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Incorporating terminal velocities 
into Lagrangian stochastic 
models of particle dispersal in the 
atmospheric boundary layer
Andy M. Reynolds

Lagrangian stochastic models for simulation of tracer-particle trajectories in turbulent flows can be 
adapted for simulation of particle trajectories. This is conventionally done by replacing the zero-
mean fall speed of a tracer-particle with the terminal speed of the particle. Such models have been 
used widely to predict spore and pollen dispersal. Here I show that this modification predicts that 
particles become uniformly distributed throughout the air column, which is at variance with the 
seminal experimental studies of Hirst et al. (1967) that demonstrated spore concentrations (and pollen 
concentrations) declined exponentially with height in unstable air. This discrepancy arises because the 
terminal speed, which is a Lagrangian property of a particle, has always been treated as if it were an 
Eulerian property of an ensemble of particles. In this study models are formulated correctly. I show that 
the mean acceleration of a tracer-particle should be replaced by the mean acceleration of a particle. 
Model predictions for aerial density profiles then agreed with the observations of Hirst et al. (1967) and 
with observations of ground-level concentrations but differed significantly from predictions obtained 
using conventional models. In accordance with the results of numerical simulations, the models also 
predict that particles are moving downwind marginally more slowly than the wind itself. Finally, the 
new modelling approach can be extended to predict the dispersal of small insects with active flight 
behaviours.

In his seminal work, Thomson1 correctly noted that turbulent dispersal within complex, inhomogeneous turbu-
lent flows, such as the atmospheric boundary-layer, is best predicted by Lagrangian stochastic models because 
other methods (e.g., diffusion equations and similarity theory) are either invalid or inappropriate. Thomson1 
showed how Lagrangian stochastic models for simulation of tracer-particle trajectories could be formulated by 
invoking the ‘well-mixed condition’. Thomson’s ‘well-mixed condition’ states that: If, at time t = t0, the joint distri-
bution of tracer-particle positions (x) and velocities (u), P(u, x, t), is proportional to the Eulerian joint distribu-
tion of positions and velocities, PE (u, x, t), then at all later times, (t > t0), P(u, x, t) must remain proportional to PE 
(u, x, t). This condition (assumption) is equivalent to, or more stringent than, all other criteria that, to date, have 
been identified as being capable of distinguishing between well- and poorly-formulated models. Mathematically, 
it requires that the model is derived from a Fokker-Planck equation. Lagrangian stochastic models satisfying the 
‘well-mixed condition’ do accurately predict tracer-particle dispersal in: plant canopy turbulence; fully-convective 
boundary-layers; and other complex, inhomogeneous turbulent flows2–5. Nonetheless, there is currently no rigor-
ous theoretical framework for formulation of Lagrangian stochastic models that is equivalent to the ‘well-mixed 
condition’ and capable of simulating heavy particle trajectories6. In the absence of such a framework, ad hoc mod-
ifications have been made to tracer-particle models to account for the effects of falling under gravity and particle 
inertia. Here I show that the most used, and seemingly most intuitive of these modifications, is inconsistent with 
the classic observations of Hirst et al.7 for pollen dispersal in the atmospheric boundary-layers. I then formulate 
new models that overcome this problem for small particles such as spores and pollen grains. This is of practical 
significance because model predictions for ground-level concentrations and dispersal ranges differ significantly 
from predictions obtained using conventional models.
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Methodology and Results
Preliminary illustrative analysis: Particles in homogeneous turbulence.  For illustrative purposes, I 
began with a one-dimensional analysis of the simplest case of a small, rigid, much-denser-than-air, spherical par-
ticle falling through isotropic homogeneous turbulence with Gaussian velocity statistics. The dominant forces on 
particles of this type are Stokes drag and gravity. The one-dimensionality of the analysis mirrors the modelling of 
tracer-particle trajectories in boundary layers where Lagrangian stochastic models are frequently used to model 
vertical movements due to turbulence, and where turbulence is assumed to have a negligible effect on downwind 
movements which are dominated by the mean flow (advection). In common with the formulation of Lagrangian 
stochastic models for simulation of tracer-particle trajectories1 I have assumed that the turbulent velocities expe-
rienced by particles along their trajectories can be represented as continuous Markov processes. For Lagrangian 
stochastic models this is appropriate within the large Reynolds number limit. This is because the Lagrangian 
acceleration autocorrelation function approaches a δ function at the origin, corresponding to an uncorrelated 
(white noise) component in the acceleration, and hence to a Markov process8. The white noise does, however, 
result in an exponential autocorrelation function that is non-differentiable at t = 0. This non-analytic behaviour 
can be alleviated by introducing a second timescale into the model, the Kolmogorov time scale, tη, i.e., by replac-
ing the white noise with coloured noise, that is exponentially correlated on a time scale, tη (in this case the first 
and second but not higher derivatives of the autocorrelation function are defined at t = 0)8. I did not attempt this 
here because its impact on long-time dispersion statistics is expected to be negligible at high Reynolds numbers8, 
and because the accurate representation of the smallest scales of turbulence experienced by particles is problem-
atic9. The tendency for preferential congregation of particles along ‘fast tracks’ at the boundaries of vortices results 
in an increase in the average settling velocity10,11, which is also neglected. Preferential sampling of turbulent flows 
is not significant when Stokes numbers, St = τ/tη, are much less than one11, as is the case here where the focus is on 
spores and pollen that are dispersing in atmospheric boundary-layers. The aerodynamic response times of spores 
and pollen grains, τ, is about 10−4 s and so shorter than tη which is about 10−1 s.

