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Gene drive systems: do they have a place in
agricultural weed management?
Paul Neve*

Abstract

There is a pressing need for novel control techniques in agricultural weed management. Direct genetic control of agricultural
pests encompasses a range of techniques to introduce and spread novel, fitness-reducing genetic modifications through pest
populations. Recently, the development of CRISPR–Cas9 gene editing has brought these approaches into sharper focus. Proof
of concept for CRISPR–Cas9-based gene drives has been demonstrated for the control of disease-vectoring insects. This article
considers whether and how gene drives may be applied in agricultural weed management, focusing on CRISPR–Cas9-based
systems. Population-suppression drives might be employed to introduce and proliferate deleterious mutations that directly
impact fitness and weediness, whereas population-sensitizing drives would seek to edit weed genomes so that populations are
rendered more sensitive to subsequent management interventions. Technical challenges relating to plant transformation and
gene editing in planta are considered, and the implementation of gene drives for timely and sustainable weed management
is reviewed in the light of weed population biology. The technical, biological, practical and regulatory challenges remain
significant. Modelling-based studies can inform how and if gene drives could be employed in weed populations. These studies
are an essential first step towards determining the utility of gene drives for weed management.
© 2018 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
The potential for human-mediated, genetic interventions to aid
in the suppression and control of insect populations that neg-
atively impact agriculture and human health has been recog-
nized since the 1940s (for reviews see Leftwich et al. and Gould1,2).
However, during the last 5 years, these discussions have been
given increased fervour with the development of the CRISPR–Cas9
system for genome editing,3 and the recognized potential to
adapt this technology to drive precisely edited genes through
wild populations.4 Although the potential application of gene
drive systems for the reversal of resistance to herbicides has been
highlighted,4–8 to date, there is no systematic review of the poten-
tial applications and constraints of these systems for weed man-
agement. This article briefly considers the historical development
of genetic control technologies for insect pests, including recent
proofs of concept for synthetic gene drives that control insects vec-
toring human disease. I consider the need for novel genetic control
strategies in agricultural weed management and, in that context,
the potential application, practicability, limitations and constraints
of gene drives. I conclude with a call for modelling-based studies
to: (i) determine if these approaches have a practical application;
and (ii) inform the future design and implementation of gene drive
systems for weed management.

2 A ROLE FOR GENETIC CONTROL IN PEST
MANAGEMENT
In agriculture and health care, the control of pest species (her-
bivorous and disease-vectoring insects, pathogens and weeds)

has become dominated by the application of synthetic pesticides.
This approach has met with notable success, significantly reducing
crop yield losses and saving lives through the enhanced control of
insect vectors of human disease. However, intense selection has
resulted in the widespread evolution of pesticide resistance,9–11

and there are increasing concerns about the off-target environ-
mental and human health impacts of pesticide use, meaning that
novel, alternative control strategies are urgently needed. A vari-
ety of physical, agronomic, biological and agro-ecological meth-
ods are available for pest control and population suppression, but
the possibility of designing genetic control strategies that directly
manipulate the genomes of pest species to reduce their fitness
remains an intriguing and increasingly attainable goal.

2.1 Indirect genetic control of agricultural pests
In agriculture, it is possible to achieve indirect genetic con-
trol (Table A1) of pests through cultivar selection, breeding or
genetic engineering (or editing) of crop germplasm. Many crop
species and their wild relatives harbour genetic variation for host
plant resistance to insect pests12 and pathogens.13 Crop varieties
may also vary in their competitive14 and allelopathic potential15

against weeds. Where traits conferring enhanced tolerance, or
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even resistance to pests and pathogens have been bred out of
modern crop varieties, these traits can be re-introduced through
marker-assisted breeding, assuming that they have no deleterious
agronomic and nutritional impacts.

