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ARTICLE

Land use driven change in soil pH affects microbial
carbon cycling processes
Ashish A. Malik 1,8, Jeremy Puissant1, Kate M. Buckeridge2, Tim Goodall1, Nico Jehmlich 3,

Somak Chowdhury4, Hyun Soon Gweon 1,9, Jodey M. Peyton1, Kelly E. Mason 5, Maaike van Agtmaal6,

Aimeric Blaud7, Ian M. Clark 7, Jeanette Whitaker 5, Richard F. Pywell1, Nick Ostle2, Gerd Gleixner 4 &

Robert I. Griffiths 1

Soil microorganisms act as gatekeepers for soil–atmosphere carbon exchange by balancing

the accumulation and release of soil organic matter. However, poor understanding of the

mechanisms responsible hinders the development of effective land management strategies to

enhance soil carbon storage. Here we empirically test the link between microbial ecophy-

siological traits and topsoil carbon content across geographically distributed soils and land

use contrasts. We discovered distinct pH controls on microbial mechanisms of carbon

accumulation. Land use intensification in low-pH soils that increased the pH above a

threshold (~6.2) leads to carbon loss through increased decomposition, following alleviation

of acid retardation of microbial growth. However, loss of carbon with intensification in near-

neutral pH soils was linked to decreased microbial biomass and reduced growth efficiency

that was, in turn, related to trade-offs with stress alleviation and resource acquisition. Thus,

less-intensive management practices in near-neutral pH soils have more potential for carbon

storage through increased microbial growth efficiency, whereas in acidic soils, microbial

growth is a bigger constraint on decomposition rates.
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The need for food and energy for the growing human
population has led to an immense pressure on the planet’s
soil resources, with intensive land management often

leading to reduced soil organic carbon (SOC) storage1,2. Land
management strategies to reverse this decline are needed, but we
do not sufficiently understand the detailed mechanisms under-
lying the accumulation and loss of SOC. This is hampering the
development of better land management strategies and introduces
uncertainties into models that forecast feedbacks to climatic
change. Furthermore, soil is the largest carbon (C) pool in the
terrestrial biosphere containing twice as much C as in the
atmosphere, with the topsoil (0–30 cm) containing approximately
half the amount3–5. By regulating the storage and release of
organic C through decomposition of soil and plant organic
matter, soil microorganisms play a major role in soil C fluxes4,6.
New research suggests that better knowledge of this
microbial regulation may be critical in projecting changes in SOC,
thereby improving predictions of climate change feedbacks7,8.
A new paradigm also recognizes the direct, significant contribu-
tion of microbial biomass to organic matter accumulation,
whereby microbial residues are transformed into stable SOC
fractions4,9–11. However, uncertainties remain over the influence
of microbial physiology on its biomass production and eventual
persistence in soil. This highlights the need to explore both the
ecological and biochemical basis for SOC storage with a focus on
the microbial traits—their phenotypic characteristics12,13.

Shifts in microbial traits due to climate change have been
shown to have consequences for SOC storage14,15. Microbial
carbon use efficiency (CUE) or growth efficiency, the proportion
of substrate C that microorganisms assimilate versus that lost in
respiration, is a key trait that determines the fate of C in
soils14,16,17. Recent theory suggests that high microbial growth
efficiency may indicate increased ability of those communities to
store SOC through relatively greater biomass synthesis and
resultant increases in the amount of microbial residues available
for stabilization11,14,15,18,19. An increased microbial investment in
resource acquisition in the form of extracellular enzyme pro-
duction to degrade complex substrates is thought to result in
lower growth efficiency20. Similarly, physiological adaptations to
alleviate stresses such as soil acidity or decreased water availability
could lead to increased maintenance energy requirements, thus
lowering the growth efficiency21. Yet, microbial trait trade-offs
between the use and acquisition of complex resources, adaptation
to stress and biomass production have hitherto been unexplored.
We argue that these trade-offs are significant in determining the
fate of C inputs in soils.

The collective traits of diverse microbial populations regulate
the ecosystem functioning through their interactions with each
other and the environment12. We now have evidence that gra-
dients of soil properties such as soil pH are strong drivers of soil
microbial diversity22,23. Therefore, we posit that along similar
gradients, there are differences in microbial ecophysiological
traits that may affect CUE at a community level. Knowledge of
such empirical trends could be the key to better understand the
effects of land management on SOC storage. Identifying con-
sistent effects of land management on soil microbial ecophy-
siology is difficult as land use intensification and their impacts on
edaphic properties like soil pH, bulk density and moisture content
are often site-specific and context-dependent15,24. Trait estimates
from literature syntheses provide the theoretical and empirical
basis of the CUE variability across soils and suggest that microbial
efficiency is an integrative measure of stoichiometric constraints,
substrate quality and quantity, soil biodiversity, and edaphic
properties25–27. However, we still cannot confidently establish
empirical relationships between the microbial CUE and envir-
onmental variables. This makes it difficult to predict the

spatiotemporal patterns of CUE that are key to upscaling the
microbial ecophysiological responses to anthropogenic change28.