With the aforementioned assumptions, the governing equation for motion in a vertical direction can be 
obtained by coupling Stokes’ law and gravitational settling with an Ornstein–Uhlenbeck process that models the 
turbulent flows experienced by the particle:
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where x and v are the position and velocity of the particle at time t; u is the fluid velocity in the immediate vicinity 
of the particle; g is acceleration due to gravity; and W  denotes a white noise process, which has the property 
∫ ′ ′ =W t dt W t( ) ( )t

0
 for which W(t) is a Wiener process. The modelled velocities, u, are Gaussian distributed with 

mean zero and variance σu
2, and they are exponentially-distributed on a timescale T that is representative of the 

energy-containing scales of motion. It is then apparent that the average settled velocity (a Lagrangian velocity 
evaluated at the particle location) τ=v g . Here the model is used with reflective boundary conditions at ground 
level to create an impenetrable barrier to transport. These conditions ensure maintenance of equilibrium 

Figure 1.  Predicted aerial density profiles of particles in 1-dimensional homogeneous turbulence (●) together 
with the theoretical prediction (red line) of Eq. 6. The trajectories of 5000 particles were simulated using Eq. 1 
with, τ = 1, T = 10, σ = 1u

2  and g = −0.1 a.u. Reflective boundary-conditions were applied at x1 = 0 and 
x1 = H = 1000. Particles were released from x1 = 50. Each particle was simulated for a time 72,000 a.u. after 
which its position was recorded.
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position- and velocity-statistics, thereby allowing any analytical predictions developed below to be tested12. Note 
also that the dispersiveness of the smallest spores (with diameters <10 µm) is so high that deposition occurs very 
infrequently13.

Below I describe how the modelling approach is refined to account for inhomogeneous turbulent velocity 
statistics and for multi-dimensional turbulence which are both important near ground level3.

The model predicts that equilibrium numbers of aerosol particles will decrease exponentially with height 
(Fig. 1) in accordance with the observations of Hirst et al.7. This decrease is a consequence of the imposition of 
an impenetrable boundary at ground level and would not arise in open systems that do not have such boundary 
conditions. In open systems, particles become uniformly distributed in the presence of a sustaining influx of 
particles, or in the presence of periodic boundary conditions. When the equilibrium distribution of particles 
decreases with height there is a balance between a relatively large number of particles moving upwards, which 
are slowed by gravity, and a relatively small number of particles moving downwards and being accelerated by 
gravity. In other words, the Eulerian velocity of many particles is zero at a given location. Nonetheless, the average 
Lagrangian velocity of any particular particle is its’ terminal speed, τg. This distinction between Eulerian and 
Lagrangian velocities does not arise in open systems but, as shown below, is of crucial importance in the formu-
lation of Lagrangian stochastic models for simulation of heavy particle trajectories (which use Eulerian velocity 
statistics as model inputs).