One of the most transformative agricultural technologies of
recent decades has been the development and commercializa-
tion of transgenic crops that express novel herbicide resistance
and pest resistance traits.16 Transgenic herbicide-resistant crops
have revolutionized weed management by enabling the use of
broad-spectrum, non-selective herbicides for weed control in
crops.17 Crops have also been genetically engineered to produce
insecticidal proteins for insect pest control, eliminating or reduc-
ing the need for insecticide applications. Although still prone to
the evolution of pest resistance, and, in the case of transgenic
herbicide-resistant crops, still dependent on the use of herbicides,
these technologies demonstrate the pest control advances that
can be made with increased access to insights, tools and resources
from molecular biology.

Several potential methods for the direct genetic control of insect
pests have been proposed and developed, and these are reviewed
in Section 2.2. However, although there have been some successes,
in general, these have been limited by the significant difficulty
of trying to proliferate engineered genes that reduce individual
and population level fitness, through widely dispersed natural
populations.

2.2 A brief history of direct genetic control for insect pests
In general terms, two types of approach have been suggested
for direct genetic control of insects.1 Self-limiting mechanisms
rely on inundative introductions of modified insects that mate
with local populations leading to population suppression through
lethal matings. Self-sustaining approaches rely on mechanisms
that drive genetic alterations through populations. Typically, these
‘driven’ genetic alterations reduce fitness and/or pest status and
increase in frequency via multigenerational, non-Mendelian inher-
itance, potentially leading to population replacement. A number
of mechanisms have been proposed that can limit the temporal
and spatial spread of self-sustaining drives.

2.2.1 Self-limiting mechanisms
Self-limiting genetic mechanisms for insect control rely on the
mass rearing of insects that are subsequently released into natu-
ral populations leading to sterile matings. Because these methods
rely on lethality, they do not persist and spread in populations, and
the degree of population suppression achieved depends on the
proportion of matings between introduced and wild insect popu-
lations. The first insect genetic control system to be developed and
deployed was the ‘sterile insect technique’.18 This approach relies
on the mass-rearing of insects, and their irradiation to induce steril-
ity. A mass release of sterile insects (preferably males) is made into
an area and matings between sterile males and wild females result
in inviable embryos, reducing population numbers. This technique
has been used for the control of seven species,19 but aside from
some notable successes,20 the sterile insect technique has not
risen to prominence because its success relies on targeting a rel-
atively small pest population, on the capacity to mass-rear insects,
and may be hampered by the fitness burden carried by irradiated
males.2

More recently, the ‘release of insects carrying a dominant lethal’
(RIDL) technique has been developed.21 This approach overcomes
the need for irradiation by using transgenesis to introduce a

lethal mutation into the genome of mass-reared insects. The
female-specific RIDL system results in female mortality through
sex-specific alternative splicing that leads to the production of a
tetracycline-repressible transactivation fusion protein.22 A unique
feature of this system is that lethality can be repressed if tetracy-
cline is present in the diet, enabling the mass-rearing of insects
that carry and spread conditionally lethal mutations in the wild.

A third approach for the self-limiting population suppression of
insects has been termed the ‘incompatible insect technique’.1,23

This approach, whose precise mechanisms are unknown, relies
on the introduction of the maternally transmitted endosym-
biotic bacteria, Wolbachia into laboratory-infected mosquitoes.
When Wolbachia-infected males mate with uninfected females,
the resulting embryos are inviable, providing the potential for
the mass release of infected males as an alternative strategy that
relies on neither irradiation nor transgenic approaches. Where
Wolbachia is used for self-limiting population control, it is impor-
tant that only infected males are released because matings with
infected females are compatible, providing a means to drive Wol-
bachia infections through populations (see Section 2.2.2). The
incompatible insect technique has been trialled in a range of cage
experiments and small-scale field trials to affect population control
for disease-vectoring Culex and Aedes species.23

2.2.2 Self-sustaining mechanisms
The fundamental challenge for the design of self-sustaining, direct
genetic manipulation of pest genomes rests with the need to
spread fitness-reducing genes through widely dispersed, wild
populations. With normal Mendelian inheritance, the fitness costs
associated with those novel alleles would dictate against their
spread through populations leading to, at best, their maintenance
at low frequencies for limited periods and ultimately to their being
purged from populations. However, the discovery in nature of sev-
eral genetic mechanisms that distort or subvert the normal ‘rules’
of Mendelian inheritance offers some tantalizing possibilities for
driving genetic modifications through pest genomes.