The overall aim of this study was to assess the effect of land use
intensity on microbial ecophysiological traits across landscape
soil gradients and evaluate the consequences of trait trade-offs on
SOC accumulation. To achieve this, we analyzed the microbial
traits in soils collected from 56 distributed sites across the UK
(Fig. 1) in temperate habitats ranging in land use from low-
intensity species-rich grasslands to high-intensity grasslands and
croplands. We used regression and path analyses to discern
potential microbial ecophysiological controls on SOC accumula-
tion and associated environmental drivers. Using stable carbon
isotope tracing and soil metaproteomics, we demonstrate two
distinct mechanisms of SOC accumulation at low and high soil
pH. The mechanisms highlight the significance of microbial
growth and metabolic efficiency on SOC accumulation. This
collective knowledge enables the changes in soil pH, induced by
land use intensification, to be used as a proxy to determine the
effect of land management strategies on microbial soil carbon
cycling processes.

Results
Empirical links between microbial physiology and soil carbon.
We first tested the broader relationships between microbial eco-
physiology and soil properties, using C concentration as a proxy
for SOC accumulation, to understand how microbial processes
determine the mineralization, assimilation, and accumulation of
organic matter inputs which underpin SOC formation and loss.
For soils sampled from a landscape-scale gradient of 56 spatially
dispersed sites across Britain (three replicates per site), we
observed clear relationships between certain microbial
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Fig. 1 Geographical distribution of sampling sites. Soil sampling locations
across Britain are displayed over a soil pH map of Britain created using
maptools [https://CRAN.R-project.org/package=maptools] and gstat
[https://CRAN.R-project.org/package=gstat] packages under the R
environment software; pH data was derived from the UK Soils portal (ukso.
org). Soils were sampled from 56 sites, and 21 local land use contrasts were
available to study the effects of land use intensification. Symbols of sites in
close proximity overlap in the map
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ecophysiological measures (biomass estimates and specific
respiration) and SOC concentration. However, substrate CUE at a
community level, measured as the proportion of 13C-labeled plant
litter DOC incorporated into microbial DNA relative to that lost
as respired CO2, appeared to be driven by interactions of multiple
edaphic properties and could not be assembled in a single linear
model. We then used recursive partitioning through regression
tree analysis to disentangle the interactions; the best partitioning
parameter was soil pH from among the edaphic properties that
were tested, which also included soil moisture, clay content, C
and N concentration, and C:N ratio (Supplementary Fig. 1). The
threshold was determined at pH 6.2 using slope failure test
(piecewise regression) for CUE versus SOC linear regression
(Supplementary Fig. 2)29. In other words, community CUE

measured here was distinctly different across the pH threshold of
6.2; above this value community CUE and SOC concentration co-
varied, indicating the interdependence of microbial growth effi-
ciency and SOC accumulation (Fig. 2a). The CUE–SOC rela-
tionship broke down below the threshold pH, where microbial
growth constraints imposed by acidity and wetness could be more
important in organic matter accumulation. In such acidic soils,
microbial turnover or growth rate (amount of new DNA formed
per unit time) was very low (Fig. 2b), but the respiratory response
did not differ across the entire range of soil pH (Fig. 2c); both in
line with previous studies30–32. It is plausible that in lower pH
soils, there is a shift from growth to maintenance respiration as a
trade-off to increased investment into physiological strategies to
survive in a stressful acidic environment that can often also be
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Fig. 2 Relationship between microbial parameters and soil carbon. Regression trends of microbial community CUE–carbon use efficiency (a), turnover or
growth rate (b), biomass-specific respiration or qCO2 (c), DNA-C concentrations as biomass proxy (d), extracellular enzyme investment (e), and bacterial
taxonomic richness (f) with SOC concentrations across the landscape-scale gradient of soils. Data from all 56 sites with three replicates at each site
are presented here as independent points (red circles: pH < 6.2; blue circles: pH > 6.2). In c–f, there were no partitioning of microbial traits across the
threshold pH value of 6.2, and the black regression lines include all data points. Best-fitting regression models were: a pH < 6.2: n= 50, y= 0.0004x+ 0.01
and pH > 6.2: n= 113, y= 0.01x+ 0.02; b pH < 6.2: y=−0.02 ln(x)+ 0.05 and pH > 6.2: y=−0.21 ln(x)+ 0.55; c all data: n= 163, y= 0.16e−0.12×;
d all data: y= 5.09x− 0.07; e all data: y=−1.37 ln(x)+ 4.87; f all data: y= 11.06x+ 962
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wet and oxygen limited (Supplementary Fig. 3)33,34. We also note
that in such soils, decreased turnover rate was associated with
increased SOC concentration (Fig. 2b). Decreased microbial
growth slows down the decomposition, leading to accumulation
of plant and microbial organic matter. Evidence for higher
microbial biomass accumulation in the acidic soils comes from
the observation that the total microbial DNA pool in these soils
was large relative to the amount of newly formed DNA. These
results highlight the importance of considering both growth rate
(the number of progeny produced per unit time) and efficiency
(the number of progeny produced per unit of resource consumed)
in examining microbial degradation and accumulation of organic
matter35.

