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compromising yield. However, the extent to which AFI with wastewater affects N
cycling genes remains poorly studied. We aimed to investigate changes in main N
transformation processes, bacterial and fungal community composition, as well as
relative abundance of N cycle-associated genes in soil receiving AFI with swine
wastewater. The experimental plan included three irrigation rates, irrigating pepper
plants with 50%, 65% and 80% of the amount of water required under conventional
furrow irrigation to prevent the crop suffering water stress. Each treatment had a
groundwater-irrigation control. We measured edaphic factors, microbial community
composition and relative abundance of genes in rhizosphere and bulk soils. Altering
water use in AFI did not exert a significant effect on bacterial and fungal communities.
By increasing the irrigation rate of wastewater, relative abundances of nifH, bacterial
and archaeal amoA and nosZ genes decreased whereas those of nirK and nirS genes
increased in the rhizosphere soil; nitrification rate did not decrease and the
denitrification rate remained unchanged in both rhizosphere and bulk soil, implying that
appropriate increase of wastewater use by AFI can improve N use efficiency.
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Response to Reviewers 

Dear Reviewers/Editor 

 

We are grateful for the time and effort the editor and reviewers have taken to help us improve the 

manuscript. Our response to the comments of Editor, Reviewer #1 and Reviewer #2 are marked in 

red, blue and green respectively in the revised manuscript. 

 

Reviewers/Editor comments: 

Response to Editor comments 

Your manuscript titled "Increasing livestock wastewater application in alternate-furrow irrigation 

reduces nitrification gene abundance but enhances nitrification rate in rhizosphere" has been 

reviewed by two referees and it is accepted for publication after revision according to the enclosed 

referees' comments below.   

These are my specific comments: 

L. 34, please do not indent; 

Reply: We revised as you suggested. 

L. 52, "organic C"; 

Reply: We revised as you suggested. 

Please delete commas in the citations at L. 60 and 418; 

Reply: We revised as you suggested. 

L. 64, the fertilization do not add microbial species unless it is an organic fertilizer. Please reword; 

Reply: We added the types of fertilizers. (L. 63-65) 

L. 230 and 232, please do not mention not significant differences; 

Reply: We deleted the description with no significant differences. 

Please replace "nitrogen" with "N" at L. 455, 457 and 844; 

Reply: We revised as you suggested. 

Please move the reference at L. 781 after that at L. 485 

Reply: The reference at L. 781 (L. 795 in the revised manuscript) is talking about N fixation and 

the related genes, but L. 485 (L. 491 in the revised manuscript) is about nitrification and the 

associated genes. Therefore, we moved the reference at L. 795 to L. 539 where N fixation is 

discussed. 

Authors' Response to Reviewers' Comments Click here to access/download;Authors' Response to
Reviewers' Comments;Response to Reviewers.docx

https://www.editorialmanager.com/bfso/download.aspx?id=107885&guid=f2ab134a-e6da-4e24-b2ad-3c1b189f5de9&scheme=1
https://www.editorialmanager.com/bfso/download.aspx?id=107885&guid=f2ab134a-e6da-4e24-b2ad-3c1b189f5de9&scheme=1


Reviewers' comments:  

This manuscript has checked by the same reviewers as before, but still some minor revisions 

required.  Authors should check again carefully according to the comments below. 

  

Response to Reviewer comment No. 1 

Reviewer #1: The manuscript was revised according to the previous comments and the focus of the 

study became clear. I think revised version of the manuscript is almost acceptable. 

There are some points I would like to make sure before its publication. 

1. Did the authors measure soil microbial activities relating to N transformation with samples which 

had been frozen (L. 143)? To my opinion, this is not appropriate for activity measurement, therefore, 

if there are any concerns relating to the frozen effects on the microbial activities, it is better to note 

in the text. 

Reply: Yes, the samples had been frozen. We agree with the reviewer that thawing a frozen-stored 

sample might render the measured soil microbial activities differing from that in the field when the 

sample was taken, but the reported research in the literature about this is not conclusive, with some 

showing a little change while others finding no observable alternation at all (Stenberg et al. 1998). 

Nonetheless, all samples in our work were stored and measured following the same protocol and 

the methodological effects were thus consistent, as pointed out by Rubin et al. (2013) that 

methodological consistency is key to ensure accurate characterization and comparison of soil 

microbial community. As such, the results comparison between different treatments presented in 

the manuscript is rational. We made this clear in the revised manuscript (L. 147-154).  

Rubin BE, Gibbons SM, Kennedy S, Hampton-Marcell J, Owens S, Gilbert JA (2013) Investigating the 

impact of storage conditions on microbial community composition in soil samples. PloS One 8: 

e70460 

Stenberg B, Johansson M, Pell M, Sjödahl-Svensson K, Stenström J, Torstensson L (1998) Microbial 

biomass and activities in soil as affected by frozen and cold storage. Soil Biol Biochem 30: 393–

402 

2. Title, L.27, L. 462-463, L.566; It seems that nitrification rates in rhizosphere soil with wastewater 

application are not differ among treatments (Fig. 1). Is the relevant explanation in the manuscript 

accurate? 



Reply: Yes, the nitrification rates in rhizosphere soil did not increase significantly with the increase 

of wastewater application (Fig. 1), we modified the title and the relevant descriptions. (L. 2, 27-28, 

466, 468-470, 574) 

 

Response to Reviewer comment No. 2 

Reviewer #2: This manuscript has now substantially improved according my and others comments. 

Especially it is very important that activity data was now provided. 

Still the manuscript is very descriptive and some discussion are not well done, for example, analysis 

in Fig.6 should be done together with activity data. 

Reply: We redid the Redundancy Analysis together with the activity data and modified the 

associated discussion. (L. 363-364, 366, 368, 371, 374, 380, 382, 505, 513-514, 524-525, 550) 
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Abstract 14 

In water-scarce regions, alternate-furrow irrigation (AFI) - alternately wetting half of the plant 15 

roots - has proven to be an effective water-saving approach without compromising yield. 16 

However, the extent to which AFI with wastewater affects N cycling genes remains poorly 17 

studied. We aimed to investigate changes in main N transformation processes, bacterial and fungal 18 

community composition, as well as relative abundance of N cycle-associated genes in soil 19 

receiving AFI with swine wastewater. The experimental plan included three irrigation rates, 20 

irrigating pepper plants with 50%, 65% and 80% of the amount of water required under 21 

conventional furrow irrigation to prevent the crop suffering water stress. Each treatment had a 22 

groundwater-irrigation control. We measured edaphic factors, microbial community composition 23 

and relative abundance of genes in rhizosphere and bulk soils. Altering water use in AFI did not 24 

exert a significant effect on bacterial and fungal communities. By increasing the irrigation rate of 25 

wastewater, relative abundances of nifH, bacterial and archaeal amoA and nosZ genes decreased 26 

whereas those of nirK and nirS genes increased in the rhizosphere soil; nitrification rate did not 27 

decrease and the denitrification rate remained unchanged in both rhizosphere and bulk soil, 28 

implying that appropriate increase of wastewater use by AFI can improve N use efficiency.  29 

Keywords: Livestock wastewater; Alternate-furrow irrigation; Irrigation amount; Nitrogen 30 

transformation genes; Water quality 31 
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Introduction 33 

Recycling nutrient-rich livestock wastewaters and reusing them for irrigation (Cai et al. 2013) is an 34 

attractive approach to relieve water-shortage pressure, capture N and other nutrients in plant biomass 35 

and soil and dispose of wastes in a managed manner. Irrigation with nutrient-rich wastewater is likely 36 

to alter N transformations in soils including nitrification, denitrification, N2-fixation, anaerobic 37 

ammonium oxidation (anammox), and complete ammonia oxidation (commamox) to NO3
--N. During 38 

nitrification, NH4
+ is oxidized progressively to NO2

- and then to NO3
-. Ammonia oxidation is a rate-39 

limiting process in nitrification under aerobic condition, mediated by both ammonia-oxidizing archaea 40 

