e. the CV score) are shown in Fig.  5 for both case studies, but for GW-ENLR 
only. The election case study has a clear maximum around 15% with some noise 
as the bandwidth increases and declines afterwards. For the species case study, the 
maximum is not so pronounced. This is not surprising as the species occurrence 
map indicates a strong north–south divide, entailing a likely difficulty in fitting 
many local ENLRs of the GW-ENLR model. (As for many of the small data subsets 
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residing in either the north or the south, the binary response has no variance—con-
sisting only of ones or only of zeros.) This is in contrast to the election case study 
where there is greater spatial heterogeneity in the binary response. Both plots indi-
cate that a GW-ENLR model outperforms its global counterpart in ENLR, as maxi-
mums do not indicate a stationary process.

For each case study, Table  1 summarizes the accuracy results for LR, ENLR, 
GW-LR and GW-ENLR using the proportion of correctly predicted responses by 

Fig. 5  The proportions of data point correctly predicted for different bandwidths for: a the election case 
study, and b the species presence–absence case study
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each model. The optimal GW-LR and GW-ENLR bandwidths are also given, as are 
the penalty parameters specified for ENLR and for GW-ENLR. For the ENLR mod-
els, the penalty parameters were chosen optimally according to the CV functions 
found in the glmnet R package, v 2.0-10 (Friedman et al. 2010). For the GW-ENLR 
models, the penalty parameters were chosen according to a set of preliminary analy-
sis for each case study, with a judged re-calibrating of the GW-ENLR model with 
different penalty parameter pairs and assessing outputs.

Thus, for both the election and species case studies the ELNR and GW-ELNR 
models were run with the same α and λ, respectively. The ELNR models were 
run with α = 0.75 and λ = 0.06, indicating a tendency to a lasso rather than a ridge 
regression, but where the penalty is relatively weak. The GW-ELNR models were 
run with α = 0.75 and λ = 0.02, again indicating a tendency to a lasso rather than a 
ridge regression, but where the penalty is weaker than set globally.

Some trends are evident in Table 1:

• For both case studies, LR is always outperformed by the other three models;
• For both case studies, ENLR outperforms both LR and GW-LR;
• ENLR strongly outperforms GW-LR in the election case study, but only margin-

ally in the species presence–absence case study;
• GW-ENLR clearly outperforms the other three models in the election case study 

only;
• GW-ENLR only outperforms LR in the species presence–absence case study.

As with any set of regression comparisons, it is paramount that the intercept 
and predictor coefficient estimates are interrogated, as summarized in Table 2 and 
mapped in Fig. 6 (for three of the predictors, from each case study, but for both GW-
based models). The stationary coefficient LR model returns a single, global estimate 
for each predictor, as does the ENLR model, but where predictors are dropped when 
their coefficients shrink to zero. The non-stationary coefficient GW-LR and GW-
ENLR models each return a series of local coefficient estimates, the interquartile 
ranges of which give a broad indication of their spatial variation. Values of ‘zero’ 
in Table 3 indicate that the corresponding predictor was dropped from the global or 
local regression.

Table 1  Proportion of correctly predicted responses for both case studies, for all four study regres-
sions: logistic regression (LR), elastic net logistic regression (ENLR), a geographically weighted logis-
tic regression (GW-LR) and geographically weighted elastic net logistic regression (GW-ENLR). The 
GW-LR and GW-ENLR bandwidths are also given, as are the ENLR and GW-ENLR penalty parameters