Across all soils, specific respiration (qCO2) increased with
decreasing SOC concentration (Fig. 2c), corroborating evidence
from isotope tracer measurements of the interdependence of
microbial growth efficiency and SOC accumulation. Microbial
biomass measured as total soil DNA-C concentration36,37 was
higher in soils with higher SOC (Fig. 2d), highlighting positive
relationship between microbial biomass and SOC10,11,18. We note
that using DNA-C concentration as biomass proxy could lead to
an underestimation of total microbial biomass and the absolute
value of microbial CUE compared with approaches that employ
other biomarkers. Despite a positive correlation between the
potential activity of acetyl esterase38 and SOC, a negative
relationship was observed with enzyme production per unit
biomass (Fig. 2e). Thus, at higher soil pH increasing CUE is
associated with decreasing extracellular enzyme investment in
substrate acquisition (Fig. 2a, e). This validates the physiological
trade-offs theory suggesting that an increase in microbial enzyme
investment in soils with depleted organic resources leads to
reduced growth efficiency20,25. These relationships across soils
varying in physico-chemical conditions and land use intensity
provide a multitude of empirical evidence directly linking
microbial ecophysiology to soil’s C storage potential. We also
observed significant relationships of taxonomic indicators like
bacterial alpha diversity with SOC concentration (Fig. 2f);
however, these were weaker than SOC correlations with key
ecophysiological traits. This indicates that community-level
physiological traits could be more strongly coupled to
SOC accumulation than the assessed taxonomic diversity
indices; this was further tested using structural equation modeling
(SEM).

Distinct SOC accumulation mechanisms across a pH threshold.
Empirical trends from recursive partitioning and generalized
linear models suggest two distinct mechanisms of SOC accu-
mulation across a soil pH threshold of ~6.2 for the sites assessed
here: at sites above the threshold pH, greater microbial growth
efficiency leads to increased microbial biomass that causes greater
SOC accumulation;11,18,25 and at sites below the threshold pH,
acidity and wetness (Supplementary Fig. 3) leads to slower
microbial growth rates (Fig. 2b) that limits decomposition of
extant organic matter39. We sought to validate these mechanisms
using path analysis of SEM40. Using a confirmatory approach, we
aimed to test direct and indirect effects of microbial diversity and
ecophysiology on SOC accumulation with the abovementioned
distinct causal relationships. A latent biodiversity variable was
derived as a common factor from independently assayed bacterial
and fungal alpha diversity. Diversity here was simply used as a
univariate predictor to represent these large multivariate mole-
cular datasets. We analyzed a path structure based on a propo-
sition that taxonomic diversity drives the trait response,12,41 with
higher metabolic efficiency causing greater microbial biomass and
consequently leading to higher soil carbon accumulation. This
model was valid only across higher pH soils (Fig. 3). At pH below
the threshold value of 6.2, this model structure did not adequately
reflect our dataset, disproving the potential chain of causality
(Fig. 3) and indicating decoupling of relationships between CUE,
microbial biomass, and carbon accumulation. The doctrine that
growth efficiency and high biomass are associated with SOC
accumulation is therefore not true in acidic soils. Here, microbial
growth or turnover is a bigger constraint on decomposition
resulting in higher organic matter accumulation, although com-
munities exhibited low growth efficiency.