(AOA) and ammonia-oxidizing bacteria (AOB) (Könneke et al. 2005). The sequential reduction of 41 

NO3
− and NO2

− to nitric oxide (NO), or nitrous oxide (N2O) or dinitrogen gas (N2) in denitrification are 42 

anaerobic microbial processes, driven by denitrifying microorganisms that involve nitrate reductase 43 

(encoded by narG and napA), nitrite reductase (nirK and nirS), nitric oxide reductase (norB and norC), 44 

and nitrous oxide reductase (nosZ) (Li et al. 2018).  45 

N2O is a greenhouse gas 300 times more potent than CO2 and which is also responsible for ozone 46 

depletion (Mosier et al. 1998). Reducing its emission from arable soil is thus imperative (Ravishankara 47 

et al. 2009), especially since agriculture in China remains a net source of greenhouse gases (Gao et al. 48 

2018). N2O emission is modulated by functional genes involved in nitrite reduction, such as nirS and 49 

nirK, and nosZ, which encodes nitrous oxide reductase (Zehr and Kudela 2011; Hu et al. 2015). 50 

The abundance and activity of nitrifying and denitrifying microorganisms in soil is influenced by 51 

organic matter (OM), pH, total N (TN), organic C, temperature, NH4
+ and NO3

-, among other factors 52 

(Henry et al. 2006; Dong et al. 2009; Li et al. 2018; Shan et al. 2018). Growth of AOB depends on the 53 

availability of NH4
+ (Martens-Habbena et al. 2009). The study on N dynamics in plant-soil system in a 54 
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riparian zone showed that there were significant negative correlations between abundance of nirK, nirS, 55 

nosZ genes and soil electrical conductivity (EC), while abundance of nifH was negatively associated 56 

with soil bulk density as opposed to abundance of archaeal amoA; it was also found that increasing soil 57 

water content led to an increase in nifH abundance but decrease in archaeal amoA abundance (de Sosa 58 

et al. 2018). Increasing the availability of NO3
− and labile C enhances denitrification (Weier et al. 59 

1993), high NO3
- concentrations inhibits N2O reductase activity (Qin et al. 2017), and low C/N ratio or 60 

high total N favours bacteria harbouring amoA genes (Nugroho et al. 2006; Dong and Reddy 2012). 61 

Tillage system induced physicochemical stratification impacts abundance of N cycling microbial 62 

communities and net N2O emissions within the soil profile according to N or C species added during 63 

fertilization with an inorganic fertilizer (calcium ammonium nitrate) or two organic fertilizers (liquid 64 

dairy slurry and dairy manure compost) (Krauss et al. 2017). 65 

Apart from these edaphic factors, irrigation methods and frequency may also influence the 66 

abundance and activity of microorganisms and their associated N transformation genes directly through 67 

changes in water and oxygen distributions, or indirectly through changes in diffusion and transport of 68 

substrates, pH and temperature etc. (Zhou et al. 2011; Wertz et al. 2013; Yin et al. 2015; Hou et al. 69 

2016; Owens et al. 2016; Han et al. 2017; Yang et al. 2018). The effects of irrigation amount on N-70 

related microbial activity and gene abundance are not established (Berger et al. 2013; Zhang et al. 71 

2016; Azziz et al. 2017), suggesting that the effects of irrigation on microbial community and N-72 

transformation genes are poorly understood. 73 

In arid and semi-arid regions, alternate-furrow irrigation (AFI) has been developed as an efficient 74 

water-saving irrigation method (Graterol et al. 1993; Kang et al. 2000a, 2000b). AFI irrigates each of 75 

two adjacent furrows alternately, and by keeping roots in the dry furrow for a prolonged period, 76 
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stimulates synthesis of abscisic acid (ABA) in attempts to reduce leaf stomatal conductance and 77 

ultimately plant transpiration. Compared to conventional furrow irrigation (CFI), AFI has the potential 78 

to reduce N2O emissions (Han et al. 2014), but its effect upon the abundance of N cycle genes in soil is 79 

poorly understood.  80 

Given the increase in use of AFI and wastewater in irrigation, we investigated the response of 81 

abundance of N-cycle genes and main N transformation processes in a pepper field irrigated with 82 

different amounts of swine wastewater under AFI. For each treatment, there was a groundwater irrigation 83 

control. We hypothesized that (1) wetting-drying cycles associated with AFI exert different effects on N 84 

transformation processes and the abundance of associated N-cycle genes in soil from CFI, and (2) the 85 

irrigation amounts with AFI change N transformation processes and the abundance of associated N-86 

cycle genes in soil synchronously. In all treatments and controls, we measured the main N transformation 87 

activities, distribution of N cycling genes and the composition of bacterial and fungal communities, and 88 

analyzed their association with edaphic factors. This will fill the knowledge gap of how AFI with 89 

wastewater influences N transformation activities and the related genes, and provide a reference of N 90 

management for sustainable use of livestock wastewater in agricultural production in arid and semiarid 91 

regions. 92 

Materials and Methods  93 

Soil and water  94 

The field experiment was conducted at the Agriculture Water and Soil Environmental Field Science 95 

Research Station of Chinese Academy of Agricultural Science at Xinxiang (Henan Province, 96 

35°15′44″N, 113°55′6″E). All experimental plots were covered by a vinyl shield 5 m above the ground 97 

surface to intercept rainwater, and the soil is sandy loam classified as fluvic Cambisol. The main 98 
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properties of the top 20 cm of soil were: pH 8.5, electrical conductivity 87.7 mS m-1, OM 9.0 g kg-1, 99 

total N 0.7 g kg-1, NO3
--N 136 mg kg-1, exchangeable NH4

+-N 7.9 mg kg-1, available K 252 mg kg-100 

1, available P 33.2 mg kg-1, total Cu 25.7 mg kg-1, total Zn 72.4 mg kg-1, total Pb 22.0 mg kg-1, 101 

total Cd 0.60 mg kg-1, available Cu 1.5 mg kg-1, available Zn 1.8 mg kg-1, available Pb 1.9 mg kg-102 

1, and available Cd 0.20 mg kg-1.  103 

The groundwater used in the experiment was pumped from a shallow aquifer at the experimental 104 

site, and wastewater was taken from a fermentation tank at a near-by hoggery producing approximately 105 

40,000 tons of wastewater annually. The properties of the waters are shown in Table 1.  106 

The plant and the field experiment  107 

The plant used in the experiment was pepper (Capsicum annuum L., Fulong F1). The seedling medium 108 

was the mixture of perlite and vermiculite at 1:1 ratio (weight), which was packed into seedling-109 

nursing disk consisting of 4 × 8 cavities, each being 5.8 cm high with its internal diameter changing 110 

from 5.3 cm on the top to 2.7 cm on the bottom. All pepper seeds were sown on April 14, 2017 and 111 

were subsequently supplied with Hoagland and Amon nutrient solutions based on the protocol provided 112 

in Li et al. (2010). The field soil was initially amended with a base fertilizer consisting of 180 kg urea 113 

ha-1 (84 kg N ha-1), 450 kg Ca(H2PO4)2·H2O ha-1, and 240 kg KCl ha-1. One month after seed 114 

germination, healthy seedlings were transplanted to the field. Seedlings were transplanted into rows in 115 

the field spaced 50 cm apart and planted at 50 cm intervals along each row. Each plot was 2 × 8 m, 116 

formed of three rows separated by four 30 cm-deep furrows. There was a 50 cm gap between adjacent 117 

plots to avoid water flowing from one plot into another. Prior to wastewater irrigation, each plot was 118 

irrigated with groundwater at 250 m3 ha-1 via CFI every 7 days until 19 June to establish and maintain 119 

healthy plant growth. 120 
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The soil was top-dressed with 90 kg of urea ha-1 (42 kg N ha-1) on July 21, August 12 and 121 

