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Sulfur metabolism in Allium cepa is hardly affected by chloride
and sulfate salinity
Tahereh A. Aghajanzadeh a, Martin Reichb, Malcolm J. Hawkesford c

and Meike Burow d

aDepartment of Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran; bLaboratory of Plant
Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the
Netherlands; cPlant Sciences Department, Rothamsted Research, Harpenden, UK; dDynaMo Center, Department of
Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark

ABSTRACT
Salinity as a major agricultural problem can affect crop growth and
quality. Onion (Allium cepa L.) plant contains a wide variety of sulfur-
containing compounds which may be involved in plant protection
against salt stress. In the current study, a similar reduction in growth
caused by chloride and sulfate salts was observed when onion was
exposed to equimolar concentrations of Na+. Also, no difference was
observed for shoot/root ratio and dry matter content of roots and
shoots. Plants accumulated Na+ and the respective anions (chloride
and sulfate) which in turn caused changes in the content of other
nutrients. The content of potassium and calcium was decreased more
than the other elements by both sodium salts. Sulfate salinity resulted in
substantial increase in total sulfur and sulfate content but chloride
salinity affected neither the total sulfur nor sulfate content of the roots
and shoots, only in onion exposed to 200 mM chloride salt, those of
roots and shoots were reduced. Furthermore, the water-soluble non-
protein thiol content as well as the content of alliin remained rather
unaffected. In conclusion, either salts affected the uptake and distribu-
tion of sulfate in onion, but had no or only a minor effect on the plant
sulfur metabolism.
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Introduction

Crop production is restricted by various biotic and abiotic environmental stress factors. Amongst
abiotic stresses, salinity is considered one of the most limiting factors for productivity of agricultural
crops around the world (Subramanyam et al. 2010; Chaudhary and Sharma 2014). Salinity disrupts ion
homeostasis and the water potential of the plant, which may negatively affect metabolism and
growth (Greenway and Munns 1980; Mansour et al. 2000; Munns 2002; Tester and Davenport 2003).
Salinity contributes to reduced growth rate and changes in leaf color as well as resulting in smaller
leaves, shorter length, fewer leaves, reduction in length and mass of the roots (Mathur et al. 2006;
Zhao et al. 2007; Houimli et al. 2008; Gama et al. 2009; Rui et al. 2009; Memon et al. 2010). Salt stress
alters photosynthesis and causes reduction in chlorophyll content due to enzymatic chlorophyll
degradation (Sultana et al. 2000; Xu et al. 2000; Misra et al. 2006). Also, salinity is resulted in decrease
in the rate of nutrient uptake in plants (Murillo-Amador et al. 2007; Taffouo et al. 2009). Ionic effects
are manifested more generally in leaf and meristem damage (Shannon and Grieve 1999). However,
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the impact of salinity on plants depends on species, variety, growth stage, environmental factors and
the type of salt (Yadav et al. 2011). Na+ is considered to be the most toxic ion in salinity stress (Dubey
1997; Hasegawa et al. 2000). Despite the fact that salt stress is generally due to high NaCl levels, in
many areas plants may have to cope with Na2SO4 salinity (Chang et al. 1983; Keller et al. 1986; Garcia
and Hernandez 1996). Some plant species such as wheat (Datta et al. 1995), wild potato (Bilski et al.
1988), barley (Huang and Redmann 1995), creeping screwbean (Reginato et al. 2014), and cabbage
(Paek et al. 1988) were shown to be more susceptible to Na2SO4 than to NaCl salinity. In Brassica rapa
seedlings, sulfate salts (Na2SO4 and K2SO4) were more toxic than chloride salts (NaCl and KCl) (Reich
et al. 2016), and this toxicity is strongly ameliorated by calcium supplemented to the nutrient
solution (Reich et al. 2018). However there is still relatively little known about the mechanism of
sulfate toxicity in plants.

Sulfur is an essential macronutrient to plants with various functions in metabolism and growth
and which has a tight regulation of uptake and assimilation (Droux 2004; Saito 2004; Takahashi
et al. 2011; Aghajanzadeh et al. 2016). It is taken up as sulfate from the root medium and reduced
via several enzymatic steps to the amino acids cysteine and methionine that are important for
structure and function of proteins (Wirtz and Hell 2006). Subsequently, these amino acids are
present in a variety of other reduced sulfur compounds such as glutathione which is involved in
antioxidative defense and detoxification of heavy metals, as well as the phytosulfokines, some
hormones, flavonoids and sulfolipids (Mugford et al. 2009; Takahashi et al. 2011; Park et al. 2012). In
addition, cysteine functions as the reduced sulfur donor for the synthesis of glucosinolates as a
secondary sulfur compounds in Brassicaceae (Halkier and Gershenzon 2006; Kopriva et al. 2012)
which play a role as antioxidants during stress (Fatma et al. 2014), and are putative defense
compounds against herbivores (Danner et al. 2015).