Microbial physiological response to land use intensification.
The soils investigated here come from a range of land use types,
from permanent grasslands with a long-term history of minimal
agricultural improvement (low intensity) to intensively managed
grasslands or arable croplands (high intensity). To test the effect
of land use intensification on the ecophysiology of the soil
microbial community, we used 21 locally paired low- and high-
intensity land use contrasts from within this survey (Table 1,
Supplementary Table 1). Given our focussed aim of targeting soils
with long-term differences in land use intensity that typically
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results in large changes in soil properties like SOC content, we did
not collect detailed present-day plant properties like net primary
productivity, plant diversity and chemistry of inputs. Instead, we
assessed the impact of land use intensification on edaphic prop-
erties and used the observed changes in soil physico-chemical
parameters to evaluate the microbial ecophysiological response.
Land use intensification from more pristine grasslands to inten-
sive agricultural systems generally tends to increase the soil pH
and typically leads to decreased soil carbon concentration,
reduced water retention and poorer soil structure1,17. We
observed similar results (Fig. 4a–c). There were no coherent
global effects of land use intensification on microbial ecophy-
siology, and the direction of change was not uniform across land
use contrasts. Finer assessment pointed to characteristic trends
that were linked to distinct mechanisms of microbial C cycling
across the soil pH threshold described above. The effect of land
use intensification depended on the quantity and direction of
change in soil pH. We thus identified the following three cate-
gories of effects resulting from the various impacts of land use
intensification on soil edaphic properties.

Type 1 effect of land use intensification: Plant productivity is
highest in soils at the higher end of the pH spectrum, making
such soils more favorable for agriculture; evidence suggests that
the land cover area under intensive management tends to increase
with an increase in mean soil pH1. In the high pH (>6.2) sites
under investigation, intensification lead to a shift towards
alkalinity, microbial community CUE generally decreased and
growth rate increased (Fig. 4a), suggesting a shift towards
copiotrophic life strategies with a wasteful metabolism. The
resultant decrease in microbial biomass and increase in specific
respiration (qCO2) can be linked to SOC loss in intensive land use
systems.

Type 2 effect of land use intensification: Liming acidic soils is a
widespread agricultural practice used to improve the suitability of
such soils for plant production30,32. In the low pH sites in our
study where intensification lead to increased soil pH crossing the
threshold (less intensive sites: pH < 6.2, adjacent more intensive
sites: pH > 6.2), microbial CUE and turnover rates were both
higher in more intensive soil systems, with a decrease in microbial
biomass and increase in specific respiration (Fig. 4b). This
suggests a shift in microbial physiology from the dominance of
maintenance respiration in less-intensive acidic soils to increased
growth and decomposition in higher-intensive pH soils. We
postulate that SOC loss in such intensive soils is not a reflection of
increased growth efficiency of microorganisms, but rather a result
of the depletion in acid retardation of microbial growth indicated
by increased growth rates that lead to increased organic matter
decomposition30.

Type 3 effect of land use intensification: This includes low pH
sites (pH < 6.2), where the increase in soil pH on intensification
does not cross the threshold of 6.2. Microbial CUE and turnover
rates in both land use contrasts were systematically lower relative
to the high pH sites, and intensification leads to a small decrease
in both parameters (Fig. 4c). This is in line with our hypothesized
SOC accumulation mechanism in low pH soils, where microbial
growth and decomposition rates were lower (Fig. 2b) due to
acidity and higher soil moisture content.

Trade-offs in traits have consequences for SOC accumulation.
Soil metaproteomics was used to determine the physiological
basis of microbial control on soil C transformations. This was
achieved by analyzing functional changes across representative
land use contrasts for each of the three types of land use inten-
sification effects (Table 1). For the type 1 effect (both soils above

Table 1 Characteristics of land use contrasts

Site pair ID Site location Low intensity contrast High intensity contrast

Management Soil pH Soil C % Management Soil pH Soil C %

Type 1 land use effect
1 Hertfordshire Unimproved grassland since 1949 6.4 3.7 Intensive: arable 6.4 1.6
2 Hertfordshire Unimproved grassland since 1949 6.6 2.8 Intensive: arable 6.9 1.5
3 Hertfordshire Unimproved grassland since 1900 6.8 4 Intensive: arable 7.5 1
4 Bedfordshire Unimproved grassland since 2002 7 1.5 Intensive: arable 7.2 1
5 Oxfordshire Unimproved grassland since 1990 6.9 2.9 Intensive: arable 7.4 2.3
6 Oxfordshire Unimproved grassland 7.5 6.3 Intensive: arable 7.7 2.1
7 Oxfordshire Unimproved wet grassland 7.6 15.7 Intensive grassland 7.6 8.8
8 Cambridgeshire Unimproved grassland 7.6 7.4 Intensive: arable 7.9 4
9 Devon Unimproved grassland 6.7 5.1 Intensive: arable 6.6 4.2
10 Lancashire Unimproved grassland since before 1980 6.7 6.3 Intensive grassland 6.9 5
11 Wiltshirea Unimproved calcareous grassland since before