September 3. The total urea applied during the experiment was 450 kg ha-1 (210 kg N ha-1). In 122 

wastewater treatments, we diluted the wastewater with groundwater at 1:1 volumetric ratio prior to 123 

irrigation. There were eight treatments: irrigating with groundwater at 250 m3 ha-1 approximately every 124 

10 days via CFI (GC100), AFI with groundwater using 50% of the water used in GC100 (GA50), AFI 125 

with groundwater using 65% of the water used in GC100 (GA65), AFI with groundwater using 80% of 126 

the water used in GC100 (GA80), CFI with wastewater using the same amount of the water in GC100 127 

(WC100), AFI with wastewater using 50% of the water used in WC100 (WA50), AFI with wastewater 128 

using 65% of the water used inWC100 (WA65), AFI with wastewater using 80% of the water used in 129 

WC100 (WA80). 130 

Each treatment has three replicate plots arranged in a completely randomized design. Plots were 131 

irrigated on June 19, June 28, July 9, July 21, August 1 and August 12, at approximately the same time. 132 

Following Kang et al. (2000b), both adjacent furrows were watered under CFI, but only one furrow 133 

was watered under AFI with the same water amount of each CFI furrow: the total water amount of AFI 134 

was 50% of CFI. Here, we refer to the water amount in CFI as 100%, thus 50% in AFI. These two 135 

treatments with the only difference of irrigated furrows but not the difference in irrigation amount in 136 

each furrow were used to examine the effects of AFI. AFI under 50%, 65% and 80% rates were used to 137 

study the impact of irrigation amount on N transformation activities as well as distribution and 138 

abundance of N cycling genes.  139 

Prior to harvest on 9 October, all plots were irrigated with groundwater at 250 m3 ha-1 via CFI 140 

every 7 days starting from 23 August. Details of the irrigation schedule are listed in Table S1. At 141 

harvest, roots were sampled to a depth of 0 - 20 cm. Soil shaken off the roots was termed bulk soil (BS) 142 
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and soil adhering to roots was termed rhizosphere (RS). In each plot, soil collected from 5 randomly 143 

selected plant roots was mixed. Sub-samples were stored at -80 ºC for extraction of nucleic acids and 144 

determination of nitrification and nitrogen fixation rates (see description in the Supplementary 145 

Information), and the rest for measurement of soil chemical properties and denitrification rate (see 146 

description in the Supplementary Information). Thawing a frozen-stored sample might render the 147 

measured soil microbial activities differing from that in the field when the sample was taken, but the 148 

reported research in the literature about this is not conclusive, with some showing a little change while 149 

others finding no observable alternation at all (Stenberg et al. 1998). Nonetheless, all samples in our 150 

work were stored and measured following the same protocol and the methodological effects were thus 151 

consistent, as pointed out by Rubin et al. (2013) that methodological consistency is key to ensure 152 

accurate characterization and comparison of soil microbial community. As such, the results comparison 153 

between different treatments is rational. The total N of plant roots, stems, leaves and fruits were 154 

analyzed on a flow analyzer (AutoAnalyzer 3, Bran Luebbe, Germany) after digestion with 155 

concentrated sulfuric acid. N use efficiency of plants was calculated by Eq. (1) (Yang et al. 2017). 156 

N use efficiency (%) = plant N/added N × 100                       Eq. (1) 157 

where “plant N” was the sum of N form all tissues in each plot, and “added N” was the sum of N from 158 

fertilizer and irrigated water in each plot. 159 

DNA extraction 160 

A FastDNA SPIN Kit for Soil (MP Biomedicals, CA) was used to extract total DNA from about 0.5 g 161 

of each soil sample according to the instruction manual, and three replications were conducted for 162 

each sample (Vestergaard et al. 2017). We used spectrophotometric analysis (NanoDrop ND-2000c, 163 

Thermo Fisher Scientific, Waltham, MA) and 1.5% agarose gel electrophoresis to determine the 164 
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concentration and quality of the extracted DNA.  165 

MiSeq pyrosequencing 166 

PCR amplification of the bacterial 16S rRNA gene V3–V4 variable region was performed using the 167 

forward primer 5’-ACTCCTACGGGAGGCAGCAG-3’ (338F) and the reverse primer 5’-168 

GGACTACHVGGGTWTCTAAT-3’ (806R) (Xu et al. 2016). The primers ITS3 (5'-169 

GCATCGATGAAGAACGCAGC-3') (Leaw et al. 2006) and ITS4 (5'-TCCTCCGCTTATTGATATGC-170 

3') (Siddique and Unterseher 2016) were used to amplify the fungal ITS regions. The reaction mixture 171 

and the thermal profile of the PCR amplifications were based on Huang et al. (2016). After the PCR 172 

products were purified, they were adjusted to equal quantities, and paired-end 2×300 base pair (bp) 173 

sequencing was performed on an Illumina MiSeq sequencing platform by Shanghai Personal 174 

Biotechnology Co., Ltd. (Shanghai, China). 175 

Sequences were examined for quality using the default arguments in the split_libraries python 176 

script apart from increasing primer mismatch from 0 to 2, and were then assigned to each sample based 177 

on unique 10-bp barcodes. After removing barcode and primer sequences, the remaining sequences 178 

were clustered into operational taxonomic units (OTUs) at a level of 97% sequence similarity (Schöler 179 

et al. 2017) and annotated using BLAST searches against the Greengenes (Release 13.8, 180 

http://greengenes.secondgenome.com/, bacteria) and Unite (Release 5.0, http://unite.ut.ee/index.php, 181 

fungi) databases using the Quantitative Insights into Microbial Ecology (QIIME) software package 182 

version 1.8.0 (Caporaso et al. 2010).   183 

Relative quantification of genes 184 

The N-cycle related genes we investigated were involved in N2 fixation (nifH), ammonia oxidation 185 

(Archaeal amoA and Bacterial amoA), nitrite reduction (nirK and nirS) and nitrous oxide reduction 186 
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(nosZ). Genes were amplified and quantified using the quantitative polymerase chain reaction (qPCR) 187 

and the SYBR Green approach at Shanghai Personal Biotechnology Co., Ltd (Shanghai, China). All 188 

qPCR reactions were repeated three times. The primer description can be found in Table S2. All qPCR 189 

reactions were performed using the CFX-96 touch real-time PCR detection system (Bio-Rad, USA). 190 

Cycle conditions were 95 °C for 5 minutes, followed by 45 cycles of 95 °C for 15 s, 60 °C for 30 s and 191 

72 °C for 30 s. A threshold cycle (Ct) of 36 was used as the detection limit (Malvick and Impullitti 192 

2007). Generally, the technical triplicates were tested during separate testing occasions (plate and day 193 

of testing) as a method of quality control. The 2-ΔΔCt method of comparison (Livak and Schmittgen 194 

2001; Zhu et al. 2013) was used to compare relative gene abundance between samples: 195 

ΔCt = Ct, (N cycling gene) – Ct, (16S)  196 

ΔΔCt = ΔCt,(Target) – ΔCt,(Ref)  197 

where Ct is the threshold cycle, N cycling gene is one of the N cycling gene assays, 16S is the 16S 198 

rRNA gene assay, the subscripts Target and Ref refer to experimental sample and reference sample 199 

respectively. To identify changes in N-cycle associated gene abundance between soil samples taken 200 

from all treatments, the soil before cultivation and fertilization was used as the reference sample in all 201 

calculations.  202 

Statistical analysis 203 

We compared the gene abundance and environmental parameters statistically using SPSS 16.0 for 204 

Windows (SPSS Inc., Chicago, IL, USA). One-factor analysis of variance (ANOVA) was used to test 205 

differences between treatments, and Duncan’s multiple range test was used to conduct post-hoc 206 

pairwise comparisons of treatment-means. A probability of p < 0.05 was deemed to be significant. Two-207 

factor ANOVA of gene abundance, nitrification rate, denitrification rate and N use efficiency was 208 
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conducted to test the effect of water source and irrigation amount. 209 