Onion (Allium cepa L.) was among the earliest cultivated crops and has important functions in
food flavor and for phytopharmaceuticals (Griffiths et al. 2002; Mohamed and Aly 2008). Allium
species such as onion, garlic, leek and chives are considered as plants with a relatively high sulfur
requirement for growth, since they contain a variety of secondary sulfur compounds, namely, γ-
glutamyl peptides and alliins (S-alk(en)yl cysteine sulfoxides (Durenkamp and De Kok 2004). The
alliins and their breakdown products (e.g. allicin) are responsible for the odor and taste of Allium
species, but they may also be involved in plant defense against insects and pathogens also serve as
storage compounds for N and S (Lancaster and Boland 1990; Randle and Lancaster 2002).

In the current study, Allium cepa, was exposed to NaCl and Na2SO4 salinity in order to
investigate their toxicity and their impact on sulfur metabolism.

Material and methods

Plant material and growth conditions

Seeds of onion (Allium cepa, cv. Rode van Florence, Van der Wal, Hoogeveen, The Netherlands)
were germinated in vermiculite in a climate-controlled room. Day and night temperatures were 21
and 18°C (±1°C), respectively, relative humidity was 60–70%. The photoperiod was 14 h at a photon
fluence rate of 300 ± 20 µmol m−2 s−1 (400–700 nm) at plant height, supplied by Philips
GreenPower LED (deep red/white 120) production modules. Seedlings were transferred to aerated
25% Hoagland nutrient solution (pH 5.9) consisting of 1.25 mM Ca(NO3)2‧4H2O, 1.25 mM KNO3,
0.25 mM KH2PO4, 0.5 mM MgSO4‧7H2O, 11.6 µM H3BO3, 2.4 µM MnCl2‧4H2O, 0.24 µM ZnSO4‧7H2O,
0.08 µM CuSO4‧5H2O, 0.13 µM Na2MoO4‧2H2O and 22.5 µM Fe3+-EDTA in 30-liter containers (20 sets
of plants per container; six plants per set) for four days. Subsequently, NaCl and Na2SO4 salt were
added to the 25% Hoagland nutrition and their concentration were gradually increased during the
following three days to 100 and 200 mM NaCl, and 50 and 100 mM Na2SO4 and plants were
exposed to these salt concentrations for 7 more days (Figure 1). Plants were harvested and root
were separated from the shoot, weighed and for the measurement of the water-soluble non-
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protein thiol content, 54 freshly harvested plant materials (3 measurements with 18 plants in each)
was used. For analysis of dry matter content 54 plant tissues (3 measurements with 18 plants in
each), total sulfur and anions content 54 plant tissues were dried at 80°C for 24 h. For alliin, 54
plant materials (3 measurements with 18 plants in each) were frozen immediately in liquid N2 and
stored at −80°C.

Total sulfur content and anions content

The total sulfur content was analyzed using amodification of themethod as described by Jones (1995).
To measure total sulfur, 50–150 mg of the dried roots and shoots was saturated with a 50% Mg(NO3)2‧
6H2O (w/v) solution. Then the samples were dried then ashed. The residues were dissolved in 5 or 10ml
of 20% aqua regia (50 ml conc. HNO3 and 150 ml conc. HCl in 1 l demineralized water) and made up to
50 or 100 ml with demineralized water. One SulphaVer® 4 Reagent Powder Pillow (HACH, Permachem®
reagents, Loveland, USA) containing BaCl2 was added to 10 or 25 ml of extract, and the turbidity was
measured with a spectrophotometer (HACH DR/400V, Loveland, USA) at 450 nm.

For measurement of the anions content, pulverized dried plant material was incubated for 3–4 h
in demineralized water (10 mg ml−1) at 50°C (Tausz et al. 1996; Yang et al. 2006) and centrifuged at
30,000 × g for 15 min. Anions were separated by HPLC on an Agilent IonoSpher 5 A anion
exchange column (250 × 4.6 mm; Agilent Technologies, Amstelveen, The Netherlands) and sulfate
content was determined refractometrically according to Maas et al. (1986). The organic sulfur
content was calculated by subtracting the sulfate content from the total sulfur content determined
in the same tissue sample.
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Figure 1. The scheme of Allium cepa growth at different concentrations of sodium salts.
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Water-soluble non-protein thiol and alliin content

Water-soluble non-protein thiols were determined colorimetrically as described by De Kok et al. (1988).
Fresh plant material was homogenized in a solution containing 80 mM sulfosalicylic acid, 1 mM EDTA
and 0.15% (w/v) ascorbic acid at 0°C (10 ml g−1 fresh weight). Oxygen was removed from the solution
by aspirationwith N2. The extract was centrifuged at 30,000 × g for 15min (0°C). The total water-soluble
non-protein thiol content of the supernatant was determined colorimetrically at 413 nm after reaction
with 5, 5ʹ-dithiobis [2-nitrobenzoic acid].