These naturally evolved mechanisms of ‘gene’ or ‘meiotic’ drive
have been reviewed extensively elsewhere.1,23,24 One of the first
recognized gene drive systems relied on the use of Wolbachia
infection to drive phenotypes such as cytoplasmic incompatibility
through populations. In the presence of Wolbachia-infected males,
infected females have a substantial fitness advantage, because
uninfected females produce sterile offspring following matings
with infected males. This leads to an overall reduction in mating
success, while increasing the frequency of Wolbachia in fertile
offspring, effectively driving Wolbachia through populations.1

The Y drive system can also distort sex ratios in insect popula-
tions via breakage of the X chromosome during meiosis. In Aedes
aegypti, a segregation distorter linked to the Y chromosome is
inherited by 80–90% of progeny in natural populations.25 Mobile
transposable elements offer another means to introduce and pro-
liferate novel genetic sequences throughout pest genomes. If
insects could be genetically engineered so that a fitness-reducing
gene could be embedded with a transposon, that gene could be
spread through pest populations.26 Another selfish genetic ele-
ment, Medea has evolved naturally in beetles, fungi and plants.27

The Medea system causes the death of all embryos from a mating
between a carrier and a susceptible individual, except those indi-
viduals that inherit the Medea element.

The existence in nature of a diversity of gene drive systems
offers promise for their practical manipulation, and models have
shown that these approaches have the potential to succeed in

wileyonlinelibrary.com/journal/ps © 2018 The Author. Pest Manag Sci 2018; 74: 2671–2679
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suppressing pest populations and limiting the transmission of
insect-vectored disease. However, field implementation is lacking,
perhaps because of the difficulty of spreading genes that severely
impact the fitness of pest populations. To date, the sterile insect
technique, RIDL and Wolbachia-based approaches remain the only
genetic control strategies that have been utilized for practical pest
management.

A considerable surge in interest in the application of gene drive
systems has been catalysed by the suggestion that it may be pos-
sible to use homing endonuclease genes for the genetic control of
wild populations of insect pests.28 In theory, if a homing endonu-
clease gene could be inserted into a functional gene, using trans-
genic approaches, it would result in loss of function of that gene.
Initially, the loss of function would be heterozygous. However,
in cells that are heterozygous for the presence of these homing
genes, an enzyme cleaves the homologous chromosome in an
identical position and inserts a copy of itself, converting a het-
erozygote into a homozygote. These selfish genes occur in a vari-
ety of microbes, usually situated in introns and therefore normally
having no impact on gene function. The inherent homing, cleav-
ing and copying machinery of these gene drives makes it theo-
retically possible to drive edited or engineered genes through the
genomes of wild species, even when the resulting genetic changes
reduce the fitness of recipient individuals and populations.

3 THE DEVELOPMENT OF CRISPR–CAS9
GENE DRIVE SYSTEMS
The discovery, and subsequent demonstration that the bacteri-
ally derived CRISPR–Cas9 system could be adapted for precise
gene editing in eukaryotic cells3,29 provided further promise for the
development of gene drives in wild pest populations.4 The advan-
tages of this system are that the Cas9 nuclease can be directed
to cut almost any part of the genome, being directed to targeted
sequences by a guide RNA. In applications of this technology for
genome editing, the cut site is repaired using the homologous
recombination pathway to copy the gene drive sequence at the
cut site. The gene drive element consists of the guide RNA, Cas9
nuclease and an edited repair template that may incorporate a
newly functional gene at the cut site or introduce precise sequence
changes to the cut gene.4 In self-sustaining gene drive systems, the
sequences for the Cas9, the guide RNA and any edited or novel
gene sequences that are included as ‘cargo’ are inserted into the
genome at the location where the cut is made. In a diploid organ-
ism, the CRISPR–Cas9 is then automatically guided to cut the same
site on the homologous chromosome and inserts the construct
by homologous recombination. The modified organism there-
fore becomes homozygous for CRISPR–Cas9 and the edited gene,
meaning that all gametes will transmit that construct. Matings
between homozygous-edited and wild-type individuals will result
in heterozygotes and, as before, the Cas9 will be guided to cut the
homologous chromosome and insert the edited gene, leading to a
mutagenic chain reaction.30 More recently, as concerns have risen
over the potential limitless spread of self-sustaining gene drives,
split-drive systems have been proposed whereby the gene drive
depends on the presence of second gene that is inherited nor-
mally, limiting the spatial and temporal spread of gene drives.7,31