1900
7.7 10.4 Intensive: arable 8 3.8

Type 2 land use effect
12 North Lanarkshire Unimproved grassland since before 1985 5.8 6.9 Intensive: arable 6.4 3.8
13 Devon Unimproved wet grassland 5.7 13 Intensive grassland 6.4 9.4
14 Devon Unimproved wet grassland 5.3 13 Intensive grassland 6.4 5.7
15 Buckinghamshireb Unimproved grassland 6.1 5.9 Intensive: arable 7.7 3.6
16 Dorset Unimproved grassland 5.8 3.9 Intensive grassland 6.8 3.7
17 Perthshirea Unimproved grassland 5.2 23.8 Intensive grassland 6.4 4.3
Type 3 land use effect
18 North Yorkshire Unimproved grassland 5.9 9 Intensive grassland 5.8 7.6
19 Devon Unimproved wet grassland 5.3 9.8 Intensive grassland 5.7 10.4
20 Devona Unimproved wet grassland 5.8 17 Intensive grassland 5.8 4.3
21 Dorset Unimproved grassland 5.6 5.2 Intensive grassland 6.2 3.7

Land use histories of the 21 paired low- and high-intensity contrasts and their mean soil pH and carbon concentrations
aPairs used for metaproteomic analysis
bThis contrast was not local; 4 km apart from each other

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05980-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3591 | DOI: 10.1038/s41467-018-05980-1 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


pH 6.2), peptide profiling revealed that the more pristine land use
systems have a significantly higher number of ABC transporters
(KEGG level 1 class: environmental information processing) that
included transport system substrate binding proteins for general

L-amino acid, branched chain amino acids, di/oligo peptides,
ribose and glycerol, indicating a salvage pathway of substrate
uptake and assimilation (Fig. 5a, b)34,42,43. On the contrary, lower
availability of organic substrates in the intensive systems is
reflected in lower relative abundance of ABC transporters and
higher abundance of proteins linked to maintenance pathways,
such as large and small subunit ribosomal protein synthesis,
amino acid synthesis, purine metabolism (DNA-directed RNA
polymerase subunits), and energy generating oxidative phos-
phorylation proteins like ATPase (Fig. 5b). Thus, the reduction in
salvage pathways of resource acquisition, leads to a higher
investment into non-growth maintenance activities like molecular
turnover of proteins/enzymes for resource acquisition, and the
energy generating pathways needed to fuel those activities.
Microbial communities in high intensity soils also invest a higher
proportion of resources and energy into stress alleviation indi-
cated by a significant increase in stress protein indicators like
Chaperonin GroEL (level 1 class: genetic information processing,
level 3 class: RNA degradation; Fig. 5a, b)17. These molecular
chaperones prevent protein aggregation by either refolding or
degrading stress-induced misfolded proteins. The increased cel-
lular investment into stress alleviation trades off with reduction in
microbial growth efficiency measured as CUE (Fig. 4a). Thus,
although soil communities in intensive soil systems at higher soil
pH have greater turnover rate, low growth efficiency means a
greater proportion of organic matter inputs are mineralized and
lost in maintenance respiration (Fig. 4a). This ecophysiological
understanding of microbial trade-offs further reiterates the sig-
nificant microbial control on soil C cycling in high pH soils. In
such intensive systems, soil management strategies that increase
the microbial growth efficiency could help maximize organic
matter accumulation and soil carbon storage. We suggest that
cover crops and other restorative conservation approaches that
are aimed at increasing plant carbon input into soils would over a
period of time promote microbially mediated reiterative soil
organic matter formation and decrease the resource limitation
and water stress. Our functional assessments show that this would
lower the metabolic constraints on microbial growth leading to a
positive feedback on microbial growth efficiency, causing an
increased channeling of substrates into biomass synthesis, thus
fostering additional soil organic matter accumulation.