For the analysis of the alliin content frozen and finely ground plant material (70 mg) was
extracted with 500 µl 85% (v/v) MeOH. After centrifugation at 13,000 × g and 4°C for 10 min.
Alliin was analyzed using UHPLC/TQ-MS on an AdvanceTM-UHPLC/EVOQTMElite-TQ-MS instrument
(Bruker) equipped with a C-18 reversed phase column (Kinetex 1.7 u XB-C18, 10 cm × 2.1 mm,
1.7 µm particle size, Phenomenex) by using a 0.05% formic acid in water (v/v) (solvent A), 0.05%
formic acid in acetonitrile (v/v) (solvent B) gradient at a flow rate of 0.4 ml min−1 at 40°C. Alliin
quantification was based on external standard curves for alliin (±; S-allyl-L-cysteine sulfoxide,
Sigma-Adrich, # 74264).

Mineral nutrient composition

For the determination of mineral nutrient contents, dried leaf tissues (0.2–0.5 g) were digested with
5 ml of nitric acid: perchloric acid (87:13, v/v; 70% concentration, trace analysis grade; Fisher
Scientific; Zhao et al. 1994). The minerals in the digested samples were analyzed by inductively
coupled plasma atomic emission spectrometry (ICP-AES) analysis. Blanks and standard reference
material (NIST 1567, a wheat flour) were used for quality control. The sample introduction system
consisted of a micromist glass concentric nebulizer, quartz Scott-type double-pass spray chamber
at 2°C, and nickel sample (1mm) and skimmer (0.4mm cones). Operating parameters were opti-
mized daily using a tune solution containing 1 μg l−1 cerium, lithium, tellurium, and yttrium. An
internal standard (500 μg l−1 germanium) was used to correct for signal drift.

Statistical analysis

Statistical analyses were performed using GraphPad Prism (GraphPad Software Inc., San Diego, CA, USA).
A one-way analysis of variance (ANOVA) was performed, and the treatment means were compared using
Tukey’s HSD all-pairwise comparisons at the p < 0.01 level as a post hoc test (see figures).

Results and discussion

Impact of chloride and sulfate salinity on growth

Exposure of onion to NaCl and Na2SO4 salinity resulted in a decreased plant biomass production.
The plant biomass was reduced by 40 and 60% at 100 and 200 mM NaCl and by 35 and 55% at 50
at 100 mM Na2SO4, respectively (Figure 2). The shoot/root ratio was not significantly affected by
NaCl and Na2SO4 salinity (Figure 2). Exposure of plants to 200 mM NaCl and 100 mM Na2SO4

resulted in 35 and 50% increase in the root dry matter content, respectively (Figure 2). The dry
matter content of the shoot was increased by 34 and 56% at 100 and 200 mM NaCl and 24 and
52% at 50 and 100 mM Na2SO4, respectively (Figure 2).

The toxicity of NaCl and Na2SO4 salinity in onion may be predominantly ascribed to Na+, since
equimolar concentrations of this cation had a similar impact on the root and shoot biomass
production and the dry matter content (Figure 2). In a comparable study on the impact of
chloride and sulfate salinity on Brassica species, in contrast, a higher toxicity of Na2SO4 over NaCl
was observed due to the higher toxicity of sulfate over chloride at equimolar sodium concentra-
tions (Reich et al. 2015, 2016). Sodium as the most prevalent ions in saline soils has an osmotic
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and an ionic component of toxicity for plants (Munns and Tester 2008). The osmotic component
leads to a water deficit in the plant (Levitt 1980), while sodium taken up in excess causes
physiological damage inside of the plant. Both sodium salts entered the onion plant in the
current study and caused reductions in growth which might be due to a disturbance of
membrane integrity and function, an interference with internal balance of solutes and the uptake
of other nutrients and a toxicity for several cellular processes (Greenway and Munns 1980;
Marschner 1995; Reginato et al. 2014). High cytosolic concentrations of Na+ may also disrupt
K+ homeostasis, which is often considered to be the primary cause of its toxicity under saline
conditions (Kronzucker and Britto 2011). The observed increase in dry matter content upon
chloride and sulfate salinity might be due to a decrease water content caused by the osmotic
effect of the salts. Another reason could be the accumulation of inorganic ions in the vacuoles
and organic solutes for osmotic adaptation (Reinoso et al. 2005; Xu et al. 2008). Overall, the
impact of the different salts on growth parameters were very similar which is in contrast to the
results of comparable experiments with Brassica rapa (Reich et al. 2016).