3.1 Molecular, ecological and evolutionary constraints
on CRISPR–Cas9 gene drives
The second part of this article focuses on the potential application
of CRISPR–Cas9-based gene drive system to weed management.

In doing so, it is necessary to consider the molecular, ecological
and evolutionary factors that enable and constrain success-
ful gene drives in weed species (see Gould2 for a detailed
account of the various biological factors impacting the feasi-
bility of genetic control of pest species). Here, these factors
are presented in general terms as they relate to the feasibility,
fidelity, rate of spread (temporal and spatial), and evolution-
ary stability of gene drives. In following sections, they are
considered with specific reference to the biology of weedy
plants.

The first limiting step is the availability of a genetic transfor-
mation system for the target organism that is compatible with
CRISPR–Cas9 gene editing. Where this is not a limitation, the
molecular genetic potential for population-level gene drives will
depend on several factors related to homing efficiency.4 The Cas9
nuclease must reliably cut the genome at the target sequence; suc-
cessful attempts at Cas9 genome editing in a wide range of species
suggest that this should not be a fundamental constraint.32,33

The specificity of cutting is important where precise gene edit-
ing or knockout is required, or where some insertion sites may
lead to severe fitness penalties. This is harder to achieve in large
genomes due to the potentially larger number of similar, off-target
sequences. Most critically for successful copying and propaga-
tion of the gene drive, it is important to ensure that the cut
sequence is repaired by homologous recombination and not via
the non-homologous end-joining pathway. The relative frequency
of homologous versus non-homologous DNA repair pathways
may vary between organisms and between tissues, and the rate of
homologous repair will set inherent limits on the propagation of
the gene drive element.4 Attempts to design endonuclease gene
drives in various insect species have resulted in successful copying
following > 97% of cuts in mosquitoes,34 whereas similar efforts
in fruit flies resulted in < 78% success.35 Ensuring high rates of
homologous DNA repair in weed species is a necessary first step
towards demonstrating the potential application of gene drive sys-
tems.

Even given a high percentage of conversion of heterozygote
to homozygote individuals, gene drives take multiple genera-
tions to spread through populations.36 The rate at which gene
drives can spread depends on several demographic and life his-
tory parameters. For example, drives spread more quickly when:
(i) large numbers of individuals are introduced relative to the size
of the established population; (ii) fitness costs associated with
the drive are low; (iii) the generation time is short; (iv) targeted
species are obligate outcrossers; and (v) rates of gene flow, medi-
ated by pollen dispersal and seed movement are relatively high
(Section 5).

As with all control strategies that significantly reduce pest fitness,
gene drives are subject to counteracting evolutionary forces that
operate to restore fitness and sustain viable populations. Evolution
of resistance to gene drives may operate through mechanisms
that overcome the molecular machinery for recognition, cutting
and copying at edited sites or via selection of alleles in other
parts of the genome that enable the restoration of fitness through
compensatory evolution.37

4 APPLICATION OF CRISPR–CAS9 GENE
DRIVES TO WEED CONTROL
The precept for CRISPR–Cas9-based population suppression of
weed species rests with the assumption that gene drives can be
used to introduce and spread a fitness load that can limit the

Pest Manag Sci 2018; 74: 2671–2679 © 2018 The Author. wileyonlinelibrary.com/journal/ps
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.