OTU data was analyzed using MicrobiomeAnalyst (Dhariwal et al. 2017), using a minimum mean 210 

abundance cut-off of 20 across all treatments. A low variance filter was also used to remove OTUs 211 

associated with the lowest 10% of coefficients of variance, determined using the inter-quantile range. 212 

Cumulative Sum Scaling (CSS) was used to for gene abundance data (Weiss et al. 2017). Principal 213 

coordinate analysis (PCoA) of soil bacterial and fungal assemblages, assessed at the OTU-level, was 214 

performed using weighted UniFrac distance (Lozupone et al. 2011). The significant OTU divergence 215 

between different soils was tested using permutation multivariate analysis of variance (PERMANOVA) 216 

based again on weighted UniFrac phylogenetic distance. Whenever detecting a significant divergence 217 

between communities, we tested it for homogeneity of multivariate dispersion between the groups 218 

using PERMDISP (Anderson and Walsh 2013). Where no significant difference in multivariate 219 

dispersion was detected, the significant difference in OTU assemblages was attributed to the imposed 220 

treatment. We used the DESeq2 algorithm (Love et al. 2014) to test for OTUs associated with 221 

significantly different abundance in response to the significant factors.  222 

The PCoA was used to assess differences between N cycling gene abundance based on the 223 

Euclidean distance in PAST 3.20, which, along with the two-factor PERMANOVA with 9,999 224 

permutations conducted in PAST, was used to evaluate the divergence of genes between different 225 

treatments. We employed redundancy analysis (RDA) to assess the association between gene 226 

abundance and environmental factors using CANOCO 5 (ter Braak 1988), where a significant 227 

treatment effect was identified. For the RDA model, statistical predictors of gene abundance were 228 

identified from the summarized effects of environmental variables. All environmental variables were 229 

transformed to z-scores prior to analysis, and statistical significance of the resulting RDA model was 230 
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assessed based upon 999 permutations.  231 

 232 

Results 233 

Change in soil chemical properties 234 

The changes in soil chemical properties influenced by irrigation are given in Table 2. Soil NO3
--N 235 

contents under AFI using wastewater were lower than CFI with the significant difference at 80% rate in 236 

bulk soils. For exchangeable NH4
+-N in soil, AFI at 50% and 65% rates using groundwater resulted in 237 

higher content than CFI in rhizosphere and bulk soils, and AFI at 65% and 80% rates using wastewater 238 

in both soil compartments and at 50% rate using wastewater in bulk soils, though not significantly. Soil 239 

pH under groundwater irrigation was higher than under wastewater irrigation, as opposed to the content 240 

of OM, TN and NO3
--N as well as C/N ratio. In all treatments, EC and NO3

--N in bulk soil were higher 241 

than in rhizosphere, in contrast to OM and exchangeable NH4
+-N. There were no significant differences 242 

in soil chemical properties between the three AFI treatments.  243 

N transformation activities 244 

The input and uptake of N and plant N use efficiency in different treatments are listed in Table S3. 245 

Total N input was higher in wastewater treatments than groundwater treatments, but N use 246 

efficiency was significantly lower in wastewater treatments. Water source, but not irrigation 247 

amount, had a significant influence upon N use efficiency (Table S4). There were no significant 248 

differences in N use efficiency between the wastewater irrigation rates. AFI significantly increased 249 

N use efficiency in groundwater treatments compared to CFI, and the efficiency was increased at 250 

higher rates of AFI, though not significantly. There were no significant differences in N-uptake by 251 

plants under three rates of AFI regardless of water sources, but N-uptake by plants in CFI was 252 
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significantly lower than 80% rate of AFI under groundwater irrigation, simultaneously N-uptake 253 

by plants in CFI was significantly higher than 50% rate of AFI under wastewater irrigation. 254 

The NO3
--N content in soil increased from 0h to 16h after adding the ammonium solution and 255 

then decreased (data not shown), hence we employed the difference of NO3
--N content between 0h 256 

and 16h to calculate nitrification rate. Nitrification rates were significantly influenced by water 257 

source, but not by irrigation rate in rhizosphere (Table S4). In bulk soil, the effects of water source 258 

and irrigation amount on nitrification rate were both not significant (Table S4). There were no 259 

significant differences in nitrification activity in groundwater-irrigated bulk soils, the nitrification 260 

activity in 80% rate of AFI was significantly higher than 50% rate in wastewater-irrigated bulk 261 

soils (Fig. 1). 262 

The NO3
--N content in soil decreased over 4 days of anaerobic culture, and then stayed stable 263 

(data not shown), hence we employed the difference of NO3
--N content between 0d and 4d to 264 

calculate denitrification rates. There were no significant differences of denitrification rates 265 

between soils irrigated using different water sources or rates (Table S4). In wastewater-irrigated 266 

rhizospheres, the denitrification activity in CFI was higher than that under AFI treatments and 267 

significantly higher than that at 65% AFI rate. Nitrogen fixation was not detected in any of the 268 

soils. 269 

Fig. 1 The nitrification rate and denitrification rate of soil. RS refers to rhizosphere, BS refers to 270 

bulk soil, G refers to groundwater, W refers to livestock wastewater, C refers to conventional furrow 271 

irrigation, A refers to alternate-furrow irrigation. 100, 50, 65 and 80 refer to 100%, 50%, 65% and 80% 272 

of full irrigation amount per plot, respectively. The data are expressed as the mean ± standard 273 

deviation. Different lower-case letters above the columns represent significant difference between 274 
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treatments at p < 0.05 275 

Composition of bacterial and fungal community 276 

Rarefaction curves indicated that the sequencing depth was sufficient to cover the microbial diversity 277 

(Fig. S1). We did not detect significant heterogeneity in multivariate dispersion of the OTU 278 

assemblages and so used PERMANOVA to test for differences in assemblages between rhizosphere 279 

and bulk soil under the different irrigation regimes. Both soil compartment (rhizosphere vs. bulk soil, 280 

R2 = 0.107, p = 0.002) and irrigation water source (groundwater vs. wastewater, R2 = 0.222, p < 0.001) 281 

had significant effects on bacterial OTU assemblage (Fig. 2a). Variability of bacterial OTUs in 282 

wastewater-irrigated soil were reduced compared to groundwater-irrigated soil, yet different irrigation 283 

amounts did not give rise to significant difference in bacterial OTU assemblages (R2 = 0.069, p = 284 

0.318).  285 

For fungi, significant differences in OTU assemblage were observed only between rhizosphere and 286 

bulk soils (R2 = 0.181, p < 0.001). Neither water source (R2 = 0.384, p = 0.092) nor irrigation rate (R2 = 287 

0.083, p = 0.166) induced significant changes in OTU assemblages.  288 

Fig. 2 OTU-based unconstrained Principal Coordinate Analysis of soil bacterial (a) and fungal (b) 289 

communities using weighted UniFrac distance metrics. RS (circle) refers to rhizosphere, BS (square) 290 

refers to bulk soil, G (blue color) refers to groundwater, W (red color) refers to livestock wastewater, C 291 

refers to conventional furrow irrigation, A refers to alternate-furrow irrigation. 50, 65, 80 and 100 refer 292 

to 50%, 65%, 80% and 100% of full irrigation amount per plot respectively and the colors are changed 293 

from light to dark  294 

Significant difference in bacterial and fungal OTUs 295 

We used abundance analysis to identify OTUs whose abundance was significantly increased in 296 

response to irrigation water quality or soil compartment between irrigation treatments. For bacteria, we 297 
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identified a greater number of OTUs with significantly increased abundance in groundwater-irrigated 298 

soil compared to wastewater-irrigated soil (Fig. 3). The number of OTUs whose abundance was 299 

significantly higher in the rhizosphere was similar to that in the bulk soil. However, the Phyla and 300 

Class of bacteria with significantly different abundance were distinctly different between samples 301 

(Tables S5, S6, S7 and S8). For example, OTUs which were significantly more abundant in 302 

groundwater irrigated soil were dominated by OTUs classified as either Acidobacteria (23.5% of total 303 