Impact of chloride and sulfate salinity on anions and mineral nutrient content

Chloride salinity resulted in a strongly enhanced chloride content of both root and shoot of onion.
Exposure of plants to 100 mM NaCl resulted in a 4- and 5-fold increase in the chloride content of
the root and shoot, respectively, however, the content was not further increased at 200 mM NaCl
(Figure 3). NaCl salinity affected neither the total sulfur nor sulfate content of the root and shoot at
100 mM, but the total sulfur content was decreased in shoots at 200 mM (Figures 3 and 4). A
voltage-dependent anion channels mediate transportation of Cl− and SO4

2- into root cells
(Frachisse et al. 1999). Decrease in total sulfur may is due to interactions between sulfate and

Figure 2. Impact of NaCl and Na2SO4 salinity on plant biomass, shoot/root ratio and dry matter content of root and shoot of
Allium cepa. Different letters indicate significant difference (p < 0.01; One-way ANOVA, Tukey’s HSD all-pairwise comparisons as
a post-hoc test).
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chloride which might be caused by the competition for anion adsorption sites in the root cell. In
addition, it has been proposed that the rate of diffusion of the monovalent Cl− ion is greater than
the diffusion rate of the bivalent SO4

2 – (Beringer et al. 1992).
In onion, the major proportion of sulfur is accumulated as sulfate in both shoot and roots

(Figures 3 and 4) which was similar to Brassica species where sulfate content accounted for up to
60 to 80% of the total sulfur (Aghajanzadeh et al. 2014; Westerman et al. 2001; Castro et al. 2003;
Yang et al. 2006) . Sulfate salinity resulted in an up to 3-fold and 1.5-fold increase in the total sulfur
content of the root and shoot, respectively (Figure 4). This increase can mostly be ascribed to an
accumulation of sulfate (Figure 3). Exposure of plants to 50 and 100 mM Na2SO4 resulted in a 2.5
and 3-fold increase in sulfate content of the root and 2 and 2.5-fold increase of its content of the
shoot, respectively (Figure 3). The sulfate content of the root was 5-fold higher than that of the
shoot, which may indicate that the translocation of sulfate from the root to the shoot of onion was
restricted upon sulfate salinity. This differed from observations in Brassica, where upon sulfate

Figure 3. Impact of NaCl and Na2SO4 salinity on chloride, sulfate and nitrate content of root and shoot of Allium cepa. Different
letters indicate significant difference (p < 0.01; One-way ANOVA, Tukey’s HSD all-pairwise comparisons as a post-hoc test).
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salinity the highest content of sulfate was observed in the shoot (Reich et al. 2015, 2016). The
chloride content of both root and shoot was not affected by sulfate salinity (Figure 3).

Here, both NaCl and Na2SO4 salinity resulted in a strongly reduced nitrate content of the shoot,
whereas that of the root remained unaffected. Upon exposure to NaCl salinity the nitrate content of
the shoot was reduced by 35 and 60% at 100 and 200 mM, respectively, whereas in Na2SO4 salinity its
content was reduced by 9 and 43% at 50 and 100 mM, respectively (Figure 3). Several investigations
showed a reduced nitrate uptake of plants upon salinity stress (Rao and Gnaham 1990; Gouia et al.
1994). Sodium salinity resulted in a strongly enhanced sodium content of both root and shoot of onion
(Figure 4). In the root, exposure to 200 mM NaCl and 100 mM Na2SO4 led to a slightly higher increase
of sodium content (Figure 4). Exposure to both sodium salts strongly decreased potassium and calcium
content in shoot and roots (Figure 4). Magnesium was similarly decreased by NaCl and Na2SO4 in
shoot. Exposure to both sodium salts significantly decreased manganese content in roots (Figure 4).
Molybdenum content was decreased significantly in roots and shoot by sulfate salt. Phosphorus,
copper, iron and zinc contents remained unaffected by both salts in shoot and roots (Figure 4).