2674

www.soci.org P Neve

Figure 1. A CRISPR–Cas9 gene drive system for an agricultural weed. At the cellular level following a successful mating between introduced and wild-type
individuals, plants will carry the gene drive system in a heterozygous state (a). An RNA guide will direct the Cas9 nuclease to cut the DNA at the recognition
site on the wildtype chromosome (b). The cut will be repaired by homologous recombination using the drive chromosome as a template and converting
the individual to a homozygous state for the drive (c). At the population level, individuals with the engineered drive (blue plants) would be introduced
into a wild population (green plants) (d) and would spread over time (e, f ) until individuals carrying the drive allele dominate the population (adapted
from Godfray et al. 50 and Frey and Malik 51.

establishment, abundance, dispersal, persistence and/or impact of
weed populations (Fig. 1).

This might be achieved via genetic manipulations that target
weed traits relating to competitiveness, seed dormancy and per-
sistence, phenology and morphology, although the potential of
these approaches is currently limited by incomplete understand-
ing of the molecular genetic basis of weed traits. Notwithstand-
ing this, it is conceivable that homologues of the Rht-1 dwarf-
ing genes that have been utilized in wheat breeding38 could be
identified in related grass weeds. If these genes could be driven
through populations, they may reduce weed competitive abil-
ity. Similarly, studies in weedy rice have begun to unravel the
genetic basis of the evolved seed dormancy and seed-shattering
traits that contribute to the persistence and spread of wild rice,
providing another molecular target for efforts to reduce the fit-
ness of weeds in agroecosystems.39 Efforts could also be directed
towards meiotic drive systems that bias the sex ratio in dioecious
weedy species such as Amaranthus spp., leading to biased sex
ratios. Other attempts to target plant reproduction and fecun-
dity might focus on genetic manipulations that interfere with, for
example, gametogenesis to limit pollen or ovule production, lead-
ing to reductions and/or biases in gamete production. The emerg-
ing field of weed genomics has recognized the value in research to
determine the molecular genetic basis of ‘weediness’ traits to bet-
ter inform how those traits evolve and as a potential novel source
of genetic variation for crop improvement.40 Given the poten-
tial for direct genetic control of weed species, these efforts gain
greater impetus if gene drive systems can be employed to knock-
out or modify weedy traits in wild populations.

Although there are likely to be geographical and biological limits
to the spread of introduced population suppression-based gene
drives, these could, in theory, if they were to spread unchecked,
lead to species extinction.4 Recognizing the potential ethical,
regulatory and biological concerns associated with unmitigated
population-suppression drives, several authors have proposed
strategies for safeguarding this technology to limit spatial and

temporal spread.4,7,31 Of these, sensitizing drives, which focus on
increasing the target population’s susceptibility to subsequent
management or environmental interventions, appear to offer
greater potential for regulatory approval and subsequent applica-
tion in weed control.

Sensitizing drives have the considerable advantage that popu-
lation suppression is not contingent on the drive element itself,
but on subsequent management, the application of which can be
controlled in time and space. Sensitizing drives can be designed to
spread genetically engineered genes that have no inherent nega-
tive consequences on organismal fitness, aiding their spread, but
more importantly, ensuring that population suppression is condi-
tional on specific management interventions. The most obvious
application of sensitizing drives in weed management would be
to revert herbicide-resistant populations back to herbicide sensi-
tivity. Because most herbicide targets are well known and many
of the mutations that confer resistance have been characterized,11

this is technically feasible (notwithstanding the need to develop
transformation systems for weed species and the technical chal-
lenges posed by adapting the CRISPR–Cas9 system for genome
editing in those species). Driving susceptibility through weed pop-
ulations to the point at which effective control of previously resis-
tant populations would be possible would take several genera-
tions (see Section 5), during which the target herbicide could not
be used because it would effectively kill plants carrying the ele-
ments propagating the reversion. Even low frequencies of resistant
individuals being maintained in populations following a success-
ful drive event could lead to the rapid evolution of resistance upon
the recommencement of herbicide use. Subsequent management
of newly sensitive populations would have to pay heed to care-
fully designed resistance management strategies. It should also
be acknowledged that the application of this approach is compli-
cated by the increasing recognition that many widespread mech-
anisms of herbicide resistance are conferred by complex, possibly
polygenic mechanisms whose genetic determination and genetic
architecture have not been fully resolved.41