Model Election case study Species case study

Accuracy (%) B (%) α and λ Accuracy (%) b (km) α and λ

LR 65.5 – – 77.3 – –
ENLR 88.7 – 0.75 and 0.06 87.8 – 0.75 and 0.06
GW-LR 73.3 10.5 – 87.2 417.7 –
GW-ENLR 92.0 15.0 0.75 and 0.02 82.4 1119.0 0.75 and 0.02
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Fig. 6  The spatial distributions of the local coefficient estimates: a GW-LR for % College Education, 
Population Density and % White for the election case study; b GW-ENLR for % College Education, Pop-
ulation Density and % White for the election case study; c GW-LR for Degree-days above 5 °C, Potential 
evapotranspiration and Annual variation in precipitation for the species case study; and d GW-ENLR for 
Degree-days above 5 °C, Potential evapotranspiration and Annual variation in precipitation for the spe-
cies case study. Areas shaded in grey indicate where GW-ENLR did not select the predictor in the local 
model
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For the election case study, it is observed:

• The ENLR model drops two predictors in % Employed and % Over 65, where 
this is not unexpected given these predictors show the strongest correlations 
with another predictor (i.e. % College Education and Population Density, 
respectively, Fig. 4).

• The coefficients for % Employed and % Over 65, also change from positive 
in the LR model to sometimes negative in the other three models, endorsing 
these coefficients to be those most adversely influenced by collinearity.

• In the GW-ENLR model, all five predictors were selected at some point. Thus, 
dropping % Employed and % Over 65 globally (in ENLR) appears a poor deci-
sion, as these predictors can still provide useful information, locally.

• In the GW-ENLR model, % Employed, % Over 65, Population Density and 
% College Education are most likely to be dropped from the local regression, 
and in that order.

• The coefficients for Population Density are strongly negative in GW-LR, but 
this weakens in the GW-ENLR fit where more positive coefficients result.

• The GW-LR and GW-ENLR models both suggest non-stationary relationships 
throughout.

For the species presence–absence case study, it is observed:

• The ENLR model drops two predictors in Annual amount of precipitation 
and Annual variation of precipitation, but not Annual mean temperature or 
Degree-days above 5 °C as might be expected given their strong correlations 
of Fig. 4.

• However, the coefficients for Degree-days above 5  °C change from strongly 
negative in the LR model, to positive in ENLR, to negative/positive in GW-LR, 
and finally all positive in GW-ENLR, suggesting this coefficient to be that most 
adversely influenced by collinearity. Other coefficients change sign across the 
four models, but not to the extent that Degree-days above 5 °C changes.

Table 3  A summary of the 100 simulations (* indicates over 159 locations)

Min. 1st Q. Median 3rd Q. Max.

α Global CN 4.5 11.4 14.6 19.7 48.0
0.50 GW-ENLR bandwidth (%) 11.9 15.7 18.2 22.0 36.5

Counts of local CN > 30* 20 26 29 32 37
Local collinearity addressed (%) 48.0 62.5 67.7 74.6 85.7

0.75 GW-ENLR bandwidth (%) 11.9 15.7 17.6 20.8 30.2
Counts of local CN > 30* 23 26 30 33 38
Local collinearity addressed (%) 62.5 78.8 83.3 87.9 97.1

1.00 GW-ENLR bandwidth (%) 11.9 15.7 18.2 20.8 34.6
Counts of local CN > 30* 23 26 30 33 38
Local collinearity addressed (%) 85.2 94.5 96.8 100 100
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• In the GW-ENLR model, all five predictors were selected at some point. Thus, 
dropping Annual amount of precipitation and Annual variation of precipitation 
globally (in ENLR) appears a poor decision, as these predictors can still provide 
useful information, locally.

• Interesting, although Annual amount of precipitation and Annual variation of 
precipitation are dropped in ENLR, they are not so commonly dropped in GW-
ENLR. Here Annual mean temperature and Potential evapotranspiration are 
more likely to be dropped locally. Furthermore, Annual amount of precipitation 
is never dropped locally.

• The GW-LR and GW-ENLR models both suggest non-stationary relationships 
throughout.

The maps in Fig.  6 support a deeper understanding of the data structure and 
how best to develop a potential predictive model in two ways. First, the GW-ENLR 
coefficient maps indicate where local collinearity amongst predictor variables may 
exist and amongst which predictors. Second, by comparing the GW-LR coefficient 
maps with those from GW-ENLR, the perceptions of relationship non-stationarity 
are either confirmed (as local collinearity is not an issue) or thrown into doubt (as 
local collinearity is an issue). All coefficient maps (both from GW-LR and GW-
ENLR) provide information about the spatial structure and spatial interaction of the 
predictor variables that may provide insight into the nature of the processes being 
modelled.