OTUs) or Gemmatimonadetes (22.6%). In contrast, those significantly more abundant in wastewater-304 

irrigated soil were predominantly Bacteroidetes (22.2%), α-Proteobacteria (22.2%), γ-Proteobacteria 305 

(20.2%) and Actinobacteria (14.1%). Acidobacteria, which were the most numerous OTUs significantly 306 

more abundant in groundwater, constituted only 2% of OTUs with significantly greater abundance in 307 

wastewater-irrigated soils and Gemmatimonadetes constituted only 1%. Conversely, Bacteroidetes, and 308 

α- and γ-Proteobacteria which were numerous in OTUs significantly more abundant in wastewater-309 

irrigated soils constituted only 7.0, 7.0, and 8.7% respectively in groundwater-irrigated soils.   310 

Fig. 3 Number of bacterial (a) and fungal (b) OTUs in the soil with significantly different 311 

abundances arising from different water sources or soil compartments. G refers to groundwater-312 

irrigated soil, W refers to wastewater-irrigated soil. RS refers to rhizosphere, BS refers to bulk soil 313 

 314 

Differences were also observed in OTUs with significantly different abundance in bulk and 315 

rhizosphere soil compartments. In this case, rhizosphere soil was dominated by α-Proteobacteria 316 

(30.9% of OTUs with significantly greater abundance in rhizosphere soil) but this class represented 317 

only 10.9% of OTUs with significantly greater abundance in bulk soil. In bulk soil, 15.6% of OTUs 318 

having significantly greater abundance were classified as Acidobacteria compared to only 1.5% in 319 
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rhizosphere soils and 9.4% were classified as Gemmatimonadetes in bulk soil compared to 1.5% in 320 

rhizosphere soil.  321 

For fungi, the number of OTUs that showed significant increases in their abundance in groundwater-322 

irrigated soil was higher than that in wastewater-irrigated soil. The number of OTUs associated with a 323 

significant increase in abundance in the rhizosphere and bulk soil was the same, similar to that found for 324 

the bacterial OTUs, but the numbers for fungi was less. Phyla responding to the different irrigation waters 325 

or soil compartments were also the same: Ascomycota, Basidiomycota, Chytridiomycota and 326 

Zygomycota (Tables S9, S10, S11 and S12) indicating that the fungi probably originated from soil rather 327 

than from the irrigation water, and they were thus less sensitive to development of rhizospheres than 328 

bacteria. For OTUs showing significantly increased abundance in the rhizosphere, the number of OTUs 329 

showing significant increase under wastewater irrigation (3 OTUs) was higher than that under 330 

groundwater irrigation (0 OTU), while the opposite was true in the bulk soil. 331 

Relative abundance of N-cycle related genes 332 

Water quality effects in rhizosphere and bulk soils 333 

The abundance of genes in the rhizosphere and bulk soil was significantly modulated by both water 334 

source and irrigation rate (Fig. 4, Tables 3 and 4). In considering N cycle-related gene assemblages in 335 

the rhizosphere and bulk soils under different irrigation waters, unconstrained ordination based on the 336 

relative abundance of genes indicated separation between groundwater-irrigated and wastewater-337 

irrigated soils (Fig. 5). In rhizosphere, groundwater-irrigation and wastewater-irrigation were separated 338 

on the first PCoA axis (associated with 84% of the variation in gene abundance). Assemblages in soils 339 

irrigated with wastewater appeared to differ considerably from the groundwater irrigation and vary more. 340 
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This difference was less significant in bulk soil, where wastewater- and groundwater-irrigated soils were 341 

separated in the second PCoA axis (accounting for only 5% of the variability). Two-factor PERMANOVA 342 

(Table 3) indicated a significant divergence in abundance of N cycle-related genes, dependent upon 343 

irrigation water source. 344 

Fig. 4 The abundance of N-cycle related genes in soil relative to the soil before fertilization and 345 

cultivation, and the gene abundance ratio of nosZ/nirK and nosZ/nirS. RS refers to rhizosphere, BS 346 

refers to bulk soil, G refers to groundwater, W refers to livestock wastewater, C refers to conventional 347 

furrow irrigation, A refers to alternate-furrow irrigation. 100, 50, 65 and 80 refer to 100%, 50%, 65% 348 

and 80% of full irrigation amount per plot, respectively. The data are expressed as the mean ± standard 349 

deviation. Different lower-case letters above the columns represent significant difference between 350 

treatments at p < 0.05 351 

Fig. 5 Unconstrained Principal Coordinate Analysis of N-cycle related genes based on relative 352 

abundance using Euclidean distance metrics in rhizosphere (a) and bulk soil (b). G refers to 353 

groundwater, W refers to livestock wastewater, C refers to conventional furrow irrigation, A refers to 354 

alternate-furrow irrigation. 50, 65, 80 and 100 refer to 50%, 65%, 80% and 100% of full irrigation 355 

amount per plot, respectively 356 

Fig. 6 Redundancy Analysis presenting the association of N-cycle related gene abundance with 357 

environmental factors in rhizosphere (a) and bulk soil (b). G refers to groundwater, W refers to 358 

livestock wastewater. C refers to conventional furrow irrigation, A refers to alternate-furrow irrigation. 359 

50, 65, 80 and 100 refer to 50%, 65%, 80% and 100% of full irrigation amount per plot, respectively 360 

 361 

Similar patterns were repeated in the constrained ordination using RDA (Fig. 6), which identified 362 

strong and significant associations between OM and nifH, nitrate and bacterial amoA, nitrification rate 363 

and nirS, as well as between pH and archaeal amoA in both rhizosphere and bulk soils. In the 364 

rhizosphere, the genes formed three groups: the first comprised of bacterial amoA, nirK and nosZ, 365 

showing an increase in abundance with increased nitrate, denitrification rate and at lower pH in 366 
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wastewater-irrigated soils; the second, comprised of nirS and nifH showed a strong association with 367 

increased OM and nitrification rate resulting from wastewater irrigation; and the third group, 368 

comprised of archaeal amoA, showed a strong association with increased pH resulting from 369 

groundwater irrigation. These associations were associated with the principal RDA axis, which 370 

effectively separated wastewater- and groundwater-irrigated soils, and accounted for 60.5% of the 371 

variability described by the model. Soil pH (accounting for 22.5% of variability, pseudo-F = 6.4; p = 372 

0.006), OM (21.9% of variability, pseudo-F = 6.2; p = 0.014), nitrate (20.0% of variability, pseudo-F = 373 

5.5; p = 0.011) and denitrification rate (18.4% of variability, pseudo-F = 5.0; p = 0.04) were all 374 

associated with this separation by water source. No other environmental parameters were identified to 375 

account for the significant amount of variability, and only the Archeael amoA gene was associated with 376 

increases in pH - a salient characteristic of groundwater-irrigated soil. 377 

Such strong associations between environmental factors and gene abundance were not evident in 378 

bulk soils, where groundwater and wastewater treatments were separated on the second axis, and 379 

accounted for only 3.9% of the variability. Responses of the genes to irrigation were divergent in the 380 

bulk soil and there was no evidence of the gene groupings. On the second axis, the abundance of the 381 

nirS gene was associated with C/N ratio and nitrification rate, while the abundance of nifH gene was 382 

associated with OM, but neither environmental parameter accounted for a significant amount of 383 

variability. An increase in nitrate concentration and reduction in pH did account for significant amounts 384 

of variability (nitrate - 39.4% of variability, pseudo-F = 14.3; p = 0.002; pH - 23.7% of variability, 385 

pseudo-F = 6.8; p = 0.012) and were associated with an increase in bacterial amoA gene abundance and 386 

a decrease in Archaeal amoA gene abundance; the abundance of nosZ and nirK gene was associated 387 

with increases in EC (20.3% of variability, pseudo-F = 5.6; p = 0.015) and TN (16.3% of variability, 388 
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pseudo-F = 4.3; p = 0.046), respectively. Nitrate and total N both increased under wastewater irrigation 389 

but appeared to be influenced differently by irrigation rate.  390 

The effects of alternate-furrow irrigation and the irrigation amounts 391 

Gene abundance in soil under wastewater irrigation was higher than that under groundwater irrigation 392 

except for archaeal amoA (Fig. 4). PERMANOVA (Table 3) indicated there were significant differences 393 

in gene abundance at different irrigation rates regardless of water resource which was more notable in 394 

the bulk soil than in the rhizosphereand evident on the second PCoA axis (Fig. 5). When irrigated with 395 

wastewater, relative to CFI, AFI at 50% rate significantly reduced the abundance of bacterial amoA, 396 

nifH and nirS in the rhizosphere, and nosZ, nosZ/nirK and nosZ/nirS in the bulk soil, but increased the 397 

abundance of bacterial amoA and nifH in the bulk soil and archaeal amoA in rhizosphere (Fig. 4).  398 