The contents of potassium and calcium were further decreased than the other elements in
shoot and roots by both sodium salts (Figure 4). Sodium at high concentrations can interfere with
potassium and calcium uptake and competitively inhibit their influx (Botella et al. 1997; Loupassaki
et al. 2002). Potassium as an abundant cation in plants is involved in generating turgor-pressure
which lead to cell expansion (Yang et al. 2014). Likewise, calcium is considered as an essential
nutrient for growth, development and acts as an important component of cell wall integrity and as
a major secondary-messenger molecule in plants (Abdul Kader and Lindberg 2010). The reduction
of tissue concentration of these ions by salt stress is therefore likely to be a main reason for
reduction in growth. Overall, the effects of the two different salts on nutrient contents where quite
similar. One explanation for the relatively high tolerance of onion to increased tissue sulfate
concentrations (compared to other species, such as Brassica rapa; Reich et al. 2016) could be a
higher capacity of the vacuoles for sulfate storage. Safely stored in the vacuole, sulfate cannot
unfold its toxic effects in the cytosol. The relatively large vacuoles of onion plants could therefore
be a reason for their comparably high tolerance to sulfate and salts in general.

Figure 4. Impact of NaCl and Na2SO4 salinity on mineral nutrient composition of root and shoot of Allium cepa. Different letters
indicate significant difference (p < 0.01; One-way ANOVA, Tukey’s HSD all-pairwise comparisons as a post-hoc test).
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Impact of chloride and sulfate salinity on water-soluble non-protein thiol content

The water-soluble non-protein thiol content (mainly glutathione) of root and shoot of onion was not
affected, neither byNaCl nor byNa2SO4 salinity (Figure 5). Even the enhanced sulfate levels in the root and
shoot upon sulfate salinity had no impact on the water-soluble non-protein thiol content (Figure 5).

Sulfur is essential for synthesis of the cysteine, methionine and various organic sulfur compounds,
viz. glutathione, sulfolipids and a variety of secondary sulfur compounds (alliins, glucosinolates)
(Leustek et al. 2000; Durenkamp and De Kok 2004; Kopriva 2006). Glutathione is considered as an
essential component of the cellular anti-oxidative defense system, which limits reactive oxygen
species upon exposure of plants to biotic and abiotic stresses (Noctor and Foyer 1998). It is often
presumed that enhancement of the glutathione level might have adaptive value in stress tolerance of
plants. However, it is evident that glutathione content of plants is often not affected or it may even
decrease upon stress exposure (Tausz et al. 2004). The fact that the thiol content was not effected in
onion, although the sulfate content was strongly increased suggests a tight control of sulfate
reduction. This strict regulation could be another explanation for the higher tolerance of onion to
an excess of sulfate compared to Brassica rapa (Reich et al. 2016), because the sulfur reduction
pathway can also lead to an accumulation of toxic compounds such as H2S (Rennenberg 1984).

Impact of chloride and sulfate salinity on alliin content

The alliin content in the shoot of onion was almost 4-fold higher than in root (Figure 6). It has been
observed that alliins are apparently predominantly synthesized in the shoot (Lancaster et al. 1986).
The alliin content of the root was only enhanced at 200 mM NaCl and 100 mM Na2SO4, and that of
shoot was only significantly increased at 100 mM Na2SO4 (Figure 6). An enhanced sulfate level in
the shoot upon exposure of onion plants to SO2 did also not result in an accumulation of
secondary sulfur compounds in onion (Durenkamp et al. 2005). Only if the regulation of the sulfate
reduction pathway (which is localized in the chloroplast) was bypassed in onion plants when
excessive reduced sulfur was supplied foliarly upon H2S fumigation, there was a substantial
accumulation of secondary sulfur compounds in the shoot (Durenkamp and De Kok 2002, 2003,
2004). H2S fumigation also resulted in a substantial increase in the content of water-soluble non-
protein thiols, viz. cysteine and glutathione, in the shoot. These thiol compounds are precursors for
the synthesis of secondary sulfur compounds e.g. alliins in onion (Lawson 1996; Durenkamp and De

Figure 5. Impact of NaCl and Na2SO4 salinity on water-soluble non-protein thiols content of root and shoot of Allium cepa. Different
letters indicate significant difference (p < 0.01; One-way ANOVA, Tukey’s HSD all-pairwise comparisons as a post-hoc test).
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Kok 2002, 2003, 2004; Randle and Lancaster 2002; Durenkamp et al. 2005). Little impact of sodium
salts on alliin content may reinforce strict regulation of sulfur metabolism in onion plant.

Conclusion

In current study, a similar toxicity of chloride and sulfate salts on onion has been shown when
exposed to equimolar concentrations of Na+. Furthermore, it was concluded that both salts
affected the uptake and distribution of sulfate in the plant, though hardy affected sulfur reduction.
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