wileyonlinelibrary.com/journal/ps © 2018 The Author. Pest Manag Sci 2018; 74: 2671–2679
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Sensitizing drives could also be used to introduce changes
into highly conserved, essential plant genes rendering them
sensitive to specifically designed herbicidal molecules,4 by com-
bining synthetic chemistry with synthetic and structural biology.
Edited genes would have to maintain their normal enzymatic
activity to effectively spread through populations, but these
approaches could pave the way for the design of highly targeted
chemical interventions that limit environmental and non-target
impacts.

Other intriguing possibilities for sensitizing drives can be imag-
ined. Recently, weed control technologies that target and destroy
mature weed seeds, limiting seed bank replenishment, have been
developed.42 These technologies rely on the retention of weed
seeds on mature plants at the time of crop harvest to enable their
collection, removal and/or destruction. For some species, such
as the major annual grass weed of north-west Europe, Alopecu-
rus myosuroides, early seed shattering limits the potential for
these approaches. A gene drive that targeted seed-shattering
loci, leading to the retention of seeds on parent plants until
crop harvest, could be combined with harvest weed control tech-
nology to offer a new method of control for this and other
intractable weed species. Conceptually this is possible, as single
nucleotide polymorphisms in target genes have been responsible
for the loss of the shattering phenotype during the domestication
of rice.43

5 WEED GENE DRIVES: THEORY INTO
REALITY?
This article attempts to address the question ‘do gene drive
systems have a place in agricultural weed management?’ In the
preceding section, the aim was to demonstrate that a number of
potential applications exist, particularly for sensitizing gene drives.
The technical barriers are large, but conceptually at least, they are
not insurmountable. These barriers include the development of
transformation systems for weed species that are compatible with
successful genome editing using CRISPR–Cas9 machinery and the
identification of suitable molecular targets. As discussed in
Section 3.1, the ultimate success of gene drives for weeds
depends on overcoming molecular genetic constraints and
challenges, but also ecological and evolutionary (population
biology) barriers. The successful design and implementation
of gene drives depends on collaboration between molecu-
lar biologists, weed ecologists, modellers and evolutionary
biologists.

What would be the essential characteristics of a successful gene
drive for weeds? Edited genes would need to spread through pop-
ulations to high enough frequencies to affect sufficient popula-
tion control within a reasonable time frame. The system would
have to be deployed in a way to maximize evolutionary robust-
ness. Modelling studies to explore the time frames over which
gene drives could spread edited genes to fixation in natural pop-
ulations have indicated 10–20 generations, depending on the
fitness consequences (selection coefficient) of the edited gene
and the conversion efficiency of a CRISPR–Cas9 homing and edit-
ing reactions.37 This model makes a number of assumptions that
would likely be violated in weed populations infesting agroecosys-
tems and a number of authors have noted the need for modelling
studies to explore the potential of gene drives for agricultural pest
management.4,6 There are a number of specific characteristics of
plant (weed) species that would likely moderate the potential for

effective gene drives, and these are discussed in greater detail
below.

5.1 The population biology of weed gene drive systems
Many major annual weed species produce a single generation per
year, which imposes a significant constraint on the time it will take
for gene drives to spread through populations. Unckless et al.36

predicted 10–20 generations to fix driven genes in wild popula-
tions when the initial frequency of edited individuals released into
populations was 0.001. Weed populations are large; a moderate
infestation of a major weed species would have an average seed
bank density of 100 seeds m−2, meaning that a 10 ha cropping field
would contain 10 million individuals (107), requiring the release
of 104 seeds to achieve the spread rates simulated by Unckless
et al.36 (all else being equal) in a single infested field. A reduction
in the number of generations required to fix edited genes could
be achieved with a higher release rate, but this would be chal-
lenging practically. In particular, the production of sufficient seeds
containing the gene drive for releases at this scale would pose a
significant technological and practical constraint because, com-
pared with most insect pests, weedy plants have a long generation
time, increasing the time required to multiply gene edited popu-
lations for release.