The microbial metabolic constraints in stressed environments
such as arable croplands are also apparent in the type 2 effect of
land use intensification (which increases the soil pH above the
threshold value of 6.2) but the mechanisms here are distinct.
Differences in the frequency and relative abundance of protein
indicators under type 2 scenarios highlights several physiological
adaptations. A decrease in acidity and moisture levels in the
intensive land use system leads to increased microbial turnover
(Fig. 4b) that is also reflected in increased investment in a number
of metabolic pathways to fuel the need for energy and
biosynthesis of the active microbial population (Fig. 5a). These
included small and large subunit ribosomal protein synthesis,
central metabolic pathways like glycolysis and TCA cycle,
oxidative phosphorylation, purine metabolism, and amino acid
biosynthesis (Fig. 5b). There was also an increase in ABC
transporters, particularly the transport system for branched chain
amino acids and phosphate in high intensity soils, as a result of
higher substrate availability through increased degradation of
extant organic matter34,42,43. Different stress proteins belonging
to the families Chaperonin GroEL and molecular chaperone
DnaK (level 3 class: RNA degradation) were identified as
indicators of high and low intensity land use treatments but
their relative abundances were significantly higher in the more
acidic low intensity soils as an acid tolerance response44. The
higher investment into stress alleviation in low intensity soils
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along with the lower metabolic efficiency reiterates the trade-offs
in microbial functional traits.

In the type 3 intensification effect, where both contrasts were
below the threshold pH value of 6.2, pairwise protein indicator
analysis presented fewer functional indicators of land use
intensification since the two systems were similar (Fig. 5a). Key
indicators were stress proteins that were more abundant in high-
intensity soils; it is worthwhile to note that these were global
indicators of intensive land use systems across all three land use
contrasts, and have been previously reported in agricultural
systems17. As highlighted earlier, the microbial controls on soil C
cycling processes were much lower in low pH soils, as evidenced
by lower microbial turnover rates. However, soil microorganisms
continued to respire possibly using non-plant C sources like
direct C fixation34, although we did not find any evidence from
proteomic analyses about alternative C respiration redox
strategies. Observations emphasizing that microbial physiological
trade-offs are key determinants of the microbial contribution to
soil organic matter formation thus need to be further tested to
fully understand the biochemical basis of soil carbon accumula-
tion. Nevertheless, we present strong evidence of such trade-offs
in microbial traits being important in near-neutral soils, which is
where the majority of productive agriculture occurs.

Discussion
We established landscape-scale empirical links between key
microbial ecophysiological traits and soil C concentration sup-
porting the central role of microorganisms in belowground car-
bon cycling. Results show that an efficient microbial physiology
with a greater proportion of substrate allocated to biosynthesis
manifests in the increased ability of such communities to store C
in near-neutral pH soils. Trade-offs in microbial physiological
traits determine the proportion of microbial organic C investment
into biosynthesis. Growth and biosynthesis decline in scenarios of
stress and resource limitation when cellular investment is far
higher in traits focussed on stress tolerance and resource acqui-
sition. We discern two distinct mechanisms of soil carbon accu-
mulation across a pH threshold of 6.2 for these soils: at higher pH
(>6.2), an efficient substrate metabolism leads to increased SOC
accumulation; and in acidic wet environments (pH < 6.2), abiotic
factors limit microbial growth and decomposition causing accu-
mulation of SOC. This evidence supports the use of soil pH as an
integrated proxy of land use change, parent material and cli-
mate39 to determine the site-specific effects of land management
strategies on SOC accumulation. The mechanisms highlight the
significance of microbial ecophysiological controls on soil organic
matter accumulation in high pH soils. Here, less-intensive land
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management practices have greater potential for soil carbon
storage through increased microbial growth efficiency that causes
greater channeling of substrates into biomass synthesis. Intensi-
fication in low pH soils leads to alleviation of acid-related retar-
dation of microbial growth and organic matter degradation,
leading to large losses of carbon through microbial decomposi-
tion. In these systems, preserving equivalent amounts of organic
C would involve managing the abiotic C-accumulating factors,
like acidity and wetness, whilst enhancing plant production. We
thus highlight the importance of including physiological attri-
butes of soil microorganisms in designing restorative land man-
agement strategies aimed at mitigating losses of soil C by
intensive agricultural practices.

Methods
Sampling regime. Soil samples were collected from 56 geographically distributed
sites that differed in their edaphic properties (Fig. 1). From these sites, 21 local
contrasts of land use intensity with relevant historical knowledge of land man-
agement scenarios were chosen to study the effect of land use intensity on
microbial functionality (Table 1). Research experiments, working farms or farms
under management by local wildlife trusts were targeted to provide two nearby
fields of differing long-term management intensity. The low-intensity sites were
generally permanent unimproved grasslands, often with low-density grazing. The
high-intensity sites were mostly arable fertilized croplands or intensive grasslands.
The subset of 21 local contrasts were selected based on the criteria that the higher-
intensity treatment had a significant reduction in organic matter and an increase in
pH reflecting nationwide trends of intensification effects (Table 1, Supplementary
Table 1). From each of the identified sites at a single time point, three spatially
dispersed soil cores (5 cm diameter, 15 cm deep) were sampled to capture the
natural spatial variability at each site. After all the visible roots were removed,
aliquots of the homogenized soil were frozen at −20 °C until the following func-
tional analyses.