Irrigation rate had significant effects on the abundance of N cycle-related genes in the soils except 399 

for nifH in the rhizosphere and nirK and nirS in the bulk soil (Table 4). With reduced AFI rates, the 400 

abundance of nifH increased in both soil compartments. The abundance of nirK increased with the 401 

increase of water content in rhizosphere, but nirS did not respond in the same manner. In bulk soil, the 402 

nirK abundance also increased as irrigation rate increased from 50% to 65% and 80%, but the variance 403 

of abundance in soil with higher rate were much higher. The bacterial amoA abundance increased in 404 

both soil compartments when the irrigation amount was reduced from high (80% and 65%) to low 405 

(50%), and the Archaeal amoA abundance showed same trend with bacterial amoA in rhizosphere while 406 

opposite in bulk soil. For the nosZ gene - coding the nitrous-oxide reductase - the abundance at 50% 407 

rate was significantly higher than that at other two rates in rhizosphere. The nosZ/nirK and nosZ/nirS 408 

ratios has been widely used to estimate the likelihood of N2O emission (Pereira et al. 2015), and both 409 

ratios at 50% rate of AFI using wastewater were higher than those at 65% and 80% rates in both soil 410 
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compartments in which the differences of nosZ/nirS ratio in bulk soil were significant (Fig. 4), 411 

suggesting a reduced likelihood of N2O emission.  412 

Discussion 413 

Nitrification rate in rhizosphere soil and plant N use efficiency were significantly influenced by water 414 

source but not by irrigation amount (Table S4), while water source and irrigation rate did not have 415 

significant impact on denitrification rate in both soil compartments. Community assemblages in 416 

irrigated soils were affected by the imposed treatments, with bacteria being far more sensitive to 417 

treatments than fungi, which only differed between soil compartments. Bacterial community 418 

assemblages in comparison were significantly impacted by irrigation water quality and soil 419 

compartment, but not by irrigation rate. Regarding water quality, irrigation with wastewater has been 420 

found to increase nirK and nirS gene abundance compared to groundwater irrigation (Zhou et al. 2011). 421 

In several studies, microbial communities associated with rhizosphere were found to be distinct from 422 

those of the bulk soil. The separation of bacterial Phyla and Classes between groundwater- and 423 

wastewater-irrigated soil and the different soil compartments is consistent with general traits associated 424 

with the different Classes or Phyla. For example, Acidobacteria - which were more associated with 425 

groundwater irrigation and bulk soil - have been shown to be sensitive to nutrient concentrations and 426 

are more abundant under low nutrient conditions (Fierer et al. 2007). α-Proteobacteria have the 427 

opposite response, increasing in abundance under increased nutrient conditions (Gravuer and Eskelinen 428 

2017). This is consistent with their apparent association with wastewater-irrigation and the rhizosphere, 429 

where root exudates (Bais et al. 2006) and preference of plants for different nitrogen forms 430 

(Stempfhuber et al. 2017) influence microbial abundance. Irrigation rate did not have significant effects 431 

on bacterial community assemblages, but its impacts on gene abundance was striking. Soil 432 
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compartment, water quality and irrigation rate all had significant effects upon the relative abundance of 433 

the N-cycle related genes.  434 

Irrigation effects on N transformation activities in soil 435 

Pepper yield was comparable in all treatments (Table S3). Compared to CFI, AFI with groundwater 436 

significantly increased N use efficiency of plants (Table S3). Since AFI wetted only half of the root 437 

zone during each irrigation, the difference in water matric potential between soils in the dry and 438 

wetted furrows could drive water to flow from the wetted half to the dry half across the root zone, 439 

increasing water and N use efficiency (Kang et al. 2000b). However, under wastewater irrigation, 440 

the irrigation method and amount did not have significant effects on N use efficiency (Table S3), 441 

suggesting that the N input exceeded the uptake of plants, even at the lowest AFI rate. Though N 442 

use efficiency was not affected by irrigation amount significantly (Table S4), the highest efficiency 443 

was achieved at 80% AFI rate using groundwater (Table S3).  444 

The higher AFI rate (80%) also boosted nitrification activity in both soil compartments 445 

regardless of water source (Fig. 1), indicating a reduction in ammonia volatilization losses and an 446 

increase in nitrate for denitrification. Denitrification activity did not increase N losses because the 447 

denitrification rates under 80% AFI treatments were not increased compared to that under other two 448 

AFI rates (Fig. 1). As a result of the high plant N uptake under 80% AFI rate as discussed above, 449 

NO3
--N was not significantly accumulated in the soils (Table 2). Total N content in 80% rate of AFI 450 

with wastewater was increased compared to those in other treatments in both soil compartments, 451 

and significantly higher than that in CFI and 65% AFI rate in rhizosphere (Table 2), suggesting that 452 

soil fertility may have been improved. 453 

The presence of N cycle genes in the soils does not mean the genes expression. Neither the 454 
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abundance of bacterial amoA, archaeal amoA and nitrification rate nor the abundance of nirK, nirS, 455 

nosZ and denitrification rate responded similarly to the irrigation methods. Because we targeted soil 456 

DNA, the measured gene abundance were not equivalent to actual N transformation activity or 457 

mRNA concentration (Bowen et al. 2018). While nifH genes were detected in our soils, N fixation 458 

was not, consistent with previous studies (Kumar et al. 2017; Wang et al. 2018). The ability of 459 

bacteria to fix N is controlled not only by the abundance of organisms carrying nifH gene but also 460 

by other conditions. Diazotrophs carrying nifH gene favor low N habitat, but synthesizing the 461 

nitrogenase enzyme is an energetically expensive process and limited by iron, phosphorus or other 462 

nutrients (Larson et al. 2018).  463 

When the wastewater used in AFI increased from 50% to 80%, the abundance of bacterial 464 

amoA and archaeal amoA in rhizosphere decreased significantly (Fig. 4), but the nitrification rate 465 

did not decrease (Fig. 1), suggesting that the AFI might have alerted the bioavailability of water and 466 

other substrates, rendering microbial activity at low rate (50%) differing from that at high rate (80%). 467 

Though the differences in nitrification rate in wastewater-irrigated soils between the three AFI 468 

treatments were not significant, the nitrification rate at 80% treatment was higher than that at 50% 469 

and 65% treatments which made sense for agricultural production. At the 80% rate, the water supply 470 

rate exceeded soil infiltration rate, giving rise to surface runoff. As a result, there was no significant 471 

difference in soil water content between the irrigated and non-irrigated furrows, and the soil 472 

ammonium availability was high for nitrifiers. In contrast, at the 50% rate, the water supply rate 473 

was low and only wetted part of the root zone, hence the available ammonium was rather low. 474 

Consequently, the 80% AFI rate enhanced nitrification activity even when the abundance of 475 

associated genes was low.  476 
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The enhanced nitrification activity under 80% AFI rate increased the production of nitrate, but 477 

because of leaching, there was no associated increase in nitrate for denitrification. Thus, it was not 478 

surprising that we did not find increased NO3
--N content in both rhizosphere and bulk soil nuder 479 