The Unckless et al.36 model also assumes that gene drives spread
through a panmictic population. This simplifying assumption will
be violated in many weed populations. Although several major
weed species are outcrossing, pollen dispersal distances are lim-
ited, potentially slowing the spread of gene drives through popula-
tions. Within agricultural fields, this constraint could be somewhat
mitigated by ‘releasing’ edited individuals throughout the field,
probably through intentional mixing with the sown crop seed. The
potential for the spread of gene drives would be severely limited
in selfing weed species or in species with a perennial life cycle
and gene drives would not be possible in species that can repro-
duce asexually, for example through vegetative propagation. Even
for obligate outcrossing species, there will be a strong tendency
towards the evolution of selfing in response to drives based on
homing endonuclease genes.44 Many plant species have mixed
mating systems and gene drives would likely bias populations
towards increased rates of inbreeding. Finally, it would be impor-
tant to consider the possibility for assortative mating between
the local and introduced (gene edited) populations, particularly
where, for example, there were differences in the timing of flow-
ering, anthesis and pollen dispersal.

Another defining characteristic of many agricultural weed
species, the possession of a persistent, dormant seed bank, also
needs to be considered. Effectively, this means that only a small to
moderate proportion of the viable weed population exists at any
time as adult, reproductive plants. In this situation, the seed bank
acts as a genetic ‘reservoir’ of individuals that are only exposed to
the GDS following germination and growth to reproductive matu-
rity. In species with long-lived seed banks, this reservoir has the
potential to significantly slow the spread of genetic manipulations
through populations.

In summary, the potential success and application of gene drives
for agricultural weeds will depend on a range of breeding system,
genetic and life history parameters, and on the availability of
genomic resources and plant transformation systems. Considering
the application of gene drives for management of a range of major,
global, herbicide-resistant weeds species, it becomes evident that
gene drives have application for some, but not all major species
(Table 1).

Pest Manag Sci 2018; 74: 2671–2679 © 2018 The Author. wileyonlinelibrary.com/journal/ps
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6 CONCLUSIONS, PERSPECTIVES AND NEXT
STEPS
The considerable excitement that has been generated by recent
and rapid developments in gene drive technology merits the
attention of those concerned with agricultural weed (and pest)
management.4–6 The need for technological and agroecological
innovation in crop protection systems is great, and gene drive
offers unprecedented power to directly manipulate the genomes
of pest species to: (i) introduce and spread fitness-reducing traits
into wild pest populations to achieve population suppression,
and/or (ii) sensitize (or re-sensitize) populations to new (and exist-
ing) control techniques.

The ethical, societal, biosecurity and ecological challenges
associated with the use and regulation of gene drives are con-
siderable. Suppression drives represent a form of gene editing
that can spread, potentially uncontrollably, through wild popu-
lations with the potential to result in severe population declines
(and maybe even extinction) of those species in natural sys-
tems. There is a rapidly expanding literature that considers these
risks and the attendant need for stringent regulation of gene
drives6,45,46,47 together with a number of methods that have been
proposed that safeguard gene drives by limiting their potential
spread and/or making them reversible in laboratory and natural
environments.4,31,48,49 This article is limited to a consideration of
the technical feasibility and practical applications of gene drives
for weed management, although it should be recognized that the
regulatory and ethical barriers to the use of gene drives are likely
to be more decisive than any technical difficulties.

The definition of an agricultural pest is anthropogenic, based
on the propensity for certain organisms to reduce crop yields via
herbivory, disease transmission, pathogenicity and resource com-
petition. In wider context, most pests, including weeds, are inte-
gral components of agroecosystems and their undesirability is a
function of their abundance, and the associated crop yield loss
potential, rather than their inherent presence in those ecosystems.
Indeed, many pest species may even perform positive roles in
agroecosystems relating to community structure and ecosystem
functioning. It is my own personal and scientific view that any gene
drive that has the stated goal (or the inherent potential) of driving
a species to extinction would not be desirable, and stringent reg-
ulations would likely prohibit those aims and potential outcomes.
Nevertheless, local eradications may be possible, and it should be
noted that gene drives have the potential to enable more targeted
pest control that considerably reduces the unintended, off-target
impacts of current crop protection strategies.