Stokes’ law and the Ornstein–Uhlenbeck process (Eq. 1) can be combined into a single equation:
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. This shows that Eq. 1 is effectively a second-order autoregressive stochastic process8 in which 
the position, velocity and acceleration of the particle are modelled collectively as a Markovian process. The equi-
librium Eulerian distribution of position, velocity and acceleration, P(A, v, x), can be obtained from the associated 
Fokker-Planck equation10:
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The Fokker-Planck equation (Eq. 3), is the Eulerian counter-part of the Lagrangian model (Eq. 1)14. It follows 
from Eq. 3 that Eulerian velocities (evaluated at a fixed location) are Gaussian distributed with mean zero and 
variance σv

2 and that Eulerian accelerations are Gaussian distributed with mean = ≈τ
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An equation for ρ x( ) can be obtained from Eq. 3 by integrating over all accelerations:
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This prediction is consistent with Hirst et al.7 who reported that spore (and pollen) concentrations often 
declined exponentially with height. It is further supported by the results of numerical simulations, obtained using 
Eq. 1 (Fig. 1). As mentioned above, the exponential aerial density profile (Eq. 6) reconciles the apparent contra-
diction between zero mean Eulerian velocities and non-zero mean Eulerian accelerations. This is at variance with 
standard models of particle dispersal6,15 which corresponds to a seemingly trivial re-arrangement of the terms in 
the penultimate line of Eq. 2:

τ τ τ σ τ τ= − + − − + +− − − − − − − −
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but which effectively assumes that the average Eulerian velocity τ=v g , and that the Eulerian acceleration 
=A 0. It can be seen by integrating Eq. 5 over all velocities that these conventional assumptions correspond to 

uniform equilibrium density profiles, ρ ρ=x( ) 0, that are incompatible with the observations of Hirst et al.7, but 
are consistent with expectations of open systems.

These different model predictions are of considerable practical importance because they lead to significant 
differences in predicted ground-level concentrations and dispersal ranges. Note, for example, that the assumption 
that air density within deep planetary boundary layers is constant is incorrect. In fact, the density at the top of the 
boundary-layer top may be more than 20% lower than at the surface, which leads to errors in the order of 10% in 
the tracer concentrations16. In the presence of a vertical wind shear, this also leads to inaccurate calculations of 
horizontal tracer transport. Much larger errors are expected for particles; Hirst et al.7 reported 100-fold changes 
in spore and pollen concentrations.

The prediction made in Eq. 6 is consistent with the seminal observations of Hirst et al.7 which reported that, 
in unstable air, spore (and pollen) concentrations generally declined exponentially with height but were some-
times almost uniform in the lowest kilometre where mixing was strong (i.e., where the diffusivity, σ Tv

2 , was large). 
Analogous results were recently reported by Zhang et al.17. Moreover, observed exponential decay rates7 are con-
sistent with the theoretical expectations of spores in atmospheric turbulence.

Particles in heterogeneous turbulence.  A first-order autoregressive stochastic process in which the 
position and velocity of a particle are modelled collectively as a Markovian process, can be obtained by multiply-
ing both sides of Eq. 2 by τ and then taking the limit τ →T/ 0, with T and the settling velocity, τg , both fixed:
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which corresponds to the Eulerian distribution:
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This shows that, for homogeneous Gaussian turbulence, the model that is appropriate for simulation of 
tracer-particle trajectories (i.e. the Ornstein–Uhlenbeck process) can also be an effective model for simulation of 
small-particle trajectories when an acceleration term, τ −T g1 , is added. This suggests that models for simulation of 
tracer-particles in heterogeneous turbulence could also be modified in a directly analogous way:
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I make no attempt here to model turbophoresis (the tendency of particles to concentrate preferentially in 
regions of flow with relatively low turbulent kinetic energy) because this is a weak tendency when τ/T → 0. 
Moreover, I assume that σ σ≈v u