For example, the election case study GW-ENLR model (Fig. 6b) suggests that % 
College Education is generally negatively associated with Trump support, but with 
a swath running North to South where it is increasingly less of a factor, shrinking to 
zero; whilst for the corresponding GW-LR output (Fig. 6a), some regions within the 
swath are likely erroneously indicating a positive association. Again, for the election 
case study, GW-ENLR (Fig. 6b) indicates that Population density is mostly nega-
tively associated with Trump support in the South and East indicting more support 
in rural areas and is more positively associated with Trump support in Texas and 
Illinois and Missouri and also that % White is generally positively associated with 
Trump support and especially so in the South and East. The described non-stationar-
ities are not so clearly defined in the corresponding GW-LR outputs (Fig. 6a) high-
lighting likely local instabilities in coefficient estimation due to collinearity.

For the species case study, the spatial patterns in the GW-LR (Fig. 6c) and GW-
ENLR (Fig. 6d) coefficients are often quite different, suggesting clear value in the 
investigation of both model forms. Coefficient maps for the GW-ENLR model 
(Fig. 6d) suggest that Annual variation of precipitation is an important factor nega-
tively associated with species absence to the in the Frontier region of the country, 
with the most positive associations around in Florida and southern Texas, whilst 
Potential evapotranspiration is a highly localized driver of species absence with 
negative associations around Lake Michigan and positive associations in Texas, in 
the West and around the North Eastern metropolitan areas. The selection of Annual 
variation of precipitation in the species case study GW-ENLR model is highly 
localized, with high negative associations in a swath from Texas to New England 
and around Montana and positive associations around North Carolina and Arizona.
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5  Simulation experiment

To complete the demonstration of the new GW-ENLR model, a simulation 
experiment was undertaken in order to objectively and robustly determine how it 
behaved in the context of known local collinearity. Here the aim was to develop a 
simple exploration of collinearity at the local level with simulated data sets.

In a typical evaluation of spatial varying coefficient (SVC) models, simu-
lated coefficients are generated together with associated predictor and response 
variables (e.g. Wheeler 2009; Fotheringham and Oshan 2016). As the generated 
SVCs are known through simulation, they provide a means to objectively assess 
the accuracy of those estimated by the study model (in this case GW-ENLR). It 
is also possible to objectively evaluate the prediction accuracy of a SVC model 
in this manner (e.g. Harris et al. 2010). However, evaluating GW-ENLR through 
simulation is difficult, as it effectively undertakes a local model selection proce-
dure where coefficients are shrunk to zero making comparisons of the GW-ENLR 
estimated and the (actual) simulated coefficients awkward. It is still possible to 
objectively assess the GW-ENLR predictive power through the simulation experi-
ment (i.e. accuracy of the response), but as collinearity primarily affects coef-
ficient estimates (and their interpretation), investigating measures of predictive 
strength are not entirely relevant. For these reasons, the approach taken here was 
to examine the performance of GW-ENLR, where the aim was to determine the 
proportion of occurrences of known local collinearity (through simulation) that 
were correctly dealt with (through coefficient shrinkage) by the GW-ENLR fit.

To generate the simulated data sets, the same procedure as in Harris et al. (2017) 
was adopted. Briefly, the experiment generates SVCs β0, β1, β2, β3 and then inde-
pendently, the predictor data, x1, x2, x3. The coefficient and predictor realizations 
are then directly used to generate the response variable and the random error data εi 
(given a pre-specified trend to error process ratio). Both the regression coefficients 
and the predictor variables are (independently) generated using an un-conditional 
sequential Gaussian co-simulation (Wackernagel 2003). For the predictor variables, 
the co-simulation parameters are chosen so that relatively strong levels of collinear-
ity are generated between x2 and x3, only. This typically results in correlation coef-
ficients of around r = 0.9 for this predictor pair. Details are provided in Harris et al. 
(2017), where for this study, the Gaussian response variable yi requires conversion to 
a binomial response variable yi1, following Eq. (1).