80% rate compared to 50% and 65% rates (Table 2). Therefore, the denitrification rate under 80% 480 

AFI was comparable to that under other two AFI treatments (Fig. 1) even the abundance of nirK 481 

and nirS in the former was slightly higher than that in the latter (Fig. 4). Above results implicate 482 

that 80% AFI rate could increase N use efficiency due to a balance between water, oxygen and 483 

available N in soil. 484 

Association of enumerated genes with soil chemical parameters 485 

Quantification of relative gene abundance indicated that nirK and nosZ genes were most abundant in 486 

bulk soil, and nifH and nirS most abundant in the rhizosphere (Fig. 4). Bacterial and archaeal amoA 487 

were equally abundant in both soil compartments (Fig. 4). This suggests spatial separation of N cycle-488 

related processes, possibly driven by plant root activity. Gene amoA, a bioindicator of nitrification 489 

potential, was ubiquitous in the soils and the abundance of bacterial and archaeal amoA were associated 490 

with the increased NO3
--N and pH respectively (from RDA, Fig. 6). The abundance of bacterial and 491 

archaeal amoA always respond to the environmental change differently. For example, Han et al. (2017) 492 

reported the irrigation amount significantly influenced the copy number of Archaeal amoA, but not of 493 

bacterial amoA in soil. The influence was clearly correlated with the change of soil temperature, water-494 

filled pore space (Liu et al. 2017), pH, NO3
--N, exchangeable NH4

+-N and potential nitrification rates. 495 

Bacterial amoA populations are typically found in greater abundance in agricultural soils, particularly 496 

soils with higher fertilizer inputs and soil disturbance (Bruns et al. 1999; Di et al. 2010), while 497 

Archaeal amoA dominates ammonia oxidation at lower N concentrations (Martens-Habbena et al. 498 
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2009) and in undisturbed soils (Nicol et al. 2008). For our experiment, Archaeal amoA was more 499 

abundant in groundwater-irrigated soils with higher pH and lower concentration of NO3
--N (Fig. 6). 500 

However, it is clear from Fig. 6 that bacterial amoA specifically, responded to the greater nutrient 501 

addition arising from wastewater-irrigation in both soil compartments. This response to added nutrients 502 

is consistent with observations of increased bacterial amoA numbers in response to urea addition in soil 503 

(Reed et al. 2010; Shen et al. 2011).  504 

The abundance of nirK and nosZ genes associated with denitrification rate were also associated 505 

with increased NO3
--N concentration in rhizosphere (Fig. 6a), but were most abundant in bulk soil (Fig. 506 

4). The nirK and nirS genes both regulate transformation of nitrite to nitric oxide, but they are carried 507 

by phylogenetically distinct organisms with different niche preferences, and responded to C/N ratio 508 

differently (Fig. 6) (Bowen et al. 2018). Quantitative-PCR (Fig. 4) indicated that both abundance of 509 

nirK and nirS got the maximum value in the same treatment (WC100) in rhizosphere, but in bulk soil, 510 

the abundance difference of nirK between WA65, WA80 and other treatments were much greater than 511 

that of nirS, suggesting that the abundance of nirK was the more responsive functional gene associated 512 

with nitrite reduction, as confirmed by Fig. 6a that nirK abundance but not nirS abundance was closely 513 

associated with denitrification rate. Some studies also confirmed that the nirK-denitrifying bacterial 514 

community was more sensitive to environmental changes (Wertz et al. 2013; Yin et al. 2015). However, 515 

one wheat-growing field experiment in a sandy clay loam revealed that nirS- and nosZ-denitrifying 516 

bacterial communities were more sensitive to irrigation managements than nirK-denitrifying bacteria 517 

(Yang et al. 2018). Denitrification is an anaerobic process and nirK and nirS abundance in the 518 

rhizosphere increased with the increase in irrigation amount generally (Fig. 4). In the bulk soil, the 50% 519 

irrigation treatment was associated with the lowest nirK and nirS relative abundance, but nirK 520 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



25 
 

abundance in 100% CFI treatment was also low compared with 65% and 80% AFI treatments (Fig. 4), 521 

possibly because the high spatial heterogeneity of bulk soil due to heterogeneous water distribution. 522 

The identification of the N2O reductase gene (nosZ) by qPCR in soil indicated the potential for 523 

complete denitrification, thus it is not surprising that the abundance of nosZ gene was associated with 524 

denitrification rate in bulk soil. N2O is a product of both nitrification and denitrification, depending on 525 

soil moisture, oxygen and other environmental factors (Arp and Stein 2003; Ma et al. 2008), thereby an 526 

association between bacterial amoA and nosZ in rhizosphere in our study (Fig. 6) is reasonable. 527 

Nitrification was the main driver of nitrous oxide production in the 0- to 5-cm and 5- to 10-cm soil 528 

layers while denitrification was in the 10- to 15-cm and 15- to 20-cm soil horizons (Castellano-529 

Hinojosa et al. 2018). It has been reported that alternating wetting and drying during the rice season in 530 

a field rice-wheat rotation system in a paddy soil increased soil aeration status thus increased N2O 531 

emissions from simultaneous nitrification and denitrification during the rice season compared to 532 

traditional flooding irrigation (Hou et al. 2016). But flooding lowered soil organic N mineralization 533 

during the rice season, thus more mineral N in soil was available to N2O production and significantly 534 

reduced N2O emissions in the following wheat season compared to traditional irrigation. The N2O 535 

reduction to N2 is favoured at low redox potential (Eh), and the lower Eh was associated with increased 536 

soil moisture (Liu et al. 2012), which could contribute to the high abundance of nosZ in 100% CFI 537 

treatment in our study (Fig. 4). 538 

The nitrogenase iron protein gene nifH is an indicator of N2 fixation potential (Wang et al. 2018). 539 

The gene was correlated with increased organic matter content and reduced concentrations of 540 

exchangeable NH4
+-N in wastewater-irrigated rhizospheres (Fig. 6). This suggests a high biological 541 

demand for N in the rhizosphere, rich in organic matter, which could not be satisfied by the available 542 
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NH4
+-N and so N2 fixation may be used to supplement this high demand. The exchangeable NH4

+-N 543 

content in soil increased with AFI rate (Table 2), which may explain the change in nifH abundance with 544 

the AFI rate (Fig. 4). A second gene, nirS, was also associated with increased organic matter in 545 

wastewater receiving rhizosphere soil, and showed correlation with nifH (Fig. 6a). Since the NirS 546 

protein, encoded by nirS, has a secondary function as a hydroxylamine (NH2OH) reductase 547 

(https://www.kegg.jp/dbget-bin/www_bget?K05601+K15864+1.7.99.1+R00143) (Rees et al. 1997; 548 

Zumft 1997), which also produces ammonium, it is possible that nirS and nifH were coupled in 549 

response to the decrease in ammonium and that nirS was associated with nitrification rate (Fig. 6). 550 

Fungal contribution to N cycling 551 

Nitrogen metabolism in soil is typically associated overwhelmingly with bacterial or archaeal activity. 552 

However, fungi may also play a significant role in these processes which should receive more attention. 553 

The primers employed in our study are unlikely to amplify fungal genes, but the effects of fungi cannot 554 

be ignored. Many fungal species are known to produce N2O (Shoun et al. 1992; Wei et al. 2014). For 555 

example, studies have revealed that Fusarium oxysporum and Cylindrocarpon tonkinese use NirK to 556 

reduce nitrite to nitric oxide (Nakanishi et al. 2010), and fungal nirK has close homology to its bacterial 557 

ortholog (Kobayashi and Shoun 1995; Kim et al. 2010). A fungal nirK primer set nirKfF/nirKfR (Wei 558 

et al. 2015) detected nirK of Ascomycota, the dominant denitrifying fungal group in soil, and when 559 

amplified using these fungal primers, nirK clones showed homology to nirK of Hypocreales, 560 