Sensitizing drives, particularly those that, for example, reverse
the evolution of resistance, may overcome many of the inher-
ent ecological concerns and ethical objections to gene drives.
Gene drives to reverse herbicide resistance have inbuilt ‘safe-
guarding’ mechanisms. At the genetic level, they aim to revert
individuals and populations that have evolved resistance via the
human-directed selection of resistance-conferring alleles to their
ancestral wild-type, sensitive state. As such, these methods do not
require the introduction of edited DNA that reduces pest fitness in
‘natural environments’. It could be argued that these drives would
restore populations to the genetic state that they were in before
human intervention. At the practical level, the population suppres-
sion that can be delivered by sensitizing gene drives is by defini-
tion coupled tightly to the exogenous application of a chemical (or
other management technique) making it possible to strictly limit
the spatial and temporal control of populations. It may be the case
that these sensitizing drives have the greatest potential to deliver

novel, genetic weed control within envisaged future regulatory
frameworks.

Technical feasibility and regulatory challenges may ultimately
dictate the potential for gene drives to contribute to the future
management of agricultural weeds. However, these considera-
tions are only relevant if it can be established that gene drives have
the potential to spread effectively through populations in reason-
able time frames to affect practical applications. Here, the potential
limitations relate to aspects of weed biology, ecology, life history
and population dynamics, as well as the potential for populations
to rapidly evolve resistance to gene drive systems and/or to the
control measures that are enabled by gene editing (see Table 1 and
Section 5.1). In many respects, these limitations are the most eas-
ily addressed because simulation modelling studies can be used to
assess the likely rate and efficacy of spread of gene drives through
weed populations under a number of assumptions about the effi-
ciency of homing reactions, release rates, population sizes, weed
population dynamics and weed mating systems. As a first step,
towards a more rigorous assessment of gene drive potential for
weed management, these modelling studies should be under-
taken as a priority to inform application domains and to assess the
critical factors that will determine success or failure. These mod-
elling studies should also consider how direct genetic control of
weeds may be integrated with other chemical, cultural and phys-
ical methods of weed management to design gene drive systems
that deliver weed control in practicable timescales whilst reducing
the potential for rapid evolution of resistance mechanisms. There
may be many roadblocks and steering this technology towards
application may not ultimately be possible, but given the urgent
need for innovation in weed management, it is imperative that all
potential future technologies are fully investigated.
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Appendix

Table A1. Definitions

Indirect genetic control
Any genetic control system for an agricultural pest, in which control is delivered via genetic
modification (via breeding or transgenesis) of the host or competing crop species genome.

Direct genetic control Any genetic control system that is based on direct modification of the pest genome to introduce
and/or proliferate a fitness-reducing genetic load.

Gene or meiotic drive Naturally occurring genetic mechanisms that can propagate a modified gene or suite of genes
through an organism’s genome by subverting the normal rules of Mendelian inheritance.

Homing endonuclease genes Selfish genetic elements that are able to propagate through genomes by cleaving chromosomes that
do not contain them and are then copied into the broken chromosome during the DNA repair
process.

CRISPR–Cas9 A naturally occurring genetic component of the bacterial immune system, now developed as a
molecular tool for use in a range of organisms to enable precise genome editing.

Homologous recombination pathway A mechanism of genetic recombination, whereby nucleotide sequences are replaced by similar or
identical (homologous) molecules of DNA to repair DNA double-strand breaks. The proliferation of
CRISPR–Cas9 gene drives through genomes is dependent on this DNA repair pathway.

Non-homologous end joining pathway An alternative pathway for the repair of this DNA double-strand breaks in which the broken ends are
directly ligated without the need for a homologous DNA template.
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