2 2 is appropriate when τ/T → 0, which is the case here. The model (Eq. 9) is iden-
tical to the one proposed by Stohl and Thomson15 for tracer-particle trajectories in deep planetary 
boundary-layers; Eq. 9 corresponds to the Eulerian distribution:
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As such, Eq. 9 predicts a marked decline at the height of the inversion when turbulent diffusivity σ Tu
2  becomes 

weak, in accordance with the observations of Hirst et al.7. This suggests that Lagrangian stochastic models for 
simulation of tracer-particle trajectories in non-Gaussian turbulence (i.e., for convective flows and plant canopy 
turbulence2,18) could be modified in a similar way. The addition of a gravity term is not entirely self-consistent if 
the underlying stochastic model is founded on non-Gaussian velocity statistics, because simulated velocities 
(model outputs) would no longer be compatible with model inputs. Nonetheless, results from numerical simula-
tions of spore movements in a convective boundary-layer reveal that the modification, although not exactly 
self-consistent, does not result in significant differences between Eulerian distributions of velocity (which are 
used as model inputs) and predicted (outputted) Eulerian distributions of velocity (Fig. 2). Precise consistency 
requires that the gravity term be speed dependent, i.e., it requires that particles actively respond to turbulence 
which is incompatible with the notion of a passive particle. Breakdown of the approximation for strong 
non-Gaussian turbulence might simply reflect the fact that model outputs (particle velocities) can no longer be 
accurately characterised in terms of fluid-velocity statistics (which are used as model inputs). It should also be 
noted that no reflection scheme is exactly consistent with the modelling when applied at locations where the pdf 
for the normal velocity is asymmetric or is locally-inhomogeneous19. This, however, does not prohibit the exist-
ence of reflection algorithms that are acceptable in practice. Moreover, because the statistical character of the flow 
close to the boundary is unknown, profiles of flow statistics at the boundary can be selected to ensure successful 
application of the reflection algorithm.

Accounting for turbulence in a stream-wise direction.  The analysis described previously can be 
extended to account for cross correlation between turbulent fluctuations in stream-wise and vertical directions, 
which is important near to the ground3. In this case, Eq. 1 is replaced by:



www.nature.com/scientificreports/

5Scientific REPOrTs |         (2018) 8:16843  | DOI:10.1038/s41598-018-34924-4

τ δ

λ

= − +

= − +

=

−



dv
dt

u v g

du
dt

b u bW

dx
dt

v

( )

2

(11)

i
i i i

i
ij i

i
i

1
2

2

where the subscripts denote Cartesian coordinates. δij is a Kronecker delta indicating that gravity is acting in the 
2-direction and λij is an element of the inverse of the velocity covariance matrix. In Lagrangian stochastic model-
ling the parameter b is usually selected so that model predictions for the Lagrangian velocity structure are consist-
ent with Kolmogorov’s similarity theory1. This requires that ε=b C0  where C0 is a universal constant and ε is 
the mean rate of dissipation of turbulent kinetic energy. Repeating the steps above leads to generalization of Eq. 7 
to form:

λ λ τ= − + + 

dv
dt

b v b g bW
2 2 (12)

i
ij j i i

2 2

2

which can be written more explicitly as:

Figure 2.  Predicted aerial density profile and Eulerian velocity statistics of particles in a purely convective 
boundary-layer (●) are consistent with model inputs (red lines). The trajectories of 10,000 particles were 
simulated using the Lagrangian stochastic model of Franzese et al.4 with an additional term representing 
acceleration due to gravity, τg T/ . Each particle was simulated for 10,000 s after which its position and velocity 
were recorded. Predictions were obtained for a boundary-layer with height H = 1000 m and convective velocity 
scale w* = 2.0 ms−1, and for particles τg/T = 0.001 ms−2. This agreement is specific to the model of Franzese et 
al.4 as comparable predictions (not shown) were obtained using the Lagrangian stochastic model of Luhar et al.2 
which has a more complicated mathematical structure.
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 and that particles even-

tually become uniformly distributed in the horizontal (x1) direction. Just as in the 1-dimensional case, at any 
given location there is a balance between a relatively large number of particles moving upwards and being slowed 
by gravity, and a relatively small number of particles moving downwards and being accelerated by gravity. 
However, because the correlation, λ12, changes in the vertical, components of velocity are accompanied by 
changes in the horizontal components of velocity resulting in a non-zero mean horizontal velocity, 〈v1〉. Of 
course, components of the term λ τgb