Soil chemistry. Loss on ignition (LOI), C, N, pH, moisture, and clay content were
assessed in replicated soil samples from each site using standard protocols. Soil
total C concentration strongly correlated with LOI (R2= 0.93), with the only
deviations being for the calcareous soils with high inorganic C. For soil from these
sites, total C was predicted based on the LOI–C regression model for the non-
calcareous sites. Soil pH was measured in deionised water and moisture content
was determined by the gravimetric method.

Microbial respiration. For microbial basal respiration measurements, an aliquot
(1 g) of the field-moist soil was placed in a 10-mL glass vial and incubated over-
night (for ~16 h) in the dark at room temperature (21 °C) without manipulating
the moisture levels. Respired CO2 collected in the headspace was measured using a
gas chromatography isotope ratio mass spectrometer (GC-IRMS, Delta+ XL,
Thermo Fisher Scientific, Germany) coupled to a PAL autosampler (CTC Analy-
tics) with general purpose (GP) interface (Thermo Fisher Scientific, Germany).
Following the basal respiration measurement, vials with soils were opened and
incubated in the dark for 8 h before adding 100 µL of 13C-labeled DOC solution
(0.13 mgC). The filter-sterilized solution was prepared from 13C-labeled powdered
plant leaf litter, containing a range of compounds varying in their decomposability.
Leaf litter was produced by growing a temperate herb in a 13CO2 atmosphere (~1
atom% 13C at 400 ppm)45. Respiration measurements were repeated following the
same incubation procedure as mentioned above to obtain the proportion of DO13C
in respired CO2.

Microbial biomass, CUE and turnover rate. Soil microbial total DNA-C con-
centration was used as a proxy for biomass C; DNA extraction was carried out on a
soil aliquot of 0.25 g using PowerSoil-htp 96-well soil DNA isolation kit following
the manufacturer's instructions (MO BIO Laboratories, UK). Another set of
identical DNA extraction was performed following addition of 25 µL of DO13C
solution and overnight (16 h) incubation in the dark at field moisture capacity.
Both extracts were analyzed in the size-exclusion chromatographic (SEC) mode on
a liquid chromatography isotope ratio mass spectrometer LC-IRMS (HPLC system
coupled to a Delta+ XP IRMS through an LC IsoLink interface; Thermo Fisher
Scientific, Germany)46. This allowed us to obtain the DNA-C content and the
proportion of DO13C in microbial DNA from soils with and without substrate
addition. Microbial CUE was estimated as DNA-13C/(DNA-13C+ ∑CO2-13C),
where ∑CO2-13C is the cumulative DO13C lost during respiration. Microbial
turnover rate (synonymously referred to as growth rate) was calculated as DNA-
13C/DNA-C.

Taxonomic diversity. An aliquot of the DNA was used to perform 16 s rRNA
gene- and ITS region-tagged amplicon sequencing using Illumina MiSeq platform
to estimate the bacterial and fungal taxonomic diversity, respectively, using

previously reported dual index methods47,48. Raw sequences from amplicon
sequencing were quality filtered, merged and clustered to generate OTU’s at 97%
sequence similarity. Richness was calculated on rarified data (2000 reads) using the
R vegan library.

Extracellular enzyme assay. The potential activity of the enzyme acetyl esterase
was estimated with the common assay protocol using fluorigenic substrates. The
enzyme acetylxylan esterase is the most relevant acetyl esterase in soil; it belongs to
the family of hydrolases that catalyzes the deacetylation of xylans (the main
hemicelluloses in hardwoods and annual plants) and was chosen as it is involved in
the initial stages of depolymerization of complex plant substrates38. Briefly, the soil
washes were obtained using 1.5 g of homogenized soil shaken in 20 ml of deionized
water49. The resultant slurry was used to perform esterase activity assay using 4-
Methylumbelliferyl acetate esterase substrate. The reaction was performed for 3 h at
28 °C, with one fluorometric measure every 30 min (BioSpa 8 Automated Incu-
bator). Fluorescence intensity was measured using a Cytation 5 spectrophotometer
linked to the automated incubator.