Sordariales, and Eurotiales of Ascomycota. In this study, the Ascomycota phylum were also identified 561 

by amplicon sequencing as having significantly higher abundance in soil regardless of water source 562 

(Table S9-S12). Fungi are also indispensable in N mineralization and nitrification (Lang and Jagnow 563 

1986; Boer and Kowalchuk 2001; DeCrappeo et al. 2017), and contribute more to N2O production 564 
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under sub-anoxic and acidic conditions than bacteria (Chen et al. 2015). 565 

Conclusions 566 

Our research studied differences in N transformation activities and the associated N cycling genes 567 

distribution in soil following AFI and CFI, comparing groundwater and wastewater sources at different 568 

irrigation rates. Compared with CFI, AFI using groundwater increased plant N use efficiency. Water 569 

quality had a manifest effect on the propagation of genes abundances: the genes were more responsive 570 

to irrigation with wastewater than groundwater. AFI using wastewater reduced the gene abundances in 571 

rhizosphere except archaeal amoA relative to CFI. Under AFI with wastewater, increasing the irrigation 572 

amount could increase the abundance of nirK and nirS and decrease the abundance of bacterial and 573 

archaeal amoA, nifH and nosZ in rhizosphere, but did not decrease the nitrification rate and kept the 574 

denitrification rate unchanged in both rhizosphere and bulk soil, revealing that the irrigation amounts 575 

with AFI did not change N transformation processes and the abundance of associated N-cycle genes in 576 

soil synchronously. We conjectured from our findings that some biophysichemical processes unique to 577 

roots induced by water stress under different AFI rates might contribute to the desynchrony between 578 

the N transformation processes and the associated N-cycle genes in soil. 579 

We measured the properties of soil only at the harvest and could not get the dynamics of N 580 

transformation and gene abundance during the irrigation management. However, the effects of AFI 581 

with different irrigation rates on N transformation and gene abundance in soil were clear. Our results 582 

have important applications that appropriate irrigation rate in AFI have the potential to increase the N 583 

use efficiency. 584 
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Table 1  Properties of groundwater and wastewater used in this study 845 

 pH  EC CODa TDSb N P Ca Mg Fe Zn Mn 

 - mS cm-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 μg L-1 

Groundwater 8.07 1.985 104 2251 0.550  - 55.5 122 1.07 0.021 178 

Wastewater 8.40 2.588 330 1681 325.6 16.6 47.6 38.6 0.88 0.366 120 

            

 Pb Cd Cu Cr As Hg NO3
- PO4

3- SO4
2- K+ Na+ 

 μg L-1 μg L-1 μg L-1 μg L-1 μg L-1 μg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 

Groundwater 0.654 0.050 2.45 13.3 9.85 0.065 - - 844 2.95 514 

Wastewater 1.729 0.107 73.16 30.0 2.10 0.178 2.70 4.94  319 212.3 257 

Note: a, chemical oxygen demand. b, total dissolved solids; the content of N, P, Ca, Mg, Fe, Zn, Mn, 846 

Cu, Pb, Cd, Cr, As, Hg refers to the total content 847 
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Table 2  The chemical properties in soil of different treatments  850 

Treatment 

Soil 

compartment 

pH EC (mS m-1) 

Organic 

matter (g kg-

1) 

Total 

N (g 

kg-1) 

C/N 

NO3
--N (mg 

kg-1) 

Exchangeable 

NH4
+-N (mg 

kg-1) 

GC100 RS 8.83a 110.55cd 10.90ab 0.69b 6.32a 75.00de 7.00ab 

GA50 RS 8.77ab 103.45d 16.36ab 0.84ab 9.49a 68.50e 11.56a 

GA65 RS 8.65abcd 108.80cd 11.37ab 0.67b 6.59a 96.50cde 8.72ab 

GA80 RS 8.61abcde 119.75bcd 12.22ab 0.77ab 7.09a 124.50bcde 3.28b 

WC100 RS 8.50cde 123.65abcd 16.48ab 0.72b 9.56a 146.90abc 6.83ab 

WA50 RS 8.48de 125.00abcd 17.48a 0.83ab 10.14a 144.00abc 6.50ab 

WA65 RS 8.53bcde 122.05abcd 13.80ab 0.76b 8.01a 135.06abcd 8.61ab 

WA80 RS 8.48de 125.25abcd 16.15ab 1.08a 9.37a 142.00abc 10.72a 

GC100 BS 8.74abc 142.75abc 8.50b 0.66b 4.93a 114.00cde 5.72ab 

GA50 BS 8.65abcd 144.85abc 9.23b 0.73b 5.35a 134.00abcd 7.39ab 

GA65 BS 8.50cde 149.65ab 9.33ab 0.64b 5.41a 145.00abc 8.44ab 

GA80 BS 8.56bcde 130.45abcd 10.72ab 0.63b 6.22a 139.50abc 5.44ab 

WC100 BS 8.39e 159.00a 9.76ab 0.58b 5.66a 195.50a 5.39ab 

WA50 BS 8.45de 138.85abcd 13.59ab 0.78ab 7.88a 183.00ab 7.72ab 

WA65 BS 8.48de 134.05abcd 11.48ab 0.79ab 6.66a 155.00abc 7.83ab 

WA80 BS 8.49de 120.65bcd 12.42ab 0.87ab 7.20a 129.00bcde 8.39ab 

Note: G refers to groundwater, W refers to livestock wastewater, C refers to conventional furrow 851 

irrigation, A refers to alternate-furrow irrigation. 100, 50, 65 and 80 refer to 100%, 50%, 65% and 852 
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80% of full irrigation amount per plot, respectively. RS refers to rhizosphere, BS refers to bulk soil. 853 

Different lower case letters above the columns represent significant difference between treatments 854 

at p < 0.05 855 

  856 
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Table 3  Permutation multivariate analysis of variance of the relative abundance of all N 857 

cycling genes under different irrigation water sources, and different irrigation rates in the 858 

rhizosphere and bulk soil  859 

 860 

Soil compartment Source of variation 

 Genes 

 F P 

Rhizosphere Water source 
 

14.73 <0.001 

 Irrigation amount 
 

3.76 0.002 

 Interaction 
 

2.73 0.018 

     

Bulk soil Water source 
 

101.21 <0.001 

 Irrigation amount 
 

60.20 <0.001 

 Interaction 
 

57.77 <0.001 

 861 
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 862 

 863 

Table 4  Two-factor analysis of variance of gene abundance in rhizosphere (RS) and bulk soil (BS). Significant treatments effects are indicated in bold type  864 

 

Source of 

variation 

Archaeal amoA Bacterial amoA nifH nirK nirS nosZ nosZ/nirK nosZ/nirS 

F P F P F P F P F P F P F P F P 

RS Water source 478.93 <0.001 134.78 <0.001 9.25 0.008 17.04 0.001 3.49 0.080 215.54 <0.001 35.25 <0.001 61.20 <0.001 

 Irrigation amount 28.83 <0.001 44.47 <0.001 2.72 0.079 3.73 0.033 3.47 0.041 36.38 <0.001 32.21 <0.001 40.10 <0.001 

 Interaction 95.30 <0.001 36.09 <0.001 1.62 0.225 6.30 0.005 4.51 0.018 32.85 <0.001 36.90 <0.001 41.73 <0.001 

                  

BS Water source 192.45 <0.001 48.55 <0.001 66.03 <0.001 5.40 0.034 4.19 0.058 226.84 <0.001 6.30 0.023 22.53 <0.001 

 Irrigation amount 95.33 <0.001 7.82 0.002 21.09 <0.001 2.70 0.081 0.66 0.588 141.02 <0.001 6.56 0.004 6.69 0.004 

 Interaction 202.20 <0.001 12.65 <0.001 22.12 <0.001 2.43 0.103 2.73 0.078 134.78 <0.001 5.51 0.009 6.00 0.006 

 865 

 866 
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 868 
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