i2 2
2

 can be distributed differently, e.g., to give λ τ=A gi
b

i2 2
2

. However, these 
redistributions correspond to exponential distributions of particle concentrations in the stream-wise direction, 
which could only be realized if there was a non-physical reflective boundary-condition at x1 = 0. The only other 
way to address this, which is also the most intuitive, is to use τ= = = =v v g A A0, , 01 2 1 2 , which cor-
responds to a uniform or decaying aerial density profile (see analysis of 1-dimensinal model for explanation). The 
results of numerical simulations using Eq. 11 (Fig. 3) confirmed the key prediction of Eq. 13 which is that parti-
cles tend to accelerate downwards but do not increase their speed (this is not a contradiction, see analysis of the 
one-dimensional model for explanation) and that, as a result of the coupling between gravity and turbulence, the 
average downwind particle velocity is less than the downwind velocity of the surrounding air flow. For spores in 
the atmospheric boundary-layer this difference is predicted to be about 0.01 ms−1. This tendency should not be 
confused with that reported by Kaftori et al.20 for particles in near-wall turbulence. Kaftori et al.20 observed that 
these particles were often concentrated in regions of low velocity and associated with wall structures; as a result 
the average particle velocity was lower than the surrounding air. Coherent flow structures do not feature in the 
current theoretical analysis.

Discussion
There is no rigorously correct theoretical framework for formulation of models that simulate particle trajectories 
in turbulent flows. The prevailing view is that particles fall through turbulent airstreams under gravity and that 
the force of gravity is eventually balanced by drag whereupon the particles stop accelerating and begin falling 
at their terminal velocity. Consequently, models that simulate tracer-particle trajectories have been adapted to 
simulate particle trajectories by simply neglecting particle inertia and by superimposing the particle’s settling 
velocity onto the fluid velocity6,14. In this study I have shown that these models are at variance with the seminal 

Figure 3.  Predicted aerial density profiles of particles in 2-dimensional homogeneous turbulence (●) together 
with the theoretical prediction (red line). The trajectories of 2000 particles were simulated using Eq. 11 with 

= . = = .b u u u u0 02, 1 02
1 1 2 2 , τ= − . = .u u 0 5, 1 01 2  and g = −0.1 a.u. Reflective boundary-conditions 

were applied at x1 = 0 and x1 = H = 1000. Particles were released from (x1, x2) = (0, 50). Each particle was 
simulated for a time 10,000 a.u. after which its position was recorded. Notice that the particles have been 
displaced backwards from their initial positions. The mean horizontal velocity of the simulated particle −0.07 is 
close to the theoretical expectation τ= = − .λ

λ
v g 0 051

12

11
 from Eq. 13.
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studies of Hirst et al.7 and with subsequent studies17 showing that aerial density profiles generally decrease expo-
nentially with height. This discrepancy between predictions and observations has arisen because the terminal 
velocity, a Lagrangian property of particles, has been treated as if it were an Eulerian property of an ensemble of 
particles. I have shown that the mean acceleration of a tracer-particle should, in fact, be replaced by the mean 
acceleration of a particle. This suggests that conventional models are flawed fundamentally and can be expected 
to under-predict ground-level concentrations and over-predict dispersal; this is because simulated particles 
are uniformly distributed throughout the boundary-layer rather than preferentially concentrated close to the 
ground. The addition of an acceleration term (i.e., gravity) to Lagrangian stochastic (particle trajectory) models 
was entirely self-consistent when turbulence was Gaussian (i.e., when the stability is ideally neutral) and works 
well when turbulence was non-Gaussian (i.e., when the stability is fully convective).

The observations of Hirst et al.7 mirror those of Johnson21 and his collaborators which were made in the 
late 1940s and 1950s; they observed that aerial concentrations of aphids and other small insects decreased with 
height according to a power-law, rather than in an exponential way as reported for spores and pollen. In the 
case of Gaussian turbulence, dispersal of small insects can be modelled in an analogous way by adding a term to 
Lagrangian stochastic models that simulates height-dependent gravity (and which would not be out-of-place for 
a passive particle in ‘flatland’). For non-Gaussian turbulence (i.e., for convective conditions) the simulated gravity 
must also be speed-dependent but its effect on dispersion can be accurately approximated using a speed-averaged 
form22. Averaging this term over all velocities resulted in a gravity-like term, albeit a height-dependent one 
(which for homogeneous turbulence decreased with height by 1/x). The results of numerical simulations (not 
shown) revealed that the height-dependent gravity term was a useful approximation that did not typically result 
in significant differences between Eulerian distributions of velocity (which are used as model inputs) and pre-
dicted (outputted) Eulerian distributions of velocity. This realization potentially unifies the modelling of spores 
and the modelling of pests.
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