Metaproteomics. For proteomic analysis of microbial communities, three repli-
cated samples were used from both high- and low-intensity land use, consisting of
six sites, each contrast representing one of the three types of hypothesized land use
intensification effects (Table 1). A total of 5 g of soil was used for protein extraction
(with two technical replicates) using the SDS buffer–phenol extraction method45.
The protein extract was purified using 1D SDS-PAGE and the resultant product
was subjected to tryptic digestion. Proteolytically cleaved peptides were separated
prior to mass spectrometric analyses by reverse-phase nano HPLC on a nano-
HPLC system (Ultimate 3000 RSLC nano system, Thermo Fisher Scientific, San
Jose, CA, USA) coupled online for analysis with a Q Exactive HF mass spectro-
meter (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a nano elec-
trospray ion source (Advion Triversa Nanomate, Ithaca, NY, USA). Raw data from
the MS instrument were searched using Proteome Discoverer v1.4.1.14 (Thermo
Fisher Scientific) against a FASTA-formatted database (protein coding sequences of
bacteria, fungi and archaea, Uniprot 05/2016) using the SEQUEST HT algorithm.
Database searches were performed with carbamidomethylation on cysteine as a
fixed modification and oxidation on methionine as a variable modification. Enzyme
specificity was selected to trypsin with up to two missed cleavages allowed using 10
ppm peptide ion and 0.02 Da MS/MS tolerances. Only peptides with a false dis-
covery rate (FDR) < 1% estimated by Percolator50 and only rank 1 peptides were
accepted as identified. Unipept v3.251 was applied to assign proteins to their
phylogenetic origin. GhostKoala52 and KEGG classifier were used for functional
annotation.

Regression analyses. Statistical analyses were performed under the R environ-
ment software 2.14.053. Regression tree analysis for recursive partitioning of
microbial CUE data by edaphic properties that included soil pH, moisture, total C
and N concentration, C:N ratio and clay content was performed on the entire
dataset (56 sites) using the rpart package. Here, all three replicates from each site
were treated independently to account for spatial non-independence. Slope failure
test or piecewise regression for the CUE–soil C linear regression was performed by
recurrent movement of the soil pH window over a range of 1.4 units, with
increments of 0.1 units. The threshold pH value was determined as the last pH unit
before the R2 of the CUE–soil C regression dropped dramatically (Supplementary
Fig. 2). Following threshold pH determination, the data were segregated into low
(<6.2, n= 50) and high (>6.2, n= 113), and generalized linear models of various
physiological traits and soil C were run for both datasets separately.

Structural equation modeling. This was applied to test direct and indirect effects
of microbial diversity and ecophysiology on soil carbon accumulation by orga-
nizing the dataset into a path relation network. Using a confirmatory approach, we
aimed to test the maximum likelihood of data fit to the hypothesized path model
inferring microbial taxonomy and function influences soil C accumulation.
Microbial functional traits that were included as predictor variables were CUE and
biomass, and a latent variable for microbial taxonomy was generated using bac-
terial and fungal alpha diversity. The fit of the path model and structural rela-
tionships with data were verified using SEM analysis conducted with the lavan R
package54. The most parsimonious model was identified by non-significant X2 tests
(P ≥ 0.05), low Akaike Information Criterion (AIC), low Root Mean Square Error
of Approximation index (RMSEA ≤ 0.1), low Standardized Root Mean Square
Residual index (SRMR ≤ 0.1) and high Comparative Fit Index (CFI ≥ 0.90).

Analysis of treatment effect size. To assess the effect of land use intensification,
we determined the quantity and direction of change in the measured microbial
traits across the 21 chosen land use contrasts (42 sites with three replicates at each
site). Fold change on intensification was calculated for each contrast as the ratio of
mean trait values from low- and high-intensity treatments. Following the failure to
elucidate any global patterns, we segregated the data based on our mechanistic
understanding of soil C cycling into categories of contrasts that fall above and
below the hypothesized threshold soil pH and into a third category of contrasts
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where land use intensification leads to soil pH shift from below to above the
threshold value (Table 1, Fig. 4a–c).

Protein indicator analysis. Pairwise Indicator Species Analysis was used to
identify the protein functions (from soil metaproteomics) that were significantly
associated with low- and high-intensity land use treatment for each contrast55. This
was implemented within the R library labdsv (http://ecology.msu.montana.edu/
labdsv/R). The IndVal score for each protein is the product of the relative fre-
quency and relative average abundance within each land use treatment, and sig-
nificance was calculated through random reassignment of groups (1000
permutations).

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information file, and from the corresponding
author on request. The mass spectrometry proteomics data generated during the current
study are available in the ProteomeXchange Consortium via the PRIDE partner repo-
sitory with the dataset identifier PXD010526.
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