In total, 100 simulated data sets are generated and the GW-ENLR model is 
fitted to each one and its performance assessed. Simulations are generated to the 
(n = 159) centroids of the ‘counties of Georgia for the United States’; an edu-
cational attainment data set routinely used to demonstrate GWR (Fotheringham 
et al. 2002) and included in the spgwr and GWmodel R packages (Bivand et al. 
2017; Gollini et  al. 2015). The geostatistical-based experiment provides useful 
stochasticity, enabling nuanced differences to each simulated data set, generated 
from the same initial specifications.

The result for each of the 100 simulated data sets was a binomial response var-
iable, three predictor variables and four sets of location-specific coefficients, such 
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that a given simulation typically exhibited moderate coefficient non-stationarity 
coupled with predictor variable collinearity that was low globally, but moderately 
strong locally. Collinearity (both globally and locally) was measured via the CN, 
where a CN > 30 is of concern.

For each simulated data set, an optimum GW-ENLR (adaptive) bandwidth was 
determined first; secondly, having determined the bandwidth, the GW-ENLR was 
applied to determine the set of local coefficient estimates at each location. The GW-
ENLR was specified with three options of α = 0.50, 0.75 and 1, whilst λ = 0.02, 
remained as is, each time. For all 100 simulations, the percentage of cases where 
local collinearity (as measured by local CN) was found that resulted in predictor 
variable shrinkage under the GW-ENLR was determined for each location.

The results of the simulation are reported in Table 3. For α = 0.75, the median 
number of times that local collinearity was observed in the 100 simulations (through 
local CN > 30) at the 159 locations was 30, and the median GW-ENLR bandwidth 
was 17.6% of the nearest data points (indicating moderate to strong coefficient het-
erogeneity, as broadly expected). Instances of local collinearity at the 159 loca-
tions were found and correctly dealt with on average 67.7, 83.3 and 96.8% of the 
time through the GW-ENLR fit (as indicted by a coefficient shrinkage to zero) for 
α = 0.50, 0.75 and 1.00, respectively. Thus, the new GW-ENLR model performs as 
expected.

Taking the case of α = 0.75, the spatial structure of the simulated local collinear-
ity together with the performance of GW-ENLR is shown in Figs. 7 and 8. Figure 7 
shows the rate of coefficient shrinkage at each location, first overall, and then for the 
coefficients associated with each of the three predictor variables, x1, x2, x3. Clearly, 
coefficient shrinkage is performing as it should do since it primarily involves the 
coefficients corresponding to predictor variables x2 or x3, reflecting the high cor-
relation specified between this variable pair only. Sometimes, but to a much lesser 
extent, the coefficient for x1 is shrunk also. This reflects the existence of complex 
controlling influences that each of the three predictor variables have on each other 
(including the intercept), regardless of ‘known’ collinearities. Figure  8 shows the 
frequency of local collinearity observed at each location through the simulated data 
sets (i.e. local CN > 30) and the proportion of times of when it is observed that it 
is appropriately dealt with by GW-ENLR coefficient shrinkage. Clearly GW-ENLR 
again performs as it should do in this more general sense.

6  Discussion

The objective of this paper was to develop and apply a localized approach to elas-
tic net logistic regression. Elastic nets and other penalized regression approaches 
have been proposed as suitable methods for dealing with collinearity and model 
selection in regression models (Zou and Hastie, 2005; Friedman et al. 2010). The 
geographically weighted (GW) elastic net logistic regression described in this study 
has been proposed in work describing GW lasso approaches (Yoneoka et al. 2016), 
and although an R package has been developed for GW-ENLR (Yoneoka and Saito, 
2015), the functions have never worked over the last 3 years. This paper addresses 
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this gap and demonstrates the application of a framework for GW-ENLR, includ-
ing tools for optimal adaptive and fixed bandwidth selection, but where the concur-
rent optimization of the elastic net penalty parameters α and λ is left open for future 
work, especially with respect to a local optimization in the spirit of the locally com-
pensated ridge GWR model of Brunsdon et al. (2012). Transference of the global 

Fig. 7  The proportions of coefficients shrunk by GW-ENLR at each location in the simulated data sets
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optimization procedure for the bandwidth and the penalty parameters α and λ from 
the Gaussian-response GW elastic net model of Li and Nam (2018) is also possible.

A series of regression models were developed using logistic regression, ENLR, 
GW logistic regression (GW-LR) and the new GW-ENLR model and applied to two 
case studies: (1) understanding the socio-economic factors associated with Trump 
support in the 2016 presidential elections in the USA Trump in the 2016 presidential 
elections and (2) modelling species presence–absence from environmental data in 
the USA. For both case studies, the a-spatial logistic regression models were refined 
by the a-spatial ENLR model and the spatial GW-LR model, which both showed 
improved prediction rates over logistic regression. Further refinement was demon-
strated when ENLR and GW-LR was combined to form GW-ENLR, which further 
improved performance in the election case study.

The proposed GW-ENLR method adds a new tool for improving predictive per-
formance and refining model selection in local regression. Examining the variables 
that are locally selected by the GW-ENLR models can provide a deeper geographi-
cal understanding of the processes and factors associated with the phenomenon 
under investigation (e.g. voting behaviours or species persistence) and how they 
interact. For example, in the election case study, local models of support for Trump 
consistently included the percentage of white people recorded in the 2015 update of 
the population census, with coefficient estimates varying spatially, whilst popula-
tion density and the percentage of people with college educations were selected only 
in specific locations. Conversely, in the species presence–absence case study, none 

Fig. 8  a The frequency of local collinearity observed in each location through the simulated data sets and 
b the proportion of times when it is observed in (a) that it is appropriately dealt with by GW-ENLR coef-
ficient shrinkage
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of the predictor variables were consistently selected. Instead, there is an East–West 
split in the factors associated with species presence–absence, driven by potential 
evapotranspiration in the West and precipitation in the East. Identifying these geo-
graphical trends provides the basis for further exploration of the data or the phenom-
enon under investigation by domain experts. Such spatial detective work is at the 
core of spatial analysis and GI Science: it is not necessarily the role of those work-
ing in spatial analysis, GeoComputation and GI Science to have detailed domain 
knowledge, but it is important that the discipline continues to develop robust meth-
ods for spatial explorations of data and processes.

7  Closing remarks

In conclusion, this paper develops a method for applying ENLR, locally. The ration-
ale for this is simple. First, techniques such as elastic net have been shown to be 
efficient at model selection and information reduction and can overcome predictor 
variable collinearity. Second, global, whole map models, such as ENLR, may not 
be sensitive to local trends in the data and may even obfuscate them. This is because 
the assumption of spatial stationarity in process and relationships inherent in many 
statistical models may be inappropriate (Fotheringham and Brunsdon 1999). Third, 
a common criticism of GWR is that it is likely to be subject to local collinearity even 
when none is observed globally (Wheeler and Tiefelsdorf 2005), as the data under 
the kernel for each local model may include predictors that are highly collinear. This 
study’s GW-ENLR approach combines the local (non-stationary) advantages con-
ferred by GW approaches with the model selection (collinearity) advantages of the 
elastic net. The results of applying this approach to two case studies—one socio-
economic and one environmental—indicate that the resultant maps of coefficients 
from GW-ENLR can be considered more reliable than that found with GW-LR, and 
thus, perceptions of relationship non-stationary should also be more assured with 
GW-ENLR. A short simulation experiment also endorsed this value of the new GW-
ENLR model.
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